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Abstract
Objective: This study aims to develop and validate OneGout, a federated learning (FL)-based framework for early and
accurate gout diagnosis to address the limitations of current diagnostic methods, specifically the invasiveness of joint
aspiration and the accessibility, cost, and radiation exposure associated with advanced imaging techniques like dual-energy
computed tomography (DECT).
Methods: We introduce OneGout, which pioneers a deep learning-based method for generating virtual DECT images.
This approach offers a low-cost and low-radiation alternative for gout diagnosis. Furthermore, OneGout integrates fed-
erated learning (OneGout-FL) to enable collaborative model training across multiple medical institutions while ensuring
patient data privacy is preserved.
Results: Experiments demonstrate that our method successfully generates high-quality virtual DECT images. The frame-
work based on U-Net achieves a PSNR of 22.44 dB and an SSIM of 0.92 for the generation of 140 kV from 80 kV images. It
also shows strong diagnostic performance, with an IoU of 46.66 and a Dice score of 63.20, indicating promising accuracy
comparable to diagnoses made with real DECT scans.
Conclusion: OneGout presents an efficient, scalable, and privacy-preserving diagnostic solution for gout, particularly
beneficial for resource-limited medical institutions. This framework has the potential to significantly enhance global
gout management by providing a more accessible and safer diagnostic alternative.
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Introduction
As of 2020, the global prevalence of gout had reached
55.8 million, representing a 150.6% increase compared to
1990, with an age-standardized prevalence rate of 659.3
per 100,000 people.1 With the intensification of population
aging, rising obesity rates, and dietary changes, the preva-
lence of gout is expected to continue increasing.2

Gout is a common inflammatory arthritis caused by purine
metabolism disorders and/or impaired uric acid excretion
(see Figure 1), leading to elevated blood uric acid levels.3

This results in the deposition of monosodium urate (MSU)
crystals in joints and surrounding tissues, triggering acute
or chronic inflammation.3 Prolonged MSU crystal deposition
can ultimately cause joint damage and deformities, significantly
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impacting patients’ quality of life. This trend highlights the
urgent need for improved gout diagnosis and treatment.
Therefore, early and accurate diagnosis is crucial for the
treatment and management of gout.

Currently, the gold standard for gout diagnosis is the
identification of MSU crystals in joint aspiration samples
using polarized light microscopy.4 However, joint aspir-
ation is an invasive procedure and may not be feasible for
patients with a low synovial fluid volume. Additionally,
the procedure’s success depends on the clinician’s experi-
ence, posing a risk of false-negative results.5 In recent
years, imaging examinations have demonstrated significant
advantages as non-invasive diagnostic tools for gout.
Among them, advanced imaging modalities such as
dual-energy computed tomography (DECT) and ultrasound
(US) have been widely used for gout diagnosis.6,7 US is a
cost-effective, radiation-free imaging technique that detects
MSU crystal deposition through characteristic features,
such as the “double contour sign.”8 However, its diagnostic
accuracy is highly dependent on the operator’s experience
and is limited in evaluating deep-seated joints or obese
patients.9

DECT is capable of acquiring two different energy levels
(e.g. 80 kV and 140 kV) of X-rays almost simultaneously.10

Compared with conventional CT, DECT utilizes the
attenuation differences of X-ray photons at varying energy
levels to distinguish MSU crystals from other types of crys-
tal deposits. The efficacy of DECT and ultrasound in detect-
ing MSU crystals was compared by Yan et al.,11

highlighting the significant advantage of DECT in assessing

intra-articular MSU deposits. Meanwhile, the performance
of different DECT techniques in detecting MSU crystals
was investigated by Li et al.,12 with particular focus on
the novel second-generation dual-layer spectral detector
CT (dlDECT) for gouty arthritis. Their findings demon-
strated that higher spatial resolution and improved diagnos-
tic accuracy in detecting MSU crystals are offered by
dlDECT. While DECT achieves good diagnostic accuracy,
its real-world application is stalled by two fundamental
challenges that form the motivation for our work.

