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Abstract

In domains like economics, health, and jour-
nalism, text embedded with numerical data is
common, yet readers often struggle to derive
insights. Converting such texts into charts en-
hances comprehension but is typically labor-
intensive and domain-dependent. Despite
progress in English, there is no prior dataset for
Bengali. To fill this gap, we have introduced
BETAR, a BEngali Text-to-chARt dataset com-
prising 3,519 annotated texts. We also propose
BN-GraBERTNet, a grapheme-aware hybrid
model that combines BanglaBERT, BiLSTM,
and a fully connected layer to identify x-axis
and y-axis entities in text. To handle complex
numerical reasoning, we selectively employ
open-source large language models (LLMs)
to simplify sentences when necessary. These
simplified sentences are then processed by our
sequence tagging model. The primary goal
of this work is to develop a lightweight, user-
friendly, and cost-free Bengali test-to-chart sys-
tem that performs competitively. Although we
also evaluated open-source, purely LLM-based
approaches, our proposed architecture outper-
formed them, achieving a weighted average F1
score of 0.93 on the test set.

1 Introduction

Texts in research, economics, and journalism often
contain rich numerical data, yet extracting insights
from them remains challenging due to the sparse
and linear nature of numbers in text (Masson et al.,
2023a). Prior studies have criticized textual presen-
tations of numerical information (Feliciano et al.,
1963; Klein, 2014; Tufte and Graves-Morris, 1983),
whereas charts provide a more intuitive and concise
representation of data patterns (Van Wijk, 2005),
supporting the notion that “one chart is worth ten
thousand words” (Larkin and Simon, 1987).
Automatic text-to-chart conversion offers a scal-
able solution to this challenge, explored in several
English-language studies (Luo et al., 2018; Masson

et al., 2023b; Dibia and Demiralp, 2019; Narecha-
nia et al., 2020; Rashid et al., 2021; Lai et al., 2020;
Tian et al., 2024). However, most require struc-
tured data inputs (e.g., tables or JSON) or manual
field specifications (Tian et al., 2024; Luo et al.,
2018; Narechania et al., 2020; Dibia and Demiralp,
2019), making them unsuitable for direct text-to-
chart conversion from natural language.

Recent works like Charagraph and ChartifyText
(Masson et al., 2023a; Zhang et al., 2024) attempt
full-text-based chart creation, but suffer from lim-
ited datasets, inability to handle complex reasoning,
high computational cost (e.g., GPT-4), and halluci-
nations. Furthermore, no prior work has addressed
this task in Bengali, a low resource language spo-
ken by over 237 million people. Its rich morphol-
ogy and orthographic complexity degrade the per-
formance of standard sequence labeling models
(Pal et al., 2021; Dash, 2015).

To address this, we introduce BETAR, the first
Bengali benchmark dataset for text-to-chart con-
version, consisting of 3,519 annotated samples.
We propose BN-GraBERTNet, a hybrid model
that integrates BanglaBERT embeddings with a
grapheme-aware GRU encoder and BiLSTM lay-
ers. Grapheme-level encoding has shown signifi-
cant improvements in Bengali NER tasks, with a
9.7-point increase in F1 score compared to word
level embedding(Chaudhary et al., 2018).

To handle mathematically complex sentences,
we selectively apply open-source LLMs (up to
8B parameters) during inference to simplify in-
puts. This approach preserves efficiency and
avoids full reliance on LLLMs, which are resource-
intensive and often suboptimal for structured pre-
diction tasks such as sequence labeling (Wang
et al., 2023; Keraghel et al., 2024). For instance,
transformer-based models like Clinical BERT have
outperformed LLMs such as GPT-3 and ChatGPT
in medical NER tasks (Hu et al., 2023).

Our goal is to develop a lightweight, user-
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Figure 1: Natural language text to chart creation. Using LLM simplification, 20% house rent becomes 3,000 tk,
30% food cost becomes 4,500 tk, 10% transport becomes 1,500 tk, and the remainder is savings (6,150 tk).

friendly, real-time system for chart generation in
Bengali, using free and open-source tools. The
system’s pipeline is illustrated in Figure 1.

Our main contributions are:

* We present BETAR, a 3,519-sample Bengali
dataset for text-to-chart conversion.

* We propose BN-GraBERTNet, a hy-
brid grapheme-aware model combining
BanglaBERT and BiLSTM for axis labeling.

* We selectively use LLMs during inference
for simplifying complex sentences, improv-
ing downstream axis prediction.

* Our model achieves a weighted F1-score of
0.93, demonstrating strong performance with
efficient resource usage.

Our dataset and code will be publicly released
upon acceptance.

2 Related Work

Prior research has extensively explored tasks such
as chart-to-text generation (Obeid and Hoque,
2020) extensively. In contrast, the reverse
task, making charts directly from natural lan-
guage—remains relatively underexplored.

