
Algorithm Configuration in the Unified Planning
Framework

Dimitri Weiß1, Andrea Micheli2, and Kevin Tierney1

1 Decision and Operation Technologies, Bielefeld University, Universitaetsstrasse 25,
33615 Bielefeld, Germany

{dimitri.weiss,kevin.tierney}@uni-bielefeld.de
2 Digital Industry Center, Fondazione Bruno Kessler, Via Sommarive 18, 38123

Trento, Italy
amicheli@fbk.eu

Abstract. The Unified Planning Framework (UPF) provides convenient
access to automated planning technology. It allows for problem formu-
lation independent of a planning engine and the utilization of planners
available on the system. However, choosing a suitable parameter con-
figuration of the planning engine for a given problem constitutes a sig-
nificant challenge. Manually finding a high-quality configuration requires
domain knowledge and a considerable time investment, contradicting the
intended ease-of-use of the UPF. This issue is addressed by Algorithm
Configuration (AC) techniques, which aim to automatically find high-
quality configurations. Algorithm runtime as well as quality of solutions
found by the parameterized algorithm have been shown to be improved
by AC methods in wide-ranging problem settings, which includes plan-
ning. We integrate three state-of-the-art AC methods into the UPF and
perform AC runs with planning engines which are integrated in the UPF.
To this end, we perform AC in runtime, solution quality and anytime
planning scenarios on problem instance sets from several International
Planning Competitions (IPC). We demonstrate that AC methods pro-
vide performance improvements for the IPC.

Keywords: Automatic algorithm configuration · unified-planning frame-
work · planning.

1 Introduction

The Unified Planning Framework (UPF) [15] opens planning to a wider group
of users by simplifying the use of planning technology in several ways. It offers
the possibility to formulate planning problems in a simple, planner-independent
way, by using Python data structures and provides a standardization of the
possible interactions with planning engines. Furthermore, it allows reading in
planning problems from files and converting them to its native format. Alongside
the possibility to transform the problem in several ways, e.g. grounding, it is
possible to let the UPF choose which planning engine to use with a given planning
problem.



2 D. Weiß et al.

If the planning engine chosen by the UPF is not up to task for the problem
at hand, e.g., due to the planner not solving problems fast enough, the next step
is to adjust it by setting its parameters. Finding a suitable parameter configura-
tion, however, requires domain knowledge and can require significant time cost
and effort. Since the intention of the UPF is to make it easier for non-experts to
use planning technology, this poses a contradiction to the goals of the UPF. How-
ever, we can overcome this limitation by means of algorithm configuration (AC),
thus automating the task. AC methods including CALIBRA [1], ParamILS [12],
GGA/OAT [3, 16], Irace [14], SMAC [11], ReACT/ReACTR [7, 6] and CPPL
[4] have been shown to effectively improve the performance of algorithms in
operations research. Additionally, AC has already been applied successfully in
planning. The performance of the planner Fast-Downward [10] has been shown
to be significantly improved on IPC domains from 2011 through applying AC
[19]. FD-Autotune [5] successfully integrates ParamILS with Fast-Downward
and places its performance in the upper half of the IPC 2011 contenders. Perfor-
mance optimization through AC can target different performance metrics, e.g.,
algorithm runtime or solution quality. The primary contribution of this paper is
the integration of three of the state-of-the-art AC methods in the UPF to allow
for automated AC in several planning scenarios as well as a demonstration of
their application.

This paper is organized as follows. Section 2 defines AC and outlines related
work in planning. In Section 3 we describe which AC methods are integrated,
which planning engines are targeted and how it is achieved. Section 4 describes
an experimental setup and its results, which demonstrate the impact of AC in
the UPF. Finally, we conclude and discuss possible future work with the AC
integration in Section 5.

