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ABSTRACT

Understanding fine-grained temporal dynamics is crucial for multimodal video
comprehension and generation. Due to the lack of fine-grained temporal annota-
tions, existing video benchmarks mostly resemble static image benchmarks and
are insufficient at evaluating models for temporal understanding. In this paper,
we introduce TemporalBench, a benchmark dedicated to evaluating fine-grained
temporal understanding in videos. TemporalBench consists of ∼15K video
question-answer pairs, derived from ∼2K high-quality human annotations detail-
ing the temporal dynamics. As a result, our benchmark provides a unique testbed
for evaluating various temporal understanding and reasoning abilities such as ac-
tion frequency, motion magnitude, event order, etc. Moreover, it enables evalu-
ations on various tasks such as both short and long video understanding, as well
as different models including multimodal embedding models and text generation
models. Furthermore, we notice a critical pitfall for multi-choice QA where LLMs
can detect the subtle changes in negative captions and find a “centralized” descrip-
tion as a cue for its prediction, and we propose Multiple Binary Accuracy (MBA),
a new metric for dense temporal understanding, to correct such bias. Results show
that state-of-the-art models like Gemini-2.5-Pro achieve only 43.6% question an-
swering accuracy on TemporalBench short video QA, demonstrating a significant
gap (∼ 24%) between humans and AI in temporal understanding. We hope that
TemporalBench can foster research on improving models’ temporal reasoning ca-
pabilities. Both dataset and code will be available.

1 INTRODUCTION

Videos capture the temporal evolution of visual scenes through sequences of frames. This temporal
dimension is fundamental to video understanding—distinguishing it from static image comprehen-
sion. Yet recent evaluations reveal a surprising trend: vision-language models trained solely on
images often match or exceed the performance of video models on popular benchmarks (Xu et al.,
2016; Jang et al., 2017). Even more striking, models processing just a single frame can achieve
competitive accuracy on tasks ostensibly requiring temporal reasoning (Wu, 2024; Kim et al., 2024).
This single-frame bias suggests that existing benchmarks fail to genuinely evaluate temporal under-
standing.

The root cause lies in the coarse-grained nature of current video annotations. Consider a typical
question-answer pair: “What is the person doing?” with answer “cooking.” Such descriptions cap-
ture only high-level semantics that are often visible in any individual frame. The temporal dynam-
ics—how the cooking unfolds, the sequence of actions, the precise manipulations—remain unanno-
tated. Without these fine-grained temporal details, benchmarks reduce to static scene recognition
tasks where temporal reasoning becomes optional rather than essential.

This limitation has profound implications. Models achieve high scores without learning to process
temporal information, creating an illusion of video understanding. The benchmarks meant to drive
progress in temporal reasoning instead reward static visual recognition. The gap between benchmark
performance and genuine temporal comprehension remains unmeasured and unaddressed.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A woman turns and transfers the mug from 
her right hand to left. She pushes her glasses 
with her right hand. She drinks from the cup 
with her left hand and puts her right hand on 
her waist. And she turns her head to the left 
and glances at the wall.

person holding a cup of water than drinks 
from it.

Our Detailed Caption

Water ➔ Juice

Drinks from it ➔ Throws it

Person ➔ Kid

Right to left ➔
Left to right

Push ➔ Pull

Push … then drink ➔
Drink … then push 

fine-grained
temporal

Original Caption

Negative Caption

coarse-grained
(mostly) static

(a) (b)

Figure 1: (a) Comparison between negative captions generated from the original caption and
our detailed caption in TemporalBench. With fine-grained details, the negatives are more temporal
centric and difficult. (b) TemporalBench differs from existing benchmarks by the average number of
words per video (left), and the coverage of various temporal aspects (right).

To address this fundamental issue, we introduce TemporalBench (Figure 1), a benchmark specifically
designed to evaluate fine-grained temporal understanding in videos. Our benchmark consists of
∼15K question-answer pairs (10K short, 5K long) derived from ∼2K meticulously annotated video
captions that capture rich temporal dynamics. Unlike existing benchmarks, our annotations detail
the precise sequence of actions, their duration, frequency, and temporal relationships—information
that cannot be inferred from a single frame.

The key insight behind TemporalBench is simple: by annotating temporal dynamics with fine-
grained detail, we create evaluation tasks that inherently require temporal reasoning. When a cap-
tion specifies “slices the ginger three times,” distinguishing it from “slices the ginger twice” de-
mands processing multiple frames. When describing “transfers the mug from right hand to left, then
pushes glasses up,” understanding the action sequence requires temporal comprehension. These
detailed annotations transform video understanding from optional to essential.

