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Abstract

We study the evolution of information in interactive decision making through
the lens of a stochastic multi-armed bandit problem. Focusing on a fundamental
example where a unique optimal arm outperforms the rest by a fixed margin, we
characterize the optimal success probability and mutual information over time.
Our findings reveal distinct growth phases in mutual information—initially linear,
transitioning to quadratic, and finally returning to linear—highlighting curious
behavioral differences between interactive and non-interactive environments. In
particular, we show that optimal success probability and mutual information can be
decoupled, where achieving optimal learning does not necessarily require maxi-
mizing information gain. These findings shed new light on the intricate interplay
between information and learning in interactive decision making.

1 Introduction

Consider the following instance of a stochastic multi-armed bandit problem: there are n arms in total,
where the optimal arm a* € [n] is uniformly at random, and the reward distribution of arm ¢ is

i Ber (%) ifi = a*,
Ber (%) otherwise.

ey

Here A € (0, 1] is a fixed noise parameter. In other words, the best arm a* is uniformly better than
the rest of the arms by a fixed margin A. Readers familiar with the bandit literature shall immediately
find that this is the lower bound instance for the multi-armed bandit, where it is well-known (see,
e.g., (Lattimore and Szepesvari, 2020, Chapter 15)) that the sample complexity of identifying the
best arm is © (%) In contrast, it is also a classical result (e.g., via Fano’s inequality) that in the

non-interactive setting, the sample complexity becomes © (” lﬁ% ”) . In other words, the interactive

sampling nature of multi-armed bandits offers a ©(log n) gain in the sample complexity compared
with the non-interactive sampling.

In this paper, we take a closer look into this seemingly toy example, and investigate how an interactive
procedure starts to accumulate information and identify the best arm below the sample complexity,
ie, when t < 5. Specifically, denoting by a; € [n] the action taken at time ¢ and H; =

o(ar,r{*, ..., a,ryt) the available history up to time ¢, we will study the following two quantities:
p; = supP(az1 = a*), If =supI(a*;Hy). )
Alg Alg

In other words, p} is the optimal success probability of identifying the best arm a* after ¢ rounds,
and [} is the optimal mutual information accumulated through a time horizon of ¢ rounds. Here both
supremums are taken over all possible interactive algorithms with the knowledge of n and A. In the
rest of this paper, we will be interested in the evolution of p; and I} as a function of ¢, especially
for the curious regime of a small ¢. In fact, before the learner can reliably identify the best arm a*,
the optimal information I} exhibits a nonlinear accumulation in ¢: for very small ¢ we expect little
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difference between interactive and non-interactive settings, so the heuristic from the non-interactive
. . . 2 . . . .
setting would suggest a linear scaling I} < A~ however, since the optimal bandit algorithm only

needs ¢ < 1 samples to identify the best armnreliably, we should have I} < log n for this choice of
t, which is ©(log n) larger than the non-interactive heuristic. Again, just like the ©(logn) gain in the
sample complexity under the interactive case, even in this toy example, it is unknown when and how

interactive learning departs from non-interactive learning and leads to a nonlinear learning curve.

We remark that this stylized toy example is merely used for a case study, and that we do not intend
to advocate the use of our algorithms in more general settings; they are designed specifically for
theoretical analysis. However, in this case study, we find this toy example to be sufficiently illustrative
for several interesting phenomena in interactive learning, as well as failures in existing approaches of
establishing them:

1. Understanding the true shape of learning in multi-armed bandits: The influential work (Garivier
et al., 2019) characterizes the “true shape of regret” in bandit problems, where the growth of
optimal regret progresses through three regimes: initially linear in time, then squared root in
time, and finally logarithmic in time. Building on this, we ask for the “true shape of learning”,
especially for the initial phase (or the “burn-in” period). Even in the first regime, where the
regret grows linearly, the optimal algorithm still engages in nontrivial learning, accumulating
information about the environment. Notably, interactive learning plays a pivotal role in this
initial phase, enabling a ©(logn) reduction in the sample complexity compared with the non-
interactive approaches. Therefore, characterizing the trajectories of (p}, I}), even in this toy
example, provides deeper insight into the mechanisms of bandit learning beyond regret analysis.

2. Characterization of mutual information for general interactive decision making: There have
been recent advances on the statistical complexity of general interactive decision making, most
notably the DEC (decision-estimation coefficient) framework (Foster et al., 2021, 2022, 2023).
One important remaining question in the DEC framework is to close the gap of the so-called
“estimation complexity”, which precisely corresponds to, in the multi-armed bandits problem, the
O (log n) reduction of the regret. Towards closing this general gap, the recent work (Chen et al.,
2024) develops a unified lower bound proposing to keep track of certain notions of information,
such as the mutual information; however, this work does not address the problem of how to
bound the mutual information in interactive scenarios. This task could be very challenging, as
witnessed by another recent work (Rajaraman et al., 2024) which proposes an entirely new line
of information-theoretic analysis in the special case of non-linear ridge bandits. Unfortunately,
as will be shown later, even in this toy example their tool falls short of giving the right evolution
of I} in some important regimes. Therefore, this work adds new ideas and tools to the literature
on bounding the success probability and mutual information in interactive environments.

3. Exploring the interplay between information and learning: A more interesting question is whether
the high-level proposal of using information to characterize interactive learning in (Chen et al.,
2024) could have inherent limitations. In bandit literature, an upper bound of I} is often translated
into an upper bound of p; (e.g., via Fano’s inequality). Conversely, working in the ridge bandit
setting inspired by (Lattimore and Hao, 2021; Huang et al., 2021), (Rajaraman et al., 2024)
leveraged the reverse direction, critically using an upper bound of p; to bound the information
gain I} ; — I in interactive settings. However, it is a priori unclear if some of these links could
be strictly loose, where the evolution of p; (learning) may not always align with the evolution of
I (information). For instance, the algorithms that achieve optimal learning may not accumulate
the largest amount of information. If such discrepancies arise, mutual information alone might
not suffice to establish fundamental limits of learning, and new technical tools will be called for.
Our multi-armed bandit example is very natural and exactly identifies this important separation.

Notation and terminology. Logarithms have base e. For two non-negative functions f and g, we
use f < g (or f = O(g)) to denote that f < C'g for a universal constant C' > 0; f 2 g (or f = Q(g))
means that g < f; and f < g (or f = O(g)) means f < g and g < f. For probability measures
P and Q over the same space, let TV(P,Q) = i [ |dP — dQ)| be the total variation distance,
H2(P,Q) = [(VdP — /dQ)? be the squared Hellinger distance, and KL(P||Q) = [ dPlog %
be the Kullback-Leibler divergence. For a joint distribution Pxy, let [(X;Y) = KL (Pxvy||Px Py)
be the mutual information between X and Y. For z,y € R, let x A y := min{z,y} and z V y :=
max{x, y}. Instead of calling upper and lower bounds which may cause confusion, throughout the
paper we will use “achievability” to refer to lower bounds of p; and I} via constructing explicit
algorithms, and “converse” to refer to upper bounds of p; and I; that hold for all possible algorithms.



1.1 Main results and discussions

Our main result is a complete characterization of the optimal success probability p; and the optimal
mutual information I}

Theorem 1.1. Assume 0 < A =1—Q(1). Fort > 1, we have

tA? ; 2

L iftA? <1 (th2) ﬂA Si

= A2 if1<tA2 <n, =4 35 ifl <tA glogn-
B tAllogn  yrlogn < tA2 <n

1 iftA%Z >n n
logn iftA%2 >n

3)

Furthermore, all achievablity results can be attained by Algorithm 1 in Section 2.