Most existing text-to-chart systems rely heavily
on structured inputs, such as user queries paired

with tabular datasets (Luo et al., 2018; Narechania
et al., 2020; Tian et al., 2024). Only a few recent
works attempt to generate charts from unstructured
text. For example, Chargraph, an LL.M-based sys-
tem (Masson et al., 2023a), uses rule-based patterns
(e.g., “M=", “%”) to detect numerical values. How-
ever, when these patterns are inconsistent or absent,
the system requires manual user intervention. Ad-
ditionally, its evaluation is limited to qualitative
feedback from 12 users, with no statistical perfor-
mance metrics reported.

ChartifyText (Zhang et al., 2024), which uti-
lizes GPT-4 without dataset-specific fine-tuning,
requires users to manually select relevant portions
of text containing chart elements. Despite this man-
ual effort, the system suffers from hallucinations
and inconsistent outputs across runs. Moreover, it
is not freely accessible and is limited to 15 user
reviews in evaluation.

Text2Chart31 (Zadeh et al., 2024) integrates a
feedback loop into its LLM-based pipeline and uses
GPT-4, which is not open-source or free. Despite
this, it still exhibits approximately 6% hallucination
(Ford and Rios, 2025), highlighting limitations in
semantic reliability.

In contrast, Text2Chart (Rashid et al., 2021) em-
ploys a supervised transformer trained on 717 la-
beled samples, achieving a 97% F1-score across
three classes (X-axis, Y-axis, and No-axis). How-



ever, its dataset is relatively simple and consistently
includes direct mentions of axes. However, test-to-
chart data often contains numerically complex data
that require analysis before charting.

Importantly, none of the aforementioned works
address complex, multi-step numerical reasoning in
the context of chart generation. Moreover, existing
works only focus on English, with no benchmark
datasets available for low-resource languages such
as Bengali. Additionally, most LLLM-based sys-
tems rely on paid, proprietary models like GPT-4,
whereas our open-source architecture demonstrates
promising results without the computational and
commercial APIs.

3 BETAR: A New Benchmark Dataset

We present BETAR, a dataset designed for auto-
matic Bengali text-to-chart conversion. This sec-
tion describes the process of creating, annotating,
and analyzing the dataset.

3.1 Data Collection

The texts in BETAR were collected from a wide
range of Bengali sources, with source and domain
distribution detailed in Appendix B. Our goal was
to curate a diverse set of data-rich sentences span-
ning various domains such as news, education, re-
search, health, finance, and more.

In addition, we included a subset of complex
sentences requiring multi-step mathematical rea-
soning, as illustrated in Appendix E. These exam-
ples were added only to the test set, as they cannot
be labeled through standard supervised methods
and instead require manual reasoning by annota-
tors before identifying the x and y spans. Test set
construction is illustrated in Appendix F.

3.2 Tokenization and Annotation

Each sentence was first tokenized into custom to-
kens. These tokens were generated by splitting
text based on whitespace and separating out special
symbols and punctuation marks. This ensured that
both words and symbols were treated as individual,
meaningful units.

Three undergraduate students with substantial
knowledge of both Bengali and data visualization
were tasked with manually annotating the dataset.
Each annotator was provided with clear class defini-
tions and asked to assign the index of each custom
token to one of the following labels:

» X-axis: Tokens that are typically nouns and
represent independent entities such as cate-
gories, time points, or names. If a custom
token belonged to this category, its index was
recorded under the x-axis list in the dataset.

* Y-axis: Tokens indicating numerical values
or measurements associated with the X-axis
entities. These include quantities, counts, and
percentages. If a custom token belonged to
this category, its index was recorded under the
y-axis list in the dataset.

Punctuation marks and special symbols were
also labeled if they occurred as part of an axis-
related entity. The full annotation procedure is
described in Appendix C. All annotations were
subsequently reviewed by an NLP expert with over
10 years of experience, who also resolved any dis-
agreements among annotators. To assess inter-
annotator consistency, we have calculated Cohen’s
Kappa score (Cohen, 1960), which has achieved
a mean value of 0.82, indicating substantial agree-
ment among annotators.

3.3 Dataset Statistics

Table 1 presents the custom token distribution
across the x-axis, y-axis, and tokens that do not
belong to either category, referred to as the no-axis
class. The no-axis class is the most frequent, cover-
ing approximately 68% of all tokens.

Class Train Test Set-1 Total

No-axis | 136,143 38,897 175,040
X-axis 34,109 9,735 43,844
Y-axis 29,794 8,503 38,297

Table 1: Number of tokens per class.

We have also analyzed the class overlap using
the Jaccard similarity index (Jaccard, 1912). Ta-
ble 2 shows that x-axis and no-axis tokens share
some overlap, with a Jaccard score of 0.1876. This
indicates that some tokens can appear in multiple

roles depending on context.

Label 1 | Label 2 | Similarity Score

No-axis | X-axis 0.1876

No-axis | Y-axis 0.0462
X-axis Y-axis 0.0325

Table 2: Jaccard Similarity Scores Between Different

Category of Tokens.



The average sentence length is 64 tokens. The
longest sentence contains 297 tokens.