2 AC in Planning

AC offers the possibility to improve performance of parameterized algorithms.
Planners are parameterized in many cases and can be adjusted to improve their
performance by configuring their parameter settings. Note that AC approaches
and approaches adjacent to AC were investigated in planning literature and
partially implemented in planning applications. However, this branch of research
was not pursued further since. In this section, we first define the underlying AC
problem and then outline related work in the planning community.

2.1 Automated Planning

Automated planning is the problem of synthesizing a course of actions to achieve
a desired objective (called a “goal”), given a formal description of a system to be
controlled [9]. Over the years different flavors of planning have been proposed,
depending on the assumptions on the system specification and the kind of plan
being synthesized. For the sake of this paper, we focus on classical planning
problems, where the system is described using a finite set of Boolean variables
(called predicates) and the actions are deterministic.



Algorithm Configuration in the Unified Planning Framework 3

2.2 AC Problem

The AC problem underlying the methods integrated in the UPF is in the of-
fline setting. To define the problem, we follow the formal notation introduced
in [18]. Given a parameterized algorithm A and a set of problem instances
i ∈ I, the objective is to find a single high-quality configuration. A has con-
figurable parameters p1, . . . , pk, with parameters pi having a domain Θi, such
that Θ ⊆ Θ1 × ...×Θk defines the search space of feasible configurations. I rep-
resents the space of problem instances over which the probability distribution P
is defined. Furthermore, the problem instances i can optionally be described by
features fi,1, . . . fi,d in vectors f i ∈ Rd. A cost function from the cost function
space C, denoted as c : I ×Θ → R, represents the performance metric. The goal
in offline AC is to find θ∗ ∈ Θ which minimizes the cost function

θ∗ ∈ argmin
θ∈Θ

∫
I
c(i,θ)dP(i).

Since the distribution P over I is unknown, an alternative problem is solved
in practical applications. Using a set of training instances Itrain ⊆ I the aggre-
gation function m : C × 2I ×Θ → R is minimized to approximate θ∗. Typically,
m is calculated as the arithmetic mean or a comparable function by evaluating
θ̂ with Itrain. The objective in practical applications becomes

θ̂ ∈ argmin
θ∈Θ

m(c, Itrain,θ).

The cost function c, approximated by m, in offline AC can represent different
performance metrics of the algorithm A. In this work, we target the runtime,
plan quality and the plan quality of the first plan found during anytime planning.

2.3 Configuration of Planners

Configuration of planners and the resulting performance improvement has been
investigated in the planning community. The planner LPG [8], which is included
in the UPF, is configured to improve performance on specific planning domains
in [22]. In this work, the AC method used is ParamILS, and it significantly
improves the performance of the planner on IPC 2011 domains. Another planner
included in the UPF, Fast-Downward [10], is shown to improve performance
on IPC 2011 domains using the AC method ParamILS in [19]. Fast-Downward
and ParamILS are unified into FD-Autotune as described in [5]. This planner
system participates numerous times in the IPC. In later work, Fast-Downward
is configured by SMAC in [20]. Both, LPG and Fast-Downward are included in
the Algorithm Configuration Library (AClib) [13]. AClib is a benchmark library
commonly used for testing and development purposes in AC. We extend the
idea of configuring planners by applying several state-of-the-art AC methods to
a wider range of planning engines and integrating it in the UPF.



4 D. Weiß et al.

3 AC in the UPF

We enable the use of AC in the UPF by a generic AC interface. Based on this
interface, four AC methods are integrated and target six of the planning engines
available in the UPF. Our approach also allows integrating further AC methods
and planning engines in the UPF3. In the following, we describe the AC interface,
the included AC methods and the planning engines that can be configured.

3.1 Integration in the UPF

The generic interface manages information flows between planning engines and
AC methods, as depicted in Figure 1. The AC methods are initialized with an
AC scenario, which includes planning engine name and minimization metric,
parameter space definitions, problem instance sets, maximum allowed runtime
for an evaluation, penalty costs for not solving a problem instance, AC run-
time, number of available CPUs and tournament configuration (if applicable).
We implement pre-defined parameter spaces for the planners included in the ex-
periments, but a custom definition can be loaded from files in the PCS format
[13], a standard format for describing algorithm parameters, or be formulated in
code by the user.

