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Abstract

In this paper, we propose a method to produce syn-
thetic thermal infrared (TIR) images using a diffusion-based
image-to-image translation model. The model translates the
abundantly available RGB images into synthetic TIR data
closer to the domain of authentic TIR images. For this pur-
pose, we explore the usage of an unpaired image translation
neural model based on Schrodinger bridge algorithms. In
addition, the visual characteristic of the object in the image
is an important consideration when generating the results.
Thus, we take advantage of a segmentation module before
the image-to-image translation model to discriminate the
background and object regions. We practice the model’s
performance with a self-proposed dataset comprising un-
paired realistic RGB-TIR images. When incorporated into
the training set, the synthesized images of our model sig-
nificantly increase the classification accuracy by 15% and
F1-score by 18% when only using realistic TIR images.

1. Introduction

The thermal image is crucial for various applications, such
as car and pedestrian surveillance systems and defense
mechanisms, due to its independence from illumination
fluctuations and its effectiveness in differentiating objects
from backgrounds, especially in total darkness [20, 25, 29].
However, a significant challenge persists: the scarcity of
publicly available thermal image datasets. This shortage
hinders the advancement of system performance in diverse
scenarios. Additionally, the limited availability of annotated
thermal datasets exacerbates the issue, impeding the devel-
opment and validation of robust machine-learning models
for real-world environments. Addressing these data limita-
tions is critical to enhancing the efficacy and applicability
of thermal infrared base tasks.

To address the limitations caused by a lack of data, sci-
entists have looked into some approaches, such as genera-
tion and simulation [32] techniques, for producing thermal
images. Although simulation provides a regulated setting

for producing synthetic temperature data, it frequently has
built-in drawbacks. There may be differences between syn-
thetic and real thermal images as a result of the simulation’s
inability to fully represent the subtleties and complexity of
real-world thermal dynamics. Furthermore, there are major
computing problems in simulating a variety of environmen-
tal variables and object interactions, which limits the scala-
bility and usefulness of simulated datasets for training and
testing.

On the other hand, generative techniques such as Gener-
ative Adversarial Networks (GANs) show promise in syn-
thesizing realistic thermal images [14]. However, they face
challenges such as mode collapse and training instability.
Additionally, there is a risk of generating artifacts that de-
viate from physical realism. Diffusion-based methods offer
a promising alternative, simulating thermal diffusion within
materials to produce stable and reliable thermal images re-
sembling real-world scenarios. Unlike GANSs, they miti-
gate mode collapse and artifacts, ensuring higher fidelity
and consistency. They also provide scalability and flexibil-
ity in simulating diverse environmental conditions, enhanc-
ing their applicability. As such, diffusion-based techniques
represent a significant advancement in thermal image gen-
eration, offering solutions to challenges associated with tra-
ditional generative approaches.

In sum, our paper introduces two following contributions
that aim to enhance the landscape of thermal imaging and
maritime surveillance that aim to enhance the landscape of
thermal imaging and maritime surveillance:

* We present a novel approach for generating thermal ob-
ject images based on diffusion-based Image-to-Image
(I2I) techniques. Leveraging the principles of thermal
diffusion within materials, our method offers a system-
atic and principled framework for synthesizing synthetic
thermal objects with remarkable realism and accuracy.

* We describe a comprehensive RGB dataset comprising
various types of vessels encountered in maritime envi-
ronments. Through rigorous curation and annotation, our
dataset encompasses a diverse range of vessel classes with
full class coverage, ensuring completeness and accuracy



in vessel detection and classification algorithms

2. Related Works

Thermal image synthesis In recent times, deep neural net-
works have been employed for image-to-image translation
across different spectral ranges. In this paper, we present a
solution for converting color images into thermal images.

Based on the modification of Residual SqueezeNet,
ThermalNet in [12] incorporates fourteen layers, compris-
ing convolution, deconvolution, and fire modules. Subse-
quent to thermal image generation, postprocessing is per-
formed using a trained VGG-16 network, acting as a refer-
ence for similarity during the synthesis of the output thermal
image to match a predetermined ground truth image.