3.4 Guided Format

To fine-tune LLM for token classification task, we
have transformed our dataset into a guided for-
mat. Appendix D. Each instance consists of an
instruction, the input sentence, and two target lines:
one listing the x-axis values and the other the y-
axis values. This format helps align the data with
instruction-based learning for large language mod-
els.

4 Methodology

4.1 Initial Experiments
4.1.1 Large language model (LLM)

We explored both prompting and fine-tuning strate-
gies using large language models (LLMs) for the
text-to-chart task. In the zero-shot setting, only task
instructions were provided, while few-shot prompt-
ing included three labeled examples to guide the
model. Prompts used a context window of nciy =
4096, a max token limit of 512, temperature of 0.1,
and top-p = 0.9.

For fine-tuning, we trained open-source LLMs
(up to 8B parameters) on our guided dataset using
LoRA (rank 8, a = 16), 4-bit quantization, and
AdamW with a learning rate of le-5. Generation
was capped at 64 tokens with a sequence length of
512.

To ensure the system is resource-efficient, real-
time usable, and cost-free for users, we focused ex-
clusively on open-source LLMs with up to 8 billion
parameters. Most existing LLMs are not specifi-
cally trained for Bengali; rather, they are multilin-
gual and contain only a small fraction of parameters
and vocabulary relevant to Bengali. Among the few
language-specific models, TituLM 3.2-3B stands
out as one of the most promising pure Bengali
LLMs, currently available on Hugging Face.

4.1.2 Transformer based models

We have employed three pretrained trans-
former models which are mBERT, XLLM-R, and
BanglaBERT. The mBERT, fine-tuned on the
Wikiann dataset (Pan et al., 2017). XLM-R (Con-
neau et al., 2019), with its broader multilingual
training and higher capacity, offers stronger cross-
lingual representation. BanglaBERT (Bhattachar-
jee etal., 2021), a monolingual BERT-base model
pretrained on 1.5B Bengali tokens, captures rich

linguistic features unique to Bengali. We initially
fine-tuned the pretrained models for our task, but
the performance was relatively modest with batch
size=16, learning rate = 0.00001 and Adam opti-
mizer.

4.2 Hybrid Models

We also experimented with hybrid models. In addi-
tion to the transformer-based encoder, which lever-
ages self-attention for contextual representation,
we incorporate a BILSTM layer to capture sequen-
tial dependencies from both directions—an impor-
tant aspect for sequence labeling tasks. A fully
connected (FC) layer is used to compute logits
and produce the final predictions. The models are
trained using the Adam optimizer with a learning
rate of 0.00001 and a batch size of 16.

4.3 Proposed Architecture

We begin by tokenizing the dataset using a cus-
tom tokenizer. Each token is labeled as 1 if it
belongs to the X-axis list, 2 if it belongs to the
Y-axis list, and O otherwise. Contextualized embed-
dings for each token are then extracted using the
BanglaBERT model, which employs multi-head
self-attention (Vaswani et al., 2017) to capture se-
mantic dependencies across the sentence. Each
input token ¢; is mapped to a 768-dimensional em-
bedding ePERT € R768, encoding rich contextual
information.

A key challenge in Bengali is the limited vo-
cabulary coverage of pretrained tokenizers, com-
pounded by the language’s complex morphology,
inflections, and frequent spelling variations. These
factors lead to a high rate of out-of-vocabulary
(OOV) tokens during inference, which degrades
performance.

To mitigate this, we incorporate a grapheme-
aware encoder that decomposes each token ¢; into
its constituent graphemes—the smallest meaning-
ful units in Bengali. This fine-grained represen-
tation reduces the impact of OOV issues and im-
proves generalization to unseen words. Chaudhary
et al. (2018) report up to a 9.7-point improvement
in Bengali NER performance using grapheme-level
encoding.

ti =1[9i,1,9i,2s -+ Gin)
Each grapheme g; ; is embedded into R3°, and the
resulting sequence is passed through Bidirectional
GRU (BiGRU) with 64 hidden units in each di-
rection, resulting in a 128-dimensional grapheme
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Figure 2: Overview of the (a) BN-GraBERTNet architecture (b) Grapheme encoder (c) BERT encoder

embedding per token. The final grapheme embed-
ding is obtained by concatenating the final hidden

states: o
eSR = [h,; h1] € R'*®

We then concatenate the BERT embedding and
the grapheme embedding to form a fused represen-
tation:
oBERT,

)

e = | eFR] ¢ RT68+128=896

This fused representation e; € R8% is passed
through a two-layer Bidirectional LSTM with hid-
den size 256 in each direction and dropout rate 0.3.
The BiLSTM outputs a hidden state:

h; € R (ie. 2 x 256 from BiLSTM)

Finally, a fully connected (FC) layer maps the
BiLSTM output for each token to a 3-dimensional
logit vector corresponding to class label y; €

{0,1,2}:

§; = softmax(W, - h; +b,), ¢ € R®

exp(z;)
k1 exp(2p)