As shown in Figure 2, we collect videos spanning diverse domains: procedural videos (Tang et al.,
2019), human activities (Krishna et al., 2017; Gao et al., 2017), ego-centric videos (Grauman et al.,
2024), movie clips (Rohrbach et al., 2015), professional gymnastics (Shao et al., 2020), and un-
expected events (Epstein et al., 2020). Each video receives detailed temporal annotation through
a rigorous two-stage process involving qualified annotators and expert refinement. We then gener-
ate challenging negative captions using large language models, creating minimal but semantically
significant variations that test precise temporal understanding.

TemporalBench offers three defining characteristics:

• Fine-grained temporal distinctions. Our negative captions probe specific temporal aspects: ac-
tion frequency (“twice” vs “three times”), ordering (“then” vs “before”), and dynamics (“pushes”
vs “pulls”)—details invisible in single frames.

• Short and long video evaluation. We test both immediate temporal understanding (<20 seconds)
and extended temporal reasoning (<20 minutes) by composing multiple clip descriptions.

• Unified evaluation framework. TemporalBench supports both discriminative models
(XCLIP (Ni et al., 2022), ImageBind (Girdhar et al., 2023)) and generative models (GPT-4o,
Gemini), enabling comprehensive assessment across architectures.

During evaluation, we identified a critical flaw in standard multi-choice question answering: when
all incorrect options derive from small modifications to the correct answer, models can exploit the
“centralized” pattern without understanding content. We address this with Multiple Binary Accuracy
(MBA), decomposing each multi-choice question into independent binary decisions that eliminate
such shortcuts.

Our results reveal the severity of the temporal understanding gap. State-of-the-art GPT-4o achieves
only 38.5% MBA on short videos, compared to 67.9% human performance—a ∼30% deficit. Per-
formance degrades further on long videos, confirming that current models, despite high scores on
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A person bends down and cuts off 
the string twice that is wrapping the 
tree with a pair of scissors he is 
holding with his right hand. A woman 
smiles and walks to the right. He 
transfers the scissors to his left 
hand and moves around the tree 
looking for the string to be cut.

(straightens up)
A person bends down and cuts …

(rope)
Bends down and cuts off the string
…

(three times)
… cuts off the string twice that …

Negative Captions

(a) Generating Negative Captions Candidates by 
Replacing Words and Temporal Reordering

(b) Author Filtering

(a) AMT 
Annotation

Step1:  Positive caption generation

Step2: Negative captions generation

… He transfers the scissors to 
his left hand … A woman smiles 
and walks to the right

A person bends down and cuts 
off the string twice that is 
wrapping the tree with a pair of 
scissors he is holding with his 
right hand. A woman smiles and 
walks to the right. He transfers 
the scissors to his left hand and 
moves around the tree looking 
for the string to be cut.

GPT-4o Gemini-1.5-ProLlama-3.1-405b

(b) Author 
Refinement 

𝑃!

𝑁!!

𝑁"!

𝑁#!

Which caption best describes this video? 
A: {CaptionA} B: {CaptionB}
Answer with the option's letter from the 
given choices directly

𝑓(CaptionA, 	CaptionB)

Short Video QA

Video clip 𝑉!𝜖	 𝑉!, 𝑉", 𝑉" from 𝑉

𝑓 𝑃!, 𝑁!! -> Correct? 𝐵𝐴

𝑓 𝑃!,		𝑁!!
𝑓 𝑃!,		𝑁"! All correct?
𝑓 𝑃!,		𝑁#!

𝑀𝐵𝐴

𝑓 𝑃!𝑃"𝑃#, 		𝑁!!𝑃"𝑃# -> Correct? 𝐵𝐴

𝑓 𝑃!𝑃"𝑃#, 		𝑁!!𝑃"𝑃#
𝑓 𝑃!𝑃"𝑃#, 		𝑃!𝑁!"𝑃# All correct?
𝑓 𝑃!𝑃"𝑃#, 		𝑃!𝑃"𝑁!#

𝑀𝐵𝐴

Long Video QA

𝑉! 𝑉" 𝑉#

Positive Caption

Figure 2: Overview of the annotation and evaluation pipeline of TemporalBench. Left: In step
1, we fist collect high-quality captions for the videos using qualified AMT annotators followed by
refining them. In step 2, we leverage existing LLMs to generate negative captions by replacing select
words and reordering the sequence of actions before filtering them ourselves. Right: TemporalBench
supports both short and long video QA, where the descriptions of the long video are concatenated
from its video clips.

existing benchmarks, lack genuine temporal reasoning capabilities. TemporalBench thus provides
both a diagnosis of current limitations and a path toward developing models with true temporal
understanding.