With the progression of Generative Adversarial Net-
works (GANSs), several investigations leverage this ad-
vancement for thermal image generation. [13] introduced
an innovative training methodology, expanding the conven-
tional GAN training framework from a two-player adver-
sarial game to a three-player setup, where the third player
supplies true negative samples to the discriminator network.
[18] put forth an approach employing GANs, semantic seg-
mentation, and 3D modeling to synthetically generate ther-
mal images. Building upon the work of [8], [19] employs
GAN:Ss to synthesize thermal imaging images, incorporating
modifications to the algorithm, a novel neural network ar-
chitecture and an innovative training approach. The study
demonstrates the efficacy of the proposed method in pro-
ducing infrared images closely aligned with the ground
truth model in terms of both thermal emissivity and geo-
metric shape. The synthesis of visible to thermal images is
also achieved through the application of generative adver-
sarial networks (GAN) using Style-GAN?2 in [4], incorpo-
rating different variants of StyleGAN2 along with the up-
dated StyleGAN that features adaptive discriminator aug-
mentation (ADA).

I2I translation algorithm Image-to-image translation
(I2I) aims to learn a mapping between two distinct image
domains. This field has gained attention due to its applica-
tions, with Generative Adversarial Network (GAN)-based
methods proposed for tasks like unpaired translation [33],
unsupervised cross-domain generation [28], multi-domain
translation [1], and few-shot translation [15]. However,
prevailing GAN models may face limitations in achieving
consistent structural and textural regularity. Diffusion mod-
els [27] have shown notable achievements in image gener-
ation [2, 5], super-resolution [7, 21], unpaired I2I transla-
tion [23], and image editing [17, 26]. Palette [22] surpassed
strong GAN and regression benchmarks across coloriza-
tion, inpainting, uncropping, and JPEG restoration without
task-specific adjustments. DiffI2I [31] is an effective diffu-
sion model framework for 121 tasks, comprising a compact
prior extraction network, dynamic transformer, and denois-

ing network. It achieves SOTA performance while reducing
computational burdens. The Unpaired Neural Schrodinger
Bridge (UNSB) [9] addresses the Gaussian prior assump-
tion constraints in unpaired 121 translation by framing the
Schrodinger Bridge problem as adversarial learning, facili-
tating scalability across diverse tasks.

3. Method
3.1. Dataset

Figure 2. Example of TIR ship dataset

Our goal is to obtain two large-scale and high-diversity
ship datasets which are used for training the I2I model. The
first dataset contains RGB images and the second includes
TIR images. For the RGB dataset, we choose base images
on the Spotship website. This dataset contains various types
of ships from civilian ships such as fishing vessel, cargo
liner, bulk carrier to military ships, i.e. frigate, destroyer,
battleship, etc. To eliminate the impact of the image back-
ground and converging solely on the object features, images
without complex backgrounds are chosen. In view of the
fact that public TIR ship datasets are limited, we utilize our
LWIR camera to collect ship images in 3 types of scenar-
ios(i.e., video surveillance, ship-mounted, hand-held). This
dataset includes a variety of classes (i.e. fishing boat, con-
tainer ship, cruise, ferry, etc.) in different weather condi-
tions (i.e. day, night, mist, sunny, rainy, etc.). Finally, the
base dataset contains 25000 images for the RGB ship and
2100 images for TIR ship.

Both datasets require all images to be in square size and
focus on the object. We set up a two steps processing to
crop the ship and remove unnecessary areas:

Initially, YoloV5 [6] model pretrained on VOC [3]
dataset will be used to detect and extract the bounding box
of the ship. For some images that the model fails to de-
tect, we manually create a bounding box for the ship. Af-
ter that, if some bounding boxes created automatically from
YoloV5 model are not fit with the ship, especially with the
TIR dataset. In this case, we manually fix the bounding



box of the target with the support of CVAT [24] annota-
tion tools. Furthermore, our method will crop the ship base
on the bounding box and then add zero padding to make a
square-size image.

After data processing phase, we obtain 31900 images for
RGB dataset and 2100 images for TIR dataset. Since there
is more than one ship in some images, the number of images
in the final datasets is greater than the number of images in
the base datasets. Some images in both datasets are shown
in Figs. 1 and 2.