During the AC process, AC methods suggest parameter settings which need
to be evaluated by running the configured planner on problem instances. The
AC method also chooses which problem instances from the sets the configuration
needs to be evaluated on. The interface converts the configurations to a format
suitable for the planning engine and calls the planning engine with the problem
instance. If the planning engine produces a plan within the given time limit, its
output is converted to a format suitable for the AC method in use and passed
to it. The AC interface terminates planning engines should the time limit be
reached while the planning engine still runs.

3.2 Integrated AC Methods

We integrate three state-of-the-art methods into the UPF. The first method,
Irace [14], employs the racing principle to effectively utilize resources. In run-
3 Our approach is available via pip at: https://github.com/DimitriWeiss/up-ac, an

installation guide and documentation at: https://up-ac.readthedocs.io/en/latest/

AC

method

Suggest parameters

Performance metric

(runtime/
solution quality)

Parameter wrapper

Output conversion

Problem instance choice

Configuration

call

Solution

UPF

Planning
engine

Problem
instances

Planning domain

Fig. 1. Information flow between AC method, interface and planning engine.



Algorithm Configuration in the Unified Planning Framework 5

time optimization, configuration runs can be capped before the time limit is
reached. In this way, configurations exhibiting high runtime are not evaluated
for a longer time period than necessary. Furthermore, Irace includes forbidden
and conditional parameter value constraints into its parameter space search,
which prevents the evaluation of non-functional configurations. This is also the
case for the next AC method, SMAC [11], which is a Bayesian Optimization
approach to AC. SMAC includes forbidden and conditional parameter value
constraints and is additionally capable to include problem instance features in
the AC process to assist it. We integrate the Optano Algorithm Tuner (OAT)
[16] into the UPF. This AC method provides multiple AC approaches combined.
OAT is based on the GGA [3] configurator, which uses a genetic algorithm vari-
ant that exploits dependencies between parameters. Finally, we integrate the
ensemble-based algorithm configurator Selector, described in [23] which is cur-
rently under revision. The ensemble includes functionalities and models derived
from GGA, SMAC and the realtime algorithm configurator CPPL. The Python
iplementation of this method is available under the name “selector-ac” on PyPI.

3.3 Targeted Planners

The choice of planning engines to include is based on whether they are integrated
in the UPF and whether they can be configured. The version of the UPF used in
this work includes eight planning engines, two of which (Aries and FMAP) are
not integrated with the AC interface. The planning engine Aries does not have
parameters, which excludes it from AC. The multi-agent planner FMAP is not
integrated because not enough multi-agent problem instances could be found for
testing during the implementation.

We integrate the remaining six planning engines with the interface. The plan-
ner LPG [8] is based on local search and planning graphs. The parameter space
of this planning engine includes numerous parameters only applying to specific
planning domains, hence, we use a reduced parameter space definition both in
the experiments in Section 4 and in the implementation. Fast-Downward [10]
is a classical planning engine. It is based on heuristic search and has a unique
and complex parameter space. The parameters are not set by assigning values to

IPC 2014 2018 2023

Domain

Barman agricola folding
CaveDiving caldera labyrinth
Childsnack caldera-split quantum-layout
CityCar data-network recharging-robots
Floortile flashfill ricochet-robots

GED nurikabe rubiks-cube
Hiking organic-synthesis slitherlink

Maintenance organic-synthesis-split
Openstacks settlers

Parking snake
Tetris spider

Thoughtful termes
Transport
Visitall

Table 1. Planning domains from the IPC 2014, 2018, and 2023 used in the experiments.