Remark 1.1. The same characterization also holds for the frequentist counterpart of p;, defined as
PiF = SUPal Milgs¢[n] Pax(az41 = a*). This follows from p; p < pf, and that the achievability
results in Algorithm 1 achieve a frequentist guarantee. However, the definition of the mutual
information I} does not directly extend to the frequentist setting. N

Remark 1.2. The achievability results for p; can be obtained using an algorithm which randomly
samples [tA?] arms and runs a bandit algorithm with optimal regret on them (such as the median
elimination algorithm in Even-Dar et al. (2002)). However, it is unclear whether such an algorithm
can attain the achievability results for I}'. <

In comparison, in the non-interactive case, the corresponding quantities are

2 2

PiND = - ; TN = a2 ; )
’ nlog(1l + tA2) ' n

whenever ¢ < "lg#. For completeness we include the proof of (4) in Appendix B. Comparing
(3) and (4), we see that while pt*7NI is slightly sublinear in ¢ (due to the logarithmic factor on the

denominator), p; becomes precisely linear in ¢ after exiting the easy regime p; = %L As will
become evident in our algorithm, this difference arises because, in the interactive case, the learner

can strategically sample suboptimal arms fewer times.

The evolution of information in the interactive case is more intriguing. While I ; grows linearly in

t, the growth of I} features three distinct transitions at tA? =< 1,log n, n. Intuitively, since ©(1/A?)
pulls of an arm estimate its mean reward within accuracy A with a constant probability, we define
m = tA? € [0,n] as the “effective” number of arms pulled by the algorithm. Depending on m, the
evolution of I} follows four distinct regimes:

1. First linear regime m < 1: In this early stage, the time is too limited to learn even a single
arm. The optimal strategy is to query a single arm chosen uniformly at random, making the
process non-interactive. Consequently, the growth of I} is identical in both the interactive and
non-interactive cases, exhibiting a linear dependence on ¢.

2. Quadratic regime 1 < m < logn: In this intermediate regime, the time budget suffices to
confidently learn one arm but not to achieve (1 — 1/n) confidence. Interaction now plays a
crucial role: the learner observes the arm’s performance and decides whether to keep pulling it
for more confidence or switch to a new arm. The optimal strategy is to stick with the current
arm if preliminary estimates suggest it is promising, otherwise switching to explore a different
arm. This strategy ensures that the information gain I, ; — I is proportional to the probability
of pulling the best arm, which increases with ¢ thanks to interaction. As a result, I} exhibits
quadratic growth with .

3. Second linear regime logn < m < n: In this regime, the best arm can be identified with high
confidence if pulled, and pulling it yields diminishing returns in terms of additional information.
The total information gain is determined by the probability of identifying the best arm within
the time budget, which scales as m /n and again linear in m (and ¢). Compared with the first
linear regime, the slope here benefits from an additional ©(log n) factor, for the best arm can
now provide ©(log n) bits of information once pulled, again thanks to interaction.

4. Saturation regime m > n: In the final regime, the learner can reliably identify the best arm, so the
quantity I} saturates at its maximum value O(log n), the Shannon entropy of a* ~ Unif([n]).



Finally, we examine the relationship between learning and information accumulation. A classical
inequality between p; and I; is the Fano’s inequality (Fano, 1968), which in our setting can be
expressed as

. T+ ha(p))
t= 1
ogn

. &)

where hy(p) := plog ; + (1 — p)log = is the binary entropy function. Using the upper bound
ha(p) < plog 5 + p, this simplifies to:

np
e

*

pilog — < If. (6)
From (3) and (4), it is clear that the relationship (5) (or (6)) is tight in the non-interactive case,
and in the interactive regimes where tA% = O(1) or tA? = n*(1), However, in the intermediate
regime of the interactive case where tA% > 1 and log(tA?%) = o(logn), Fano’s inequality becomes
strictly loose. This looseness is not specific to Fano’s inequality but applies more broadly to mutual
information. Notably, there exists an algorithm in this regime that achieves the optimal success
probability p; while accumulating strictly less information than I} (see Section 4.2). This indicates
that the success probability p} cannot always be inferred from mutual information alone. This
surprising observation suggests that mutual information, while powerful, may be insufficient to fully
characterize the fundamental limits of learning in interactive decision making.

The potential looseness of Fano’s inequality also introduces new challenges on the technical side. For
certain values of ¢, we require tools beyond mutual information to establish tight converse results for
py. Existing approaches fall short, particularly when aiming to prove a small success probability (see
Section 4.1). To address these gaps, we propose the following technical innovations for the converse:

1. To upper bound the success probability p}, we devise a reduction scheme which relates p} for
small ¢ to p; for large ¢, and utilize the classical result p; < 1 — ¢ for some constant value of
¢ > 0whent = 5. A noteworthy feature of this reduction is the use of the same algorithm
employed in the achievability results as a component of the reduction itself, a novel interplay
between these two facets of the analysis.

2. To upper bound the mutual information I}, for ¢t < IOAgQ” we critically leverage the upper bound
of p} (established via the aforementioned reduction) to constrain the information gain. This
presents an intriguing contrast to Fano’s inequality, where I} is typically used to upper bound
p7; here, we reverse the roles and use p; to bound I7. For large ¢ we use a simple but powerful
change-of-divergence technique to obtain the additional ©(logn) factor.

1.2 Related work

Multi-armed bandits. The multi-armed bandit problem dates back to (Robbins, 1952; Lai and

Robbins, 1985). Early algorithms like UCB and EXP3 achieved an O(\/rﬁ ) minimax regret bound,
which is tight up to logarithmic factors (Auer et al., 1995, 2002a,b). (Audibert and Bubeck, 2009)
first removed this extra logarithmic factor—the key difference between interactive and non-interactive
settings—via a new potential (INF policy) or an optimistic upper confidence bound (MOSS algorithm).
Extensions of these algorithms, such as the anytime variant (Degenne and Perchet, 2016) and best-of-
both-worlds guarantees (Zimmert and Seldin, 2019), are also available in the literature. However,
a deeper understanding of the trajectories of these algorithms in the initial learning period is still
missing, and the tight separation between non-interactive and interactive algorithms largely remains a
mystery for general decision making after a rich line of DEC developments (Foster et al., 2021, 2022,
2023; Chen et al., 2024). A similar mystery holds for the mutual information: for example, while
information-directed sampling (Russo and Van Roy, 2018) seeks to maximize the information gain in
the initial steps, its analysis critically relies on the information ratio (Russo and Van Roy, 2016) and
does not provide insights into the evolution of information.

Best arm identification. Our problem formulation in (1), modulo the specific prior a* ~ Unif([n]),
aligns with best arm identification in multi-armed bandits. Algorithms based on various principles
such as the frequentist method of UCB (Bubeck et al., 2011) and arm elimination (Audibert et al.,
2010) or the Bayesian method of knowledge gradient (Frazier and Powell, 2008) and Thompson
sampling (Russo, 2016), have been proposed for best arm identification. In particular, the asymptotic
complexity in the fixed confidence setting has been completely characterized in (Garivier and



Kaufmann, 2016), and progress has also been made on the fixed budget setting (Carpentier and
Locatelli, 2016; Kato et al., 2022; Komiyama et al., 2022). The stopping rule used in our Algorithm 1
is inspired by this body of work and relies on the sequential probability ratio test dating back to
Wald (Wald, 1945). Under our problem formulation, it is also known that the “median elimination
algorithm” in (Even-Dar et al., 2002; Mannor and Tsitsiklis, 2004) achieves the optimal sample
complexity without the log n factor. However, most existing guarantees for best arm identification are
inapplicable for small time horizons ¢ or when the error probability is 1 —o(1). For example, although
(Audibert et al., 2010) established a lower bound of exp(—(c + o(1))tA?/n) on the error probability
specialized to our setting, the o(1) factor becomes negligible only when ¢ > n?/AZ2. As another
example, the error probability upper bound exp(—(c + o(1))t/(H log n)) in the fixed budget setting
of (Komiyama et al., 2022), with H =< 3 in our setting, has an extra O(log n) factor and requires a
large t > n?. Similar requirements for large ¢ are also present in the results of (Katz-Samuels and
Jamieson, 2020; Zhao et al., 2023; Carpentier and Locatelli, 2016; Karnin et al., 2013; Atsidakou
et al., 2022). In contrast, our work establishes the tight probability of success for small ¢ < %
as well, and identifies curious phase transitions in the mutual information behind the large error
probabilities.