First, there is a critical clinical access gap. Although
DECT has demonstrated high sensitivity and specificity in
gout diagnosis,13 its widespread adoption is hindered by
high equipment and technical costs, as well as a strong reli-
ance on specialized expertise, limiting its accessibility in
resource-constrained healthcare settings.14 Currently, the
low availability of DECT in primary healthcare institutions
prevents many patients from receiving timely, high-
precision diagnostic services. Additionally, DECT’s radi-
ation dose may be higher than that of single-energy CT
(SECT).15,16 These limitations underscore the need for an
alternative approach that reduces equipment dependence
while maintaining diagnostic accuracy. With the rapid
advancement of deep learning, medical imaging has experi-
enced significant improvements in diagnostic accuracy and
efficiency,17 paving the way for deep learning-based gout
diagnosis.

Second, the integration of deep learning into medical
applications also presents critical challenges related to
data security and sharing. Deep learning models require

Figure 1. Pathogenesis of gout. Disrupted purine metabolism and/or impaired uric acid excretion lead to elevated blood uric acid
levels, resulting in MSU crystal deposition in joints and surrounding tissues.
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large, diverse datasets from multiple institutions to achieve
the robustness and generalizability needed for clinical
deployment. However, strict patient privacy regulations
(e.g. GDPR) prohibit the direct sharing of sensitive medical
data. Therefore, the deep learning model must be built on a
framework that enables collaborative model training with-
out compromising patient confidentiality.

This leads us to the central research question: how can
we develop a deep learning-based framework that accur-
ately simulates DECT imaging from SECT data to improve
gout diagnosis accessibility, while enabling collaborative
model training across institutions without compromising
patient privacy?

To overcome these dual challenges, we introduce a com-
prehensive framework that addresses both hardware acces-
sibility and data privacy. The core of our contribution is
OneGout, a deep learning model that virtualizes DECT by
generating 140 kV CT images from a single, low-cost,
low-radiation 80 kV SECT scan. This directly tackles the
clinical access gap by simulating DECT’s diagnostic cap-
abilities on standard equipment. To solve the data privacy
barrier, we present OneGout-FL, an implementation of
OneGout based on federated learning (FL).18 This privacy-
preserving paradigm allows for the collaborative training of
a OneGout model across multiple institutions without
exchanging any raw patient data.

The contributions of this study are mainly reflected in the
following aspects:

• A Novel Virtual DECT Framework to Enhance
Diagnostic Accessibility: We propose and validate
a new paradigm that simulates DECT imaging using
only single-energy CT data. This approach provides
a practical, low-cost, and low-radiation solution to
overcome the limitations of physical DECT equip-
ment, significantly expanding access to advanced
gout diagnostics.

• A High-Performance Image Generation Model
(OneGout): We develop the OneGout model, which
integrates state-of-the-art U-shaped neural network
architectures and is optimized with a custom loss
function tailored to the unique characteristics of dif-
ferent tissue types, ensuring high-quality and diag-
nostically reliable image synthesis.

• A Privacy-Preserving Collaborative Training
Architecture (OneGout-FL):We design and imple-
ment a federated learning (FL) framework for our
model. OneGout-FL addresses critical data govern-
ance challenges by enabling secure, multi-site model
training, paving the way for building more robust and
generalizable AI-driven diagnostic tools in medicine.

• Extensive experimental validation: The proposed
method demonstrates exceptional performance in
image generation, as evaluated using metrics such
as PSNR, SSIM, IoU, and Dice. The generated

virtual DECT images achieve diagnostic accuracy
comparable to real DECT images, confirming the
method’s reliability and effectiveness in clinical
applications.

Related work

Pathogenesis and detection of gout
Gout is the most common cause of inflammatory arthritis in
adults.19-22 Its formation mechanism is primarily related to
purine metabolism disorders and/or reduced uric acid excre-
tion. Under normal conditions, purine substances in the
body are broken down into uric acid. When purine metab-
olism is disrupted, leading to excessive uric acid production
or reduced excretion, blood uric acid levels increase, result-
ing in hyperuricemia. Hyperuricemia is the most important
biochemical basis for gout, though not all individuals with
hyperuricemia will develop gout. The most typical form of
gout is characterized by recurrent, self-limiting acute
inflammatory attacks, known as gout flare-ups.23 The dis-
ease’s complexity extends to systemic complications like
renal impairment, for which machine learning has been
used to identify key biomarkers.24

Gouty tophi are formed by the aggregation of MSU crys-
tals around an inflammatory corona structure25 and are com-
monly seen in patients with inadequate treatment or severe
disease. Tophi most frequently occurs in the ear’s helix,
the first metatarsophalangeal joint of the toes, fingers, wrists,
elbows, and knees. In rare cases, they may also appear in the
nasal cartilage, tongue, vocal cords, eyelids, aorta, heart
valves, and myocardium. Gouty tophi can exert pressure
on surrounding structures,26 particularly in confined spaces
such as the spine27 or carpal tunnel. In severe cases, tophi
may lead to chronic arthritis, often affecting multiple joints.