The FC layer acts as a token-level classifier
that projects the 512-dimensional context vector
into class scores. The overall architecture of our
methodology illustrated in Figure 2. After gen-
erating the O, 1, and 2 labels for each token, we
grouped consecutive tokens labeled as 1 into seg-
ments referred to as x-axis, and consecutive tokens
labeled as 2 into y-axis.

softmax(z;) =

4.4 Sentence Simplification Using LLMs

During testing, sentences were first simplified
when necessary. We employed three instruction-
tuned models: “Meta-Llama-3-8B”, “Mistral-7B-
Instruct” and “TituLM-Llama-3.2-3B-v2.0” within
a few-shot learning setup consisting of three exam-
ples. The simplification pipeline operates in two
stages. First, the model classifies each Bangla sen-
tence as either simple or complex using a few-shot



prompt. Only complex sentences are passed to a
second prompt for simplification, which preserves
numerical values, avoids hallucination, and clari-
fies multi-step reasoning. All generations are con-
figured with temperature 0.1, top_p 0.9 and a 512
token limit. This strategy improves clarity while
minimizing unnecessary processing.

5 BETAR: Benchmark Evaluation

5.1 Evaluation Metrics

We have employed token level evaluation for
trasformer and hybrid models. To compare per-
formance with large language model we have also
evaluated span level evaluation. For token classifi-
cation, we computed the weighted F1-score across
three token classes: X-axis (1), Y-axis (2), and
No-axis (0). For span-based evaluation, we con-
verted consecutive tokens labeled as 1 into X-spans,
and consecutive tokens labeled as 2 into Y-spans.
For LLM-based generative models, we adopted a
relaxed string-matching strategy to evaluate span
level axis predictions. We have used the RapidFuzz
library to compute fuzzy string similarity between
predicted and gold spans. A prediction was consid-
ered a correct match if its similarity score with a
gold span was greater than or equal to 90%.

1, if Similarity(p;, g;) > 90%

match(pz‘agj ) = {0 otherwise

Using this relaxed alignment, we calculated relaxed
precision, recall, and F1-score to account for minor
variation and rephrasing that commonly arise in
generative model outputs.

We have also evaluated the simplification quality
using a Rough Score, which quantifies how well the
model-generated simplified sentence aligns with a
manually created reference.

The Rough Score is defined as:

1 .
RoughScore = g 37 e, 1 [maxye sy

sim(w, v) > 7] x 100
where:

¢ Sier is the set of tokens in the reference sim-
plification,

* Spred 18 the set of tokens in the model-
generated simplification,

* sim(w, v) € [0, 1] is a fuzzy similarity score
between words w and v,

* 7 is a similarity threshold (we use 7 = 0.90).

This metric captures semantic overlap rather
than surface-level exactness, providing a coarse
but effective approximation of sentence-level cor-
rectness during simplification.

5.2 Results

We conducted extensive experiments on our dataset
using transformer-based, hybrid, and LLM-driven
approaches. Among all models, our proposed hy-
brid architecture, BN-GraBERTNet, achieved the
highest performance, attaining a weighted F1-score
of 0.98 for token classification and 0.93 for span-
level evaluation. The span-level evaluation focused
exclusively on X and Y axis elements, excluding
tokens labeled as non-axis (i.e., label 0), which
are only considered during token-level evaluation.
Since large language models are not well-suited
for fine-grained token-level prediction due to their
tendency toward overgeneralization, we adopted
span-based evaluation with relaxed matching crite-
ria for assessing LLM performance. In particular,
few-shot simplification using Meta-LLaMA-3-8B
(GGUF) achieved an approximate simplification
accuracy of 91.3

Table 3 and Table 5 present the weighted F1-
scores for token- and span-level classification, re-
spectively. Table 6 highlights the simplification er-
rors introduced by LLMs, while Table 4 compares
the performance of our model with fine-tuned Meta-
LLaMA-3-8B in a pipeline combining LLM-based
simplification with axis extraction.

To evaluate computational efficiency, we report
floating point operations per second (FLOPS), mul-
tiply—accumulate operations (MACs), and GPU
memory consumption across all models in Ap-
pendix A. Our objective is to design a lightweight,
high-performance Bengali NER model suitable
for deployment on low-resource consumer hard-
ware—a capability that remains difficult to achieve
with current large-scale LLMs.

5.3 Error Analysis

X-axis and no-axis labels predominantly contain
textual data, making them difficult for the model to
distinguish. Long X-axis spans sometimes cause
partial misclassification as no-axis. Additionally,
when the X-axis contains numerical values (e.g.,
years), it is occasionally misclassified as Y-axis.
Similarly, Y-axis elements expressed in textual nu-
meric form (e.g., “two thousands™) are sometimes