Feedback communication and noisy computation. The objectives of minimizing error probability
and maximizing mutual information align closely with concepts from feedback communication, a
classical topic in information theory (BurnaSev, 1980; Tatikonda and Mitter, 2008). For instance,
(Burnasev, 1980) established upper bounds on mutual information that reveal two distinct phases in
interactive environments, which parallel the “burn-in phase” and “learning phase” in our problem.
Although interactive decision making operates under a more constrained model than communication
systems—Ilearners can only pull one of 7 arms rather than utilize an arbitrary encoder—the perspective
in (Burnashev, 1976) has proven valuable in addressing recent noisy computation challenges, such
as noisy sorting (Wang et al., 2024), particularly for deriving converse results. However, unlike in
feedback communication, our multi-armed bandit problem does not always exhibit linear growth in
mutual information during the “burn-in phase”.

Our problem can also be framed as a novel noisy computation task, where the learner would like to
locate the maximum of a random permutation of ((1 4+ A)/2,(1 — A)/2,...,(1 — A)/2) through
noisy queries. Recent years have seen a resurgence of interest in such problems, revisiting classical
questions in noisy sorting (Wang et al., 2024; Gu and Xu, 2023) and the noisy computation of thresh-
old (Wang et al., 2025; Gu et al., 2025), MAX, and OR functions (Zhu et al., 2024). These works often
leverage a powerful converse technique from (Feige et al., 1994), which reduces interactive environ-
ments to a two-phase process comprising a non-interactive phase and an interactive phase that returns
the clean output. We will show in Section 4.1 that this approach does not directly succeed in our
problem. Our converse results on success probability are derived using a distinct reduction method.

Converse techniques. Beyond the techniques in (Burnasev, 1980; Feige et al., 1994) discussed
earlier, we review additional methods used to establish converse results in the statistics and bandit
literature. The most common approach for proving regret lower bounds in multi-armed bandits relies
on a change-of-measure argument (Lai and Robbins, 1985) (see also (Lattimore and Szepesvari,
2020, Chapter 15.2) for minimax lower bounds and (Simchowitz et al., 2017) for more advanced
treatments). However, as these methods are special cases of Le Cam’s two-point method, the resulting
lower bound on error probability cannot exceed 1/2 (achievable by a random coin flip). Even when
generalized to test multiple hypotheses, as we show in Section 4.1, this approach still yields a weaker

converse result p; = O(1/n + (\/t/n A (t/n))A).

Controlling mutual information can overcome the limitations of the two-point method. Despite
that early works (Agarwal et al., 2012; Raginsky and Rakhlin, 2011a,b) showed that the amount
information acquired by an interactive algorithm could be harder to quantify, this approach has
been revisited recently in the interactive framework (Rajaraman et al., 2024; Chen et al., 2024). For
instance, (Chen et al., 2024) extended the idea of (Chen et al., 2016) to develop an algorithmic version
of Fano’s inequality for interactive settings, but did not address the critical problem of bounding
mutual information. This challenging task was tackled in (Rajaraman et al., 2024) in the context
of ridge bandits using an induction argument that required the success probability at each step to
be exponentially small, allowing the application of a union bound. However, this approach fails
for multi-armed bandits, as even a random guess achieves a success probability of 2(1/n) at each
step, which is not small enough to apply union bound. This is the high-level reason why such an
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Figure 1: Dependency between different parts of our proof of Theorem 1.1. We make one node
opaque to highlight that achievability results for p} are also available in the literature (cf. Remark 1.2).

argument can only be applied for small ¢ < IOA%”; for larger ¢, a different technique—based on a

change-of-divergence argument—provides the correct upper bound on mutual information. While
conceptually simple, this method offers the first known proof (to the authors’ knowledge) of lower
bounds in multi-armed bandits using mutual information and Fano’s inequality.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, based on the sequential probability ratio
test, we introduce a simple algorithm (Algorithm 1) for identifying the best arm a*. Based on the
theory of biased random walks, we show that this algorithm achieves the claimed success probability
(in Section 2) and mutual information (in Appendix A). Section 3 establishes the converse results for
py and I}, and the proof distinguishes into the cases of large ¢ and small ¢. For large ¢, we directly
establish an upper bound of I} and apply Fano’s inequality to upper bound p;. The converse analysis
of small ¢ is more involved, where the upper bound of p;} is proven via a reduction to the case of large
t, with the help of the same algorithm in Section 2. Furthermore, this upper bound of pj is crucially
used in an information-theoretic argument to upper bound I;7. Dependency between different parts of
our proof of Theorem 1.1 is shown in Figure 1.

We provide some discussions in Section 4. Specifically, we establish the suboptimality of several
existing approaches for the converse in Section 4.1, and prove the separation between learning and
information gain in Section 4.2.

2 Achievability

In this section we show a simple algorithm can strategically sample suboptimal arms fewer times
and achieve the success probability lower bounds in Theorem 1.1. This algorithm is based on the
sequential probability ratio test for Hy : r ~ Ber (152 ) against Hy : r ~ Ber (152 ), described in
Algorithm 1.

Algorithm 1 SEQUENTIALPROBABILITYRATIOTEST(A, t, A)

1: input: action set A, number of rounds ¢, noise parameter A
2: output: an estimate of the bestarm a € A

3: Permute A uniformly at random. Relabel elements of A as 1,...,n where n = |A|.
4: 0+ —1/A s+ 0

5: fori =1ton do
6.
7
8

Xt 0
while true do
if s =t then returna = ¢

9: Pull action 7 and receive reward 7} € {0,1} '
10: X'~ X"+2r;—1,s+s+1 > Random walk for X"
11: if X* < 6 then break

12: returna = 1

Under Bernoulli rewards, the sequential probability ratio test is a biased random walk for each arm,
with bias A for the best arm and bias — A for all suboptimal arms. Algorithm 1 eliminates an arm once
its walk drops below the threshold # = —1/A, and keeps pulling the arm otherwise. The key property
of biased random walks is that, it only takes O(1/A?) steps in expectation for a suboptimal arm to
reach the threshold 6, while with (1) probability the best arm never hits 6. This is a consequence
of the following standard results on stopping times of a biased random walk (e.g., (Feller, 1970)).



Lemma 2.1 (Stopping time of biased random walk). Let § < 0 and 0 < A < 1. Let (X;)¢>0 be
a random walk starting from O with i.i.d. steps drawn from some distribution D, which is either
D_ = %61 + %6,1 orDy = %61 + %5,1. Let T € NU {+oc0} be the stopping time
for X7 < 0. Then the following statements hold:

(a) For the downward random walk D = D_, ET < —%;

-0
(b) For the upward random walk D = D1, P(T' < o0) < (L‘_—ﬁ) < exp(2A0).

Based on Lemma 2.1, we prove that Algorithm 1 achieves the success probability lower bounds in
Theorem 1.1. We restate the result here for convenience.

Theorem 2.1 (Achievability for success probability). Algorithm I achieves the success probability
bounds in Theorem 1.1.

In the remainder of this section, we prove Theorem 2.1 for ¢ < X%, as a larger ¢ only makes learning

easier. First, we restate the algorithm:

1. Permute the arms uniformly at random.

2. For each arm 7, the random walk (X;) j>o starts at 0 with steps from D__ if 4 is the best arm, and
from D_ otherwise. All walks are independent.

3. Foreach i € [n], let T; be the first time that X}, < @ = —1/A. Return arm i where i is the small-

est index such that 22:1 Ty > t. If no such 7 exists (i.e. all arms are eliminated), return arm 1.

Now let m = [0.1¢A%] < n and define three events: let & be the event that the best arm is among
the first 7 arms (after the random permutation); let & be the event that 30, ;. ;;» T3 < t, where

1* is the optimal arm after the random permutation; let &3 be the event that 75« = oco.

Clearly, when & N & N &3 holds, Algorithm 1 outputs the best arm. It remains to lower bound the
success probability P(£;NE>NE3). Clearly P(£1) = 2, and P(E5|&1) < exp(2A0) = 2 < 1/5by
Lemma 2.1. In addition, by Markov’s inequality, P(E5[€;) < 1E [Zlgigm,i;&z‘* ﬂ] <ol <01
by Lemma 2.1 and the definition of m. Therefore,

0.7 1+ tA?
P(E N €2 €0 2 Pl (1 - P(Eglen) - Fleglen) = *0 — o (2515

n

which is our target. We defer the proofs of achievability results for mutual information to Appendix A.