Traditional gout diagnostic methods include synovial
fluid analysis, which is considered reliable for identifying
crystals under polarized light microscopy.22 This method
provides an immediate diagnosis, even between acute flare-
ups, guiding treatment planning and potentially avoiding
unnecessary further testing. Since the discovery of MSU
and calcium pyrophosphate (CPP) crystals in the synovial
fluid of gout and CPP crystal arthritis patients, their identi-
fication through compensated polarized microscopy has
become the gold standard for diagnosing crystal-induced
arthritis.28 Despite its diagnostic importance, synovial fluid
analysis has several limitations in clinical practice. First,
joint aspiration is an invasive procedure that may cause
pain and discomfort and carry risks of complications such
as infection.4 Second, the quality and storage conditions
of synovial fluid samples significantly impact the accuracy
of the test results.29 Moreover, variations in the experience
and expertise of different observers may lead to inconsisten-
cies in diagnosis.30

Dong et al. 3



To overcome these drawbacks, non-invasive imaging
has become essential.31 DECT has revolutionized gout
diagnosis. DECT identifies MSU crystals by leveraging
the photon energy-dependent attenuation properties of dif-
ferent materials. It scans the target using two different
X-ray energy levels (e.g. 80 kV and 140 kV) to obtain
attenuation data across different energy spectra. Based on
atomic number and material density characteristics, DECT
can differentiate between various tissue components.
During post-processing, DECT applies color coding to dis-
tinguish urate crystals/tophi from other calcifications.32,33

This material decomposition capability is also effective
in analogous applications, such as identifying urinary
stones.34 In contrast, SECT provides imaging results at
only one energy level, lacking the ability to differentiate
between these materials. Studies consistently confirm that
DECT offers superior sensitivity and specificity compared
to other methods,35-38 and its performance can be further
enhanced with AI-based reconstruction techniques.39

Privacy challenges in learning-based medical imaging
Advancements in artificial intelligence (AI) have signifi-
cantly transformed medical imaging, enhancing disease diag-
nosis, image processing, and clinical decision-making.17,40,41

Recent works have demonstrated the potential of AI-driven
models, such as convolutional neural networks, to synthesize
high-fidelity medical images, facilitating multimodal diagno-
sis and improving clinical workflows.42,43

Despite these advancements, the increasing digitization
of healthcare data introduces significant privacy and secur-
ity challenges. Medical institutions generate vast amounts
of sensitive patient information, which is subject to strict
regulatory protections, such as GDPR.44 Centralized data
storage and processing models face heightened risks of
privacy breaches, as cyberattacks on centralized repositor-
ies can lead to large-scale patient data leaks.45

Additionally, data fragmentation across different healthcare
institutions exacerbates the issue of data silos, hindering the
development of comprehensive diagnostic models.46

To address these challenges, FL has emerged as a
paradigm-shifting approach.47 FL allows multiple institu-
tions to collaboratively train a shared model without
exchanging raw patient data, mitigating privacy risks while
enhancing model performance. This decentralized method
has been successfully applied in various medical domains,
including skin cancer prediction,48 and its versatile frame-
work can be adapted to different data distribution scen-
arios.49,50 Recent innovations have further tailored FL for
CT imaging, incorporating physics-driven personalization
and even leveraging large language models to secure and
enhance complex U-shaped networks.51-53 These studies
prove that FL can achieve high accuracy while fostering
the secure, cross-institutional collaboration needed for mod-
ern medical AI.54-56

Motivation
In gout diagnosis, DECT has consistently been recognized
as a highly useful non-invasive diagnostic tool.57 However,
the high cost of DECT equipment limits its widespread
adoption in hospitals. How to maximize the benefits of
this technology while minimizing costs and potential draw-
backs has become a critical issue for our research. This
study explores an innovative solution by attempting, for
the first time, to generate dual-energy CT images solely
from SECT images, thereby reducing dependence on
DECT equipment.