3.2. Synthetic TIR Generative Framework

We adopt powerful Unpaired image-to-image translation
via Neural Schrodinger Bridge, denoted as UNSB [10] for
synthetic TIR Generative framework. Our goal is to learn
the unpaired translation between the RGB and thermal im-
age domain.
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Figure 3. Overview of the proposed framework. Left: Grounded-
SAM segmentation module. Right: UNSB image-to-image trans-
lation module

Let my and m; denote the probability distributions of
RGB and thermal image domains, respectively. The goal
is to learn to translate samples from one domain to another
domain. Due to the source distribution is already known as
T, the main interest lies in revealing the transition proba-
bilities p(x¢41 | x¢) for i = 0,.., N — 1. Fig. 3 illustrates
the overall architecture.

We first sample zy ~ g as x,. To obtain the interme-
diate sample x;,, it will pass the to a generative network,
G, which representing the transition mapping p(z;y1 | o).
This generates x1(x,). After that, 29 and x(x;;) are in-
terpolated by adding Gaussian noise to yields xy, .

We repeat this process by a NFE (Number of Function
Evaluation) N = 5 times to obtain the intermediate sample
x¢,. Finally, we pass the intermediate x;, to the generative
network G, representing the translation p(z; | z,), to ob-
tain our final prediction in the thermal domain 7, denoted
as 1 (xy,).

The image-to-image (I2I) translation framework encoun-
ters a significant limitation: it has minimal awareness of in-
dividual instances due to the absence of an attention mech-
anism that correlates images with their semantic context
at the instance level. This shortfall is evident in the first

two columns of Fig. 4, where the I12I framework’s ten-
dency to focus on areas of high intensity results in sub-
optimal object retention. To tackle this problem, we em-
ploy a simple yet effective approach that utilize a segmen-
tation module to identify the instance region and black-out
other region. We utilize the pre-trained Grounded-Segment
Anything (Grounded-SAM) model, which facilitates open-
domain segmentation via textual prompts. Grounded-SAM
synergizes the GroundingDINO [16] and SAM [1 1] models,
eliminating the need for manual bounding box annotations.
When provided with an RGB image x( and a correspond-
ing text prompt such as “’Ship,” Grounded-SAM precisely
isolates the ship’s region, represented as S(x). This iso-
lated segment, S(xg), is subsequently input into the UNSB
121 translation framework to produce the refined output im-
age. The enhancements in object retention facilitated by the
segmentation module are showcased in Fig. 4.

The overall loss is defined as the weighted summation
of the Adversarial Loss, Schrodinger Bridge Loss, Regular-
ization Loss. The Adversarial Loss ensures that the gen-
erated thermal image x1(z,) conforms to the target ther-
mal image distribution. This loss computes the Kullback-
Leibler Divergence between the predicted thermal distribu-

Final Translation

Input 121 Module Output  Segmentation map

Figure 4. The I2I module, when used independently, frequently
misinterprets image content. This can manifest as incorrectly iden-
tifying non-object regions (e.g., clouds) as targets for translation
or partially converting objects to the thermal domain, with darker
regions overlooked. By incorporating a robust segmentation mod-
ule, the model can accurately delineate objects within the image,
enabling robust translation



tion ¢4, (x1) and the real thermal distribution p (x1). The
Schrodinger Bridge Loss measures the energy needed to
transport the image domain through the transition p(x41 |
x¢). This loss function aims to find an optimal transforma-
tion map between two domains. It is defined as the expected
squared distance between x;, and 1, minus a term involv-
ing the entropy of the joint distribution between xt; and x;.
The Regularization Loss is augmented to the framework as
regularization, which enforces the generator network G to
satisfy consistency between the predicted x; and xy. It is
defined as the expected value of a scalar-valued function R
that measures the similarity between x( and x;.

