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Abstract

We consider causal, low-latency, sequential video compression, with mean squared-1

error (MSE) as the distortion loss, and a perception loss function (PLF) to enhance2

the realism of outputs. Prior works have employed two PLFs: one based on the3

joint distribution (JD) of all frames up to the current one, and the other based on4

frame-wise marginal distribution (FMD). We introduce a new PLF, called adaptive5

to rate (AR), which preserves the joint distribution of the current frame with all pre-6

vious reconstructions. Through information-theoretic analysis and deep-learning7

experiments, we show that PLF-AR can rectify past errors in future reconstruc-8

tions when the initial frame is compressed at a low bitrate. However, in this9

bitrate scenario, PLF-JD exhibits the error permanence phenomenon, propagating10

mistakes in subsequent outputs. When the initial frame is compressed at a high11

bitrate, PLF-AR maintains temporal correlation among frames, preventing error12

propagation in future reconstructions—unlike PLF-JD, which remains stuck in13

past mistakes. Furthermore, PLF-FMD does not preserve temporal correlation as14

effectively as PLF-AR. These characteristics of PLFs are especially apparent in15

scenarios with sharp frame movements. In contrast, when frame movements are16

smoother, the three PLFs display slight variations: PLF-AR and PLF-JD yield more17

diverse outputs, while PLF-FMD tends to replicate the initial frame in all future18

reconstructions. We validate our findings through information-theoretic analysis19

of the rate-distortion-perception tradeoff for the Gauss-Markov source model and20

deep-learning experiments on moving MNIST and UVG datasets.21

1 Introduction22

In recent years, the topic of lossy compression for videos has received significant attention, driven23

by the growing demand for producing visually appealing reconstructions even at lower bitrates.24

Early versions of compression algorithms relied on distortion measures, e.g., MSE, MS-SSIM [1–3]25

and PSNR [2–5]. However, these metrics often resulted in outputs that were perceived as blurry26

and lacking realism. Consequently, there have been efforts to incorporate perception-based loss27

functions into compression systems to improve visual quality. These loss functions aim to quantify28

the divergence between the distributions of the source and the reconstruction, where achieving perfect29

perceptual quality means that the two distributions match with each other. Blau and Michaeli [6]30

explored the rate-distortion-perception (RDP) tradeoff from a theoretical perspective. Subsequently,31

Zhang et al. [7] introduced universal representations, wherein the representation remains fixed during32

encoding, and only the decoder can be adjusted to attain near-optimal performance.33

Extending image compression algorithms to handle video poses a challenge as they must maintain34

temporal correlation across frames, alongside spatial correlation preservation. Moreover, with the35

multitude of frames in a video, defining a unique perception loss function (PLF) becomes nontrivial.36
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Figure 1: (a) The outputs of different PLFs for the MovingMNIST dataset when the first frame is compressed
at a low rate. Both PLF-AR and PLF-FMD recover from previous mistakes while PLF-JD suffers from the
error permanence phenomenon. (b) The outputs of different PLFs for the UVG dataset when the first frame is
compressed at a low rate. Both PLF-AR and PLF-FMD are able to preserve the color tone of the output, while
PLF-JD propagates mistakes in the color tone. (c) The outputs of different PLFs for the MovingMNIST dataset
when the first frame is compressed at a high rate. When there are sharp movements in the trajectory, PLF-AR
preserves the temporal correlation across different frames. PLF-JD propagates the mistakes. PLF-FMD produces
some errors in the reconstruction and does not successfully maintain the temporal correlation.

Some previous studies have approached PLF by considering frame-wise marginal distributions37

(FMD) of the source and reconstruction [8], as well as joint distribution (JD) of different frames [9].38

A recent study [10] explored the rate-distortion-perception (RDP) tradeoff for sequential video39

compression theoretically. It highlighted that at low bitrates, the PLF-JD encounters the error40

permanence phenomenon, wherein mistakes propagate across all future reconstructions, leaving41

distortion unchanged across frames.42

In this work, we explore a causal, sequential video compression scenario where the mean squared error43

(MSE) serves as the distortion measure. Introducing a new perception loss function, we propose a44

metric that maintains the joint distribution of the current frame alongside all previous reconstructions.45

We refer to this PLF as Adaptive to Rate (AR), and we will explain the reasoning behind this label in46

the following discussion. Our contributions are as follows:47

• Error correction when the initial frame is compressed at a low bitrate: We demonstrate that48

PLF-AR does not suffer from the error permanence phenomenon in low bitrates. On the49

theoretical side, we use an approximation for the operational RDP region for a first-order50

Markov source model and specialize it to Gauss-Markov sources. We show that when51

the first frame is compressed at a low bitrate, given a medium bitrate to the future frames,52

PLF-AR is able to recover from the previous mistakes in future reconstructions. On the53

experimental side (see Fig. 1a and Fig. 1b), at low bitrates, PLF-JD suffers from the error54

permanence phenomenon where mistakes are propagated in future outputs.55

• Maintenance of temporal correlation when the initial frame is compressed at a high bitrate:56

Through both theoretical analysis and experimental findings (see Fig. 1c), we demonstrate57

that when the second frame is allocated a low bitrate, PLF-AR can rectify errors in sub-58

sequent reconstructions. This phenomenon is particularly prominent when video frames59

exhibit rapid movements, resulting in a low correlation coefficient between them. How-60

ever, PLF-JD tends to remain stuck on errors from previous reconstructions. Additionally,61

PLF-FMD fails to preserve temporal correlation as effectively as PLF-AR. In cases where62

frame movements are smoother (indicating a higher correlation coefficient between frames),63

the three PLFs exhibit slightly different behaviors: PLF-AR and PLF-JD generate more64

diverse outputs, while PLF-FMD tends to copy the first frame, resulting in more static65

reconstructions.66
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Based on the above discussion, PLF-AR does not suffer from the error permanence phenomenon67

at low bitrates and maintains temporal correlation among frames, especially when the first frame68

undergoes high-rate compression. Consequently, it leverages the advantages of both metrics (PLF-69

FMD or PLF-JD) depending on the operational rate regime. This adaptability to varying rates is the70

rationale behind naming it PLF adaptive to rate.71

2 System Model and Preliminaries72

Assume that we have T frames of video denoted by (X1, . . . , XT ) ∈ X1×. . .×XT (whereXi ⊆ Rd)
distributed according to joint distribution PX1...XT

. The encoders and decoders have access to a
shared common randomness K ∈ K. The (possibly stochastic) jth encoding function gets the sources
(X1, . . . , Xj) and the key K and outputs a variable length message Mj ∈Mj(= {0, 1}⋆), i.e.,

fj : X1 × . . .×Xj ×K →Mj , j = 1, . . . , T. (1)
The jth decoding function receives the messages (M1, . . . ,Mj) and using the key K, it outputs a
reconstruction X̂j ∈ X̂j(⊆ Rd), i.e.,

gj :M1 ×M2 × . . .×Mj ×K → X̂j . (2)

The mappings {fj}Tj=1 and {gj}Tj=1 induce the conditional distribution PX̂1...X̂T |X1...XT
for the73

reconstructed video given the original video. The proposed framework is a one-shot setting where a74

single sample of the source is compressed at a time.75

The reconstruction of each frame j should satisfy a certain distortion from the source where the metric
is assumed to be the mean squared-error (MSE) function i.e. d(xj , x̂j) = ||xj − x̂j ||2, which is
widely used in many applications. From the perceptual perspective, for given probability distributions
PX̂1...X̂j−1Xj

and PX̂1...X̂j−1X̂j
, let ϕj(PX̂1...X̂j−1Xj

, PX̂1...X̂j−1X̂j
) denote the perception metric

capturing the divergence between them. We call this metric as perception loss function adaptive to
rate (PLF-AR). If ϕj(PX̂1...X̂j−1Xj

, PX̂1...X̂j−1X̂j
) = 0, we get

PX̂1...X̂j−1Xj
= PX̂1...X̂j−1X̂j

, j = 1, . . . , T, (3)

which is called as zero-perception loss function adaptive to rate (0-PLF-AR). In the following, we76

define two other perception metrics which are extensively used in many works. For given probability77

distributions PX1...Xj
and PX̂1...X̂j

, let ξj(PX1...Xj
, PX̂1...X̂j

) be called as perception loss function78

based on joint distribution (PLF-JD). Alternatively, the perception loss function based on framewise79

marginal distribution (PLF-FMD) is shown by ψj(PXj
, PX̂j

). Notice that 0-PLF-JD and 0-PLF-FMD80

imply that PX1...Xj
= PX̂1...X̂j

and PXj
= PX̂j

for j = 1, . . . , T , respectively.81

Definition 1 (Operational RDP region) An RDP tuple (R,D,P) is said to be achievable for the
one-shot setting if there exist encoders and decoders such that:

E[ℓ(Mj)] ≤ Rj , (4)

E[∥Xj − X̂j∥2] ≤ Dj , (5)
ϕj(PX̂1...X̂j−1Xj

, PX̂1...X̂j−1X̂j
) ≤ Pj , j = 1, 2, 3, (6)

where ℓ(Mj) denotes the length of the message Mj . The operational RDP region, denoted byRDPo,82

is the closure of the set of all achievable tuples. Moreover, for a given (D,P), the operational rate83

region, denoted byRo(D,P), is the closure of the set of all tuples R such that (R,D,P) ∈ RDPo.84

Furthermore, we consider Gauss-Markov sources as follows. We assume that X1 ∼ N (0, σ2) for
some σ2 > 0,

X2 = ρX1 +N1, X3 = ρX2 +N2, (7)
for some 0 ≤ ρ ≤ 1, where Nj is independent of Xj with mean zero and variance (1− ρ2)σ2 for
j = 1, 2. The model extends naturally to the case of T time-steps. We assume that the perception
metric is Wasserstein-2 distance, i.e.,

ϕj(PX̂1...X̂j−1Xj
, PX̂1...X̂j−1X̂j

) :=W 2
2 (PX̂1...X̂j−1Xj

, PX̂1...X̂j−1X̂j
). (8)

Using Strong Functional Representation Lemma (SFRL) [11], we find an alternative characterization85

for the operational RDP region which is more tractable and then investigate it for Gauss-Markov86

sources (see Appendices A and B for details).87
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3 Distortion Analysis for Gauss-Markov Sources and Zero-Perception Loss88

In this section, we present practical insights from analyzing the Gauss-Markov source model. We89

consider two extreme compression rates for the first frame: a low rate, denoted as R1 = ϵ for very90

small ϵ > 0, and a high rate where R1 →∞.91

3.1 Compressing the First Frame at a Low Rate (R1 = ϵ for sufficiently small ϵ > 0)92

One of the key observations in this section is that how the performances of PLFs vary based on the
operating rate regime. In the following result, we assume that the rate of the second step, R2, can
take on any nonnegative value, and we then investigate how each PLF affects the reconstruction
in this step. The achievabale distortions for the second frame, D0

2,AR (for 0-PLF-AR), D0
2,FMD (for

0-PLF-FMD) and D0
2,JD (for 0-PLF-JD) are given by (see Appendix C for the proof)

D0
2,AR = 2σ2(1−

√
1− 2−2R2), D0

2,FMD = 2σ2(1−
√

1− 2−2R2 + ρ22ϵ ln 2),

D0
2,JD = 2σ2(1−

√
1− ρ2

√
1− 2−2R2 − ρ2

√
2ϵ ln 2). (9)

We specialize to ρ = 1 (see Fig. 2). 0-PLF-JD results in the same distortion across different frames93

meaning that mistakes in reconstructions are propagated in future frames. This behavior is called94

error permanence phenomenon as introduced in [10]. Both 0-PLF-AR and 0-PLF-FMD do not suffer95

from the error permanence phenomenon as observed in Fig. 2. For 0-PLF-AR, the reconstructions96

of two frames are decoupled, minimizing the potential for error propagation. For 0-PLF-FMD, the97

reconstruction of each frame relies on both preceding and current frames, with each frame’s portion98

optimized to minimize distortion. As it can be observed from Fig. 2, for R1 = 0.1 and R2 ≈ 0.05,99

the distortion of the second frame for 0-PLF-AR outperforms that of 0-PLF-JD. ForR2 ≈ R1 (i.e. for100

a large range of R2), the performance of 0-PLF-AR is close to that of 0-PLF-FMD. This observation101

implies that 0-PLF-AR is able to adapt its performance to the operating rate regime. Some further102

results on the third frame are detailed in Appendix C.103

In the next section, we will discuss that 0-PLF-AR is able to preserve the temporal correlation of104

different frames when the first frame is compressed at a high rate.105

3.2 Compressing the First Frame at a High Rate (R1 →∞)106

In this section, we discuss that the choice of PLF significantly affects the temporal correlation across107

different frames. Specifically, we consider the case where R2 = R3 = ϵ for sufficiently small ϵ > 0.108

In the first step, the high rate assumption implies that X̂1 = X1. The achievable reconstructions of all109

0-PLFs for the second and third steps are shown in Table 1. As it can be observed from the first row of110

Table 1, for a sufficiently large correlation coefficient (i.e.,
√
ϵ≪ ρ < 1), the reconstruction based on111

0-PLF-FMD for the second frame is given by X̂2 ≈ (1−O(ϵ))X̂1 +O(ϵ)X2, meaning that the first112

frame is copied in the future reconstruction. A similar argument applies to the reconstruction of the113

third frame. So, the outputs of 0-PLF-FMD are expected to look more static comparing to the other114

PLFs. This type of static reconstruction mostly happens when the correlation coefficient ρ is large115

enough, making the movement between frames smooth. However, for a small correlation coefficient116

(i.e., 0 < ρ ≪
√
ϵ) corresponding to the second row of Table 1, we have X̂2 ≈ Z ′

2,FMD where117

Z ′
2,FMD ∼ N (0, (1−O(ϵ))σ2) is independent of X2. Therefore, the decoder based on 0-PLF-FMD118
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Figure 2: Distortion of the second frame versus its rate for the low-rate regime and ρ = 1.
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primarily reconstructs the second frame by introducing artificial noise, Z ′
2,FMD, which could lead119

to errors in the output. When there is a small correlation coefficient between frames, it means the120

video will have abrupt movements, and using 0-PLF-FMD might result in random errors in the121

reconstruction.122

The 0-PLF-AR condition in the second frame is expressed as PX̂1X2
= PX̂1X̂2

. When combined with123

the high compression rate for the initial frame (i.e., R1 →∞), it reduces to PX1X2
= PX̂1X̂2

, which124

is equivalent to the constraint in the 0-PLF-JD framework. According to the third and fourth rows125

of Table 1, both 0-PLF-AR and 0-PLF-JD are able to get the informative portion of the first frame126