Method X-axis Y-axis No-axis

P R WF | P R WF | P R WF | WF
BanglaBERT 0.89 0.87 0.88 ] 0.87 0.86 0.87 | 0.86 0.86 0.86 | 0.88
XLM-Roberta 0.85 0.87 0.86|0.87 0.83 085|083 0.83 0.83 | 0.84
mBERT 0.86 0.89 0.87 | 0.85 0.82 0.83 |0.82 0.82 0.82|0.83
XLM-Roberta+BiLSTM+FC 0.89 087 0.88 | 0.87 0.806 086|086 0.86 0.86 | 0.91
BanglaBERT+BiLSTM+FC 091 090 091|090 0.89 090|089 0.89 0.89 | 093
XLM-Roberta+Grapheme+BiLSTM+FC 094 091 092097 098 098 | 098 098 0.98 | 0.96
BanglaBERT+Grapheme+BiLSTM+FC | 0.94 091 092 | 0.97 098 0.98 | 0.98 0.98 0.98 | 0.98
BanglaBERT+Grapheme+BiLSTM+FC 090 0.88 0.89 | 095 096 096|096 0.96 095|095

Table 3: Token level evaluation for transformer and hybrid models.

Text

Simplified text using LLM

Token identification and pair extraction

TIBT (AT WEZTI @06 THIFINF ofb K=
R=fS fores 2371 51T I SISt @ SIoR f6
ez Rafs fice 23, 932 51 A Fo1TE @O
St 8ft Rt (@S o =1 (Travelers from
Dhaka to Australia have to stop at 3 airports. To go from
Dhaka to Canada, they have to stop at 2 airports, and to
go firom Dhaka to the United States, they have to stop at 4
airports.)

Gold pairs
wogEt - oft, STt -6, gerg -8t

(Australia - 3, Canada - 2, USA - 4)

Already simplified, no further
modification required

LLM ( Meta Llama 3-8B finetuned)

GBIt (A FIA1S! - ofb, Gl A &1E - =6
(Dhaka to Canada ~ 3, Dhaka to USA - 2)
Predicts two X-axis where three X axis values are present.
Corresponding Y-axis values are also incorrect.

BN-GraBERTNet
g - ofb, Farer - 2f6, gy - sft

(Australia ~ 3, Canada —~ 2, USA - 4)

aFfb M@ 2055 AT TN & ¢o,0001 2020
St @aft so0% I 2w, g 2025 ST a% I T
(In a city, the population was 50,000 in 2019. In 2020, it
increased by 10%%, but in 2021, it decreased by 57%)

Gold pairs
Q055 —> ¢0,000 &, 00 —> @&,000 G, 0D —>

Complex sentence found, simplifying....
A 1@ 205 T GAwRA oo
@0,000| 030 HANH G IR
@@,000]| 2035 I SR R
@2,¢00|

(A city's population was 50,000 in 2019.
It increased to 55,000 in 2020, then

LLM ( Meta Llama 3-8B finetuned)
205% —> €0, 2030 —> 000, 2035 —> @&
( 2019 - 50 people, 2020 - 000 people, 2021 — 55 people)
Numerical values are fabricated also not all X axis are captured

BN-GraBERTNet
205% — 20,000 T, 2020 —> @¢,000 T, 205 —> 2,800 T

@2,2¢0 T
(2019 - 50,000 people, 2020 - 55,000 people, 2021 —
52,250 people)

decreased to 52,500 in 2021.)

The simplification wrongly predict
52,500 which should be 52,250

(2019 - 50,000 people, 2020 — 55,000 people, 2021 — 52,500
people)
Wrong generated 52,500 which should be 52,250 from
simplification process

Table 4: Complex and simple texts were processed through both our proposed architecture and fine-tuned LLMs.
The comparison highlights that, while fine-tuned LLMs achieve strong performance, they exhibit certain degrees of
hallucination during generation. In contrast, our hybrid transformer-based model demonstrates more direct output,

effectively mitigating such issues.

labeled as no-axis. These misclassifications are
illustrated in the confusion matrix in Figure 3. Dur-
ing simplification, the LLM occasionally misinter-
preted cases requiring long-term hierarchical rea-
soning, leading to incorrect outputs for complex
sentences.

6 Conclusion

n this work, we introduced a new benchmark
dataset comprising 3,519 Bengali texts for the
task of chart element extraction. As baselines, we
evaluated three pretrained transformer-based mod-
els: BanglaBERT, XLM-R, and mBERT. However,
our proposed hybrid model, BN-GraBERTNet,
achieved the best performance. This model inte-
grates Bengali grapheme-level features with con-

textual embeddings from BanglaBERT and feeds
the combined representation into a two-layer Bil-
STM for sequential modeling.

BN-GraBERTNet achieved a token-level
weighted F1-score of 0.98 on the test set and the
highest span-level weighted Fl-score of 0.93.
Error analysis revealed that class imbalance
occasionally led the model to misclassify x-axis or
y-axis tokens as no-axis.