3 Converse
In this section, we prove converse results on p} and I} as illustrated in Figure 1.

3.1 Converse for large ¢
This section establishes the following converse results for I} and p} for large ¢.

Theorem 3.1 (Converse for large t). The following statements hold under the setting of Theorem 1.1:

A?]
(a) Foranyt > 0, we have I} < t% Alogn.

(b) Foranyt > ”Z(;), we have pF < tA? g

t ~ n

The remainder of this section is devoted to the proof of Theorem 3.1.

Mutual information. We apply a “change-of-divergence” argument to prove the converse for
1. Recall that H; denotes the history up to time ¢ and a* denotes the optimal arm. For any fixed
algorithm, we have

(&)
I(a*;Ht) = ]Ea* [KL(PH{IQ* HPHt)] < (2 + logn)]Ea" [Hz(PHda,*vPHt)]
(b

) _ _
< 2(2+logn) inf (Ea [H?* (P, o> Pr,) ] + H?* (Pw,» Pu,))
Hy

(c) _ (d) _
< 4(2 +1logn) inf E,« [H2(PHt|a*,PHt)} < 4(2 4 logn) inf E,« [KL(PH,,HPMW*)}
H

Psy t



Algorithm 2 BOOSTING(A, t, A, m, A)
1: input: action set A, number of rounds ¢, noise parameter A, boosting parameter m, an algorithm
A for best arm identification with time budget ¢
output: an estimate of the bestarm a € A
B+ 0
for i from 1 to m do
Permute A uniformly at random
Let a; < A(A,t,A) be the best arm estimate returned by algorithm A in ¢ rounds
Remove duplicate elements from B and let m’ be the remaining size
return @ = SEQUENTIALPROBABILITYRATIOTEST(B, m/ /A2, A) > Algorithm 1

R A A

where (a) uses (Yang and Barron, 1998, Lemma 4) and notes that thanks to a* ~ Unif([n]), the
density ratio of the two arguments in the KL divergence is upper bounded by n almost surely, steps
(b) and (c) use the triangle inequality and convexity of the Hellinger distance, respectively, and (d)
follows from H?(P, Q) < KL(P||Q).

Now let P4, be the dummy model where all arms have reward distribution Ber (152 ), and E be the
expectation taken with respect to P3,. By the chain rule of the KL-divergence,

B [KL (P, | Prcjar)] = B lZE[KL (mer(*52 )| per (7)) 160 - >H

i

)

< AR,

> _E[l(as = a")]

n

where the first inequality follows by the assumption that A = 1 —(1) and the second identity follows

by the symmetry between all arms for both P and a*. Combining all above, we get I} < mz%.
The other upper bound I} < H(a*) = logn is trivial.

Success probability. Suppose that ¢ > ’AL—: for some constant ¢ > 0. By the upper bound of I}
and Fano’s inequality (6), we have p} log % <I; < W%. If p; > %, then p; log % >
p; log ”% 2 cpy log n. Combining both inequalities we conclude that p; < %, and p; < 1 trivially.

3.2 Success probability for small ¢

This section establishes the converse results for p} in the entire range of ¢t < n/AZ

Theorem 3.2 (Success probability converse for small t). Under the setting of Theorem 1.1, we have
pi S HHA fort < .

The proof of Theorem 3.2 is via a reduction from the success probability lower bound for large ¢ and
the following boosting argument.

Proposition 3.1. For any integers t,m > 0 it holds that p:nt+m/A2 >1—(1—pp)m™.

Proof. Suppose A is an algorithm that achieves the optimal success probability p; using ¢ pulls. Let
Apoost be the boosting algorithm given in Algorithm 2, which runs algorithm .4 m times to obtain a
candidate action set B of size m’ < m, and then runs Algorithm 1 on the action set B. We establish
Proposition 3.1 by showing that Apost always uses at most mt + m/A? pulls and achieves success
probability 2 (1 — (1 — p;)™).

Number of pulls. Pulls are used only in Lines 6 and 9. Line 6 is executed m times and each time
uses ¢ pulls. Line 9 uses m’/A? pulls with m’ < m. Therefore the total number of pulls is at most
mt +m/A%

Success probability. Because we permute the arms uniformly at random before each call in Line 6,
the event that each call succeeds (i.e. outputs the best arm a*) are independent. Let £ be the event
that the optimal arm is in B, then P[€] > 1 — (1 — p;)™. Conditioned on &, there is a unique optimal
arm in B. By Theorem 2.1, Line 9 succeeds with probability Q2(1). Therefore the overall success



probability of Apeost is Q (1 — (1 — p5)™). =

We are now ready to prove Theorem 3.2. By Proposition 3.1, there exists ¢; > 0 such that
Protemsaz = c1(l = (1 = pf)™). By Theorem 3.1(b), for any cz > 0, there exists c3 > 0

with ng N < ¢o. Take ¢y = ¢1/2 and choose c3 accordingly.

Let m = |esn/(tA% + 1)), so that mt + m/A? < c3n/A?. By the previous paragraph, we

have 5 > p;n/AQ >ca(1->01-p)™) > (1 — e—7er:) . Solving this inequality gives that

pr < 1982 < tA’H1 egaplishing Theorem 3.2.

n b
3.3 Mutual information for small ¢
This section establishes the converse for I} when ¢t < IOA%. Note that when t > bf—Q”, the converse
result in Theorem 3.1 is already tight.

Theorem 3.3 (Mutual information converse for small t). The following statements hold under the
setting of Theorem 1.1:

2
(a) Fort < é, we have I} < %.

2,2
(b) Foré <t< IOAgQ”, we have I} < %.

The proof of Theorem 3.3 follows from Lemma 3.1 and Theorem 3.2 by a simple calculation.

Lemma 3.1. For any t, it holds that I} < A? Zi;lo 8

Proof. Given any learning algorithm, let I, = I(a*; H) be the mutual information accumulated by
this algorithm until time s. In the sequel we upper bound the information gain I, — I;_; using the
upper bounds of p} in Theorem 3.2.

By the chain rule of the mutual information, we have Iy — Is_; = I(a*;r%|Hs-1,as). By the
variational representation (e.g., (Polyanskiy and Wu, 2025, Theorem 4.1)) of the mutual information

I(X;Y|2) = ming, , Ex z [KL (Pyl)(,Znlez)], we have
Ber (1 A))}
2

e (457))

Summing over s = 1,...,t completes the proof. O

I(a*;rds

Hsil’ as) S E(a*aasyﬂsfl) |:KL (PTSSIG*7GS7H51

- E(a*,as,ﬂsfl) |:KL <B€I' (12A + A]].((Zg — CL*)> ‘

S E(a*’as’Hsfl) [Az]l(as = a*)] < Azp;—y

4 Discussions

4.1 Failure of existing approaches for converse

We comment on the failure of existing approaches in fully establishing the converse results in
Theorem 1.1. The standard bandit lower bound (see, e.g. (Lattimore and Szepesvari, 2020, Chapter
15.2)) uses binary hypothesis testing arguments, and a generalization to the uniform prior a* ~
Unif([n]) (a variant of (Gao et al., 2019, Lemma 3)) reads as

1 IR
— % 3 E \V4 .
P(at+1 =a ) S E + lﬁf E £ T (PQ,PZ). (7)

Here IP; denotes the distribution of #, under a* = 7, and Py is any reference distribution. By choosing

Py to be the case where all reward distributions are Ber (%), it is easy to see that (7) gives the
tight bound p; < n~! fort = 0 and p; = 1 — Q(1) for t < 3. However, for intermediate values of

t, (7) only gives the following lower bound, which does not exhibit the correct scaling on A.