6 D. Weiß et al.

individual parameters but are rather nested functions passed as a single string.
Due to this fact, we also use a fraction of the possible parameter space with Fast-
Downward. The planning engine SymK is a classical optimal and top-k planner
based on symbolic search, which extends Fast-Downward. Since it has the same
parameter space, we handle it as described for Fast-Downward. The remaining
three planning engines all have a parameter space of two parameters. ENHSP
[17] is an expressive numeric heuristic planner. It is capable of processing a range
of domains wider than any other planning engine integrated. The planning en-
gine Tamer [21] is based on heuristic search and a satisfiability modulo theory
solver. Pyperplan [2] is based on search heuristics. While it is intended to be used
as a teaching or prototyping tool and does not offer state-of-the-art performance,
we nonetheless integrate it with the AC interface.

4 Experimental Results

We conduct several experiments to demonstrate the possible performance gain of
the planning engines in the UPF through AC. The experiments include runtime,
plan quality and anytime planning optimization scenarios. The runtime or the
quality metric of a problem domain, either for the final or an intermediate plan,
are minimized for each planning engine. In the anytime optimization scenario,
the plan quality is also optimized. However, it is the quality the first interme-
diate plan that is returned by the planning engine within the time limit that is
optimized. For this, we use a custom function to compute the plan quality metric
that is minimized as per the domain file, or the plan length if no minimization
metric is specified. We use this function to compute plan quality for Pyperplan
and Tamer, since both planning engines do not output plan quality metrics. All
planning engines are configured in all scenarios, except for Pyperplan and Tamer
in the anytime scenario, since no anytime planning is implemented in the unified
planning framework for these planners.

4.1 Problem Domains

For the experiments, we use problem instances derived from the IPC to obtain
a challenging and diverse set of instances. The problem instances stem from the
classical satisfiability tracks of the years 2014, 2018 and 2023. We note that the
planners ENHSP and Tamer are numeric and temporal planners, respectively,
thus they are strictly more expressive than the other planners, and we expect
that they will underperform the other planners on these sets.

Every domain listed in Table 1 entails 20 problem instances, which amounts
to 660 problem instances in total. We choose these instances because the plan-
ning problem underlying the instances can be used in runtime, plan quality and
anytime planning optimization scenarios alike. Besides this, problem instances
from the IPC are designed to be challenging, which fits the use case for AC.



Algorithm Configuration in the Unified Planning Framework 7

Planner Fast-Downward SymK LPG ENHSP tamer pyperplan
Train instances 260 280 240 380 100 80
Test instances 140 120 120 180 60 40∑

Instances 400 400 360 560 160 120

Table 2. Numbers of instances available after filtering per planner.

4.2 Filtering Problem Instances

The planning algorithms contending in the IPC aim to solve as many of the
problem instances of the track that they participate as quickly or to as good a
solution quality as possible. However, it is not given that the planning engines
are designed to perform best on exactly the selection of domains we use in the
experiments. The UPF automatically evaluates whether the characteristics of
a domain match the capabilities of a planning engine or not. Additionally, the
UPF performs a sanity check of a problem definition when loading problem
instances and domains. Both procedures exclude problem instances from use
with a planner, if necessary.

We determine the problem instance sets to be used in the experiments as
follows. First, the domains in Table 1 are filtered through the sanity check of
the UPF. This excludes five domains, which results in 560 problem instances
left. Next, the domains are filtered by the planning engine’s capabilities, which
reduces the set for all planning engines, except ENHSP, even further. For the AC
process, we split the problem instances into training and test sets by domains.
We roughly use a third of the domains for the test sets. The resulting numbers
can be seen in Table 2.

4.3 Performance Gains on the Test Sets

All AC runs are performed on compute nodes with AMD Milan 7763 processors
with 128 cores running at 2.45 GHz. The allocated AC runtime is 24 hours. We
choose this runtime due to the small parameter space of only two parameters
some of the planners and to avoid overfitting on some of the training sets that
are small compared to typical AC settings. We evaluate the performances of the
planning engines in all scenarios with the default configurations and the config-
urations found by the AC methods three times each. Evaluations in the runtime
scenario reaching the time limit are recorded as running for 300 seconds, while
evaluations not finding results within the time limit in the quality and anytime
planning scenarios are recorded as values of 10, 000. The test and training in-
stance sets used in the three scenarios are the same. The results on the test sets
are listed as averages in Tables 3, 4 and 5 for comparison.