To achieve this goal, we designed a comprehensive FL
model centered around a deep learning network based on
U-Net-like architectures. This model fully leverages
U-Net’s encoder-decoder structure and skip connections
to achieve high-precision mapping from SECT to DECT.
By generating high-quality synthetic dual-energy CT
images, this study not only achieves the detection capability
for early gout lesions but, more importantly, provides an
efficient gout diagnostic tool to more medical institutions
without increasing equipment costs.

Method

Study design and data acquisition
This was a multicenter, retrospective diagnostic accuracy
study conducted between January 2021 and June 2024
using data from the Department of Medical Imaging at
Guangzhou First People’s Hospital, Guangzhou, China.
The study was approved by the Institutional Review
Board (IRB) of Guangzhou First People’s Hospital, which
granted a waiver of informed consent due to the retrospect-
ive nature of the research and the use of fully anonymized
data.

The inclusion criteria encompassed cases of gout diag-
nosed based on clinical symptoms. All DECT scans were
conducted using second-generation dual-source CT
(DSCT) equipment from Siemens. To obtain high-quality
image data, the scanning parameters were optimized and
adjusted for each specific anatomical site, balancing radi-
ation dose, image quality, and detection sensitivity for
urate deposition. All scans were performed in dual-energy
mode, with the voltage parameters for the low-energy and
high-energy channels set to 80 kV and 140 kV (tin filtra-
tion), respectively. These settings were combined with the
automatic exposure control (AEC) system to further opti-
mize the radiation dose. During data acquisition, a stand-
ard reconstruction kernel was utilized for soft tissue
analysis, and additional high-resolution reconstruction
was performed to enhance the resolution of fine
structures.

This study retrospectively collected imaging data from
250 patients of three branches of the hospital with a
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history of gout or suspected gout who underwent DECT
examinations. During the data screening process, to
ensure the reliability of the data and the rigor of the study,
cases with a uric acid deposition volume of less than 0.05
cm3 were excluded to avoid potential misjudgments
caused by minimal sedimentation. Additionally,
images exhibiting significant artifacts due to factors
such as metal implants were removed to maintain the
quality of the input data during the model training pro-
cess. Samples that could not undergo complete gout post-
processing analysis due to partial image loss were also
excluded.

After a rigorous screening process, 139 cases of foot
and ankle CT data were ultimately included in the study.
Urate deposition was identified in these cases and was uti-
lized for model training and validation. Of these, data
from 129 patients were allocated to the training set (com-
prising 124 males and 5 females, with an average age of
44.2 ± 14.4 years), while data from 10 patients were
designated for the test set (including 9 males and 1 female,
with an average age of 42.5 ± 14.1 years). During the
model evaluation phase, 10 CT scans were included.
The data selection and grouping process is summarized
in Table 1.

While human tissue composition is inherently consist-
ent, the Hounsfield Unit (HU) distribution probability dens-
ity (excluding air regions) and lesion volumes in CT images
can vary significantly across individual patients due to ana-
tomical differences, disease severity, and scanning condi-
tions. Figure 2 illustrates this inherent data richness
within our cohort. This natural inter-patient heterogeneity
serves as a robust foundation for evaluating our model, as
our FL framework is specifically designed to leverage
such diverse data.

Overview of the OneGout framework
This study proposes a new deep learning framework named
OneGout. Its aim is to use a deep learning model to generate
140 kV monoenergetic CT images from 80 kV monoener-
getic CT images. It further predicts gout lesions, simulating
the effects of DECT while reducing dependence on
dual-energy CT equipment. Figure 3 compares our
approach with traditional gout diagnosis methods. The con-
ventional methods include arthrocentesis, which is invasive,
lacks universality, and has a high false-negative rate, and
DECT, which relies on expensive equipment, involves
high radiation exposure, and presents procedural
difficulties.

In contrast, OneGout utilizes cost-effective equipment
with a single radiation exposure to achieve the functionality
of DECT and predict gout lesions. This approach enhances
accessibility while minimizing both risks and costs. The fol-
lowing sections will detail its network architecture and FL
algorithms.

U-Shaped networks for CT image generation
(OneGout)
The OneGout framework addresses the challenges in gout
diagnosis by facilitating image conversion from SECT to
DECT and predicting gout lesions. This provides a cost-
effective and efficient solution for medical institutions lack-
ing DECT equipment. As illustrated in Figure 4, OneGout
employs a flexible deep learning architecture, where the
backbone can be a U-shaped neural network.