Proposition 4.1. For any t < £, there exists a learner such that infp, = 3" | TV(Py,P;) =

o((:1)3)



Next, we consider the two-phase approach in (Feige et al., 1994), whose failure is more delicate.
Specialized to our problem, the idea in (Feige et al., 1994) is to consider a stronger model with two
phases: 1) in the non-interactive phase, each arm is pulled 1/A? times; 2) in the interactive case,
the learner can query m = [tA?] arms based on the outcome from the non-interactive phase, and an
oracle gives clean answers to the learner about the true mean rewards of the queried arms. Clearly this
model can simulate our original model, so a converse on this stronger model taking the form p; < ™
(i.e. the second phase is still a “random guess”) would establish the converse in the original model.
However, the following result shows that the learner can perform strictly better under the new model.

Proposition 4.2. Fort = o( %) and A = o \/liﬂ)’ there exists a learner under the two-phase

model which achieves a success probability 2, % exp (Q (. /log m%)) =w (g)

n

Finally we discuss the inductive proof of the converse result of (Rajaraman et al., 2024), which
inspires our argument in Lemma 3.1. Its failure is straightforward: each inductive step of (Rajaraman
et al., 2024) derives an upper bound of p; from the current upper bound of I}, which in view of the
following section is inherently loose for tA2? € w(1) N n°M),

4.2 Optimal algorithm with suboptimal mutual information

In the introduction, by comparing Theorem 1.1 with (5) and (6), we see that Fano’s inequality does
not give a tight relationship between p; and I; when tA? € w(1) N n°M). One may wonder if some
relationship between p; and I, other than Fano’s inequality, turns out to be tight for any learning
algorithm. The answer turns out to be negative, as shown by the following result where an optimal
algorithm may achieve suboptimal mutual information.

Proposition 4.3. There exists a learner achieving the optimal success probability © (py) for t < 3z,
but a suboptimal mutual information O (%) =o(I}) iftA? € w(1) Nne),

Proposition 4.3 implies that a generic relationship p; < f(I;) that holds for any algorithm cannot be
used to establish the tight converse for the success probability. The new algorithm is described in
Algorithm 3 in the Appendix; the main difference from Algorithm 1 is an upper threshold 8,- > 0 for
the random walks such that the best arm is pulled for fewer times (i.e. early stopping), ensuring the
same success probability but providing less information.

4.3 Fixed time budget vs stopping time

Another interesting question is how our results change when the fixed time budget ¢ is relaxed to a
stopping time with expectation at most ¢. Let p} i, and I}, be the corresponding quantities when the
algorithm can stop at such a stopping time, clearly p; y > p; and I}’ > I;". The following result
gives a tight characterization for pj  and an achievability result for I, e

Proposition 4.4. Fort < 35, it holds that p; < # and It 2 %.

Comparing Proposition 4.4 with Theorem 1.1, one observes that the elbows for the optimal mutual
information evaporate upon allowing a random stopping time. Intuitively, by randomization a learner
can achieve the upper convex envelope of I, so that I}, exhibits a fast linear growth even at the
very beginning. We conjecture that the achievability result for I}y in Proposition 4.4 is tight; see
Appendix C.5 for more discussions.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately state the scope of the paper and the
main contribution of the paper (Theorem 1.1).

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: This is a theoretical paper with explicit settings. The limitations are specified
in the discussion of motivation (Section 1) and the discussion section (Section 4).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate “Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the theorems, formulas, and proofs in the paper should be numbered
and cross-referenced, and complete proofs are provided in either the main paper or the
supplemental material.

Guidelines:
* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: This is a theoretical paper and does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: This is a theoretical paper and does not include experiments requiring code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: This is a theoretical paper and does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: This is a theoretical paper and does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: This is a theoretical paper and does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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10.

11.

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This is a theoretical paper and there is no societal impact.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This is a theoretical paper and there is no such risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
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that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This is a theoretical paper and does not use existing assets.
Guidelines:
* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This is a theoretical paper and does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This is a theoretical paper and does not involve crowdsourcing nor research
with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This is a theoretical paper and does not involve crowdsourcing nor research
with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This is a theoretical paper and does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Achievability for Mutual Information

In this section we prove that Algorithm 1 achieves the mutual information lower bounds in Theo-
rem 1.1. We restate the result here for convenience.

Theorem A.1 (Achievability for mutual information). Under the setting of Theorem 1.1, for t < 7,
Algorithm I achieves mutual information

(a) Q (%) when 0 < t < ﬁ;

= 5

(b) Q( ) when —=

2
(c) Q (%) when log” <t< s

Because the optimal arm is chosen uniformly at random, the random permutation step in Algorithm 1
does not affect the mutual information achieved by the algorithm, and we remove it in the proof.

A.1 Proof of (a)

By chain rule of mutual information,

I(aH) = Y T(a5ry Haasyn) . ®)

0<s<t—1
We prove that for s < x5, we have I(a*;r0 7' [Hs, as41) = Q (%2), with a hidden constant
independent of s. For a fixed s < p, define £ as the following event:
1. The first s pulls are to the same arm (i.e.,a; = --- = ags = 1).
2. =% < X! <sA+ £, where X! denotes the value of X! at time s.
We prove that
B(E) = Q(1), ©)

A2
I (a ,rgi11|7{s,as+175) =0Q <> . (10)

n

Since the event £ can be determined by H,, (9) and (10) imply that I (a*; 7054 [Hs, as41) =
Q (%), which implies the desired lower bound by (8).

Proof of (9). Let (Z;);>0 be an upward random walk starting from 0 with steps drawn from
D, = %5 + Mé_l. Let (W;);>0 be a downward random walk starting from 0 with steps

drawn from D_ = %51 + %5,1. Conditioned on a* = 1 (resp. a* # 1), the trajectory of
the X variable can be coupled with (Z;);>0 (resp. (W;);>0) as long as it has not reached below
0=—1.

A

Let us first prove P(&la* = 1) = Q(1). Let &; denote the event that ming<,<s Z, > —% and
Zs < sA+ %, thenP(€la* = 1) = P(£,). By Lemma 2.1(b), P(ming<y<s Zy, > —%) > 1—e~?
By Hoeffding’s inequality, P (Z, > sA + %) < exp(—%) < e~2. By union bound, P(&£,) >
122 = Q1)

Let us now transfer the above bound to a* # 1. Let £_ denote the event that ming<y<s Wy > *%

and W, < sA + 12, Then P(€]a* # 1) = P(E-). Let (20, .., z;) be any trajectory of (Z;);>0
satisfying £ . Then

1+A> (s4zs5)/2 (1_A>(szs)/2
2 b

P((Zo,.--,Zs) = (20, -, 25)) = (2
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and

1 _|_A (s—2s)/2 1—A (s+2s)/2
P((WO,...,WS):(zo,...,zs)):( ) <2>
P

(Zos .-y Zs) = (205 -+ %)) (1;2)

Since for A =1 — Q(1),

Gli) = ep(-0(82,) = exp(~0(s4%)) = (1),

a change of measure gives that
P(E_) > P(EL) - Q1) = Q(1).
Consequently, P(£) > min {P(&4),P(E2)} = Q(1).
Proof of (10). In the sequel we condition on £. Then the next pull the algorithm makes will be to

: _ . Pla*=1|Hs,a541,E) _ (1+A VX1 _ ok imnl
arm 1, 1.€., Q541 = 1. For any 1 # 1 we have m = (m) = @(1), which lmplles

that P(a* = 1|, as41,E) = O (). Therefore,

a 1+ A
]P(rsjiil = 1|H87as+1757a* = 1) = +T7
st1 1+ A . 1-A .
P(Ts;iji = 1|H5‘va5+178) = TP(CL = 1|H3aas+1a5) + TP(CL 7é 1|Hs,(15+1,8)
1-A A
2.0 ()
2 n

It is then clear that

KL (Pa

» P a,
"ﬂsi;rl ‘Hsvas+17£7a*:1 || 7'514{1 |H87as+l €

= Q(A?%).
Finally,

I(a*; 74 M, agi1,E) > P(a* = 1)KL (P_w

- Tst1

_ AN (N) ,

=1||P7«:5

[Hs,as41,E,a* 11|H37a3+1,€
+

n n

A.2  Proof of (b)
Ift < % for some absolute constant C' < oo to be chosen later, then this follows from (a) by

t>ty = Lﬁj and the monotonicity of mutual information. In the following we assume that ¢ > %,
and define a variable X measurable with respect to a* and a variable Y measurable with respect to
‘H:. By the data processing inequality, we have I(a*; H;) > I(X;Y). So it suffices to prove the
desired lower bounds for I(X;Y).