4. Experiments

Training We first summarize the details of the implemen-
tation of the I2I UNSB module. We conduct an exper-
iment using a single 24GB A5000 GPU. We employ the
dataset previously outlined in the methodology section. we
define the real RGB images to be the source domain g
and the thermal TIR images as the target domain ;. For
training, we randomly choose 10000 RGB images and all
2100 thermal images, which are not paired together. We
train this module using images of three sizes: 128x128x3,
256x256x3, and 512x512x3. We employ an Adam opti-
mizer for 20 epochs of batch size 1 using a step decay learn-
ing rate scheduler. The initial learning rate of 2e-4. For loss
weights, we set A\gp = 1, Areg = 1.5, and A gy = 1.

Metrics We assess the quality of the translated image
considering its faithfulness. We compute the standard im-
age distance metric the Structural Similarity Index Metric
SSIM [30]. These are calculated for each generated im-
age and its corresponding real image. Rather than compar-
ing the entire images, our analysis specifically targets the
preservation of the ship object. To achieve this, we em-
ploy the Grounded-SAM model with the prompt ’Ship”
to segment the ship object. Subsequently, we modify the
segmented object’s color to white and the background to
black. This approach effectively eliminates unnecessary de-
tails, allowing us to solely concentrate on the preservation
of the ship object. Higher values of SSIM indicate greater
structural similarity between the translated and real images.
Fig. 5 illustrates an example of SSIM between the original
images and the translated thermal images.

Synthetic thermal set on classification To assess the
efficacy of synthetic datasets, we explore a classification
task involving five types of ships: Cargo, Cruise, Fishing,
Tanker, and Destroyer. We train models on three image res-
olutions: 128x128x3, 256x256x3, and 512x512x3 using Ef-
ficientNet_B3, MixNet_XL, and ViT. We train 1000 epochs
for each scenario and choose the best checkpoint based on
accuracy. We divide our 2100 real thermal images into 1470
train and 630 test images. We fix test set and consider three
training set scenarios: (1) using only the 1470 real images,

Table 1. Comparison of classification performance across image

sizes and models.

Metrics Accuracy F1-Score
Image Size | 128 | 256 | 512 | 128 | 256 | 512
EfficientNet | 0.84 | 0.81 | 0.82 | 0.84 | 0.80 | 0.84
w/o synthetic MixNet 0.85 | 0.87 | 0.86 | 0.89 | 0.90 | 0.86
ViT 0.86 | 0.82 | 0.86 | 0.88 | 0.85 | 0.79
EfficientNet | 0.90 | 0.89 | 0.91 | 0.88 | 0.90 | 0.89
synthetic only MixNet 0.89 1 090 | 0.88 | 0.91 | 0.90 | 0.89
ViT 0.93 1094|095 | 0.92 | 0.94 | 0.94
EfficientNet | 0.93 | 0.95 | 0.92 | 0.96 | 0.97 | 0.91
synthetic + original MixNet 091 | 092 | 0.96 | 0.93 | 0.95 | 0.91
ViT 0.93 1098 | 0.97 | 0.94 | 0.94 | 0.95

(2) using only 10000 synthetic images, and (3) combining
both real and synthetic images for a total of 11470 images.
The results are presented in Table 1.

The inclusion of synthetic thermal images, whether ex-
clusively or in conjunction with real images, significantly
improves classification accuracy and the F1 score. “The
combination of synthetic and original images in the train-
ing set shows the best results, with accuracy improvements
ranging from 10% to 15% and F1 score improvements rang-
ing from 5% to 18%. Notably, the 256x256x3 resolu-
tion models demonstrated superior improvement, with ViT
achieving a 15% increase in Accuracy and EfficientNet_B3
an 18% improvement in F1 score.

Original Image Translated Thermal Translated Thermal

Original Image

- = o

Figure 5. Example of SSIM between the original and translated
thermal images.

SSIM =0.93

5. Conclusion

In this paper, we have presented a new approach based
on I2I translation and segmentation model, which can di-
rectly and accurately create synthetic thermal infrared im-
ages from visible images. Using a segmentation module to
process the data before the 121 translation model, we aim to
distinguish between the background and object areas. For
practical purpose, we create a dataset comprising unpaired
realistic RGB-TIR images. Our method demonstrates good
performance in generating synthetic TIR images, which
subsequently improves classification performance over the
use of solely real TIR images. In the future, we intend to re-
fine our method’s capability to produce thermal images with
detailed background patterns.
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