Overall, the AC methods provided configurations partly reducing the run-
times of the planning engines, with few exceptions, as illustrated in Table 3. The
potential time saving of using configured planners is depicted in Figure 2. It is
noteworthy that Selector provided a configuration performing worse than the



8 D. Weiß et al.
Fast-Downward

Default
Irace
OAT
SMAC
Selector

T
im

e
(s

)

Nr. Instances
60 140

5
0
0
0

-

2
5
0
0
0

-

SymK
Default
Irace
OAT
SMAC
Selector

T
im

e
(s

)

Nr. Instances
20 60 100

5
0
0
0

-

2
5
0
0
0

-

LPG
Default
Irace
OAT
SMAC
Selector

T
im

e
(s

)

Nr. Instances
20 60 100

5
0
0
0

-

2
5
0
0
0

-

ENHSP
Default
Irace
OAT
SMAC
Selector

T
im

e
(s

)

Nr. Instances
75 175

1
0
0
0
0

-

5
0
0
0
0-

Tamer
Default
Irace
OAT
SMAC
Selector

T
im

e
(s

)

Nr. Instances
10 30 50

7
5
0
0

-
1
7
5
0
0-

Pyperplan
Default
Irace
OAT
SMAC
Selector

T
im

e
(s

)

Nr. Instances
15 35

2
0
0
0

-

1
0
0
0
0

-

Fig. 2. Instance runtimes.

default configuration. Due to it being an ensemble method and being comprised
of multiple models, we assume that the low AC runtime allocation leads to too
few evaluation cycles for Selector to perform well with a decent sized parameter
space. On the other hand, Selector provided a configuration for Tamer that at
least solved one problem instance within the time limit, contrasted to all other
configurations for Tamer in this scenario. However, it can not be excluded that
the solution of this problem instance was not due to the heuristic nature of Tamer
and more of a coincidence. Similarly, the performance of ENHSP could not be
significantly improved. Note that all AC methods, but Irace, concluded with the
default configuration. The runtime of Pyperplan, however, was degraded in this
experiment. Due to Pyperplan having a parameter space of only two parameters
and the experiment running on the smallest instance set size, we conclude that
this is a case of overfitting to the training set.

Performance
Planner Default Irace OAT SMAC Selector
Fast-Downward 288.77 238.55 208.50 211.37 261.09
SymK 288.73 236.90 211.55 235.58 252.95
LPG 181.89 174.89 159.11 163.30 184.42
ENHSP 293.34 294.41 293.42 293.34 293.41
Tamer 300.00 300.00 300.00 300.00 299.80
Pyperplan 290.28 300.00 298.07 299.87 300.00

Table 3. Average performances in runtime configuration scenario.



Algorithm Configuration in the Unified Planning Framework 9

Performance
Planner Default Irace OAT SMAC Selector
Fast-Downward 9530.28 6494.64 6510.64 6366.52 6511.64
SymK 8084.60 5296.35 4956.90 5265.79 5183.90
LPG 5619.19 6666.66 6432.89 6486.30 6006.66
ENHSP 9668.21 10000.00 9668.21 9723.34 9668.21
Tamer 10000.00 9837.45 10000.00 10000.00 9891.54
Pyperplan 9504.18 10000.00 10000.00 9504.18 10000.00

Table 4. Average performances in quality configuration scenario.

Performance
Planner Default Irace OAT SMAC Selector
Fast-Downward 9530.28 7387.12 6541.05 6562.22 6662.98
SymK 9319.27 9371.10 7181.87 9400.87 6418.85
LPG 8421.63 8437.77 8867.95 8443.15 8380.64
ENHSP 9723.52 9723.52 10000.00 9889.27 9723.52

Table 5. Average performances in anytime planning configuration scenario.