Let X = 1{a* € [m]}, with m := [0.1¢A?]. Let Y be the indicator for the following event: the
algorithm pulls at most m arms, and the random walk satisfies X¢ > 0.1tA for the action @ returned
by the algorithm. We will prove the following estimates:

PY = 1|X = 1) = Q(1), (11
PY =1X=1) _,

Proof of (11). The proof is a modification of the proof of Theorem 2.1. For k € [m — 1], let
(W});j>0 be m — 1 independent downward random walks. Let (Z;)>0 be an upward random walk.

Conditioned on X = 1, we can couple the m — 1 bad arm iterations with Wt ... ,W™ 1 and the
best arm iteration with Z.
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Let T, be the first time that W* reaches 8 = —1/A, and & be the event that Zke[mq] T, <0.2t. By
Lemma 2.1(a) and the same Markov’s inequality in the proof of Theorem 2.1, we have P(&;) > 0.5.

Let & be the event that ming<<¢ Z; > —%. By Lemma 2.1(b), P(£2) > 1 — exp(—2). Let &3 be
the event that Zo.s; > 0.3tA. By Hoeffding’s inequality, P(£3) > 1 — exp (—(0.5tA)?/(2t)) >
1 — exp (—C/8), which is > 0.9 if we take C = O(1) large enough. Let & be the event that
mino,gtgjgt(Zj — Z()‘gt) > —0.2tA. By Lemma Zl(b), P((€4) > 1 - exp(—2 . 0.2tA2) >
1 — exp(—0.4C"), which is > 0.9 if we take C' = O(1) large enough. Because &, &3, £, are all
monotone events in the steps of (Z;);>0, we have P(E, N E3 N Ey) > P(E)P(E3)P(Es) = Q(1).
Note that &3 N &, implies that ming g;<j<¢ Z; > 0.1¢tA.

Via the coupling between the algorithm and the random walks (Wf)jzo and (Z;);>0, when
&1,...,E all happen, we have Y = 1. Therefore P(Y = 1| X = 1) > P(&)P(E2NEsNEy) = Q(1).

Proof of (12). Fix a history H; under which Y = 1. Let s denote the number of pulls to arm @, then

. - (s+X)/2 11 p\(s—X7)/2 X7
P(Hy|a” = a) = (1—§A) _ S 2A) = 1+4 > exp (QAXE) > exp(0.2tA?%)
P(H|X = 0) (1—A)(S+XQ)/2 (1+A)(S*XQ)/2 1-A - - ’ '
2 2

Therefore,

P(H X =1) _ LP(Hia* =a) _ exp(0.2tA?) )

> > > 0.1tA%).
PHIX =0) = PRLIX =0) = fo.ataz = Pl )

Finishing the proof. Let us prove KL(Py|x—1||Py) = Q(tA?) using (11) and (12).
First, we have

my B(Y =1]X =0)
(-9 sy =ix =1

+ (1 - %) exp(—Q(tA2))

< 2max {%, eXp(—Q(tAz))} .

n

In addition, it holds trivially that

P(Y =0/X=1) .
= = — > > - .
P(Y =0|X =1)log P =0) > 0131195121x10g(x) > -1
Combining the above displays, we have
PY=1X=1 PY =0X=1
n
> - (mi = 230 _
>Q(1) (mln {log m,Q(tA )} log 2) 1

= Q(tA?),

where the last step follows from tA%? > C for a large enough constant C, and that log =
Q(logn) = Q(tA?) by our assumption of tA? < log n. Finally,

I(X:Y) 2 POX = DKL(Pyxoi|[Py) = & - Q(tA%) = Q(2AY),

A.3 Proof of (¢)

In fact, the only place where we used the assumption tA? < logn in the proof of (b) is to ensure
that log 2 = Q(¢tA?) for m = [0.1¢A?]. Consequently, for logn < tA? < y/n, the argument in
the proof of (b) now gives

KL(Py|x=1[Py) = Qlogn),
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so that

tA?]
I(@*Hy) > 1(X:Y) = B(X = DKL(Pyjx=i|[Py) = = - Q(logn) = Q (ng”) ,
which is the desired result of (c). When y/n < tA? < n, we recall the lower bound of the success

probability p; and Fano’s inequality in (6) to get

AQ A2 A21
I(a*; ) = prlog = = © <t10gQ (t» —0 (togn) ’
& n e

n

which is again the desired result of (c).

B Non-Interactive Case
In this section we prove (4) for non-interactive algorithms, restated as follows for ¢ < "IAO#:

tA? tA?

*

NS e I < —.
Pt.N1 nlog(1l + tA2)’ £,NI n

Achievability for success probability. A non-interactive algorithm is as follows. Pick m € [n] as
the largest integer solution to

4mlogm tA?
—— <t thatm = Q| ————— | .
Az = soham (log(1+tA2))
The learner randomly permutes the action set [n], pulls each of the first m arms 412%”’ times, and
outputs the arm with the largest average reward. By the definition of m, this algorithm runs in at
most ¢ rounds. With probability %, the best arm a* is one of the first 7 arms. Conditioned on that,
the algorithm correctly outputs the best arm a* with probability at least 1 — (m — 1)p by the union

bound, where p is the probability that a Bin (4 lz%m, %) random variable is less than or equal to

an independent Bin (4 lzggm, ﬂ) random variable. By Hoeffding’s inequality, we have

2

m2

A72 4logm\ 1
2 A2 )

p < exp <
Therefore, the overall success probability of this algorithm is at least
(1) g )
n m 4n nlog(l + tA2)
Achievability for mutual information. The above algorithm also attains the optimal mutual

information. For tA? > C with a large enough constant C' = O(1), note that Fano’s inequality (6)
gives

x nPi NI tA? tA? 1A%
[0 M) > poaalog TN _q (A oA ) g :
(™3 He) = prvilog e <nlog(1 +1A?) 8 (log(l +1A2) "

For tA? < 1, note that m = 1 holds in the above algorithm, so it simply pulls a uniformly
random arm (say arm 1) for ¢ times. Then the scenario is precisely the same as Appendix A.l,
where a; = --- = a; = 1 always holds, and one can regard the auxiliary random walk X!
as being recorded during the execution of the algorithm. Therefore, Appendix A.1 implies that
Ia*;rii [ Hs, ass1) = Q(%z) for any s < -z, with the hidden constant independent of s. By the

chain rule, I(a*; H;) = Q(%) forall t < é_

Finally, for the case ﬁ <t< %, we simply use the monotonicity of mutual information to obtain

1 A2
I(a®Hy) > I(a™; Hyyaz) = Q (n) =9 <t> ;

n

as claimed.
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Converse for mutual information. Suppose a non-interactive algorithm takes actions aq, . . ., a;.

Let r{*,...,r{* be the corresponding rewards. Because I(a*; H;) = Eq, o, L(a*; Hilan, ..., ar),
we can without loss of generality assume that a;,...,a; are deterministic. Then
(a1,r{Y), ..., (at,ry*) are independent conditioned on a*. So
t
i He) SZ ) =tl(a*;r{t).

By Theorem 3.3(a), we have I(a*;7{') = O (%) We thus conclude that I}y S 1A%

n

Converse for success probability. By the converse for mutual information and Fano’s inequality
(6), we have

np; N1 2
(npi n1) log —— < nlfy; = O(LA®).

. .. . . A2
Solving this inequality gives p; < m.

C Deferred Proofs in Section 4 and More Discussions

C.1 Proof of Proposition 4.1

Consider the sampling strategy where each action is pulled for ¢/n times (for t < n we simply pull
each of the first £ arms once). If £ < n, then for any P; and IP;, by data-processing inequality,

1-A 1+A
TV(P;,P;) > TV (Ber (2) , Ber (Z)) -1(i or j is pulled)

= A - 1(iorjis pulled).