In this study, U-Net is adopted as one of the candidate
backbones for generating 140 kV monoenergetic CT
images from 80 kV monoenergetic CT images.
Additionally, several U-Net variants are incorporated as
the alternative backbones, including R2U-Net,58 which
introduces recurrent residual blocks to enhance feature
refinement; AttU-Net,59 which integrates attention mechan-
isms to selectively emphasize critical regions; and
TransUNet, which embeds vision transformer (ViT) mod-
ules into the encoder to model long-range dependencies
through self-attention mechanisms. Furthermore,
SwinUNet leverages the Swin Transformer’s hierarchical
representation learning to enhance global context modeling.

Conventional L2 loss treats all pixels equally, which
fails to account for the varying clinical importance of

Table 1. Data selection and grouping summary.

Category Specification Cases (n)

Initial cohort

Total collected scans 250

Final cohort

Foot/ankle CT with urate
deposition

139

Training set

• Male 124

• Female 5

• Mean age ± SD 44.2 ± 14.4 yrs

Total training cases 129

Test set

• Male 9

• Female 1

• Mean age ± SD 42.5 ± 14.1 yrs

Total test cases 10

Dong et al. 5



Figure 2. HU distribution across four different patients. Lesion volumes are denoted at the upper right.

Figure 3. Comparison of our proposed OneGout framework with traditional gout diagnosis methods. Conventional approaches such
as arthrocentesis are invasive and have a high false-negative rate, while DECT requires expensive equipment and involves high radiation
exposure. OneGout leverages deep learning to generate 140 kV monoenergetic CT images from 80 kV images, enabling gout lesion
prediction with reduced reliance on DECT. Crystals images under microscopy are adapted from “A glance into the future of gout” by
Sivera F, Andres M, Dalbeth N. Therapeutic Advances in Musculoskeletal Disease. 2022;14. Licensed under CC BY 4.0. Icons are from
iconpark (iconpark.oceanengine.com), under Apache License 2.0.
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different tissues. This can lead to suboptimal quality, espe-
cially for structures that require higher precision, such as
bones and soft tissues. To address this limitation, we pro-
pose a weighted L2 loss that prioritizes important anatom-
ical structures by assigning different weights to predefined
HU ranges. The weighted L2 loss ensures that different tis-
sue types contribute differently to the total loss. Given a
predicted CT image P and a target CT image T, the
weighted L2 loss is computed as:

L2 =
∑

(vmin,vmax)∈R
w(vmin,vmax)·

1

|Ω(vmin,vmax)|
∑

i∈Ω(vmin ,vmax)

(Pi − Ti)
2, (1)

where:

• R is the set of predefined HU ranges corresponding
to different tissue types.

• w(vmin,vmax) is the weight assigned to each HU range.
• Ω(vmin,vmax) is the set of pixels where the target value

falls within the HU range [vmin, vmax].

This weighted loss allows the model to focus on preserving
the structural integrity of important tissues. The weight
values are set based on the clinical importance and density
of the tissues. The following HU ranges and weights are
used:

• Air (-1000 to -900 HU, Weight = 1.0): Low weight
because it has minimal clinical relevance.

• Fat (-100 to -50 HU, Weight = 15): Moderate weight
to ensure proper visualization of fat distribution.

• Soft Tissue (0–80 HU, Weight = 10): Higher weight
due to its importance in organ and muscle structures.

• Cancellous Bone (200–400 HU, Weight = 20):
Increased weight to enhance the fine details of tra-
becular bone.

• Cortical Bone (600–1000 HU, Weight = 30): Highest
weight to preserve critical bony structures.

This weighting scheme ensures that more important struc-
tures are reconstructed with greater accuracy.

Figure 4. OneGout employs a flexible deep learning architecture (Unet, R2Unet, AttUnet, TransUnet, and SwinUnet are
demonstrated in this figure), allowing any neural network as the backbone.
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To improve perceptual image quality and suppress arti-
facts, a PSNR-based loss is added:

LPSNR = −10 · log10
max (Ti)

2

MSE(P, T)

( )
, (2)

where:

• MSE(P, T) = 1
|Ω|

∑
i∈Ω (Pi − Ti)

2 is the mean

squared error.
• max (Ti) is set to 2000 HU (to normalize the PSNR

loss).

Since PSNR measures the inverse logarithmic relation-
ship with MSE, minimizing LPSNR encourages higher signal
fidelity while reducing noise.