The results in the quality scenario mirror the results of the runtime scenario,
as illustrated in Table 4. In this scenario, however, the performance of LPG could
not be improved, likely due to the AC runtime being too short.

The results of the anytime scenario are shown in Table 5. While the per-
formance of Fast-Downward could be improved by all four methods, finding a
configuration of the other planners which yields initial plans with lower quality
metrics is a challenge. The success of AC, however, is higher in this scenario.
This can be explained by a higher amount of evaluations in this scenario, due to
intermediate plans being found quicker than final plans. For ENHSP, Irace and
Selector provided the default configuration, while the configurations from OAT
and SMAC resulted in worse performance.

Performance
Planner Default Irace OAT SMAC Selector
Fast-Downward 279.86 215.42 220.08 220.49 219.63
SymK 280.68 235.22 206.83 235.95 245.55
LPG 150.02 139.42 149.94 142.66 158.27
ENHSP 247.65 275.03 247.85 248.32 248.07
Tamer 246.02 242.79 231.17 232.65 231.47
Pyperplan 286.36 285.36 285.79 285.48 285.35

Table 6. Average performances in runtime configuration scenario on training sets.



10 D. Weiß et al.

4.4 Performance Gains on the Training Sets

Performance gains on training sets provide further clarification about the results.
The results illustrated in Table 6 confirm overfitting of small parameter space
planners, e.g. very clearly for Tamer. The performance on the training set is
improved, while there was no improvement on the test set. The rest of the results
is in accordance to the results of the test sets.

On the training set of the quality scenario, illustrated in Table 7, The effect
of the separation of domains between training and test set for small instance
sets and small parameter spaces is illustrated with Pyperplan. The performance
of different configurations is barely distinguishable to the default configuration
on the training set but differs significantly on the test set, which amounts to
unusable feedback for the AC methods. This also affects the other planning
engines with only two parameters in an attenuated form.

The results in Table 8 mirror the results on the test sets. This can be ex-
plained by the higher amount of evaluations in the anytime optimization sce-
nario, since an intermediate plan is generated quicker than a final plan, as is the
criterion for solving an instance in the quality as well as the runtime scenario.

Performance
Planner Default Irace OAT SMAC Selector
Fast-Downward 9335.46 7435.61 6239.51 6730.42 6603.71
SymK 9889.02 7608.19 7044.91 7634.79 7570.87
LPG 5375.75 5957.98 5575.07 5088.04 5714.65
ENHSP 8080.96 9660.22 8107.26 8349.58 8107.27
Tamer 8108.93 7412.46 10000.00 8009.35 7412.46
Pyperplan 9376.98 9376.85 9376.85 9376.98 9376.98

Table 7. Average performances in quality configuration scenario on training sets.

Performance
Planner Default Irace OAT SMAC Selector
Fast-Downward 9284.41 6922.65 6908.66 7022.21 7010.48
SymK 9359.49 9359.45 7527.87 9383.23 6842.50
LPG 8364.21 8337.44 9462.92 8336.96 8334.08
ENHSP 8107.27 8107.27 9340.31 8806.83 8107.26

Table 8. Average performances in anytime planning configuration scenario on training
sets.