For any ¢ and 7 that are pulled, we have by the triangle inequality that for any reference distribution
Po,

TV(Po, ;) + TV (Py, P;) > TV(P;, B;) = A.

This shows that
1 tA
— f— TV(P ) > —4+Ql— .
n +1111’}o n Z 0, Fi) 2 n ( n )

If t > n, without loss of generality we assume that ¢/n is an integer. For any P; and P;, by
data-processing inequality,

1-A 1+A A?
TV(P;, P;) > TV(Bin( — ) Bm(E %)) > A%
n

Here the last inequality uses the TV lower bound for two binomial distributions in Lemma C.2, whose

proof is deferred to the end of this section. By the triangle inequality, we have that for any reference
distribution Py,

A2

n

TV(Py,P;) + TV(Py, P;) > TV(P;, P;) >

Finally, this shows that for any choice of reference model

1 1 tA?
— f— TV (P > —+Q — .
+1n Z V(Po, )fn-i- ( n)

Combining the above two cases completes the proof of Proposition 4.1.

To complete this section, we include some useful results, and the proof of (7) for completeness.

k—Vk k+VE 2k
Lemma C.1. Forany k > land "5~ < ! < +T we have ( ) > IV
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Proof. We have
((k+\%)/2) _ \/f—f k/2—1
(kl;Q) i=1 k/2+ \/%/2 —

Vk/2
V)2
}]1 <1_ k/2+\/E/2—z'>

- < k/2+ \f/2 —i 2
where we have used the simple inequality H:L:l(l —a;)) >1->" a;fora,...,a, € (0,1).
Thus, we obtain
(i voe) 2 3(02) = 2
Z a 2 D)
(k+Vk)/2) ~2\k/2) T 4k
where the last step follows from Stirling’s approximation. O

Lemma C.2. Forany 0 < A = 1 — Q(1), for any integer k > 1 such that kA? < 1, we have
TV (Bin(k, 552 ), Bin(k, 252 )) > VEA2, where Bin(k, p) denotes the binomial distribution with
parameter k and p.

Proof. By Kelbert (2023, Proposition 6), we have
1— A 1 A (1+A)/2
TV (Bin(k, 7) Bin(k, +)) = k/ P(Sg_1(u) =£—1)du
2 2 (1—A)/2

where S;,_1(u) ~ Bin(k — 1, u) and £ is in the interval [k(1 — A)/2, k(1 + A)/2]. By Lemma C.1,
we have forany u € [(1 — A)/2,(1+ A)/2]and £ € [k(1 — A)/2,k(1+ A)/2],

1 1
P(Sp_1(u) =€ —1) > —=(1 — A)FTIFRA/2(1 p AYR1-RA/2 >
(Spa(w) =0 =1) = (1= 4) (1+4) 2
In turn, we have shown
1—A 14+ A (1+4A)/2
™V (Bin(k7 —), Bin(k, +)> =k P(Sk—1(u) =¢—1)du
2 2 (1—A)/2
1
>k-A— =VEAZ2,
~ vk
This concludes our proof. O

Proof of (7). This is essentially (Gao et al., 2019, Lemma 3) applied to the star graph with center
Py. For any fixed distribution Py, we have

n

1 n
Plai41 =a*) = - Z]Pi(at-&-l =a;) < — Z (Po(ai+1 = a;) + TV(Py, P;))

=1 =
—l+l§ TV (P, P;)
_n n,: 0,14/

Then, by taking infimum over the distribution [Py, we obtain the desired result.

C.2  Proof of Proposition 4.2

Consider the following learner under the two-phase model: The learner computes the total reward for
each arm in the first phase, and then queries the m = [tA?] arms with the highest total reward in the
interactive phase. W.l.0.g., assume a* = n and that the total rewards for each arm are Ry, ..., R,,.
Clearly the learner succeeds if I, is among the largest m numbers in R, ..., R,.
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Define the threshold ©* > 0 as the solution to

2 *exp< A2KL(B (_;*A)HBer(l_;A))> - (13)

14+ u

By Pinsker’s inequality, we see from (13) that u* = O(y/log *). As A = o( \/1iﬁ)’ we have
u*A = 0(1) and therefore

1—

KL(Ber( *A)HBer(l ;A)) = (u* +1)2A2,

from which we readily conclude from (13) that u* = ©(/log 7-). In addition, since m = o(n) and

1
A = o ). for large enough n we have 2 < u* < 5.

lon —

Next we invoke accurate tail estimates for the binomial distribution in Lemma C.3. Since R; ~

Bin(25, 152 ) for any i € [n — 1], the upper bound in Lemma C.3 gives
1+u*A m .
PR, > ———) < —, —1].
(Riz =g )s5, i€h-1
Since Ry, - - -, R, are independent, the Chernoff bound gives

1 *A
}P’( There are more than m — 1 suboptimal arms with total rewards larger than % )

=:£

n—1
1 1+u*A m e\m/2
(nlZ (Rl_ 2A2 )_n1>_(4> (1)

i=1

This implies that P(£¢) = Q(1). Moreover, by the lower bound in Lemma C.3, we have

IP’(R,L > 1+“*A) > 1 *exp< ! KL(Ber(IQU*A)HBer(lA))).

2A2 14w A2 2
By simple algebra,

1

KL(Ber(%A) -4

2

1+A

l—u*A ‘

H Ber( )) = KL(Ber(

< KL ( Ber(

‘ Ber(

1— *A
7“ HBer

This, in turn, gives us

1+u*A 1 1 1—u*A 1+A .
> > - e el N IR
]P’(Rn_ i >N — exp< AzKL(Ber( : )HBer( . ))> e

W m

4n
Altogether, by independence of £¢ and R,,, we have shown that

1+u A tA2 n tA?
c >7 > _ — _—
> (5 and R, SAZ > - exp(Q( logt 2>) w( - >,

where we recall that u* = ©(/log - ). This concludes our proof.

Lemma C.3. Let A € (0, 1], and u € [2, 55 ]. For X ~ Bin(Z5,152) and Y ~ Bin(Z5, 132), it
holds that

P(X > i;gi) < 1_13 exp(—?KL(Ber( 18)|| Ber(1£2)))

P(Y > 522) > - exp(— 2z KL(Ber (142 ) | Ber(152)))

Proof. By (Zhu et al., 2022, Theorem 2.1 and 2.2), we have

1+uA\  4AL(Z, L, 58) 1 —uA 1+A
P(Xz SA? )S ) exp( EKL(B( 5 )HBer( )))
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where the function L(k, z, p) is defined as

z+1—kp+/(kp—x+1)2+4(1 - p)x

L(k,x,p) :== 5
. 21— p)e
kp+1—a+4+/(kp+1—2)2+4(1—-p)z
We thus estimate
<1l—uA1+A>:1+ 21“255
27 2
(1—A)(1—uA)
<1+ .
247 (35%)
1+ A) (1 4ud) 1
 2A(1+w) A(l+u)’

where the last step uses (1 + A)(1 4+ uA) < 2. 3 < 2. Thus combining with the assumption that

u<2A,wehave
1+uA\ _ 4AL(Z, L4, 528) 1 —uA 1+A
> <

P(X— A2 >— or(l—wehz) T AQKL(Ber( 2 )HBer( 2 )

< 1_|2_uexp<—A12KL<Ber(1 _2UA)H Ber(1 —; A)))

as desired. Similarly, we have for the other side by (Zhu et al., 2022, Theorem 2.2),

—ulA 1-A _
P(Yz 1—|—uA> > 2AL( Az, 5528, 15 )exp< fKL<Ber( uA HBer 1 A)))

2A2 8(1 — u2A?) A2 2
We lower bound the function L as
1+A)(1—uA
S L 1-ud oAy %
A2’ 2A2 7 9

u 1 u— 1 (1+A)(1—uA)
1+ %32+ \/ 14 u5l)? 4 R0 —ud)
> (1+A)(11_UA) .1

AZ(H) Al +u)

Thus, we have

1+ uA 2AL( 2, 48, 152) 1 1 —uA 1-A
> N
[P(Y_ )N exp A2KL(Ber( 5 )HBer( 5 ))

242 8(1 — u2A?)
1 1 1—uA 1-A
2 1+uexp(—A2KL(Ber( 5 )HBer( 5 )))
This concludes our proof. O

C.3 Proof of Proposition 4.3

We present an algorithm (cf. Algorithm 3) that achieves an optimal success probability but suboptimal

N aE=

mutual information when ¢ €

Success probability. The proof is a modification of the proof of Theorem 2.1. The main difference
between Algorithm 3 and Algorithm 1 is that in addition to the lower threshold 6;, we now have
an upper threshold #,. When the random walk for an arm reaches 6,.,, we immediately return it
as our estimate for the best arm instead of continuing pulling it. Another minor difference is that,
Algorithm 3 only pulls the first w := [tA2] arms, even if the time budget has not been exhausted.