The overall loss is defined as:

L = L2 + LPSNR, (3)

By combining a weighted L2 loss that accounts for different
tissue types with a PSNR-based loss that enhances percep-
tual quality, this approach ensures that the generated CT
images retain fine anatomical details while maintaining
overall structural consistency.

Gout coverage image generation
After successfully generating 140 kV images, the OneGout
model calculates gout lesions based on the input 80 kV
images and the 140 kV images generated. Specifically,
the CT value of the gout coverage image Y is calculated
using the following formula:

Y = (X80 − O80)

(X140 − O140)
− γ

( )
× 100HU, (4)

where Y is used to determine the deposition of urate crys-
tals, O80 and O140 are the soft tissue CT values of the low-
energy and high-energy images, both at 50 HU. γ = 1.36 in
our work. The range of calculation of CT values for the gout
coverage image Y is between 150 and 500 HU of the CT
value of the blended image. When the CT value of Y is
less than 0, it indicates the presence of urate crystal depos-
ition. Finally, the gout coverage image marks the suspicious
urate crystal areas in color.

OneGout-FL based on federated-learning
The OneGout-FL framework adopts the horizontal federated
learning (HFL) paradigm, where each participating medical
institution stores patient data locally and shares only model
parameters, not raw data. The architecture, shown in
Figure 5, ensures maximum privacy protection while balan-
cing data security and model collaboration. The end-to-end
training process for OneGout-FL is detailed in Algorithm 1.

The process is orchestrated by a central server and
involves multiple iterative communication rounds (R). In
each round, the server disseminates the current state of
the global model to participating clients (N = 3). Each cli-
ent then performs E epochs of local training using its own
private dataset. This local optimization is guided by the
composite loss function L, as defined in Eq. (3), which
ensures that the model learns to generate high-quality vir-
tual DECT images.

Figure 5. Federated learning for OneGout-FL. Icons are from iconpark (iconpark.oceanengine.com), under Apache License 2.0.
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A crucial aspect of our framework is the aggregation strat-
egy. Once local training is complete, clients do not transmit
their raw data; instead, they send only the calculated model
updates (gradients) back to the server. The server then
employs the FedNova aggregation algorithm. Unlike simpler
averaging methods,60 FedNova61 normalizes the contribu-
tions from each client based on their local computational
effort, which effectively counteracts issues arising from het-
erogeneous data distributions (non-IID data) and variable
local training steps across clients. This leads to more stable
and faster convergence. The server aggregates these normal-
ized updates to refine the global model, which is then broad-
cast in the next communication round.

In our FL setup, we assume a non-IID (non-independent
and identically distributed) data distribution among partici-
pating clients. This reflects the real-world heterogeneity of
clinical data across institutions, where factors such as
imaging protocols, patient populations, scanner types, and
disease prevalence can vary significantly. Each client pos-
sesses locally collected patient data, which remains private
and is not shared. Instead, only the aforementioned model
updates are communicated to the central server for aggrega-
tion. This non-IID setting poses greater challenges for
model convergence and generalization but also makes the
federated training scenario more representative and clinic-
ally relevant.

Overall, the OneGout-FL framework offers a scalable
and privacy-preserving solution that overcomes the
traditional barriers of medical data sharing, paving the
way for more robust and intelligent medical image
analysis.

Experiments and results

Implementation details
All experiments were conducted on two Nvidia RTX 3090
GPUs, each with 24GB of memory, using PyTorch 2.1. We
resized the input images to 512x512 and set the batch size to
16. To prevent overfitting, we applied data augmentation
techniques, including random horizontal flipping and ran-
dom rotation. For optimization, we used the AdamW62 opti-
mizer with a learning rate of 1e−4 to train all models,
adjusting the learning rate using a warm-up and linear decay
strategy.

Quantitative evaluations
Image quality was quantitatively assessed by comparing
the generated images with the ground-truth monoener-
getic CT images using the peak signal-to-noise ratio
(PSNR) and the structural similarity index measure
(SSIM). Note that all CT images were normalized by div-
iding by 4000 HU before PSNR and SSIM calculation.
This brings the PSNR values into a more conventional
and interpretable range for medical imaging tasks.
Higher values for both PSNR and SSIM denote greater
fidelity and structural correspondence to the real images.
The SSIM value ranges from 0 (no similarity) to 1 (per-
fect identity). To evaluate the spatial accuracy of gener-
ated structures and regions of interest, the Intersection
over Union (IoU) was calculated, with scores approach-
ing 100 % indicating a near-perfect overlap.
Furthermore, the Dice coefficient was employed to specif-
ically measure the segmentation accuracy of gout lesions,
where higher values signify superior performance.
OneGout is capable of bidirectional image generation:
creating 140 kV images from 80 kV scans and vice versa.
To evaluate its performance in both directions, we con-
duct experiments for both tasks in the following.