(i.e., ≈ ρ) in the second reconstruction. So, both PLFs preserve the temporal correlation between127

different reconstructions and generate more diverse outputs in the sense that they both do not simply128

copy the first frame in the future reconstruction. Comparing the third and fourth rows of Table 1 for129

the third step, the decoder based on 0-PLF-JD gets a constant factor ρ of the reconstruction noise in130

the previous step, i.e., ρZ2,JD, hence it is more susceptible to propagate false information in future131

frames. However, 0-PLF-AR experiences a significantly reduced factor of reconstruction noise from132

the preceding step, approximately O(
√
ϵ)Z2,AR. This allows for more flexibility in correcting errors133

by introducing artificial noise, labeled as Z3,AR. In our experiments, we also permit a sufficiently134

high compression rate for the third frame, making the artificial noise Z3,AR a reliable approximation135

of the original frame. Considering the discussion in both this section and the previous one, 0-PLF-AR136

manages to leverage the benefits of each metric (either 0-PLF-FMD or 0-PLF-JD) based on the137

operating rate regime. The way 0-PLF-AR behaves inspired us to name it a PLF adaptive to rate.138

4 Experimental Results139

Our theoretical results for PLF-AR show that PLF-AR is a new perceptual metric that inherits140

advantages in both PLF-JD and PLF-FMD. When the first frame is lossily compressed at a low141

rate, it does not suffer from the error permanence as in PLF-JD. When the first frame is perfectly142

transmitted, on the other hand, its reconstruction does not suffer from content modification, which143

is the phenomenon that happens within PLF-FMD in this rate-regime. In this section, we provide144

experimental results to validate our proposed theory for learning-based perceptual video compression.145

Expanding upon the experimental framework established in [10], we merge the scale-space-flow146

neural video coding architecture introduced by [12] with Wasserstein GANs for perceptual quality147

enhancement, as proposed in [13]. We employ two datasets: the 1-digit MovingMNIST dataset [14]148

and UVG dataset [15], offering varying levels of video resolution and scene complexity. The149

MovingMNIST dataset consists of low-complexity synthetic sequences with dimensions of 64× 64,150

while the UVG dataset comprises high-definition real-life video patches sized at 256 × 256. The151

preference for certain deep learning structures and datasets aims at confirming the suggested theory152

rather than developing the most advanced neural network architectures. We start our experiments by153

generating the RDP tradeoffs for PLF-AR, PLF-JD, and PLF-FMD. Following that, we validate the154

low-rate regime presented in Section 3.1. Finally, the complementary high-rate regime described in155

Section 3.2 is implemented. More details on experiments are provided in Appendix E.156

Fig. 1a shows samples of 3-frame MovingMNIST sequences when the first frame is encoded with a157

low rate. This aligns with the discussion in Section 3.1. For each sample, the first frame reconstruction158

X̂1 is wrongly decoded. As expected, the 0-PLF-JD reconstructions for the second and third frames159

(i.e., X̂2 and X̂3) suffer from the error permanence phenomenon. On the other hand, the decoder160

Table 1: Achievable reconstructions and distortions for R1 → ∞ and R2 = R3 = ϵ.

SECOND STEP THIRD STEP

0-PLF-FMD X̂2 = (1 − O(ϵ))X̂1 + O(ϵ)X2 + Z2,FMD X̂3 = (1 − O(ϵ))X̂1 + O(ϵ)X2 + O(ϵ)X3 + Z3,FMD
(
√

ϵ≪ρ<1) Z2,FMD ∼ N (0, O(ϵ)σ2) Z3,FMD ∼ N (0, O(ϵ)σ2)

D∞
2,FMD = 2(1 − ρ − O(ϵ))σ2 [10, TABLE 2] D∞

3,FMD = 2(1 − ρ2 − O(ϵ))σ2 (APPENDIX D.3)

0-PLF-FMD X̂2 = O(
√
ϵ)X2 + Z′

2,FMD X̂3 = O(
√
ϵ)X3 + Z′

3,FMD
(0<ρ≪

√
ϵ) Z′

2,FMD ∼ N (0, (1 − O(ϵ))σ2) Z′
3,FMD ∼ N (0, (1 − O(ϵ))σ2)

D∞
2,FMD = 2σ2(1 − O(

√
ϵ)) (APPENDIX D.3) D∞

3,FMD = 2σ2(1 − O(
√
ϵ)) (APPENDIX D.3)

0-PLF-JD X̂2 = (ρ − O(
√
ϵ))X̂1 + O(

√
ϵ)X2 + Z2,JD X̂3=ρ2X̂1 + O(

√
ϵ)N1 + O(

√
ϵ)N2 + ρZ2,JD + Z3,JD

Z2,JD ∼ N (0, (1 − ρ2 + O(ϵ))σ2) Z3,JD ∼ N (0, (1 − ρ2 + O(ϵ))σ2)

D∞
2,JD = 2σ2(1 − ρ2 − O(

√
ϵ)) [10, TABLE 2] D∞

3,JD = 2σ2(1 − ρ4 − O(
√
ϵ)) (APPENDIX D.2)

0-PLF-AR X̂2 = (ρ − O(
√
ϵ))X̂1 + O(

√
ϵ)X2 + Z2,AR X̂3=ρ2X̂1 + O(

√
ϵ)N1 + O(

√
ϵ)N2 + O(

√
ϵ)Z2,AR + Z3,AR

Z2,AR = Z2,JD Z3,AR ∼ N (0, (1 − ρ4 + O(ϵ))σ2)

D∞
2,AR = D∞

2,JD (APPENDIX D.1) D∞
3,AR = 2σ2(1 − ρ4 − O(

√
ϵ)) (APPENDIX D.1)
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(b) Slow movement scenario.

Figure 3: MovingMNIST reconstructions for ∞-R2-R3 with R2 = 2 bits and R3 = 16 bits. Digits
are coloured for easily visualizing the trajectory across frames.

based on 0-PLF-FMD is able to recover from the wrong prediction in X̂1. The proposed 0-PLF-AR161

also successfully corrects the wrongly predicted X̂1 frame, demonstrating its capability to rectify162

previous mistakes. Analogous results for the UVG dataset are shown in Fig. 1b. When encoded163

with a low rate, the first frame reconstruction X̂1 presents an altered overall color tone. This error is164

propagated to the subsequent frames X̂2, and X̂3 by 0-PLF-JD. However, 0-PLF-FMD, 0-PLF-AR165

can correct the color tone of the subsequent frame reconstructions X̂2, X̂3.166

In Fig. 3, we present experimental results to validate the discussion in Section 3.2, and Table 1.167

Here, we encode the first frame using a high rate R1 =∞, while setting R2 = 2 bits and R3 = 16168

bits to represent low and medium rates. This configuration ensures X̂1 = X1 across all PLFs. We169

evaluate each PLF’s performance with reconstructed frames, denoted as X̂2 and X̂3. We analyze the170

digit trajectory across the three frames, considering both scenarios of sharp movement (see Fig. 3a171

corresponding to a large correlation coefficient ρ) and slow movement (see Fig. 3b corresponding172

to a small correlation coefficient ρ). In practice, the sharp and slow movements correspond to the173

scenarios where the video sampling rate is small and high respectively. It is important to note that,174

for this rate regime, 0-PLF-JD and 0-PLF-AR produce identical reconstructions in the second frame175

(refer to the third and fourth rows of Table 1).176

For the sharp-movement scenario in Fig. 3a, the digit maintains its motion direction across all three177

frames. In the second frame, 0-PLF-AR fails to identify the direction correctly, but still provides the178

perceptual quality as it preserves the content consistency in the first frame. We note that 0-PLF-AR179

still manages to rectify this error by the third frame, particularly when given a medium compression180

rate. In contrast, 0-PLF-JD does not benefit from higher rates at X̂3, propagating the error. When181

comparing 0-PLF-AR and 0-PLF-FMD, the latter metric cannot preserve the temporal correlation182

as effective as the former one. This is because 0-PLF-FMD tries to reconstruct the low-rate frame183

X̂2 mainly by introducing some artificial noise. While the limited rate of the second frame lets184

0-PLF-FMD decode the position of the digit, but it struggles to correctly identify which digit it is.185

Intuitively, this is because the 0-PLF-FMD model does not have the incentive to preserve the content186

in the sequence. As such, when dealing with sharp movement at low bit rates, it will compensate187

for this high uncertainty by adjusting the content to minimize the distortion. On the other hand,188

unlike the 0-PLF-FMD, 0-PLF-AR can simultaneously maintain the content and correct errors. The189

behavior of PLFs slightly differs in the scenario of slow movement depicted in Fig. 3b. 0-PLF-AR190

can still recover from the wrong prediction in X̂2 by reconstructing X̂3 at a high rate, while 0-PLF-191

JD propagates errors. 0-PLF-FMD copies the digit’s position in the reconstruction of the second192

frame X̂2. As observed in the previously discussed rate regime, PLF-AR continues to leverage the193

advantageous features of both PLF-JD and PLF-FMD, adapting effectively to the given rate.194

5 Conclusions195

In this work, we proposed a new PLF for video compression setting. In low bitrates, this PLF does196

not suffer from the error permanence phenomenon. When the first frame is compressed at a high197

bitrate, it is able to preserve the temporal correlation across different frames. So, it adapts itself to the198

operating rate regime. This behavior motivated us to call this PLF adaptive to rate.199
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A Operational RDP Region251

It is not feasible to compute the regionRDPo directly since it involves searching over all possible252

encoding-decoding functions. But, for first-order Markov sources where the Markov chain X1 →253

X2 → X3 holds, the following region can be used as an approximation. So, with this motivation, we254

introduce the information RDP region as follows.255

Definition 1 (Information RDP Region) For first-order Markov sources, let the information RDP
region, denoted by RDP , be the set of all tuples (R,D,P) which satisfy the following (R,D,P)
satisfying

R1 ≥ I(X1;Xr,1), (10)
R2 ≥ I(X2;Xr,2|Xr,1), (11)
R3 ≥ I(X3;Xr,3|Xr,1, Xr,2), (12)

Dj ≥ E[∥Xj − X̂j∥2], j = 1, 2, 3, (13)
Pj ≥ ϕj(PX̂1...X̂j−1Xj

, PX̂1...X̂j−1X̂j
), j = 1, 2, 3, (14)

for auxiliary random variables (Xr,1, Xr,2, Xr,3) and (X̂1, X̂2, X̂3) such that

X̂1 = η1(Xr,1), X̂2 = η2(Xr,1, Xr,2), X̂3 = Xr,3, (15)
Xr,1 → X1 → (X2, X3), (16)
Xr,2 → (X2, Xr,1)→ (X1, X3), (17)
Xr,3 → (X3, Xr,1, Xr,2)→ (X1, X2), (18)

for some deterministic functions η1(.) and η2(., .). Moreover, for a given (D,P), the information rate256

region, denoted byR(D,P), is the closure of the set of all tuples R that (R,D,P) ∈ RDP .257

Proposition 1 For first-order Markov sources, a given (D,P) and R ∈ R(D,P), we have

R+ log(R+ 1) + 5 ∈ Ro(D,P). (19)

Moreover, the following holds:

Ro(D,P) ⊆ R(D,P). (20)

To prove the above statement, we first discuss the achievable scheme that results in (19). Then, we258

will provide the proof of outer bound in (20).259

Before stating the achievable scheme, we remind the strong functional representation lemma [11].
It states that for jointly distributed random variables X and Y , there exists a random variable U
independent of X , and function ϕ such that Y = ϕ(X,U). Here, U is not necessarily unique. The
strong functional representation lemma states further that there exists a U which has information of
Y in the sense that

H(Y |U) ≤ I(X;Y ) + log(I(X;Y ) + 1) + 4. (21)

Notice that the strong functional representation lemma can be applied conditionally. Given PXY |W ,
we can represent Y as a function of (X,W,U) such that U is independent of (X,W ) and

H(Y |W,U) ≤ I(X;Y |W ) + log(I(X;Y |W ) + 1) + 4. (22)

Proof of (19) (Inner bound):260

For a given (D,P) and R ∈ R(D,P), let Xr = (Xr,1, Xr,2, Xr,3) be jointly distributed with
X = (X1, X2, X3) where the Markov chains (16)–(18) hold and the rate constraints in (10)–(12)
are satisfied such that there exist (X̂1, X̂2, X̂3) for which distortion-perception constraints (13)–(14)
hold. Denote the joint distribution of (X,Xr, X̂) by PXXrX̂

and notice that according to the Markov
chains in (16)–(18), it factorizes as the following

PXXrX̂
= PX1X2X3

· PXr,1|X1
· PXr,2|Xr,1X2

· PXr,3|Xr,2Xr,1X3

·1{X̂1 = g1(Xr,1)} · 1{X̂2 = g2(Xr,1, Xr,3)} · 1{X̂3 = Xr,3}. (23)
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Figure 4: Encoded representations and reconstructions of the iRDP region RDP .

For an illustration of encoded representations Xr and reconstructions X̂ inR(D,P) which are induced261

by distribution PXXrX̂
, see Fig. 4.262

Now, we show that R+ log(R+ 1) + 5 ∈ R(D,P). The achievable scheme is as follows. Fix the
joint distribution PXr

according to (23) which constructs the codebook, given by

PXr
= PXr,1

PXr,2|Xr,1
PXr,3|Xr,2Xr,1

. (24)

From the strong functional representation lemma [11], we know that263

• there exist a random variable V1 independent of X1 and a deterministic function q1 such
that Xr,1 = q1(X1, V1) and

H(Xr,1|V1) ≤ I(X1;Xr,1) + log(I(X1;Xr,1) + 1) + 4, (25)

which means that the first encoder observes the source X1 and applies the function q1 to get264

Xr,1 whose distribution needs to be preserved according to (24) (see Fig. 5);265

• according to the conditional strong functional representation lemma, there exist a random
variable V2 independent of (X2, Xr,1) and a deterministic function q2 such that Xr,2 =
q2(Xr,1, X2, V2) and

H(Xr,2|Xr,1, V2) ≤ I(X2;Xr,2|Xr,1) + log(I(X2;Xr,2|Xr,1) + 1) + 4. (26)

At the second step, the representation Xr,1 is available at the second encoder. So, upon266

observing the sourceX2, it applies the function q2 to getXr,2 whose conditional distribution267

given Xr,1 needs to be preserved according to (24) (see Fig. 5);268

• according to the conditional strong functional representation lemma, there exist a random
variable V3 independent of (X3, Xr,1, Xr,2) and a deterministic function q3 such thatXr,3 =
q3(Xr,1, Xr,2, X3, V3) and

H(Xr,3|Xr,1, Xr,2, V3) ≤ I(X3;Xr,3|Xr,1, Xr,2) + log(I(X3;Xr,3|Xr,1, Xr,2) + 1) + 4.