6.1 Limitations

First, the system assumes a linear one-to-one map-
ping between x and y-axis elements. Specifically,
it pairs the first x value with the first y value. This
assumption breaks down in cases where a single
x corresponds to multiple y values, which ideally




Method X-axis Y-axis

P R WF P R WF WF
mBERT+Grapheme+BiLSTM+FC 0.900 0.880 0.890 | 0.930 0.945 0.940 | 0.915
XLM-Roberta+Grapheme+BiLSTM+FC 0.940 0.910 0910 | 0.938 0.952 0.946 | 0.927
BanglaBERT+Grapheme+BiLSTM+FC | 0.904 0.913 0.909 | 0.944 0.965 0.954 | 0.934
Meta-LLaMA-3-8B(FT) 0.880 0.874 0.877 | 0.873 0.862 0.868 | 0.838
Gemma-3-4B(FT) 0.850 0.861 0.856 | 0.868 0.834 0.849 | 0.812
TituLM-3.2-3B(FT) 0.865 0.854 0.859 | 0.861 0.838 0.847 | 0.825
Phi-4-mini-Instruct(FT) 0.842 0.829 0.835 | 0.838 0.821 0.824 | 0.798
Qwen 1.5B-Instruct(FT) 0.839 0.826 0.832 | 0.834 0.818 0.820 | 0.795
BLOOMZ-1b7(FT) 0.838 0.825 0.831 | 0.834 0.819 0.821 | 0.794
Meta-LLaMA-3-8B (zero shot) 0.800 0.790 0.795 | 0.792 0.781 0.783 | 0.752
TituLM-3.2-3B (zero shot) 0.811 0.801 0.806 | 0.794 0.785 0.787 | 0.760
Meta-LLaMA-3-8B (few shot) 0.872 0.864 0.868 | 0.861 0.852 0.858 | 0.827
TituLM-3.2-3B (few shot) 0.842 0.831 0.836 | 0.835 0.824 0.826 | 0.794

Table 5: Span-level evaluation across hybrid and large language models. We evaluated the top three models from
both the transformer-based and hybrid model series based on their token classification performance.

Model
TituLM-Llama-3.2-3B-v2.0
Mistral-7B-Instruct
Meta-LLaMA-3-8B

Rough score
78.2%
86.1%
91.3%

Table 6: LLM simplification time rough score.

Confusion Matrix
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Figure 3: Confusion matrix for token label classification
of our proposed model.

require stacked bar charts, functionality not yet
supported by the system. Additionally, the model
fails to handle non-linear relationships in the text,
where the order of x and y elements does not align
sequentially.

Second, it struggles with numerically ambigu-
ous or structurally complex inputs. For instance,
in phrases like “5—7 million people,” the model
identifies components but fails to generate a repre-
sentative value suitable for plotting.

Third, when the input covers multiple distinct
topics, the system produces only one chart, rather
than decomposing the input into multiple sub-
charts.

Fourth, while the LLM-based simplifier gener-
ates fluent outputs, it occasionally misinterprets or
hallucinates information, affecting chart element
extraction.

Fifth, the system currently supports only mono-
lingual Bengali. Extending it to multilingual or
code-mixed inputs is a promising direction.

Future work will explore learning-based axis
alignment, inclusion of multilingual data, improved
hallucination mitigation, and the use of larger, more
capable language models beyond the open-source
options used in this study.

7 Ethical Considerations

We constructed the BETAR dataset in accordance
with ethical and fair data usage guidelines. All
texts were sourced from publicly available Bengali
content, including social media, websites, educa-
tional materials, and news articles. No personally
identifiable information (PII) was collected, and no
data came from private or restricted sources. All
sentences were anonymized and factual. Annota-
tors followed clear guidelines to ensure consistent
labeling and minimize bias. The dataset covers
diverse domains to maintain balance and represen-
tativeness.
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Appendix
A Comparison of Model Resource
.
Consumption
LLM Sequence FLOPS MACs GPU Memory
Length | (GFLOPS) | (GMACS) (MB)
128 1,920 960.6 32,630.63
256 3,840 1,920 34,260.63
{“gli;?MA_?) 512 7,690 3,840 38,032.63
1024 15,370 7,680 44,080.63
2048 - - >48,000
128 78.96 39.46 2,688.63
XLM-RoBERTa-large
(559.89M) 256 161.15 80.53 2,962.63
512 335.24 167.5 3,640.63
128 22.36 11.17 842.63
BanglaBERT
(110.03M) 256 45.94 22.95 1,012.63
512 96.72 4591 1,432.63

Table 7: Comparison of FLOPS, MACs, and GPU mem-
ory usage across models for different sequence lengths.
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World Bank Open Dat
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Figure 4: Illustration of our proposed dataset’s source
distribution.

B Dataset Statistics

We curated the dataset from a mix of Bengali and
English sources, with English texts translated into

10

Non statistical Data
7.11%

Financial Data
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War, Poetry
7.45%

Population Statistic: Environment
8.09% 11.92%

Sports
857%

Fashion
11.24%
Diseases Stages
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Education
11.18%

sScientific Data
0.84%

Figure 5: Illustration of our proposed dataset’s domain
distribution.

Bengali using a blend of manual annotation and
Google Translate. Most examples are numerically
rich and designed for chart element extraction.
To ensure generalization, we also included non-
numeric sentences without identifiable X- or Y-axis
elements.