The Table 2 presents a performance comparison of dif-
ferent deep learning models in generating 140 kV monoe-
nergetic CT images from 80 kV images. Among the
models, UNet demonstrates competitive performance with
a mean PSNR of 22.44 and SSIM of 0.92, reflecting its
balanced capability in image reconstruction fidelity and
structural similarity. It also outperforms others in gout seg-
mentation accuracy, with the highest mean IoU (46.66) and
Dice score (63.20).

In contrast, R2Unet demonstrates the lowest perform-
ance across all metrics, with a mean IoU of 10.85 and a
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Dice score of 19.36, suggesting that it struggles with both
image translation and segmentation. AttUnet, TransUnet,
and SwinUnet show intermediate results, with AttUnet
slightly outperforming the others in PSNR (28.26) but lag-
ging in segmentation accuracy compared to Unet.
SwinUnet’s segmentation performance was the second-
weakest, after that of R2Unet. Overall, Unet emerges as
the most effective model for generating high-quality
140 kV images while maintaining strong segmentation
capabilities.

Table 3 presents a performance comparison of differ-
ent backbones in generating 80 kV monoenergetic CT
images from 140 kV images. Unet achieves the highest
overall performance, with a mean PSNR of 23.74,
SSIM of 0.86, and the best segmentation accuracy
(mean IoU: 39.14, Dice: 55.36). AttUnet and
TransUnet show comparable results, with TransUnet
slightly outperforming AttUnet in IoU (35.42 vs.
33.22) and Dice (51.60 vs. 48.88), although both lag
behind Unet. R2Unet exhibits weaker performance across
all metrics, with a notably lower mean IoU (17.61) and
Dice score (29.25), indicating its limited ability in image
reconstruction and segmentation. SwinUnet shows the
lowest overall performance, with the lowest PSNR
(18.60), SSIM (0.81), IoU (22.48), and Dice (36.03),
making it the least effective model in this task.
Overall, Unet demonstrates superior reconstruction and
segmentation capabilities in converting 140 kV images
to 80 kV images.

Comparing the two tasks, converting 80 kV to 140 kV
is generally easier than converting 140 kV to 80 kV, as all
models achieve higher PSNR, SSIM, IoU, and Dice
scores in the first scenario. Unet consistently performs
the best in both cases, with the highest image quality
and segmentation accuracy, though its performance
slightly declines when predicting 80 kV from 140 kV
(PSNR: 23.74 vs. 22.44, SSIM: 0.86 vs. 0.92, IoU:
39.14 vs. 46.66, Dice: 55.36 vs. 63.20). The results sug-
gest that predicting 140 kV from 80 kV is a more straight-
forward task, likely because higher-energy images retain
richer attenuation information, while reconstructing lost
details in lower-energy images is inherently more diffi-
cult. We adopt the 80 kV to 140 kV task as the default
task in subsequent experiments.

Qualitative evaluations
Figure 6 presents a comparison between virtual DECT
images generated using the OneGout framework and real
DECT images for gout patients. It can be observed that
the virtual DECT images produced by our framework
exhibit outstanding visual quality.

In terms of details, the joint structure boundaries are
sharp and well-defined, and the bone texture appears fine
and highly realistic, accurately capturing subtle bone

features. The soft tissue layers are clearly delineated, with
distinct differentiation between different tissues.
Additionally, the morphology, size, and distribution of
urate crystal deposits are accurately displayed in Figure 7.

These generated images closely resemble real DECT
images, making them difficult to distinguish from their
real counterparts in both overall composition and fine
details. This further demonstrates the high practicality and
effectiveness of the OneGout framework in clinical applica-
tions such as gout diagnosis, providing reliable diagnostic
support for physicians.