(27)

Now, the encoding and decoding are as follows269

• With V1 available at all encoders and decoders, we can have a class of prefix-free binary270

codes indexed by V1 with the expected codeword length not larger than I(X1;Xr,1) +271

log(I(X1;Xr,1) + 1) + 5 to represent Xr,1, losslessly (see Fig. 5).272

• With V2 available at the encoders and decoders, we can design a set of prefix-free273

binary codes indexed by (V2, Xr,1) with expected codeword length not larger than274

I(X2;Xr,2|Xr,1)+ log(I(X2;Xr,2|Xr,1)+ 1)+ 5 to represent Xr,2, losslessly(see Fig. 5).275

• Similarly, one can represent Xr,3 losslessly with V3 available at the third encoder and276

decoder.277
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• The decoders can use functions X̂1 = η1(Xr,1), X̂2 = η2(Xr,1, Xr,2) and X̂3 = Xr,3 to278

get the reconstruction X̂.279

This shows that R+ log(R+ 1) + 5 ∈ Ro(D,P).280

Proof of (20) (Outer Bound):281

For any (D,P), R ∈ Ro(D,P), shared randomness K, encoding functions fj : X1× . . .×Xj ×K →
Mj and decoding functions gj :M1 ×M2 × . . .×Mj ×K → X̂j such that

Rj ≥ E[ℓ(Mj)], j = 1, 2, 3, (28)

and

Dj ≥ E[∥Xj − X̂j∥2], j = 1, 2, 3, (29)
Pj ≥ ϕj(PX̂1...X̂j−1Xj

, PX̂1...X̂j
), j = 1, 2, 3, (30)

we lower bound the expected length of the messages. Define

Xr,1 := (M1,K), (31)
Xr,2 := (M1,M2,K), (32)

and recall that according to the decoding functions, we have

X̂j = gj(M1, . . . ,Mj ,K), j = 1, 2, 3. (33)

We can write

R1 ≥ E[ℓ(M1)] ≥ H(M1|K) (34)
= I(X1;M1|K) (35)
= I(X1;M1,K) (36)
= I(X1;Xr,1). (37)

Now, consider the following set of inequalities

R2 ≥ E[ℓ(M2)] ≥ H(M2|M1,K) (38)
= I(X1, X2;M2|M1,K) (39)
= I(X1, X2;X2,r|Xr,1). (40)

Similarly, we have

R3 ≥ E[ℓ(M3)] ≥ H(M3|M1,M2,K) (41)
= I(X1, X2, X3;M3|M1,M2,K) (42)
≥ I(X1, X2, X3; X̂3|Xr,1, Xr,2). (43)

Notice that the definitions in (31)–(32) imply the following Markov chains

Xr,1 → X1 → (X2, X3), (44)
Xr,2 → (X1, X2, Xr,1)→ X3. (45)

X2

Figure 5: Strong functional representation lemma for T = 2 frames.
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On the other hand, the decoding functions of the first and second steps imply that

X̂1 = g1(M1,K), (46)
X̂2 = g2(M1,M2,K), (47)

where together with definitions in (31) and (32), we can write

X̂1 = g1(M1,K) := η1(Xr,1), (48)

X̂2 = g2(M1,M2,K) := η2(Xr,1, Xr,2), (49)

such that η1(.) and η2(., .) are deterministic functions.282

Now, consider the fact that the set of constraints in (29)–(30), (37), (40), (43) with Markov chains
in (44)–(45) and deterministic functions in (48)–(49) constitute an iRDP region, denoted byRDP ,
which is the set of all tuples (R,D,P) such that

R1 ≥ I(X1;Xr,1), (50)
R2 ≥ I(X1, X2;Xr,2|Xr,1), (51)

R3 ≥ I(X1, X2, X3; X̂3|Xr,1, Xr,2), (52)

Dj ≥ E[∥Xj − X̂j∥2], j = 1, 2, 3, (53)
Pj ≥ ϕj(PX̂1...X̂j−1Xj

, PX̂1...X̂j
), j = 1, 2, 3, (54)

for auxiliary random variables (Xr,1, Xr,2) and (X̂1, X̂2, X̂3) satisfying the following

X̂1 = η1(Xr,1), X̂2 = η2(Xr,1, Xr,2) (55)
Xr,1 → X1 → (X2, X3), (56)
Xr,2 → (X1, X2, Xr,1)→ X3. (57)

for some deterministic functions η1(.) and η2(., .).283

Comparing the two regions RDP and RDP , we identify the following differences. The Markov284

chain in (16) is more restricted comparing to (57). Moreover, the Markov chain (17) does not exist in285

RDP . The following lemma states thatRDP = RDP . Now, for a given (D,P), letR(D,P) denote286

the set of rate tuples R such (R,D,P) ∈ RDP , then this lemma implies that R(D,P) = R(D,P)287

which completes the proof of the outer bound.288

We conclude this section by the following lemma.289

Lemma 1 For first-order Markov sources, we have

RDP = RDP. (58)

Proof: This result for the scenario without perception constraint has been similarly observed in [16, Eq.290

(12)]. The proof in this section is provided for completeness.291

First, notice that the set of Markov chains in (16)–(18) is more restricted than the ones in (56)–(57),292

henceRDP ⊆ RDP . Now, it remains to prove thatRDP ⊆ RDP . Consider the following facts293

1. The distortion constraints in (53) depend only on the joint distribution of (Xj , X̂j), and294

thus on the joint distribution of (Xj , Xr,1, . . . , Xr,j). So, imposing the Markov chain295

Xr,2 → (X2, Xr,1)→ X1 does not affect the expected distortion E[∥X2 − X̂2∥2] since it296

does not depend on the joint distribution of X1 with (Xr,1, Xr,2, X2). A similar argument297

holds for other frames;298

2. The perception constraints in (54) depend on the joint distributions PX̂1...X̂j−1Xj
and299

PX̂1,...,X̂j
(hence on PXr,1...Xr,j

). Thus, imposing Xr,2 → (X2, Xr,1) → X1 does not300

affect ϕ2(PX̂1X2
, PX̂1X̂2

) since it does not depend on the joint distribution of X1 with301

(Xr,1, Xr,2, X2). A similar argument holds for other frames;302

3. Moreover, the rate constraints in (51) and (52) would be further lower bounded by

R2 ≥ I(X1, X2;Xr,2|Xr,1) ≥ I(X2;Xr,2|Xr,1), (59)

R3 ≥ I(X1, X2, X3; X̂3|Xr,1, Xr,2) ≥ I(X3; X̂3|Xr,1, Xr,2). (60)

Thus, the set of rate constraints is optimized by the set of Markov chains (16)–(18).303
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4. The mutual information terms I(X1;Xr,1), I(X2;Xr,2|Xr,1) and I(X3; X̂3|Xr,1, Xr,2)304

depend on distributions PX1Xr,1 , PXr,1Xr,2X2 and PX3X̂3Xr,1Xr,2
, respectively. So, these305

distributions should be preserved by the set of Markov chains. The first two distributions306

are preserved by the choice of (15)–(16). Now, since we have first-order Markov sources,307

preserving the joint distributions of PXr,1X1 and PXr,1Xr,2X2 is sufficient to preserve the308

distribution PXr,1Xr,2X3
. So, preserving the joint distribution of PX̂3Xr,1Xr,2

is sufficient to309

keep I(X3; X̂3|Xr,1, Xr,2) unchanged.310

Considering the above four facts, without loss of optimality, one can impose the following Markov
chains

Xr,1 → X1 → (X2, X3), (61)
Xr,2 → (X2, Xr,1)→ (X1, X3), (62)

X̂3 → (X3, Xr,1, Xr,2)→ (X1, X2). (63)

This concludes the proof of the lemma.311

312

B Gauss-Markov Source Model313

In this section, we prove that for Gaussian sources, jointly Gaussian reconstructions are optimal.314

Proposition 2 For the Gauss-Markov source model, any tuple (R,D,P) ∈ RDP can be attained by315

a jointly Gaussian distribution over (Xr,1, Xr,2, Xr,3) and identity mappings for ηj(·) in Definition 1.316

First, notice that a proof for the setting without perception constraint is provided in [17]. The317

following proof is different from [17] in some steps and also involves the perception constraint.318

For a given tuple (R,D,P) ∈ RDP , let X∗
r,1, X∗

r,2, X̂∗
1 = η1(X

∗
r,1), X̂

∗
2 = η2(X

∗
r,1, X

∗
r,2) and X̂∗

3
be random variables satisfying (15)–(17). Let PX̂G

1 |X1
, PX̂G

2 |X̂G
1 X2

and PX̂G
3 |X̂G

1 X̂G
2 X3

be jointly
Gaussian distributions such that the following conditions are satisfied.

cov(X̂G
1 , X1) = cov(X̂∗

1 , X1), (64)
cov(X̂G

1 , X̂
G
2 , X2) = cov(X̂∗

1 , X̂
∗
2 , X2), (65)

cov(X̂G
1 , X̂

G
2 , X̂

G
3 , X3) = cov(X̂∗

1 , X̂
∗
2 , X̂

∗
3 , X3), (66)

In general, the Gaussian random variables which satisfy the constraints in (64)–(66) can be written in
the following format

X1 = νX̂G
1 + Z1, (67)

X̂G
2 = ω1X̂

G
1 + ω2X2 + Z2, (68)

X̂G
3 = τ1X̂

G
1 + τ2X̂

G
2 + τ3X3 + Z3, (69)

for some real ν, ω1, ω2, τ1, τ2, τ3 where X̂G
1 ∼ N (0, σ2

X̂G
1

), X̂G
2 ∼ N (0, σ2

X̂G
2

), Z1, Z2 and Z3 are319

Gaussian random variables with zero mean and variances α2
1, α

2
2, α

2
3, independent of X̂G

1 , (X̂G
1 , X2)320

and (X̂G
1 , X̂

G
2 , X3), respectively.321

We explicitly derive the coefficients ν, ω1, ω2, τ1, τ2 and τ3 in the following. Multiplying both sides
of (67) by X̂G

1 and taking an expectation, we get

E[X1X̂
G
1 ] = νσ2

X̂G
1

. (70)

According to (64), the above equation can be written as follows

E[X1X̂
∗
1 ] = νE[X̂∗2

1 ]. (71)

Multiplying both sides of (68) by the vector [X̂G
1 X2] and taking an expectation, we have

[E[X̂G
1 X̂

G
2 ] E[X2X̂

G
2 ]] = [ω1 ω2]

(
σ2
X̂G

1

E[X2X̂
G
1 ]

E[X2X̂
G
1 ] σ2

2

)
(72)
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Considering the fact that E[X2X̂
G
1 ] = ρ1E[X1X̂

G
1 ] and according to (65), the above equation can

be written as follows

[E[X̂∗
1 X̂

∗
2 ] E[X2X̂

∗
2 ]] = [ω1 ω2]

(
E[X̂∗2

1 ] ρ1E[X1X̂
∗
1 ]

ρ1E[X1X̂
∗
1 ] σ2

2

)
. (73)

Similarly, multiplying both sides of (69) by the vector [X̂G
1 X̂G

2 X3], taking an expectation and
considering (66), we get

[E[X̂∗
1 X̂

∗
3 ] E[X̂

∗
2 X̂

∗
3 ] E[X3X̂

∗
3 ]] = [τ1 τ2 τ3]

 E[X̂∗2
1 ] E[X̂∗

1 X̂
∗
2 ] ρ1ρ2E[X1X̂

∗
1 ]

E[X̂∗
1 X̂

∗
2 ] E[X̂∗2

2 ] ρ2E[X2X̂
∗
2 ]

ρ1ρ2E[X1X̂
∗
1 ] ρ2E[X2X̂

∗
2 ] E[X̂∗2

3 ]

 .

(74)

Solving equations (71), (73) and (74), we get

σ2
X̂G

1

= E[X̂∗2
1 ], (75)

ν =
E[X1X̂

∗
1 ]

E[X̂∗2
1 ]

, (76)

α2
1 = σ2

1 −
E[X1X̂

∗
1 ]

E[X̂∗2
1 ]

, (77)

ω1 =
νρ1E[X̂

∗
1 X̂

∗
2 ]−E[X2X̂

∗
2 ]

ν2ρ21σ
2
X̂G

1

− σ2
2

, (78)

ω2 =
νρ1σ

2
X̂G

1

E[X2X̂
∗
2 ]− σ2

2E[X̂
∗
1 X̂

∗
2 ]

ν2ρ21σ
4
X̂G

1

− σ2
2σ

2
X̂G

1

, (79)

α2
2 = E[X̂∗2

2 ]− α2
2σ

2
X̂G

1

− ω2
2σ

2
2 − 2ω1ω2ρ1νσ

2
X̂G

1

. (80)

For the third step, the coefficients and noise variance of (69) are given as follows

[τ1 τ2 τ3]

= [E[X̂∗
1 X̂

∗
3 ] E[X̂

∗
2 X̂

∗
3 ] E[X3X̂

∗
3 ]]

 E[X̂∗2
1 ] E[X̂∗

1 X̂
∗
2 ] ρ1ρ2E[X1X̂

∗
1 ]

E[X̂∗
1 X̂

∗
2 ] E[X̂∗2

2 ] ρ2E[X2X̂
∗
2 ]

ρ1ρ2E[X1X̂
∗
1 ] ρ2E[X2X̂

∗
2 ] E[X̂∗2

3 ]

−1

,

(81)
α2
3 = E[X̂∗2

3 ]− τ21E[X̂∗2
1 ]− τ22E[X̂∗2

2 ]− τ23E[X2
3 ]

−2τ1τ2E[X̂∗
1 X̂

∗
2 ]− 2τ1τ3ρ1ρ2E[X1X̂

∗
1 ]− 2τ2τ3ρ2E[X2X̂

∗
2 ], (82)

where (.)−1 denotes the inverse of a matrix.322

Now, we look at the rate constraints.323

Rate Constraints:324

Consider the rate constraint of the first step as follows

R1 ≥ I(X1;X
∗
r,1) (83)

= H(X1)−H(X1|X∗
r,1) (84)

≥ H(X1)−H(X1|X̂∗
1 ) (85)

= H(X1)−H(X1 −E[X1|X̂∗
1 ]|X̂∗

1 ) (86)
≥ H(X1)−H(X1 −E[X1|X̂∗

1 ]) (87)
≥ H(X1)−H(X1 −E[X1|X̂G

1 ]) (88)
= H(X1)−H(X1 −E[X1|X̂G

1 ]|X̂G
1 ) (89)

= I(X1; X̂
G
1 ) (90)

where325
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• (85) follows because X̂∗
1 is a function of X∗

r,1;326

• (88) follows because for a given covariance matrix in (64), the Gaussian distribution maxi-327

mizes the differential entropy;328

• (89) follows because the MMSE is uncorrelated from the data and since the random variables329

are Gaussian, the MMSE would be independent of the data.330

Next, consider the rate constraint of the second step as the following

R2 ≥ I(X2;X
∗
r,2|X∗

r,1) (91)
= H(X2|X∗

r,1)−H(X2|X∗
r,1, X

∗
r,2) (92)

≥ H(X2|X∗
r,1)−H(X2|X̂∗

1 , X̂
∗
2 ) (93)

≥ H(X2|X∗
r,1)−H(X2|X̂G

1 , X̂
G
2 ) (94)