Algorithm Configuration in the Unified Planning Framework 11

5 Conclusion and Future Work

The results of the three AC scenarios show that AC can improve performance
of planning algorithms. The impact of AC, however, is dependent on an ade-
quate amount of resources allocated to the AC process. Planning engines with
small parameter spaces can lead to overfitting, while planning engines with a
bigger parameter space need to be configured for a reasonable amount of time.
The computational effort of applying AC clearly outweighs the savings in run-
time on the instance sets used in the experiments. The value, however, lies in
improved performance of an algorithm in a competition or in the reoccuring
runtime savings of a configured algorithm applied to further problem instances
in practice. The same is true for quality and anytime quality. The results with
Fast-Downward and SymK demonstrate the utility of AC in adequate settings.
Given that the parameter spaces of Fast-Downard and SymK were reduced due
to their vastness, it cannot be ruled out that parameters with high impact on
the performance of the planning engines were not considered in the experiments.
It is possible that higher performance gains can be achieved through AC with
these two planning engines. We note that the AC runtime certainly needs to be
increased accordingly since a larger parameter space would need to be searched.
The experiments with ENHSP included the biggest instance set and demon-
strated that the default configuration already generalizes over the diverse set of
domains. Taking into account that the problem instance sets are very challeng-
ing and different domains were evaluated in testing than were used in training,
the results are adequate.

Future work can be done with the integration of further AC methods’ func-
tionalities. For example, OAT includes a gray-box functionality that is not yet
integrated in the UPF. Applying gray-box AC allows for capturing and process-
ing intermediate algorithm output to learn about configurations and prematurely
terminate their runs. This allows for more evaluations in the same allocated AC
runtime and proved to further improve the AC process [24].

Acknowledgments. This work was partially supported by the AIplan4eu Grant
Agreement number: 101016442 - AIPlan4EU-H2020-ICT-2018-20 / H2020-ICT-020-
2, in Track A Agreement Number 1961741. The authors gratefully acknowledge the
computing time provided to them on the high-performance computer Noctua 1 at the
NHR Center PC2. These are funded by the Federal Ministry of Education and Research
and the state governments participating on the basis of the resolutions of the GWK for
the national high-performance computing at universities (www.nhr-verein.de/unsere-
partner). Andrea Micheli was supported by the STEP-RL project funded by the Eu-
ropean Research Council under GA n. 101115870.

Disclosure of Interests. The authors have no competing interests.



12 D. Weiß et al.

References

1. Adenso-Díaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experi-
mental designs and local search. Operations Research 54, 99–114 (02 2006)

2. Alkhazraji, Y., Frorath, M., Grützner, M., Helmert, M., Liebetraut, T.,
Mattmüller, R., Ortlieb, M., Seipp, J., Springenberg, T., Stahl, P., Wülfing, J.:
Pyperplan (Mar 2020), https://doi.org/10.5281/zenodo.3701399

3. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Principles and Practice of Constraint
Programming. pp. 142–157 (09 2009). https://doi.org/10.1007/978-3-642-04244-
7_14

4. El Mesaoudi-Paul, A., Weiß, D., Bengs, V., Hüllermeier, E., Tierney, K.: Pool-
Based Realtime Algorithm Configuration: A Preselection Bandit Approach, Lec-
ture Notes in Computer Science, vol. 12096, pp. 216–232. Springer International
Publishing (2020). https://doi.org/10.1007/978-3-030-53552-0_22

5. Fawcett, C., Helmert, M., Hoos, H., Karpas, E., Röger, G., Seipp, J.: Fd-autotune:
Domain-specific configuration using fast downward. ICAPS 2011 Workshop on
Planning and Learning pp. 13–17 (2011)

6. Fitzgerald, T., Malitsky, Y., O’Sullivan, B.: Reactr: Realtime algorithm configura-
tion through tournament rankings. In: International Joint Conferences on Artificial
Intelligence Organization (IJCAI). pp. 304–310 (2015)

7. Fitzgerald, T., Malitsky, Y., O’Sullivan, B.J., Tierney, K.: ReACT: Real-Time
Algorithm Configuration through Tournaments. In: Annual Symposium on Com-
binatorial Search (SoCS) (2014)

8. Gerevini, A., Serina, I.: Lpg: A planner based on local search for planning graphs
with action costs. In: Conference: Proceedings of the Sixth International Conference
on Artificial Intelligence Planning Systems. pp. 13–22 (01 2002)