Federated learning approach
In this experiment, we employ a FL approach using
FedNova61 to train OneGout-FL with Unet as the back-
bone for generating monoenergetic CT images. The data-
set is randomly split into three subsets, each assigned to
one of the three clients. Each client trains its model inde-
pendently on its local dataset without sharing raw data,
ensuring privacy preservation. The central server aggre-
gates the client models to enhance generalization. After
training, we evaluate the performance of both the client
models and the aggregated server model using PSNR,
SSIM, IoU, and Dice.

The results, presented in the Table 4, indicate that the
server model nearly outperforms all individual clients
across all metrics, confirming the effectiveness of FL.
The server achieves the highest SSIM (0.91), IoU
(24.06), and Dice (37.26), demonstrating improved image
reconstruction and segmentation accuracy. Among the cli-
ents, Client-2 performs best, with a mean PSNR of 24.85,
SSIM of 0.87, IoU of 17.03, and Dice of 26.80, suggesting
its data subset might be more representative. Clients 1 and
3 show slightly lower performance, likely due to variations
in data distribution. While there is room for further
improvement, these data strongly indicate that the
OneGout framework trained using FL performs exception-
ally well in accurately identifying and segmenting the
affected areas of gout lesions. This, in turn, provides
more robust support for the clinical diagnosis of gout.
Overall, FL has obvious advantages in enhancing model
performance and demonstrates great potential in the field
of medical image analysis.

Discussion
Traditional methods are limited by the high cost and radi-
ation of DECT scanners15,16 or the invasive nature of joint
aspiration.4,5 Our findings suggest that the OneGout frame-
work is sensitive to capturing the necessary features for
diagnosis, indicating its potential to provide diagnostic
information that distinguishes between healthy and patho-
logical tissue in gout patients. The OneGout system might
hence serve as an alternative screening tool for gout

Dong et al. 11
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diagnosis, given that it can effectively replicate DECT func-
tionality based on more accessible single-energy CT scans.

Additionally, our federated learning model
(OneGout-FL), which leveraged performance differences
between the centrally aggregated server model and individ-
ual client models, showed high effectiveness, with the ser-
ver model outperforming nearly all individual clients. One
possible explanation for this result is that the federated
approach60 allows the model to learn from a more diverse
dataset without violating patient privacy, thereby improving
its generalizability and robustness.

In addition to image generation, the framework was used
to classify and segment gout lesions, revealing that the
model could accurately identify and mark suspicious urate
crystal areas (Figure 7). Our results suggest that virtual
DECT generation can facilitate rapid and accurate screening
of gout lesions and could also facilitate the monitoring of
treatment progress.

Our findings indicate that the data generation process is
highly effective in a controlled setting. The successful
deployment in a simulated FL environment suggests a path-
way to overcome the limitations of single-center data. The
OneGout-FL architecture, which uses the FedNova aggre-
gation strategy,61 is specifically designed to handle the
data and device heterogeneity expected in a real-world
multi-institutional collaboration. This addresses the key
data governance challenges that often hinder the develop-
ment of AI tools in medicine.

Limitations: This study employs data from 139 patient
cases, with 129 for training and 10 for testing. In the future,
more patient cases can be collected to train an improved
model. Additionally, while the study successfully generated
virtual 140 kV images from 80 kV scans, future research
could explore expanding the model’s capabilities to include
more complex features or to generate other types of virtual
images.

Figure 6. Comparison of the original 140 kV image with the predicted 140 kV image.

Figure 7. Comparison between the calculated 140 kV gout image and the predicted 140 kV gout image.

Dong et al. 13
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Conclusion
This study presents OneGout, an innovative deep learning
framework that bridges the gap between advanced imaging
capabilities and clinical accessibility in gout diagnosis. By
transforming routine single-energy CT scans into diagnos-
tically equivalent dual-energy images, the system over-
comes the cost and radiation barriers of conventional
DECT while maintaining comparable accuracy in detecting
urate crystal deposits. The incorporation of FL enables
multi-institutional collaboration without compromising
patient privacy, addressing critical data-sharing challenges
in healthcare AI. With its adaptable architecture combining
U-Net and Transformer models, the solution demonstrates
particular promise for underserved medical facilities lack-
ing specialized equipment. The technical approach, featur-
ing tissue-specific loss functions and robust validation
metrics, establishes a new paradigm for implementing
AI-powered diagnostic tools in real-world clinical environ-
ments. These advancements not only enhance gout manage-
ment but also provide a blueprint for applying similar
methodologies to other medical imaging challenges where
cost and accessibility limit optimal care delivery.
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