= H(ρ1X1 +N1|X∗
r,1)−H(X2|X̂G

1 , X̂
G
2 ) (95)

≥ 1

2
log
(
ρ212

2H(X1|X∗
r,1) + 22H(N1)

)
−H(X2|X̂G

1 , X̂
G
2 ) (96)

≥ 1

2
log
(
ρ212

−2R122H(X1) + 22H(N1)
)
−H(X2|X̂G

1 , X̂
G
2 ), (97)

where331

• (93) follows because X̂∗
1 and X̂∗

2 are deterministic functions of X∗
r,1 and (X∗

r,1, X
∗
r,2),332

respectively;333

• (94) follows because for a given covariance matrix in (65), the Gaussian distribution maxi-334

mizes the differential entropy;335

• (96) follows from entropy power inequality (EPI) [18, pp. 22];336

• (97) follows from (84).337

Similarly, consider the rate constraint of the third frame as the following,

R3 ≥ I(X3; X̂
∗
3 |X∗

r,1, X
∗
r,2) (98)

= H(X3|X∗
r,1, X

∗
r,2)−H(X3|X∗

r,1, X
∗
r,2, X̂

∗
3 ) (99)

≥ H(X3|X∗
r,1, X

∗
r,2)−H(X3|X̂∗

1 , X̂
∗
2 , X̂

∗
3 ) (100)

≥ H(X3|X∗
r,1, X

∗
r,2)−H(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ) (101)

= H(ρ2X2 +N2|X∗
r,1, X

∗
r,2)−H(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ) (102)

≥ 1

2
log
(
ρ222

2H(X2|X∗
r,1,X

∗
r,2) + 22H(N2)

)
−H(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ) (103)

≥ 1

2
log
(
ρ222

−2R222H(X2|X∗
r,1) + 22H(N2)

)
−H(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ) (104)

≥ 1

2
log
(
ρ21ρ

2
22

−2R1−2R222H(X1) + ρ222
−2R222H(N1) + 22H(N2)

)
−H(X3|X̂G

1 , X̂
G
2 , X̂

G
3 )

(105)

Next, we look at the distortion constraint.338

Distortion Constraint: The choices in (64)–(66) imply that

Dj ≥ E[∥Xj − X̂∗
j ∥2] = E[∥Xj − X̂G

j ∥2], j = 1, 2, 3. (106)

Finally, we look at the perception constraint339

Perception Constraint:340

Define the following distribution

PU∗V ∗ := arg inf
P̃UV :

P̃U=PX1

P̃V =PX̂∗
1

EP̃ [∥U − V ∥
2]. (107)
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Now, define PUGV G to be a Gaussian joint distribution with the following covariance matrix

cov(UG, V G) = cov(U∗, V ∗). (108)

Then, we have the following set of inequalities:341

P1 ≥W 2
2 (PX1

, PX̂∗
1
) = inf

P̃UV :
P̃U=PX1

P̃V =PX̂∗
1

EP̃ [∥U − V ∥
2] (109)

= E[∥U∗ − V ∗∥2] (110)
= E[∥UG − V G∥2] (111)
≥W 2

2 (PUG , PV G) (112)
= inf

P̂UV :
P̂U=PUG

P̂V =PV G

EP̂ [∥U − V ∥
2] (113)

= inf
P̂UV :

P̂U=PX1

P̂V =P
X̂G

1

EP̂ [∥U − V ∥
2] (114)

=W 2
2 (PX1

, PX̂G
1
), (115)

where342

• (110) follows from the definition in (107);343

• (111) follows from (108) which implies that (U∗, V ∗) and (UG, V G) have the same second-344

order statistics;345

• (114) follows because PV G = PX̂G
1

which is justified in the following. First, notice that346

both PV G and PX̂G
1

are Gaussian distributions. Denote the variance of V G by σ2
V G and347

recall that the variance of X̂G
1 is denoted by σ2

X̂G
1

. According to (108), σ2
V G is equal to the348

variance of V ∗. Also, from (107), we know that PV ∗ = PX̂∗
1

, hence the variances of V ∗349

and X̂∗
1 are the same. On the other side, according to (64), we know that the variance of350

X̂∗
1 is equal to σ2

X̂G
1

. Thus, we conclude that σ2
X̂G

1

= σ2
V G , which yields PV G = PX̂G

1
. A351

similar argument shows that PUG = PX1 .352

A similar argument holds for the perception constraint of the second and third steps for both PLFs.353

Thus, we have proved the set of Gaussian auxiliary random variables (X̂G
1 , X̂

G
2 , X̂

G
3 ) given in (67)–

(69) where the coefficients are chosen according to distortion-perception constraints, provides an
outer bound toRDP which is the set of all tuples (R,D,P) such that

R1 ≥ I(X1; X̂
G
1 ), (116)

R2 ≥
1

2
log
(
ρ212

−2R122H(X1) + 22H(N1)
)
−H(X2|X̂G

1 , X̂
G
2 ), (117)

R3 ≥
1

2
log
(
ρ21ρ

2
22

−2R1−2R222H(X1) + ρ222
−2R222H(N1) + 22H(N2)

)
−H(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ),

(118)
Dj ≥ E[∥Xj − X̂G

j ∥2], j = 1, 2, 3 (119)

Pj ≥W 2
2 (PX1...Xj

, PX̂G
1 ...X̂G

j
). (120)

Now, we need to show that the above RDP region is also an inner bound to RDP . This is simply
verified by the following choice. In iRDP region of (10)–(18), choose the following:

Xr,j = X̂j = X̂G
j , j = 1, 2, 3, (121)
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where (X̂G
1 , X̂

G
2 , X̂

G
3 ) satisfy (67)–(69) with coefficients chosen according to distortion-perception

constraints. The lower bounds on distortion and perception constraints in (119) and (120) are
immediately achieved by this choice. Now, we will look at the rate constraints. The achievable rate
constraint of the first step can be written as follows

R1 ≥ I(X1; X̂
G
1 ), (122)

which immediately coincides with (116). The achievable rate of the second step can be written as
follows

R2 ≥ I(X2; X̂
G
2 |X̂G

1 ) (123)
= H(X2|X̂G

1 )−H(X2|X̂G
1 , X̂

G
2 ) (124)

= H(ρ1X1 +N1|X̂G
1 )−H(X2|X̂G

1 , X̂
G
2 ) (125)

=
1

2
log(ρ212

2H(X1|X̂G
1 ) + 22H(N1))−H(X2|X̂G

1 , X̂
G
2 ) (126)

≥ 1

2
log
(
ρ212

−2R122H(X1) + 22H(N1)
)
−H(X2|X̂G

1 , X̂
G
2 ), (127)

where354

• (126) follows because EPI holds with “equality” for jointly Gaussian distributions [18, pp.355

22];356

• (127) follows from (117).357

Thus, the bound in (127) coincides with (97). A similar argument holds for the achievable rate of the358

third frame.359

Notice that the above proof (both converse and achievability) can be extended to T frames using the360

sequential analysis that was presented. Thus, without loss of optimality, one can restrict to the jointly361

Gaussian distributions and identity functions η1(.) and η2(., .) in iRDP regionRDP .362

C Low-rate Regime for the First Frame363

In this section, we prove the following theorem when the first frame is compressed at a low rate. The364

rate of the second frame is an arbitrary nonnegative value.365

Theorem 1 Let R1 = ϵ for a sufficiently small ϵ > 0 and R2 be an arbitrary nonnegative rate. The
achievabale distortions for the second frame, D0

2,AR (for 0-PLF-AR), D0
2,FMD (for 0-PLF-FMD) and

D0
2,JD (for 0-PLF-JD) are given by

D0
2,AR = 2σ2(1−

√
1− 2−2R2), D0

2,FMD = 2σ2(1−
√
1− 2−2R2 + ρ22ϵ ln 2),

D0
2,JD = 2σ2(1−

√
1− ρ2

√
1− 2−2R2 − ρ2

√
2ϵ ln 2). (128)

To prove the above theorem, we first remind the RDP region of the Gauss-Markov source model.366

Then, we will look at each PLF separately; 0-PLF-AR, 0-PLF-FMD, and 0-PLF-JD. For each of367

these PLFs, we discuss the second step and provide the analysis of the third step for completeness.368

Recall the RDP region of the Gauss-Markov model which is the set of all tuples (R,D,P) such that

R1 ≥ I(X1; X̂1), R2 ≥ I(X2; X̂2|X̂1), R3 ≥ I(X3; X̂3|X̂1, X̂2) (129a)
Dj ≥ E[∥Xj − X̂j∥2], Pj ≥ ϕj(PX̂1...X̂j−1Xj

, PX̂1...X̂j−1X̂j
), j = 1, 2, 3, (129b)

for some auxiliary random variables (X̂1, X̂2, X̂3) which satisfy the following Markov chains

X̂1 → X1 → (X2, X3), X̂2 → (X2, X̂1)→ (X1, X3), X̂3 → (X3, X̂1, X̂2)→ (X1, X2).(130)

For the Gauss-Markov source model, the reconstructions that satisfy the Markov chains in (130) can
be generally written as follows

X̂1 = νX1 + Z1, (131)
X̂2 = ω1X̂1 + ω2X2 + Z2, (132)
X̂3 = τ1X̂1 + τ2X̂2 + τ3X3 + Z3, (133)
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where X̂j ∼ N (0, σ̂2
j ) for j = 1, 2, Z1, Z2 and Z3 are independent of X1, (X̂1, X2) and369

(X̂1, X̂2, X3), respectively.370

According to (129), the optimization program of the first step is as follows
min

PX̂1|X1

E[∥X1 − X̂1∥2]

s.t. I(X1; X̂1) ≤ R1,

ϕ1(PX1
, PX̂1

) ≤ P1. (134)

Using the choice in (131), the optimization program of the first step for P1 = 0 simplifies as follows
min
ν

2σ2(1− ν), (135a)

s.t. ν2 ≤ (1− 2−2R1), (135b)
When R1 = ϵ for a sufficiently small ϵ > 0, the solution of the above program is as follows

D0
1 = 2σ2(1−

√
2ϵ ln 2) +O(ϵ), (136)

where the optimal choice of ν is given by

ν =
√
1− 2−2R1 =

√
2ϵ ln 2 +O(ϵ). (137)

Next, consider the optimization programs for different steps and PLFs as follows.371

C.1 0-PLF-AR372

In this section, we provide the optimization programs for different steps of 0-PLF-AR. For the second373

step, we are able to provide an approximate solution for the low compression rate, i.e., R1 = ϵ. For374

the third step, we plot the tradeoff in Fig. 6.375

Second Step:376

The optimization program of the second step is given as follows.377

Proposition 3 The optimization program of 0-PLF-AR for the second step can be written as
min
ω1,ω2

2σ2 − 2ω1ρνσ
2 − 2ω2σ

2, (138a)

s.t. ω2
2(1− ρ2ν22−2R2) ≤ (1− ω2

1 − 2ω1ω2ρν)(1− 2−2R2), (138b)
ω1 + νω2ρ = ρν, (138c)

ν =
√
1− 2−2R1 . (138d)

Proof: According to (129), the optimization problem of the second step is as follows,
min

PX̂2|X2X̂1

E[∥X2 − X̂2∥2]

s.t. I(X2; X̂2|X̂1) ≤ R2,

PX̂1X2
= PX̂1X̂2

. (139)
We proceed with simplifying the rate constraint as follows,

R2 ≥ I(X2; X̂2|X̂1) (140)
= h(X̂2|X̂1)− h(Z2) (141)
= h(ω2X2 + Z2|X̂1)− h(Z2) (142)

=
1

2
log 2−2h(Z2)

(
ω2
22

2h(X2|X̂1) + 22h(Z2)
)

(143)

=
1

2
log 2−2h(Z2)

(
ω2
22

2h(ρX1+N1|X̂1) + 22h(Z2)
)

(144)

=
1

2
log 2−2h(Z2)

(
ω2
2(ρ

222h(X1|X̂1) + 22h(N1)) + 22h(Z2)
)

(145)

=
1

2
log 2−2h(Z2)

(
ω2
2(ρ

222h(X1|X̂1) + (1− ρ2)σ2) + 22h(Z2)
)

(146)

≥ 1

2
log 2−2h(Z2)

(
ω2
2(ρ

2σ22−2R1 + (1− ρ2)σ2) + 22h(Z2)
)
, (147)

where378
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• (141) and (142) follow from (132);379

• (143) and (145) follow because Entropy Power Inequality (EPI) [18, pp. 22] holds with380

equality for Gaussian sources;381

• (144) follows from (7) where X2 = ρX1 +N1;382

• (147) follows from the rate constraint of the first step, i.e., R1 ≥ I(X1; X̂1).383

Inequality (147) can be further simplified as follows,

(ω2
2(ρ

2σ22−2R1 + (1− ρ2)σ2))2−2R2 ≥ (1− 2−2R2)22h(Z2) (148)
= (1− 2−2R2) · (1− ω2

1 − ω2
2 − 2ω1ω2νρ)σ

2. (149)

Considering that ν =
√
1− 2−2R1 and re-arranging the terms in the above inequality, we get to384

constraint in (138b).385

The objective function in (138a) can be obtained as follows,

E[∥X2 − X̂2∥2] = 2σ2 − 2E[X2X̂2] (150)
= 2σ2 − 2(ρνω1 + ω2)σ

2, (151)

where the last equality follows from (131) and (132).386

The derivation of the constraint in (138c) is as follows. We multiply both sides of (131) and (132) by
X2 and X̂1, respectively, and take an expectation from both sides. Thus, we have

E[X2X̂1] = νE[X1X2] = νρσ2, (152)
E[X̂1X̂2] = ω1σ

2 + ω2E[X2X̂1]. (153)

Notice that the perception constraint PX2X̂1
= PX̂2X̂1

implies that E[X̂1X̂2] = E[X2X̂1] which387

together with (152) and (153) yields the constraint in (138c).388

Now, we provide an approximate solution for the optimization program when the first frame is
compressed at a low rate, i.e., R1 = ϵ where ϵ is sufficiently small. In this case, we have

1− 2−2R1 = 2ϵ ln 2 +O(ϵ2), (154)

ν =
√
2ϵ ln 2 +O(ϵ), (155)

so the optimization program of the second step in (138) simplifies as follows

min
ω1,ω2

2σ2 − 2ω1ρσ
2
√
2ϵ ln 2 +O(ϵ2)− 2ω2σ

2, (156a)

s.t. ω2
2(1− ρ22−2R2(2ϵ ln 2 +O(ϵ2))) ≤ (1− ω2

1 − 2ω1ω2ρ(2ϵ ln 2 +O(ϵ2)))(1− 2−2R2),

(156b)
ω1 + νω2ρ = ρν. (156c)

Notice that (156c) and (155) imply that ω1 = Θ(
√
ϵ) which together with (156b) yields the following

ω2 ≤
√
1− 2−2R2 +O(

√
ϵ). (157)