The test set contains 519 examples, including
212 complex and the rest simple. In total, the
dataset spans 10 sources and 10 domains, as shown
in Figure 4 and Figure 5.

C Annotation Process

The annotation procedure is summarized in Table 8.
Annotators were provided with a Python script that
tokenizes each sentence into whitespace-separated
units, including punctuation and special symbols,
and assigns indices to each token. They then re-
viewed the indexed tokens and manually marked
those corresponding to X-axis and Y-axis elements.
The selected indices were recorded in separate X-
axis and Y-axis lists.

D Guided dataset format.

The guided dataset format is illustrated in Table 9,
showing an example sentence alongside its corre-
sponding guided version. Unlike the original for-
mat, which provides index spans for X-axis and
Y-axis elements, the guided format replaces in-
dex with the actual entity values. This structure
is tailored for fine-tuning large language models
(LLMs), offering explicit supervision through natu-
ral language instructions and structured outputs.



Text

Text with Indexed Token Label

Rfras R8s @reba oy Q3R A SIEeRE
BRE 2ot 2ET | ORI (GFT AT /T AP
BReBa e TR Brars o RSl v
oA fBRea 371 o2 2w Bt coires, rersta,
21115 55715 TG b TSI BIST, b XISTF 51T, 8
=TT Bt i arse Bfea ger fdtae |
S SIS 2 BT ¢oo Bt

[translate: Tickets for the BPL Music Fest have already
been released online. However, due to a lack of
significant response from the audience, the BCB has
decided to reduce the ticket prices. Initially, the p
a Platinum ticket was set at 12,000 BDT. The pri
Gold, Silver, and Grand Stand tickets were 8,000 BDT,
6,000 BDT, and 4,000 BDT respectively. The Club
House ticket was approximately priced at 2,500 BDT.]

fRforam1(0) FSRes(1) @PoBR(2) TF(3) aFR(4) FTE(S) TEARE(6) BRE5(7) =rw(s)|
2@T=R(9)1(10) BR(11) wRETE(12) BFA(13) AGI(14) F(LS) AR(16) BRI (17))
Te(18) FAIER(19) Fras(20) Facg(21) [{fifR(22)123) avw(4) enfbar(2s)
fBfRFB(26) FF(27) 52(28) TETA(29) BIFI(30)I(31) 31175(32),(33) Frersra(34),(35) 51-52}
SITS(36) SBITS(37) TAGFW(38) b(39) TGURM0) BIFI1),(42) ©(43) =reT=(44)
BI=I(45),(46) 8(47) TAGIA(48) BIFI9)1(50) F1A(51) ZrE@(52) BRFGA(S3) JeW(54)
fRETRe1(55) T1(56) TRE(57) TFIAB(58) 2(59) FISHRA(60) ¢oo(61) BIFI(62)1(63)

[BPL(0) Music(1) Fest(2) tickets(3) have(4) already(5) been(6) released(7)
online(8).(9) However(10),(11) due(12) to(13) the(14) lack(15) of(16) response(17)
rom(18) the(19) audience(20),(21) BCB(22) has(23) decided(24) to(25) reduce(26)
ticket(27) prices(28).(29) nitially(30),(31) the(32) price(33) of(34) Platinum(35)
rickets(36) was(37) 12(38) thousand(39) taka(40).(41) Gold(42),(43) Silver(44),| Y-axis: {38-40, 53-55, 57-50.
" \(45) and(46) Grand(47) Stand(48) tickets(49) were(50) priced(S1) at(52) 8(53)

thousand(54) taka(55),(56) 6(57) thousand(58) taka(59).(60) and(61) 4(62)
thousand(63) taka(64).(65) The(66) Club(67) House(68) ticket(69) price(70)
was(71) set(72) at(73) approximately(74) 2(75) thousand(76) 500(77) taka(78).(79)

X-axis: {25, 32, 34, 36-37,

Y-axis : {28-30, 39-41, 43-45,
47-49, 59-62}

Label for translated text
X-axis: {35,42,44,47-48,

66-68}

62-64, 75-78}

Table 8: Annotation procedure.

Normal dataset

Guided dataset

f

Games, and Walmart

{20-25, 41-42}
{34-35, 4748}

{
text: “FTF P3G S, AT {0y @A 476
9F I 73 PR o TIorg 3T Al oTe IR,
Bresfe, 37 coraw, emiemit - 9% ofb YeRr Rewot
IR TG AW veY =G P, @A @@
525 IR BT Sty AT 2¢% =TS frea1”,

(translation: During Black Friday, hardware costs
across the world drop significantly for one or two
ast year, three major retailers — Target, EB
offered a 65% discount on
all their products, whereas twelve other  stores
provided only a 25% discount on their items. )

FIGT: ${¥7G JIRE IR (A BB SoAmraesfor @ vt
(translation: Task: Extract chart components from the given Bengali
sentence. )

B9fB: 1 PTG A, R ey ZIGSA 46 9 I 53 i
T WIS 5TS q21, B1esfB, 3 crest a3 e’ - @8
oft yeaT Rt SIo™ TS Ry vev =S e, @I ww
52f8 T SIeTR S R 2¢% = ez