9. Ghallab, M., Nau, D.S., Traverso, P.: Automated planning - theory and practice.
Elsevier (2004)

10. Helmert, M.: The fast downward planning system. J. Artif. Int. Res. 26(1), 191–246
(jul 2006)

11. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: Learning and Intelligent Optimization (LION).
p. 507–523 (2011)

12. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: Paramils: An automatic
algorithm configuration framework. Journal of Artificial Intelligence Research
(JAIR) pp. 267–306 (Sep 2009)

13. Hutter, F., López-Ibáñez, M., Fawcett, C., Lindauer, M., Hoos, H., Leyton-Brown,
K., Stützle, T.: Aclib: A benchmark library for algorithm configuration. In: Inter-
national Conference on Learning and Intelligent Optimization (LION). pp. 36–40
(02 2014). https://doi.org/10.1007/978-3-319-09584-4_4

14. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.:
The irace package: Iterated racing for automatic algorithm con-
figuration. Operations Research Perspectives pp. 43–58 (01 2016).
https://doi.org/https://doi.org/10.1016/j.orp.2016.09.002

15. Micheli, A., Bit-Monnot, A., Röger, G., Scala, E., Valentini, A., Framba, L.,
Rovetta, A., Trapasso, A., Bonassi, L., Gerevini, A.E., Iocchi, L., Ingrand, F.,
Köckemann, U., Patrizi, F., Saetti, A., Serina, I., Stock, S.: Unified Planning:
Modeling, manipulating and solving AI planning problems in Python. SoftwareX
29, 102012 (2025). https://doi.org/https://doi.org/10.1016/j.softx.2024.102012,
https://www.sciencedirect.com/science/article/pii/S2352711024003820



Algorithm Configuration in the Unified Planning Framework 13

16. OPTANO: OPTANO Algorithm Tuner documentation (2022),
https://docs.optano.com/algorithm.tuner/current/

17. Scala, E., Haslum, P., Thiebaux, S., Ramirez, M.: Interval-based relaxation
for general numeric planning. In: Proceedings of the Twenty-Second European
Conference on Artificial Intelligence. p. 655–663. ECAI’16, IOS Press, NLD (2016).
https://doi.org/10.3233/978-1-61499-672-9-655, https://doi.org/10.3233/978-1-
61499-672-9-655

18. Schede, E., Brandt, J., Tornede, A., Wever, M., Bengs, V., Hüllermeier,
E., Tierney, K.: A survey of methods for automated algorithm configu-
ration. Journal of Artificial Intelligence Research 75, 425–487 (10 2022).
https://doi.org/10.1613/jair.1.13676

19. Seipp, J., Braun, M., Garimort, J., Helmert, M.: Learning port-
folios of automatically tuned planners. Proceedings of the In-
ternational Conference on Automated Planning and Scheduling
22(1), 368–372 (May 2012). https://doi.org/10.1609/icaps.v22i1.13538,
https://ojs.aaai.org/index.php/ICAPS/article/view/13538

20. Seipp, J., Sievers, S., Hutter, F.: Fast downward smac. In: IPC 2014 (2014),
https://api.semanticscholar.org/CorpusID:8317657

21. Valentini, A., Micheli, A., Cimatti, A.: Temporal planning with intermediate con-
ditions and effects. Proceedings of the AAAI Conference on Artificial Intelligence
34, 9975–9982 (04 2020). https://doi.org/10.1609/aaai.v34i06.6553

22. Vallati, M., Fawcett, C., Gerevini, A., Hoos, H., Saetti, A.: Generating fast domain-
specific planners by automatically configuring a generic parameterised planner. In:
ICAPS 2011 (06 2011)

23. Weiss, D., Schede, E., Tierney, K.: Selector: Ensemble-based automated algorithm
configuration (2025), under revision

24. Weiss, D., Tierney, K.: Realtime gray-box algorithm configuration using cost-
sensitive classification. Annals of Mathematics and Artificial Intelligence pp. 1–22
(08 2023). https://doi.org/10.1007/s10472-023-09890-x