On the other side, plugging (156c) into (156a), the program in (156) is upper bounded by the
following

min
ω2

2σ2 − 2ω2σ
2 +O(

√
ϵ) (158)

s.t. ω2 ≤
√

1− 2−2R2 +O(
√
ϵ). (159)

The solution of the above program is given by

ω2 =
√
1− 2−2R2 +O(

√
ϵ). (160)

Plugging the above into (156c), we get

ω1 = ρ
√
2ϵ ln 2(1−

√
1− 2−2R2) +O(ϵ). (161)

Thus, we have

X̂2 = ρ
√
2ϵ ln 2(1−

√
1− 2−2R2)X̂1 +

√
1− 2−2R2X2 + Z2, (162)
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where Z2 ∼ N (0, (2−2R2 − ρ2(1 −
√
1− 2−2R2)2(2ϵ ln 2))σ2) and the solution of optimization

program is as follows

D0
2,AR := 2σ2(1−

√
1− 2−2R2) +O(

√
ϵ). (163)

Third Step:389

For the third step, we have the following optimization program.390

Proposition 4 The optimization program of 0-PLF-AR for the third step can be written as follows

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1νρ
2σ2 − 2τ1νρ

2σ2 (164a)

s.t. : (164b)
τ23σ

2(1− 2−2R3(ρ42−2R1−2R2 + ρ2(1− ρ2)2−2R2 − ρ2)) ≤
(1− 2−2R3)(1− τ21 − τ22 − 2τ1τ2ω1ν − 2τ1τ2ω2νρ− 2τ2τ3ω1νρ

2 − 2τ2τ3ω2ρ− 2τ1τ3νρ
2)σ2,

(164c)
ρ2ν = τ1 + τ2ρν + τ3ρ

2ν, (164d)
ω1ρ

2ν + ρω2 = τ1ρν + τ2 + τ3(ω1ρ
2ν + ρω2), (164e)

ν =
√
1− 2−2R1 . (164f)

Proof: According to (129), the optimization program of the third step is given as follows

min
PX̂3|X3X̂1X̂2

E[∥X3 − X̂3∥2]

s.t. I(X3; X̂3|X̂1, X̂2) ≤ R3,

PX̂1X̂2X3
= PX̂1X̂2X̂3

. (165)

Using the above program, we first derive the rate expression in (164c). Consider the following set of391

inequalities392

R3 ≥ I(X3; X̂3|X̂1, X̂2) (166)
= h(X̂3|X̂1, X̂2)− h(Z3) (167)
= h(τ3X3 + Z3|X̂1, X̂2)− h(Z3) (168)

=
1

2
log 2−2h(Z3)

(
τ23 2

2h(X3|X̂1,X̂2) + 22h(Z3)
)

(169)

=
1

2
log 2−2h(Z3)

(
τ23 2

2h(ρX2+N2|X̂1,X̂2) + 22h(Z3)
)

(170)

=
1

2
log 2−2h(Z3)

(
τ23 (ρ

222h(X2|X̂1,X̂2) + 22h(N2)) + 22h(Z3)
)

(171)

=
1

2
log 2−2h(Z3)

(
τ23 (ρ

222h(X2|X̂1,X̂2) + (1− ρ2)σ2) + 22h(Z3)
)

(172)

≥ 1

2
log 2−2h(Z3)

(
τ23 (ρ

222h(X2|X̂1)2−2R2 + (1− ρ2)σ2) + 22h(Z3)
)

(173)

=
1

2
log 2−2h(Z3)

(
τ23 (ρ

222h(ρX1+N1|X̂1)2−2R2 + (1− ρ2)σ2) + 22h(Z3)
)

(174)

=
1

2
log 2−2h(Z3)

(
τ23 (ρ

42−2R222h(X1|X̂1) + ρ2(1− ρ2)2−2R2σ2 + (1− ρ2)σ2) + 22h(Z3)
)

(175)

≥ 1

2
log 2−2h(Z3)

(
τ23 (ρ

4σ22−2R1−2R2 + ρ2(1− ρ2)2−2R2σ2 + (1− ρ2)σ2) + 22h(Z3)
)
,

(176)

where393

• (170) follows from (7) where X3 = ρX2 +N2;394
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• (171) and (175) follow from Entropy Power Inequality (EPI) [18, pp. 22] which holds395

which equality for Gaussian sources;396

• (173) follows from the rate constraint I(X2; X̂2|X̂1) ≤ R2 which yields h(X2|X̂2, X̂1) ≥397

h(X2|X̂1)−R2;398

• (176) follows from the rate constraint I(X1; X̂1) ≤ R1 which yields h(X1) ≥ h(X1|X̂1)−399

R1.400

Thus, re-arranging the terms in (176), we have
(τ23 (ρ

2(1− ρ2)σ22−2R2 + (1− ρ2)σ2))2−2R3

≥ (1− 2−2R3)22h(Z3) (177)
= (1− 2−2R3)·

(1− τ21 − τ22 − τ23 − 2τ1τ2ω1 − 2τ1τ2ω2ρ− 2τ2τ3ω1ρ
2 − 2τ2τ3ω2ρ− 2τ1τ3ρ

2)σ2.

(178)
The above constraint can be simplified as follows
τ23σ

2(1− ρ22−2R3 + ρ2(1− ρ2)2−2R22−2R3)

≥ (1− 2−2R3)(1− τ21 − τ22 − 2τ1τ2ω1 − 2τ1τ2ω2ρ− 2τ2τ3ω1ρ
2 − 2τ2τ3ω2ρ− 2τ1τ3ρ

2)σ2,

(179)
which is the rate expression in (164c).401

The derivation of the perception constraint in (164d) is given in the following.
ρ2νσ2 = E[X3X̂1] (180)

= E[X̂3X̂1] (181)
= τ1σ

2 + τ2E[X̂2X̂1] + τ3E[X3X̂1] (182)
= τ1σ

2 + τ2E[X2X̂1] + τ3ρ
2
E[X1X̂1] (183)

= τ1σ
2 + τ2ρE[X1X̂1] + τ3ρ

2
E[X1X̂1] (184)

= τ1σ
2 + τ2ρνσ

2 + τ3ρ
2νσ2, (185)

where402

• (181) follows from 0-PLF-AR condition, i.e., PX̂3X̂2X̂1
= PX3X̂2X̂1

which implies that403

E[X3X̂1] = E[X̂3X̂1] for the Gauss-Markov source model;404

• (182) follows from (133) where we multiply both sides with X̂1 and take an expectation405

over the distribution;406

• (183) follows from the 0-PLF-AR condition which implies that E[X̂2X̂1] = E[X2X̂1] and407

also from (7), we have X3 = ρ2X1 + ρN1 +N2 where (N1, N2) are independent of X̂1;408

• (184) follows from (7) where X2 = ρX1 +N1 and N1 is independent of X̂1.409

Similarly, for derivation of (164e), we have
ω1ρ

2νσ2 + ρω2σ
2 = E[X̂2X3] (186)
= E[X̂2X̂3] (187)
= τ1E[X̂1X̂2] + τ2σ

2 + τ3E[X3X̂2] (188)
= τ1E[X̂1X2] + τ2σ

2 + τ3E[X3X̂2] (189)
= τ1ρνσ

2 + τ2σ
2 + τ3(ω1ρ

2νσ2 + ρω2σ
2). (190)

The distortion term in (164a) can be derived as follows
E[∥X3 − X̂3∥2] = E[X2

3 ] +E[X̂
2
3 ]− 2E[X3X̂3] (191)

= 2σ2 − 2E[X3X̂3] (192)
= 2σ2 − 2(τ1E[X̂1X3] + τ2E[X̂2X3] + τ3σ

2) (193)
= 2σ2 − 2(τ1ρ

2
E[X̂1X1] + τ2ρE[X̂2X2] + τ3σ

2) (194)
= 2σ2 − 2(τ1ρ

2νσ2 + τ2ρ(ρνω1 + ω2)σ
2 + τ3σ

2), (195)
where410
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Figure 6: Distortion of the third frame versus its rate for the low-rate regime and ρ = 1.

• (192) follows because 0-PLF-AR condition implies that PX3 = PX̂3
;411

• (193) follows from (133) where X3 = τ1X̂1 + τ2X̂2 + τ3X3 + Z3;412

• (194) follows from (7);413

• (195) follows from (131) and (132).414

This concludes the proof.415

The solution of the optimization program in Proposition 4 is plotted in Fig. 6 for some values of the416

parameters.417

C.2 0-PLF-FMD418

In this section, we propose the optimization program of 0-PLF-FMD for the second and third steps.419

We analytically solve the optimization problem of the second step and provide some numerical420

evaluations for the program of the third step.421

Second Step:422

The optimization program of the second step is similar to that of Proposition 4 but with a difference
that the condition (138c) which preserves the joint distribution of (X̂1, X̂2) is not needed for 0-PLF-
FMD where only marginal distributions are fixed. We also use the following approximation for the
rate of the first frame

1− 2−2R1 = 2ϵ ln 2 +O(ϵ2). (196)

Thus, the optimization problem of the second step for 0-PLF-FMD is as follows

min
ω1,ω2

2σ2 − 2ω1ρσ
2
√

2ϵ ln 2 +O(ϵ2)− 2ω2σ
2, (197a)

s.t. ω2
2(1− ρ22−2R2(2ϵ ln 2 +O(ϵ2))) ≤ (1− ω2

1 − 2ω1ω2ρ(2ϵ ln 2 +O(ϵ2)))(1− 2−2R2).

(197b)

Now, we proceed with solving the above optimization program analytically. Ignoring the small terms
of (197b), this condition reduces to the following

ω2
2 ≤ (1− ω2

1)(1− 2−2R2). (198)

Thus, the optimization program of (197) with considering the dominant terms reduces to the following

min
ω1,ω2

2σ2 − 2ω1ρσ
2
√
2ϵ ln 2− 2ω2σ

2, (199a)

s.t. ω2
2 ≤ (1− ω2

1)(1− 2−2R2). (199b)

The above program is convex and the solution is obtained on the boundary, i.e.,

ω2
2 = (1− ω2

1)(1− 2−2R2). (200)

Plugging the above into (197a), we get

min
ω1

2σ2(1− ρω1

√
2ϵ ln 2−

√
1− ω2

1

√
1− 2−2R2) (201)
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Taking the derivative of the above expression with respect to ω1, we have
ω1√
1− ω2

1

√
1− 2−2R2 = ρ

√
2ϵ ln 2, (202)

which yields

ω1 =
ρ
√
2ϵ ln 2√

1− 2−2R2 + ρ22ϵ ln 2
, (203)

and

ω2 =
1− 2−2R2√

1− 2−2R2 + ρ2(2ϵ ln 2)
. (204)

Thus, we get

X̂2 =
ρ
√
2ϵ ln 2√

1− 2−2R2 + ρ22ϵ ln 2
X̂1 +

1− 2−2R2√
1− 2−2R2 + ρ2(2ϵ ln 2)

X2 + Z2, (205)

where Z2 ∼ N (0, (1 − ω2
1 − ω2

2 − 2ρνω1ω2)σ
2) is a Gaussian random variable independent of

(X̂1, X2), and the optimal distortion is given by

D0
2,FMD := 2σ2(1−

√
1− 2−2R2 + ρ22ϵ ln 2) +O(ϵ). (206)

Third Step:423

The optimization program of the third step for 0-PLF-FMD is similar to that of (164) with a difference
that the conditions (164d) and (164e) that preserve the joint distributions of (X̂1, X̂2, X̂3) are not
needed since for 0-PLF-FMD, only the marginal distributions are fixed. Thus, we have the following
optimization program for the third step

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1νρ
2σ2 − 2τ1νρ

2σ2 (207a)

s.t. : τ23σ
2(1− 2−2R3(ρ42−2R1−2R2 + ρ2(1− ρ2)2−2R2 − ρ2)) ≤

(1− 2−2R3)(1− τ21 − τ22 − 2τ1τ2ω1ν − 2τ1τ2ω2νρ− 2τ2τ3ω1νρ
2 − 2τ2τ3ω2ρ− 2τ1τ3νρ

2)σ2.

(207b)

The solution of the above optimization program is plotted for some values of parameters in Fig. 6.424

C.3 0-PLF-JD425

In this section, we propose the optimization programs of 0-PLF-JD for the second and third steps.426

We analytically solve the optimization problem of the second frame and provide some numerical427

evaluations for the third step.428

Second Step:429

The optimization program of the second step is similar to that of Proposition 3 with a difference
that the condition in (138c) is replaced by the corresponding condition of 0-PLF-JD which is
PX1X2 = PX̂1X̂2

. This constraint implies that E[X1X2] = E[X̂1X̂2] which together with (131)
and (132) yields

ω1 + νω2ρ = ρ. (208)

Thus, the optimization problem of the second step for 0-PLF-JD when R1 = ϵ is as follows

min
ω1,ω2

2σ2 − 2ω1ρσ
2
√
2ϵ ln 2 +O(ϵ2)− 2ω2σ

2, (209a)

s.t. ω2
2(1− ρ22−2R2(2ϵ ln 2 +O(ϵ2))) ≤ (1− ω2

1 − 2ω1ω2ρ
√
2ϵ ln 2 +O(ϵ2))(1− 2−2R2),

(209b)
ω1 + νω2ρ = ρ. (209c)

The constraint (209c) implies that

ω1 = ρ− ρω2

√
2ϵ ln 2 +O(ϵ). (210)
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Plugging the above into (209a) and (209b), we get

min
ω2

2σ2(1− ρ2
√
2ϵ ln 2− ω2) +O(ϵ) (211a)

s.t. : ω2 ≤
√
1− ρ2

√
1− 2−2R2 +O(

√
ϵ). (211b)

The solution of the above program is given by

ω2 =
√
1− ρ2

√
1− 2−2R2 +O(

√
ϵ). (212)

Thus, we have

X̂2 = (ρ− ρω2

√
2ϵ ln 2)X̂1 +

√
1− ρ2

√
1− 2−2R2X2 + Z2, (213)

where Z2 ∼ N (0, ((1 − ρ2)2−2R2 − ρ2
√

1− ρ2
√
1− 2−2R2

√
2ϵ ln 2)σ2) is a Gaussian random

variable independent of (X̂1, X2) and the optimal distortion is given by

D0
2,JD := 2σ2(1−

√
1− ρ2

√
1− 2−2R2 − ρ2

√
2ϵ ln 2) +O(ϵ). (214)

Third Step:430

The optimization program of the third step for 0-PLF-JD is similar to (164) but with a difference that
the conditions in (164d) and (164e) are replaced by the corresponding conditions of 0-PLF-JD which
is PX1X2X3 = PX̂1X̂2X̂3

. This constraint implies that

E[X1X3] = E[X̂1X̂3], (215)
E[X2X3] = E[X̂2X̂3]. (216)

Considering (131)–(133) together with the above conditions, we get

ρ2 = τ1 + τ2ρ+ τ3ρ
2ν, (217)

ρ = τ1ρ+ τ2 + τ3(ω1ρ
2ν + ρω2). (218)