(translation: Input: During Black Friday, hardware costs across the
world drop significantly for one or two days. Last year, Target, EB
Games, and Walmart — these three retailer red a 65% discount on
all their products, while another 12 stores offered only a 25%
discount. )

amr-ar: Bresf, 3 et 932 ST, Ty 526 e
SHTR-T: ve %, ¢ %

(translation: Output:
X-axis. , EB Games, Walmart, Other 12 stores
Y-axis: 65, 25%)

Table 9: Guided dataset construction. An instruction
is provided to help the LLM understand its task. The
input sentence is presented as-is, while span labels are
converted into actual X-axis and Y-axis values.

E Multistep complex numerical reasoning

of data

Our dataset contains 212 complex samples in the
test set, out of a total of 519. These samples re-
quire simplification before being passed to the axis
labeling model. In many cases, multi-step reason-
ing is necessary to interpret the data correctly. An
illustration of this type of reasoning is shown in

Figure 6.

F Test dataset annotation

Annotators did not mark individual token indices,
as this was only required during the training phase
for token classification. Since no token-level learn-
ing was involved during testing, they directly iden-
tified the X-axis and Y-axis spans. For complex
cases, annotators first simplified the sentence by
performing necessary mathematical reasoning, and
then determined the corresponding X and Y spans.

Tina pays 0.15 of her monthly income
as tax, spends 0.80 of the remaining
amount on groceries, and saves the |@umm— Given Text
rest. In 3 months, she saves a total of
510 Taka.

Saved portion 0.85%0.20= 0.17
Per month save= 510/3=170
0.17 is valued at 170

So 1 is valued at 170/0.17=1000 ‘1

l Multistep
Numerical

[- Reasoning

Total income(1) = 1000
Tax = 1000%0.15= 150
Groceries = (1000-150)*0.80=
850*0.80=680
Save = 850%.20=170

|

Tina’s monthly income is 1000 TK.
She pays 150 TK in tax, spends 680 i |gmmmm—— Final Text
groceries and saves 170 TK

Figure 6: Multistep reasoning process for a complex
example. In the dataset, for sentence simplification, the
LLM is provided with the first and last sentences as
examples in a few-shot setting. The intermediate calcu-
lation steps are intentionally omitted from the prompt.

Text Simplified Text Label

ToA WA 9% T2 2f6S I SNGC, | ST WA 9% T27 &I6S 51T oA0GC !
[ NS PIEA G 2.0 fBfE ol | oo e s et oe Ry o
@frl oo Wi oemnar i oe ffi| 9% ww oema zwe vae fofy X-axis: 1 I, 9% T2I
TR @R Y-axis: o¢ f6fér Greifsmm, 0a.q ffEr
(translation: This year, North America | (translation: North America experienced ot

experienced extreme heat, which is 2.5°C |extreme heat this year. The temperature | (translation: X-axis: Last decade, This year
Yeaxis: 35°C, 37.5°C)

higher compared. 1o the last decade. The | during the last decade was 35°C. This year
average temperature during the last decade | the temperature reached 37.5°C.)
was 35°C.) Simplified by annotator

Sp0¢ IMCT WHITAT ¢o% TS T
T TLRSENS AfS ITT WO ITEI

Sh0c ST WRATATT I Qo ST
T T e T S o 7w | 03¢,
1 o i T SRS TR G [ ST 0 b S B
% e T g = (translation: RFL made a 50% profit in| Y-uxis: €9%, G3.G%, G8.5%%, G.vW%
{translation: In 1905, RFL achieved business | 1905. In the following years, the profit | (translation: xis: 1905, 1906, 1907, 1908
success with a S0% profit. Over the next |increased by 5% over Y-axis: 50%, 52.5%, 55.12%, 57.88%)

X-axis: 550¢, 5508, 5904, 550t

¢ previous year. As a
three years, they increased their profit by 5% | result, the profit was 52.5% in 1906, 55.12%
in 1907, and approximately 57.88% in
1908.)

each year compared 1o the previous year.)

Simplified by annotator

11

g agafos @mifa wifie
feomE ot onm @ gEmR-onehEs
tawifis R Ao so.on oI
TITE, 9IR WG FARP! 88.98 O
[Salidzo]

(translation: The financial report of the listed
multinational company shows that in the
July-September  quarter,  sales  revenue

decreased by 10.39%%, and profit dropped by |

14.74%.)

e g
RN vt onE @, SEIR-eTeGER
e Rerw Ao so.os TR
TCIE, ATF TN FAR! 88.98 TOIT
IfS o=

(translation:The financial report of the
listed multinational company shows that in
the July-September v, sales revenue
and profit dropped

Already simplified

X-axis: e s, gt
Y-axis: 50,0 oI, 88,98 oI
(translation: X-axis: Sales Revenue, Profit
Yeaxis: 10.39%, 44.74%)

Figure 7: Test dataset annotation process.
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