By the same reasoning as the proof of Theorem 2.1, Algorithm 3 can be restated as follows.
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Algorithm 3 MODIFIEDSEQUENTIALPROBABILITYRATIOTEST(A, ¢, A)
1: input: action set A, number of rounds ¢, noise parameter A

2: output: an estimate of the bestarm a € A
3: Permute A uniformly at random. Relabel elements of A as 1,...,n where n = | A|.
4: w <+ [tA%], 0, + —1/A, 0, « OIO%K’A,S%O
5: fori=1towdo > Only explores the first w arms
6: X'+ 0
7 while true do
8: if s =t thenreturna = ¢
9: Pull action i and receive reward r} € {0, 1}
10: Xl Xig2ri—1,s¢s5+1
11: if X* > 6, then return @ = i > Early stops for a promising estimate
12: if X* < 6, then break

13: returna = 1

1. Permute the arms uniformly at random.

2. For each arm ¢, if arm ¢ is the best arm, let (X ) j>0 be the upward random walk (starting

from 0 with steps drawn from D, ); otherwise let (X*);>¢ be the downward random walk
(starting from 0 with steps drawn from D_). All these random walks are independent.

3. Let T be the first time that X i, < @; and U; be the first time that X} U, = 0,. Let i be the
smallest index such that ), €[i] Tk > t and j be the smallest index such that U; < oo. If
either ¢ or j exists, return arm min{4, j }. Otherwise return arm 1.

Let m = [0. 1tA21 Because ¢t € A(‘z) N ”Az , we have m € w(1) Nn°W), Let & be the event
that the best arm is among the first m arms (after random permutation). Let & be the event that
2icim iy Ii < t, where ¢* is the optimal arm after the random permutation. Let &3 be the
event that U; = oo for i € [m]\{i*}. Let &4 be the event that Tj» = co. If & NENE3NEy
happens, then the algorithm returns the correct answer after ¢ rounds. In the following, we prove that
]P)(gl N&ENEN 54) =0 (ﬂ)

n

Clearly, P(€;) = . By the same proof as Theorem 2.1, we have P(£;[&;)
1 — e~2. It remains to consider &3. By Lemma 2.1(b), for i # i*, P(U; < o)
w := [tA?]. By a union bound, P(£5|&;) < ™=1 < 0.1. Therefore

Z 0.9 and P(&\Sl)
<(

—2) "= E’ with

P(ENENENEL) > P(E) (1 — P(ESIE) — P(ESIE) — P(ESI&1)) = Q (@) .

This completes the proof.

Mutual information. The analysis relies on an explicit expression for the posterior distribution
P,+ |3, of the optimal arm given observations. Given H;, let s; denote the number of pulls to arm ¢

and let ¢; denote the value of X* when the algorithm returns, for each i € [n]. Then we have

]P(Ht |a* = Z)

- H 1—A (s5+c;)/2 1+A (s5—c;)/2 1+ A (sitci)/2 1—A (si—ci)/2
ol L2 2 2 2

J€mNi}
1+ ANY log LTA
X 1—A = exp Czogl*A .

By Bayes’ theorem, the posterior distribution P~ |4, satisfies

. 1+A
Pirjp, (1) oc exp (ci log T A) . (14)

In particular, the posterior distribution depends only on ¢;’s, but not on s;’s.
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Let ¢ be the last arm pulled by the algorithm (before it returns). Let U C [n] be the set of arms that
were pulled, excluding ig. Let V' C [n] be the set of arms that were not pulled. Note that |U| < w —1
and [n] = U UV U {ig}. Next we compute the posterior distribution Py« 5, based on (14). For
i € U, we have ¢; = |6;], and

exp (ci log 1 i 2) — exp (Lelj log 1 i i) — exp (B(1)) = O(1).

In the middle step we have used the assumption A = 1 — Q(1). For ¢ € V, we simply have ¢; = 0.
For the arm g, we have 0; < ¢;, < [6,], so

1+ A 1+ A 1+ A
Q1) = exp (Cio log li-A> < exp ([9,.] log 1 i_ A) < exp <logw + log . i_ A) = O(w).

Consequently, according to (14), the posterior distribution of a* given H; is

P (g a b 1 1)
a*|Hy — Z7"'aZ7 Zaza"'aZ ’
—_— N —
armsinU  armig armsin V
where a = exp (LG;J log %) =0O(1),b=exp (cio log %) € Q(1) N O(w), and
Z=ka+b+(n—k—-1)

is the normalizing factor, with k := |U| < w — 1.
By the above expression of P+, we have
b

a na nb n
— log — + = log — —k—1)log =
ZogZ+ZogZ+(n )ogZ

b
zlog% —I—Icgloga—k Elogb

KL (Pye 3, [[Unif ([n))) = &

Z
Z
< ‘ 3 1‘ N kaloga + blogb
n A
< kla — 1|+ [b—1] N kaloga + blogb
- n Z
Sleogw7

n
so that

I(a*: Hy) = Ex, [KL (P, [Unif(n]))] = O (

n n

wlogw> 0 (tA2 log(tAZ))

which is the claimed result.

C4 Proof of Proposition 4.4

Achievability. We run Algorithm 1 with { rounds with probability % and return a uniformly

random arm otherwise. The expected number of pulls is <7 - % = t. When the former happens,
we get (1) success probability and 2(logn) mutual information by Theorem 1.1. When the
latter happens, we get % success probability and 0 mutual information. So the expected success
probability is €2 ( % + % (1 — %)) =Q (max { %, %}) and the expected mutual information
is 0 (tA2 logn)'

Converse for success probability. By Theorem 1.1, there exists ¢ > 0 such that any algorithm

that always makes at most 35 pulls has success probability at most 0.1. Now suppose we have an

algorithm A that makes 0&3" queries in expectation. By Markov’s inequality, the probability that

A makes more than {5 queries is at most 0.1. Let A’ be the algorithm that runs .A, but stops and

returns a uniformly random arm when A is about to make more than {5 queries. Then A’ always

makes at most <% queries, thus has success probability at most 0.1. By union bound, .4 has success

A2
probability at most 0.2. We have proved that p; i < 0.2 for any algorithm that makes at most 0&3”

queries in expectation. The rest of the proof uses the boosting argument in Section 3.2 and is omitted.
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C.5 A conjecture for the stopping time setting

We conjecture that our achievability result for I, in Proposition 4.4 is tight (i.e., Ij'gy < M)
and leave this as an open problem.

Using the randomization argument in the above proof, one can show that 1 +17 i 1s a non-increasing
function in ¢. Therefore, our conjecture is equivalent to that lim;_,q+ ;I tE < w

Let us briefly discuss the difficulty in proving a tight converse for I} . The most natural idea is to
adapt our proof of Theorem 3.1(a) to the stopping time setting. Durlng the proof, we need to upper
bound infp_ Eq« [KL(Ps,||P3,|q- )] for a model Py, of our choice. For the fixed time budget

He

case, we choose Py, to be the dummy model where all arms have reward distribution Ber( 1 QA .
However, for the stopping time case, it is not guaranteed that the expected number of pulls under
this dummy model is still at most ¢. In fact, there exist algorithms that have expected number of
pulls ¢ under the actual model, but have infinite expected number of pulls under the dummy model.
Therefore, it is unclear how to adapt the proof of Theorem 3.1(a) to the stopping time case.
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