Thus, we have the following optimization program for the third step

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1νρ
2σ2 − 2τ1νρ

2σ2 (219a)

s.t. : τ23σ
2(1− 2−2R3(ρ42−2R1−2R2 + ρ2(1− ρ2)2−2R2 − ρ2)) ≤

(1− 2−2R3)(1− τ21 − τ22 − 2τ1τ2ω1ν − 2τ1τ2ω2νρ− 2τ2τ3ω1νρ
2 − 2τ2τ3ω2ρ− 2τ1τ3νρ

2)σ2,

(219b)
ρ2 = τ1 + τ2ρ+ τ3ρ

2ν, (219c)
ρ = τ1ρ+ τ2 + τ3(ω1ρ

2ν + ρω2). (219d)

The solution of the above program is plotted in Fig. 6 for some values of parameters. For the431

case R1 = R2 = 0.1 (low compression rates) and a large range of rates R3, the performances of432

0-PLF-AR and 0-PLF-FMD are almost the same. For R1 = R2 = 1 (low compression rates), the433

distortion of 0-PLF-AR is significantly smaller than that of 0-PLF-JD for all values of R3, and for a434

large enough R3, it performs similar to 0-PLF-FMD.435

D High-Rate Regime for the First Frame436

In this section, we first prove the following theorem where the first frame is compressed at a high rate,437

i.e., R1 →∞. The rates of all subsequent frames are assumed to be small, i.e., Rj = ϵ for sufficiently438

small ϵ > 0 and j ∈ {2, . . . , T}. Then, we provide proofs for the achievable reconstructions of439

0-PLF-FMD as outlined in Table 1.440

Theorem 2 LetR1 →∞ andRj = ϵ for sufficiently small ϵ > 0 and j ∈ {2, . . . , T}. An achievable
reconstruction of 0-PLF-AR in jth frame (j ∈ {1, . . . , T}) is given by

X̂j = ρj−1X̂1 +

j−1∑
i=1

O(
√
ϵ)Ni +

j−2∑
i=2

O(
√
ϵ)Zi,AR +O(

√
ϵ)Zj−1,AR + Zj,AR, (220)
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where Zj,AR is a Gaussian random noise independent of ({Ni}j−1
i=1 , {Zi,AR}j−1

i=2 ), with mean zero and
variance (1− ρ2(j−1) +O(ϵ))σ2, and the distortion is as follows

D∞
j,AR = 2(1− ρ2(j−1) −O(

√
ϵ))σ2 +O(ϵ), (221)

and an achievable reconstruction of 0-PLF-JD in jth frame is given by

X̂j = ρj−1X̂1 +

j−1∑
i=1

O(
√
ϵ)Ni +

j−2∑
i=2

O(
√
ϵ)Zi,JD + ρZj−1,JD + Zj,JD, (222)

where Zj,JD is a Gaussian random noise independent of ({Ni}j−1
i=1 , {Zi,JD}j−1

i=2 ) with mean zero and
variance given in Section D.2, and the distortion is as follows

D∞
j,JD = 2

(
1− ρ2(j−1) −O(

√
ϵ)
)
σ2 +O(ϵ). (223)

To prove the above theorem, we consider each PLF separately. We provide the analysis for the second,441

third and fourth frames. We then use an induction to derive the achievable reconstruction for jth442

frame. Notice that the solutions for the second and third frames are also presented in Table 1.443

D.1 0-PLF-AR444

In this section, we introduce the optimization programs of the second, third and fourth steps for
0-PLF-AR and provide the solutions for them. The results are further extended to T frames. Similar
to (132)–(133), we write the achievable reconstructions of the second and third steps as follows

X̂2 = ω1X̂1 + ω2X2 + Z2,AR, (224)

X̂3 = τ1X̂1 + τ2X̂2 + τ3X3 + Z3,AR, (225)

where Z2,AR and Z3,AR are Gaussian random variables independent of (X̂1, X2) and (X̂1, X̂2, X3),445

respectively.446

Second Step:447

The optimization program of the second step for 0-PLF-AR is similar to that of Proposition 3 but
with a difference that ν = 1 since we have a high compression rate for the first frame. Thus, the
optimization program of the second step is as follows

min
ω1,ω2

2σ2 − 2ω1ρσ
2 − 2ω2σ

2, (226a)

s.t. ω2
2(1− ρ22−2R2) ≤ (1− ω2

1 − 2ω1ω2ρ)(1− 2−2R2), (226b)
ω1 + ω2ρ = ρ. (226c)

For the second frame, the achievable reconstruction is given as follows (see [10, Table 2])

X̂2 = (ρ− ρ
√
2ϵ ln 2)X̂1 +

√
2ϵ ln 2X2 + Z2,AR, (227)

where Z2,AR ∼ N (0, (1−ρ2+O(ϵ))σ2) is independent of (X̂1, X2) and X̂1 = X1 and the distortion
is given as follows

D∞
2,AR := 2(1− ρ2 − (1− ρ2)

√
2ϵ ln 2)σ2. (228)

Third Step:448

The optimization program of the third step is similar to that of Proposition 4 but when ν = 1. Thus,
we have the following program

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1ρ
2σ2 − 2τ1ρ

2σ2 (229a)

s.t. : τ23 (1− 2−2R3(ρ42−2R1−2R2 + ρ2(1− ρ2)2−2R2 − ρ2)) ≤
(1− 2−2R3)(1− τ21 − τ22 − 2τ1τ2ω1 − 2τ1τ2ω2ρ− 2τ2τ3ω1ρ

2 − 2τ2τ3ω2ρ− 2τ1τ3ρ
2),

(229b)
ρ2 = τ1 + τ2ρ+ τ3ρ

2, (229c)
ω1ρ

2 + ρω2 = τ1ρ+ τ2 + τ3(ω1ρ
2 + ρω2). (229d)
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For the specific case of R2 = R3 = ϵ, we will simplify the program (229) and derive the solution.
We consider the following approximation

1− 2−2Rj = 2ϵ ln 2 +O(ϵ2), j ∈ {2, 3}. (230)

Considering the dominant terms of (229b), this constraint can be written as follows

(1− ρ4)τ23 ≤ (1− τ21 − τ22 )(2ϵ ln 2). (231)

So, the optimization program in (229) simplifies as follows

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1ρ
2σ2 − 2τ1ρ

2σ2 (232a)

s.t. : (1− ρ4)τ23 ≤ (1− τ21 − τ22 )(2ϵ ln 2), (232b)
ρ2 = τ1 + τ2ρ+ τ3ρ

2, (232c)
ω1ρ

2 + ρω2 = τ1ρ+ τ2 + τ3(ω1ρ
2 + ρω2). (232d)

We write τ1, τ2 and τ3 as τ1 = K1 + δ1
√
2ϵ ln 2, τ2 = K2 + δ2

√
2ϵ ln 2 and τ3 = δ3

√
2ϵ ln 2, and

plug them into (229c)–(229d) to get the following equations

ρ2 = K1 + ρK2, (233a)
ρ3 = K1ρ+K2, (233b)
0 = δ1 + ρδ2 + ρ2δ3, (233c)

−ρ3 + ρ = ρδ1 + δ2 + ρ3δ3. (233d)

Notice that (233a)–(233b) yields K2 = 0 and K1 = ρ2. The constant terms of τ1 and τ2 which are
K1 and K2, contribute to the dominant terms of (231). Plugging the values of K1 and K2 into (231),
we have the following inequality

δ3 ≤ 1. (234)

So, considering the dominant terms, the optimization program in (229) is upper bounded by the
following

min
δ1,δ2,δ3

2σ2(1− ρ4 − (ρ2δ1 + ρ3δ2 + δ3)
√
2ϵ ln 2) (235a)

s.t. : δ3 ≤ 1, (235b)
δ1 + ρδ2 + ρ2δ3 = 0, (235c)
ρδ1 + δ2 + ρ3δ3 = −ρ3 + ρ. (235d)

The above optimization program is convex, so the solution is obtained at the boundary of the feasible
region where we get

δ1 = −2ρ2, (236)
δ2 = ρ, (237)
δ3 = 1. (238)

Thus, we get the following achievable reconstruction

X̂3 = (ρ2 − 2ρ2
√
2ϵ ln 2)X̂1 + ρ

√
2ϵ ln 2X̂2 +

√
2ϵ ln 2X3 + Z3,AR, (239)

where Z3,AR ∼ N (0, (1− ρ4 +O(ϵ))σ2) and the distortion is given by

D∞
3,AR := 2(1− ρ4 − (1− ρ4)

√
2ϵ ln 2)σ2. (240)

Plugging (227) into (239) yields the following

X̂3 = (ρ2 − ρ2
√
2ϵ ln 2)X̂1 +

√
2ϵ ln 2X3 + ρ

√
2ϵ ln 2Z2,AR + Z3,AR, (241)

Using (7), the expression in (241) can be written as the following

X̂3 = ρ2X̂1 + ρ
√
2ϵ ln 2N1 +

√
2ϵ ln 2N2 + ρ

√
2ϵ ln 2Z2,AR + Z3,AR. (242)

Fourth Step: We derive the optimization program of the fourth frame and solve it. For the fourth
frame, we write the achievable reconstruction as follows

X̂4 = λ1X̂1 + λ2X̂2 + λ3X̂3 + λ4X4 + Z4,AR, (243)

where Z4,AR is a Gaussian random variable independent of (X̂1, X̂2, X̂3, X4) with mean zero and its449

variance will be determined later.450
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Proposition 5 The optimization program of the fourth step for 0-PLF-AR when the first frame has a
high compression rate, is given as follows

min
λ1,λ2,λ3,λ4

2σ2 − 2λ4σ
2 − 2λ3ρτ3σ

2 − 2λ3ρ
2τ2ω2σ

2 − 2λ3ρ
3τ2ω1σ

2 − 2λ3ρ
3τ1σ

2

−2λ2ρ3ω1σ
2 − 2λ2ρ

2ω2σ
2 − 2λ1ρ

3σ2 (244a)

s.t. : 2−2R4(λ24ρ
62−2R3−2R2−2R1σ2 + λ24ρ

42−2R3−2R2(1− ρ2)σ2 + λ24ρ
22−2R3(1− ρ2)σ2

+λ24(1− ρ2)σ2) ≤ 22h(Z4,AR)(1− 2−2R4), (244b)

ρ3 = λ1 + ρλ2 + ρ2λ3 + ρ3λ4, (244c)
ρ2(ρω1 + ω2) = ρλ1 + λ2 + ρ(ρω1 + ω2)λ3 + ρ2(ρω1 + ω2)λ4, (244d)
ρ(ρ2τ1 + ρ(ρω1 + ω2)τ2 + τ3) =

ρ2λ1 + ρ(ρω1 + ω2)λ2 + λ3 + ρ(ρ2τ1 + ρ(ρω1 + ω2)τ2 + τ3)λ4. (244e)

Proof: An extension of (129) to the fourth step yields the following optimization program

min
PX̂4|X4X̂1X̂2X̂3

E[∥X4 − X̂4∥2]

s.t. I(X4; X̂4|X̂1, X̂2, X̂3) ≤ R4,

PX̂1X̂2X̂3X4
= PX̂1X̂2X̂3X̂4

. (245)

The perception constraints in (244c)–(244e) are derived based on 0-PLF-AR condition which is
PX̂4X̂3X̂2X̂1

= PX4X̂3X̂2X̂1
. This implies that E[X̂4X̂1] = E[X4X̂1], E[X̂4X̂2] = E[X4X̂2] and

E[X̂4X̂3] = E[X4X̂3]. These constraints combined with (131)–(133), (243) yield (244c)–(244e).
For the rate constraint, consider the following set of inequalities

I(X4; X̂4|X̂1, X̂2, X̂3) (246)
= h(X̂4|X̂1, X̂2, X̂3)− h(Z4,AR) (247)

= h(λ4X4 + Z4,AR|X̂1, X̂2, X̂3)− h(Z4,AR) (248)

=
1

2
log 2−2h(Z4,AR)

(
λ242

2h(X4|X̂1,X̂2,X̂3) + 22h(Z4,AR)
)

(249)

=
1

2
log 2−2h(Z4,AR)

(
λ24ρ

222h(X3|X̂1,X̂2,X̂3) + λ242
2h(N3) + 22h(Z4,AR)

)
(250)

≥ 1

2
log 2−2h(Z4,AR)

(
λ24ρ

22−2R322h(X3|X̂1,X̂2) + λ242
2h(N3) + 22h(Z4,AR)

)
(251)

=
1

2
log 2−2h(Z4,AR)

(
λ24ρ

42−2R322h(X2|X̂1,X̂2) + λ24ρ
22−2R322h(N2) + λ242

2h(N3) + 22h(Z4,AR)
)

(252)

≥ 1

2
log 2−2h(Z4,AR)

(
λ24ρ

42−2R3−2R222h(X2|X̂1) + λ24ρ
22−2R322h(N2) + λ242

2h(N3) + 22h(Z4,AR)
)

(253)

=
1

2
log 2−2h(Z4,AR)

(
λ24ρ

62−2R3−2R222h(X1|X̂1) + λ24ρ
42−2R3−2R222h(N1) + λ24ρ

22−2R322h(N2)

+λ242
2h(N3) + 22h(Z4,AR)

)
(254)

≥ 1

2
log 2−2h(Z4,AR)

(
λ24ρ

62−2R3−2R2−2R1σ2 + λ24ρ
42−2R3−2R222h(N1) + λ24ρ

22−2R322h(N2)

+λ242
2h(N3) + 22h(Z4,AR)

)
, (255)

where451

• (249) follows from EPI [18, pp. 22] which holds with equality for Gaussian sources;452

• (251), (253) and (255) follows from the rate constraints R3 ≥ I(X3; X̂3|X̂1, X̂2), R2 ≥453

I(X2; X̂2|X̂1) and R1 ≥ I(X1; X̂1), respectively;454

• (252) and (254) follow from (7) where X3 = ρX2+N2 and X2 = ρX1+N1, respectively,455

and the fact that EPI holds with equality for Gaussian sources.456
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Re-arranging the terms in (255), we get to the constraint in (257b). The objective function in (244a)457

is obtained by the expansion of E[∥X4 − X̂4∥2] using (224), (225) and (243).458

Now, we provide the solution of the optimization program in (244) when R2 = R3 = R4 = ϵ for
sufficiently small ϵ > 0. Using the following approximation

1− 2−2Rj = 2ϵ ln 2 +O(ϵ2), (256)

and considering the dominant terms of (257b), the solution of the optimization program is upper459

bounded by460

min
λ1,λ2,λ3,λ4

2σ2 − 2λ4σ
2 − 2λ3ρτ3σ

2 − 2λ3ρ
2τ2ω2σ

2 − 2λ3ρ
3τ2ω1σ

2 − 2λ3ρ
3τ1σ

2

−2λ2ρ3ω1σ
2 − 2λ2ρ

2ω2σ
2 − 2λ1ρ

3σ2 (257a)

s.t. : λ24(1− ρ6) ≤ (1− λ21 − λ22 − λ23)(2ϵ ln 2), (257b)
ρ3 = λ1 + ρλ2 + ρ2λ3 + ρ3λ4, (257c)
ρ2(ρω1 + ω2) = ρλ1 + λ2 + ρ(ρω1 + ω2)λ3 + ρ2(ρω1 + ω2)λ4, (257d)
ρ(ρ2τ1 + ρ(ρω1 + ω2)τ2 + τ3) =

ρ2λ1 + ρ(ρω1 + ω2)λ2 + λ3 + ρ(ρ2τ1 + ρ(ρω1 + ω2)τ2 + τ3)λ4. (257e)

We proceed with solving the above program. We write λj = Kj + δj
√
2ϵ ln 2 for j ∈ {1, 2, 3} and

λ4 = δ4
√
2ϵ ln 2 and plug them into (257c)–(257e) to get the following

ρ3 = K1 + ρK2 + ρ2K3, (258)
ρ4 = ρK1 +K2 + ρ3K3, (259)
ρ5 = ρ2K1 + ρ3K2 +K3. (260)

Solving the above equations, we get K1 = ρ3, K2 = K3 = 0. Notice that the constant factors of
{λj}3j=1 (i.e., {Kj}3j=1) contribute to the dominant terms of (257b) which simplifies to the following

δ4 ≤ 1. (261)

So, the optimization problem in (257) with dominant terms simplifies to the following

min
δ1,δ2,δ3,δ4

2(1− ρ6 − (δ4 + ρ5δ3 + ρ4δ2 + ρ3δ1)
√
2ϵ ln 2)σ2 (262a)

s.t. : δ4 ≤ 1, (262b)
0 = δ1 + ρδ2 + ρ2δ3 + ρ3δ4, (262c)
ρ2(1− ρ2) = ρδ1 + δ2 + ρ3δ3 + ρ4δ4, (262d)
ρ(1− ρ4) = ρ2δ1 + ρ3δ2 + δ3 + ρ5δ4. (262e)

Solving the above optimization problem, we get

δ2 = ρ2, δ3 = ρ, δ1 = −3ρ3, δ4 = 1. (263)

In summary, we get the following reconstruction

X̂4 = (ρ3 − 3ρ3
√
2ϵ ln 2)X̂1 + ρ2

√
2ϵ ln 2X̂2 + ρ

√
2ϵ ln 2X̂3 +

√
2ϵ ln 2X4 + Z4,AR. (264)

Plugging (227) and (239) into the above expression, we get

X̂4 = ρ3X̂1 + ρ2
√
2ϵ ln 2N1 + ρ

√
2ϵ ln 2N2 +N3 + ρ2

√
2ϵ ln 2Z2,AR + ρ

√
2ϵ ln 2Z3,AR + Z4,AR,

(265)

where Z4,AR has variance (1− ρ6 +O(ϵ))σ2 and the distortion is given by

D∞
4,AR = 2(1− ρ6 −

√
2ϵ ln 2(1− ρ6))σ2 +O(ϵ). (266)

Now, we use an induction to derive the achievable reconstruction of jth frame.461

462

463
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jth Step:464

Using induction and extension of the above analysis to j frames, we get the following achievable
reconstruction for jth frame

X̂j = ρj−1X̂1 +
√
2ϵ ln 2

j−1∑
i=1

ρj−1−iNi +
√
2ϵ ln 2

j−1∑
i=2

ρj−iZi,AR + Zj,AR, (267)

where Zj,AR ∼ N (0, (1 − ρ2(j−1) + O(ϵ))σ2) is a Gaussian random variable independent of
(X̂1, {Ni}j−1

i=1 , {Zi,AR}j−1
i=2 ) and the distortion is given by

D∞
j,AR = 2(1− ρ2(j−1) −

√
2ϵ ln 2(1− ρ2)

j−1∑
i=1

ρ2(j−1−i))σ2 +O(ϵ). (268)

D.2 0-PLF-JD465

Second Step: When the first frame is compressed at a high rate, the optimization program of the466

second step for 0-PLF-JD is similar to that in (226) for 0-PLF-AR and the solution is given in (227).467

Third Step:468

The optimization program of the third step for 0-PLF-JD is similar to (229) but when the perception
constraints in (229c)–(229d) are replaced by

ρ2 = τ1 + τ2ρ+ τ3ρ
2, (269)

ρ = τ1ρ+ τ2 + τ3(ω1ρ
2 + ρω2). (270)

The above equations come from the fact that PX1X2X3 = PX̂1X̂2X̂3
which implies that E[X̂1X̂3] =

E[X1X3] = ρ2σ2 and E[X̂2X̂3] = E[X2X3] = ρσ2. Thus, we have the following optimization
program for the third step of 0-PLF-JD when the first frame is compressed at a high rate,

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1ρ
2σ2 − 2τ1ρ

2σ2 (271a)

s.t. : τ23 (1− 2−2R3(ρ42−2R1−2R2 + ρ2(1− ρ2)2−2R2 − ρ2)) ≤
(1− 2−2R3)(1− τ21 − τ22 − 2τ1τ2ω1 − 2τ1τ2ω2ρ− 2τ2τ3ω1ρ

2 − 2τ2τ3ω2ρ− 2τ1τ3ρ
2),

(271b)
ρ2 = τ1 + τ2ρ+ τ3ρ

2, (271c)
ρ = τ1ρ+ τ2 + τ3(ω1ρ

2 + ρω2). (271d)

We solve the optimization program when R2 = R3 = ϵ. Similar to (257), we consider the dominant
terms of the constraint in (271b) and get the following upper bound on the above optimization
problem,

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1ρ
2σ2 − 2τ1ρ

2σ2 (272a)

s.t. : (1− ρ4)τ23 ≤ (1− τ21 − τ22 )(2ϵ ln 2), (272b)
ρ2 = τ1 + τ2ρ+ τ3ρ

2, (272c)
ρ = τ1ρ+ τ2 + τ3(ω1ρ

2 + ρω2). (272d)

We write τ1, τ2 and τ3 as τ1 = K1 + δ1
√
2ϵ ln 2, τ2 = K2 + δ2

√
2ϵ ln 2 and τ3 = δ3

√
2ϵ ln 2, and

plug them into (272c)–(272d) to get the following equations

ρ2 = K1 + ρK2, (273a)
ρ = K1ρ+K2, (273b)
0 = δ1 + ρδ2 + ρ2δ3, (273c)
0 = ρδ1 + δ2 + ρ3δ3. (273d)

Equations (273a) and (273b) yield K1 = 0 and K2 = ρ. Notice that the constant terms of {τj}2j=1

(i.e., {Kj}2j=1) contribute to the dominant terms of the inequality (272b). Thus, we have the following
condition

δ3 ≤
1√

1 + ρ2
. (274)
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The optimization program in (272) further simplifies as follows

min
δ1,δ2,δ3

2(1− ρ4 − (δ3 + δ1ρ
2 + δ2ρ

3 + ρ2 − ρ4)
√
2ϵ ln 2)σ2, (275a)

s.t. : δ3 ≤
1√

1 + ρ2
, (275b)

0 = δ1 + ρδ2 + ρ2δ3, (275c)
0 = ρδ1 + δ2 + ρ3δ3. (275d)

Solving the above optimization program, we get

δ2 = 0, δ1 = − ρ2√
1 + ρ2

, δ3 =
1√

1 + ρ2
. (276)

Thus, we have

X̂3 = ρX̂2 −
ρ2√
1 + ρ2

√
2ϵ ln 2X̂1 +

1√
1 + ρ2

√
2ϵ ln 2X3 + Z3,JD, (277)

where Z3,JD ∼ N (0, (1− ρ2 +O(ϵ))σ2) is independent of (X̂1, X̂2, X3). Plugging (227) into the
above expression yields the following

X̂3 =

(
ρ2 − (ρ2 +

ρ2√
1 + ρ2

)
√
2ϵ ln 2

)
X̂1 + ρ

√
2ϵ ln 2X2 +

√
2ϵ ln 2√
1 + ρ2

X3 + ρZ2,JD + Z3,JD,

(278)

where the distortion is given as follows

D∞
3,JD := 2(1− ρ4 − (1− ρ2)(ρ2 +

√
1 + ρ2)

√
2ϵ ln 2)σ2 +O(ϵ). (279)

Using (7), (278) can be further simplified as follows

X̂3 = ρ2X̂1 +

(
ρ+

ρ√
1 + ρ2

)
√
2ϵ ln 2N1 +

1√
1 + ρ2

√
2ϵ ln 2N2 + ρZ2,JD + Z3,JD.(280)

Fourth Step:469

The optimization program of the fourth step for 0-PLF-JD is similar to that in Proposition 5 but when
conditions (257c)–(257e) are replaced by the corresponding conditions of 0-PLF-JD which are

E[X̂4X̂3] = E[X4X̂3], E[X̂4X̂2] = E[X4X̂2], E[X̂4X̂1] = E[X4X̂1]. (281)

The above conditions are further simplified as follows

ρ3 = λ1 + ρλ2 + ρ2λ3 + ρ3λ4, (282)
ρ2 = ρλ1 + λ2 + ρλ3 + ρ2(ρω1 + ω2)λ4, (283)
ρ = ρ2λ1 + ρλ2 + λ3 + ρ(ρ2τ1 + ρ(ρω1 + ω2)τ2 + τ3)λ4. (284)

We study the case of R2 = R3 = R4 = ϵ for a sufficiently small ϵ > 0. Thus, considering the
dominant terms, we have the following optimization problem for the fourth step of 0-PLF-JD when
the first frame is compressed at a high rate

min
λ1,λ2,λ3,λ4

2σ2 − 2λ4σ
2 − 2λ3ρτ3σ

2 − 2λ3ρ
2τ2ω2σ

2 − 2λ3ρ
3τ2ω1σ

2 − 2λ3ρ
3τ1σ

2

−2λ2ρ3ω1σ
2 − 2λ2ρ

2ω2σ
2 − 2λ1ρ

3σ2 (285a)

s.t. : λ24(1− ρ6) ≤ (1− λ21 − λ22 − λ23 +O(ϵ))(2ϵ ln 2), (285b)
ρ3 = λ1 + ρλ2 + ρ2λ3 + ρ3λ4, (285c)
ρ2 = ρλ1 + λ2 + ρλ3 + ρ2(ρω1 + ω2)λ4, (285d)
ρ = ρ2λ1 + ρλ2 + λ3 + ρ(ρ2τ1 + ρ(ρω1 + ω2)τ2 + τ3)λ4. (285e)
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We proceed with solving the above optimization program. We write λj = Kj + δj
√
2ϵ ln 2 for

j ∈ {1, 2, 3} and λ4 = δ4
√
2ϵ ln 2 and plug them into (285c)–(285e) to get

ρ3 = K1 + ρK2 + ρ2K3, (286)
ρ2 = ρK1 +K2 + ρK3, (287)
ρ = ρ2K1 + ρK2 +K3, (288)
0 = δ1 + ρδ2 + ρ2δ3 + ρ3δ4, (289)
0 = ρδ1 + δ2 + ρδ3 + ρ4δ4, (290)
0 = ρ2δ1 + ρδ2 + δ3 + ρ5δ4. (291)

Thus, we have K1 = K2 = 0, K3 = ρ. Considering the fact that the constant terms of {λj}3j=1 (i.e.,
{Kj}3j=1) contribute to the dominant terms of (285b) which simplifies to the following

δ4 ≤

√
1− ρ2
1− ρ6

. (292)

The optimization program in (285) further reduces to the following

min
δ1,δ2,δ3,δ4

2(1− ρ6 − (δ1ρ
3 + δ2ρ

4 + δ3ρ
5 + δ4 + ρ2 − ρ6)

√
2ϵ ln 2)σ2, (293a)

s.t. : δ4 ≤

√
1− ρ2
1− ρ6

, (293b)

0 = δ1 + ρδ2 + ρ2δ3 + ρ3δ4, (293c)
0 = ρδ1 + δ2 + ρδ3 + ρ4δ4, (293d)
0 = ρ2δ1 + ρδ2 + δ3 + ρ5δ4. (293e)

Solving the above optimization program, we get

δ1 = −ρ3
√

1− ρ2
1− ρ6

, δ2 = δ3 = 0, δ4 =

√
1− ρ2
1− ρ6

. (294)

In summary, we get the following achievable reconstruction

X̂4 = −ρ3
√

1− ρ2
1− ρ6

√
2ϵ ln 2X̂1 + ρX̂3 +

√
1− ρ2
1− ρ6

√
2ϵ ln 2X4 + Z4,JD, (295)

where Z4,JD ∼ N (0, (1− ρ2 + ρ4 − ρ6 +O(ϵ))σ2) is a Gaussian random variable independent of
(X̂1, X̂3, X4). Now, we plug (227) and (239) into the above expression and we get

X̂4 = ρ3X̂1 +

(
ρ2 + ρ2

√
1− ρ2
1− ρ6

)
√
2ϵ ln 2N1 +

(
ρ+ ρ

√
1− ρ2
1− ρ6

)
√
2ϵ ln 2N2

+

√
1− ρ2
1− ρ6

√
2ϵ ln 2N3 + ρ2

√
2ϵ ln 2Z2,JD + ρZ3,JD + Z4,JD, (296)

where the distortion is given by

D∞
4,JD := 2

(
1− ρ6 −

√
2ϵ ln 2(1− ρ2)

(√
1− ρ6
1− ρ2

+ ρ2 − ρ6
))

σ2 +O(ϵ). (297)

jth Step:470

Using induction and extension of the above analysis for the j-th frame yields the following achievable
reconstruction

X̂j = ρj−1X̂1 +
√
2ϵ ln 2

(
1 +

√
1− ρ2

1− ρ2(j−1)

)
j−2∑
i=1

ρj−1−iNi

+

√
1− ρ2

1− ρ2(j−1)

√
2ϵ ln 2Nj−1 +

√
2ϵ ln 2

j−2∑
i=2

ρiZj−i,JD + ρZj−1,JD + Zj,JD,

(298)
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where Zj,JD is a Gaussian random variable independent of ({Ni}j−1
i=1 , {Zi,JD}j−1

i=2 ) with mean zero
and the following variance

E[Z2
j,JD] =

{
((1− ρ2)

∑ j
2−1
i=0 ρ4i +O(ϵ))σ2 if j is even,

((1− ρ2)
∑ j−1

2 −1
i=0 ρ4i +O(ϵ))σ2 if j is odd,

(299)

and the distortion is given by

D∞
j,JD := 2

1− ρ2(j−1) −
√
2ϵ ln 2(1− ρ2)

√1− ρ2(j−1)

1− ρ2
+

j−2∑
i=1

ρ2(j−1−i)

σ2 +O(ϵ).

(300)

D.3 0-PLF-FMD471

In this section, we provide the optimization programs for the second and third steps of 0-PLF-FMD472

and solve them. These results were presented in the first and second rows of Table 1. Recall that for473

the Gauss-Markov source model, the reconstructions exploit the structure in (131)–(133).474

Second Step:475

For the second step, similar to (132), we write the achievable reconstruction as

X̂2 = ω1X̂1 + ω2X2 + Z2,FMD, (301)

where Z2,FMD is independent of (X̂1, X2) and notice that X̂1 = X1 since we have high compression
rate for the first frame. The optimization program of the second step is similar to that of Proposition 3,
but with ν = 1 and when the perception constraint in (138c) (which preserves the joint distribution
of (X̂1, X̂2)) is removed and only the marginal distribution is fixed. Thus, we have the following
optimization program for the second step of 0-PLF-FMD

min
ω1,ω2

2σ2 − 2ω1ρσ
2 − 2ω2σ

2, (302a)

s.t. ω2
2(1− ρ22−2R2) ≤ (1− ω2

1 − 2ω1ω2ρ)(1− 2−2R2). (302b)

The solution of the above program when R2 = ϵ (for a sufficiently small ϵ) is given by (see [10, Table
2])

X̂2 = (1− (1 + ρ2)2ϵ ln 2

2ρ2
)X̂1 +

2ϵ ln 2

ρ
X2 + Z2,FMD, (303)

where Z2,FMD ∼ N (0, ( 1−ρ2

ρ2 )2σ2ϵ ln 2) is independent of (X̂1, X2).476

Notice that when ρ = Θ(
√
ϵ), the term (1+ρ2)2ϵ ln 2

2ρ2 becomes a constant. In this case, the approxima-477

tion in (303) is not valid anymore. This case should be handled separately as follows.478

Case of 0 < ρ≪
√
ϵ: In this case, considering the dominant terms of (302), this program reduces to

the following

min
ω1,ω2

2σ2 − 2ω2σ
2, (304a)

s.t. ω2
2 ≤ (1− ω2

1)(2ϵ ln 2). (304b)

The solution of the above program is as follows

ω1 = 0, (305)
ω2 =

√
2ϵ ln 2. (306)

Thus, the reconstruction of the second step can be written as follows

X̂2 =
√
2ϵ ln 2X2 + Z ′

2,FMD, (307)

where Z ′
2,FMD ∼ N (0, (1− 2ϵ ln 2)σ2) is independent of X2.479

Third Step:480

31



For the third step, similar to (133), we write the achievable reconstruction as

X̂3 = τ1X̂1 + τ2X̂2 + τ3X3 + Z3,FMD, (308)

where Z3,FMD is a Gaussian random variable independent of (X̂1, X̂2, X3). The optimization program
of the third step is similar to that of Proposition 4 but with ν = 1 and when the constraints in (164d)
and (164e) which preserve the joint distribution of PX̂1X̂2X̂3

are removed and only the marginal
distributions are fixed. Thus, we get the following optimization program

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1ρ
2σ2 − 2τ1ρ

2σ2 (309a)

s.t. : τ23σ
2(1− 2−2R3(ρ42−2R1−2R2 + ρ2(1− ρ2)2−2R2 − ρ2)) ≤

(1− 2−2R3)(1− τ21 − τ22 − 2τ1τ2ω1 − 2τ1τ2ω2ρ− 2τ2τ3ω1ρ
2 − 2τ2τ3ω2ρ− 2τ1τ3ρ

2)σ2.

(309b)

We solve the above program when R2 = R3 = ϵ for a sufficiently small ϵ > 0. We use the following
approximation

1− 2−2Rj = 2ϵ ln 2 +O(ϵ2), j ∈ {2, 3}. (310)

Thus, considering the dominant terms of the constraint in (309b), we have

(1− τ21 − τ22 − 2τ1τ2ω1 − 2τ1τ2ω2ρ− 2τ2τ3ω1ρ
2 − 2τ2τ3ω2ρ− 2τ1τ3ρ

2)(2ϵ ln 2) ≥ (1− ρ4)τ23 .
(311)

For the third frame, we have the following optimization program,

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1ρ
2σ2 − 2τ1ρ

2σ2, (312a)

s.t. (1− τ21 − τ22 − 2τ1τ2ω1 − 2τ1τ2ω2ρ− 2τ2τ3ω1ρ
2 − 2τ2τ3ω2ρ− 2τ1τ3ρ

2)(2ϵ ln 2)

≥ (1− ρ4)τ23 . (312b)

We write τ1 and τ2 as follows

τ1 =
1

2
− δ1(2ϵ ln 2), (313)

τ2 =
1

2
− δ2(2ϵ ln 2), (314)

τ3 = δ3(2ϵ ln 2). (315)

for some δ1, δ2 and δ3. Plugging the above into (311), we have

(3δ1 + 3δ2 − 2δ3ρ
2 − 1

4
+

1

4ρ2
) ≥ (1− ρ4)δ23 . (316)

Thus, the optimization program in (312) reduces to the following

min
δ1,δ2,δ3

2σ2 − 2ρ2σ2 − (2δ3 + 1− 2(δ1 + δ2)ρ
2 − 1− ρ2

2
)(2ϵ ln 2) (317)

s.t. (3δ1 + 3δ2 − 2δ3ρ
2 − 1

4
+

1

4ρ2
) ≥ (1− ρ4)δ23 . (318)

Optimizing over δ1, δ2, δ3, we get

δ3 =
1− 2

3ρ
4

2
3ρ

2(1− ρ4)
, (319)

and

δ1 = δ2 =
3− 4ρ8

8ρ4(1− ρ4)
+

1− ρ2

24ρ2
. (320)

Thus, we have

X̂3 = (
1

2
− δ1(2ϵ ln 2))X̂1 + (

1

2
− δ1(2ϵ ln 2))X̂2 + δ3(2ϵ ln 2)X3 + Z3,FMD, (321)
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where Z3,FMD ∼ N (0, O(ϵ)σ2) is independent of (X̂1, X̂2, X3), where the optimal distortion is
given by

D∞
3,FMD := 2

(
1− ρ2 −

(
δ3 +

1− ρ2

4
− (δ1 + δ2)ρ

2

)
2ϵ ln 2

)
σ2 +O(ϵ2). (322)

Case of 0 < ρ≪
√
ϵ: In this case, considering the dominant terms of (312), the program reduces to

the following:

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2, (323a)

s.t. (1− τ21 − τ22 )(2ϵ ln 2) ≥ τ23 . (323b)

The solution of the above program is simply given by

τ1 = 0, (324)
τ2 = 0, (325)
τ3 =

√
2ϵ ln 2. (326)

Thus, the reconstruction is given by

X̂3 =
√
2ϵ ln 2X3 + Z ′

3,FMD, (327)

where Z ′
3,FMD ∼ N (0, (1− 2ϵ ln 2)σ2) is independent of X3.481

E Experimental Setup Details482

As described in Section 4, our experimental setup is based on the one proposed in [10]. We briefly483

describe our setup as follows.484

Neural Video Compressor. In this work, we use the version of the scale-space flow model [12]485

presented in [10] to compress each P-frame. This architecture allows us to efficiently learn the486

statistical characteristics of the source distribution without using any pre-trained module such as an487

optical flow estimator. To control the bit rate, we adjust the dimension of the latent representation488

while fixing the quantization interval to 2. We use dithered quantization to simulate the common489

randomness in our setting [7]. For each frame Xj , we optimize its corresponding encoder-decoder by490

using the representation from the optimized encoder-decoder pairs of previous frames.491

Distortion and Perception Measurement. Our theoretical results require solving a constrained
optimization, which is intractable in practice due to the complexity of neural networks. Instead, we
optimize the Lagrange approximations:

minE[∥Xj − X̂j∥2] + λϕj(PX̂1...X̂j−1Xj
, PX̂1...X̂j−1X̂j

),

where each λ is adjusted to characterize different constraint levels on the perceptuality. Similar to492

previous works, we use WGAN [13] to approximate this perception function.493

Training Details. MovingMNIST models are trained according to the dataset generation algorithms494

described in Subsection E.1. The neural architectures tested on UVG are trained on 256×256 patches495

from the Vimeo-90K dataset [19]. For each MNIST encoder-decoder pair, training takes about one day496

on a single NVIDIA A100 GPU, with Vimeo-90K training procedures taking around two days. For497

each rate regime, we first pre-train a model to optimize the MMSE loss before fine-tuning the model498

with the joint distortion-perception loss, which we found to be more stable than training everything499

end-to-end. We utilize the rmsprop optimizer [20] for our MovingMNIST training procedures and500

the Adam optimizer [21] for Vimeo-90K training runs.501

E.1 MovingMNIST Digit Trajectory502

This subsection describes the algorithms developed to generate digit trajectories for the MovingM-503

NIST experiments. Section 4 addresses the two main rate regimes discussed in our work. First,504

we describe our Random Trajectory algorithm, utilized when the first frame X1 is encoded with a505

low rate (Subsection 3.1). Following that, we discuss Consistent Trajectory algorithm, applied to506

experiments where the first frame X1 is encoded with a high rate (Subsection 3.2).507
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Algorithm 1 describes how Random Trajectory generates a MovingMNIST sequence. The required508

inputs are the maximum step size S, sequence length N , frame size F , and digit size D. We first509

sample the initial digit position (x, y) from a uniform distribution U(0, F −D), generating frame510

X1 by placing the digit in the sampled initial position (lines 3 − 4). For the subsequent frames511

X2, . . . , XN , we check if the moving digit has reached the frame boundaries (lines 7, 10, 14, 17).512

We then sample the vertical and horizontal shifts (dx, dy) accordingly (lines 6, 9, 12, 15, 19). The513

shift is then applied to the current position (x, y), and the frame is generated by placing the digit in514

the updated position (lines 21 − 22). This conditional sampling strategy guarantees that the digit515

"bounces" in the opposite direction if the margins are reached, keeping the digit always in-frame. In516

section 4, we utilize S = 5, N = 3, F = 64, and D = 32 for the regime with a low rate at the first517

frame (Subsection 3.1).518

Algorithm 1 Random Trajectory sequence generation.

1: inputs: maximum step size S, sequence length N , frame size F , digit size D.
2: sequence← [ ]
3: (x, y) ∼ U(0, F −D)
4: sequence[1]← gen_frame((x, y))
5: for frame ∈ {2, ..., N} do
6: (dx, dy) ∼ U(−S, S)
7: if (y < 0) then
8: y ← 0
9: dy ∼ U(0, S)

10: else if (y > F −D) then
11: y ← F −D
12: dy ∼ U(−S, 0)
13: end if
14: if (x < 0) then
15: x← 0
16: dx ∼ U(0, S)
17: else if (x > F −D) then
18: x← F −D
19: dx ∼ U(−S, 0)
20: end if
21: (x, y)← (x, y) + (dx, dy)
22: sequence[frame]← gen_frame((x, y))
23: end for
24: return sequence

Algorithm 2 Consistent Trajectory sequence generation.

1: inputs: maximum step size S, sequence length N , frame size F , digit size D.
2: sequence← [ ]
3: (x, y) ∼ U(0, F −D)
4: (dx, dy) ∼ U(−S, S)
5: for frame ∈ {1, ..., N} do
6: (x, y)← (x, y) + (dx, dy)
7: sequence[frame]← gen_frame((x, y))
8: end for
9: return sequence

Algorithm 2 displays the Constant Trajectory MovingMNIST sequence generation. Given the same519

set of inputs as Algorithm 1, we sample a starting position (x, y) ∼ U(0, F − D) and a spatial520

frame-wise shift (dx, dy) (lines 3 − 4). For every frame, the same pair (dx, dy) is applied to the521

current (x, y) position to generate the next frame (lines 5− 7). The conditional sampling strategy is522

not utilized, with digits possibly reaching and crossing the frame boundaries. Utilizing the same shift523

(dx, dy) across frames and not applying any direction changes close to the frame edges provide a524

frame-wise consistent trajectory across the whole sequence. This characteristic enables the trajectory525

analysis conducted in Section 4 (Figure 3) for the rate regime with X1 encoded with a high rate526
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(Subsection 3.2). We utilize sequence length N = 3, frame size F = 64, and digit size D = 32. For527

sharp movements (Fig. 3a), we have a maximum step size S = 20. For slow movements (Fig. 3b),528

we utilize maximum step size S = 5.529

E.2 Additional Results530

We display additional results to the experimental discussion in (Section 4). Figure 7 contains531

additional visualizations for the regime where the first frame is encoded with a high rate (Subsection532

3.2). The same behavior as the one addressed in Section 4 is observed in both sharp (Figure 7a)533

and slow (Figure) movement scenarios. In the sharp movement scenario, 0-PLF-JD propagates the534

wrong trajectory in X̂2 to the following frame X̂3, with 0-PLF-AR being able to recover from the535

previous mistake. 0-PLF-FMD presents a different behavior for each setup. For sharp movements536

(low correlation coefficient ρ), X̂2 is reconstructed as the wrong digit. For slow movements (high537

correlation coefficient ρ), X̂2 is reconstructed as the correct digit, although demonstrating a positional538

copying behavior.

#1 #2 #3 trajectory #1 #2 #3 trajectory

So
ur

ce
0-

PL
F-

JD
0-

PL
F-

A
R

0-
PL

F-
FM

D

(a) Sharp movement scenario.

#1 #2 #3 trajectory #1 #2 #3 trajectory

So
ur

ce
0-

PL
F-

JD
0-

PL
F-

A
R

0-
PL

F-
FM

D

(b) Slow movement scenario.

Figure 7: MovingMNIST reconstructions for ∞-R2-R3 with R2 = 2 bits and R3 = 16 bits. Digits
are coloured for easily visualizing the trajectory across frames.

X1 X2 X3 X̂1 X̂2 JD X̂3 JD X̂2 AR X̂3 AR X̂2 FMD X̂3 FMD

Figure 8: The outputs of different PLFs on the UVG dataset when the first frame is compressed at a low rate.
The first reconstructed frame X̂1 is shared across all PLFs, with PLF-JD propagating the distorted color tone.

539

Figure 8 presents additional results for the regime where the first frame is encoded with a low rate540

(Subsection 3.1). For each UVG sequence, the first reconstructed frame X̂1 presents a distorted541

color tone. This compression artifact is propagated by 0-PLF-JD to X̂2 and X̂3 once again. The542
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0-PLF-AR and 0-PLF-FMD model variants are able to correct the error. Additional MovingMNIST543

results for the same rate regime sequences are displayed in Figure 9. Here, a wrong digit (i.e., digit544

class or shape) is reconstructed in X̂1 implied by its low rate. Similarly, 0-PLF-JD propagates the545

compression artifact to X̂2 and X̂3, with 0-PLF-AR and 0-PLF-FMD correcting the mistake.546
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Figure 9: Outputs of different PLFs for the MovingMNIST dataset when the first frame is compressed at a
low rate. Both PLF-AR and PLF-FMD recover from previous mistakes while PLF-JD suffers from the error
permanence phenomenon.
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