2 RELATED WORK

Large Multimodal Models. The proliferation of Large Multimodal Models (LMMs), from pro-
prietary systems like GPT-4V (OpenAI, 2023) and Gemini Gemini Team (2024), to open-source
models like LLaVA Liu et al. (2023a) and Qwen-VL series (Bai et al., 2023), has created a need
for more challenging evaluation benchmarks. While these models have demonstrated impressive
capabilities in image understanding, their ability to reason about fine-grained temporal dynamics
remains under-explored.

Multimodal Understanding Benchmarks. The recent significant advancements have resulted in
more versatile multimodal models, making it imperative to thoroughly and extensively evaluate their
visual understanding and reasoning abilities. Conventional multimodal benchmarks like VQA (An-
tol et al., 2015), GQA (Hudson & Manning, 2019) and VizWiz (Gurari et al., 2018) have been revi-
talized and used for evaluating the general visual question answering performance for LMMs. Some
other question answering benchmarks like TextVQA (Singh et al., 2019), DocVQA (Mathew et al.,
2021) and InfoVQA (Mathew et al., 2022) have also been employed to validate the text-oriented un-
derstanding. Recent studies have introduced a variety of new benchmarks, such as SEED-Bench (Li
et al., 2023a), MMBench (Liu et al., 2023b) and MM-Vet (Yu et al., 2024b) for evaluating the mod-
els’ integrated problem-solving capabilities, and MMMU (Yue et al., 2024a) and MathVista (Lu
et al., 2024) for scientific and mathematical reasoning. In addition, the commonly known halluci-
nation problem also appears in LMMs, and is also investigated in POPE (Li et al., 2023b), MMHal-
Bench (Sun et al., 2023) and Object HalBench (Yu et al., 2024a), etc.

Video Understanding Benchmarks. Recently, an increasing amount of research is transitioning its
focus from the image to the video domain Shangguan et al. (2024); Zhou et al. (2018); Kesen et al.
(2024); Li et al. (2024d); Chen et al. (2024); Cores et al. (2024). Videos differ from images in that
they possess more complex content with temporal dynamics. This unique aspect calls for a differ-
ent set of metrics and benchmarks. Many efforts have leveraged existing video question answering
benchmarks (Xu et al., 2017; Yu et al., 2019b; Xiao et al., 2021; Li et al., 2024d; Shangguan et al.,
2024) built on top of video-text datasets (Chen & Dolan, 2011; Xu et al., 2016; Zhang et al., 2019).
More recently, several LMM-oriented benchmarks have been proposed for different aspects such as
long-form egocentric understanding with EgoSchema (Mangalam et al., 2024), and temporal under-
standing and ordering like Tempcompass (Liu et al., 2024c). VideoCon Bansal et al. (2024) curated
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negative captions using LLM from the original caption, yet lacks fine-grained details shown in Fig-
ure 1. MV-Bench (Li et al., 2024c) compiles existing video annotations from different disciplines
into a new benchmark, while Video-MME (Fu et al., 2024) and MMWorld (He et al., 2024b) claim
to support a comprehensive evaluation of video understanding and world modeling, respectively.
YouCook2 Zhou et al. (2018) emphasizes procedure videos but lacks fine-grained temporal under-
standing. VITATECS Li et al. (2024d), TempCompass Liu et al. (2024c), TOMATO Shangguan
et al. (2024) and TVBench Cores et al. (2024) work towards better model temporal dynamics via the
counterfactual manner, but still lack the dense captions for fine-grained details.Our TemporalBench
serves the common goal of evaluating models for video understanding but differs in several aspects.
On the one hand, we exhaustively curate videos from different domains and ask human annotators to
annotate the visual contents with as much detail as possible. On the other hand, we particularly focus
on temporal dynamics such as human actions and human-object interactions that exist exclusively
in videos and which are crucial for video understanding, reasoning and forecasting.

3 TemporalBench

Table 1: Dataset characteristics including number of sam-
ples ( # Samples), average number of words in original cap-
tions and our fine-grained captions.

Dataset # Samples Org # words Ours # words

ActivityNet 281 13.03 49.55
EgoExo4D 307 7.73 47.79
Charades 298 6.21 44.16
Movie Description 326 12.39 35.33
Oops 294 10.06 43.27
COIN 385 5.01 50.06
FineGym 288 21.92 21.92

TemporalBench (ours) 2179 10.91 42.02

Compared to static images, videos
inherently contain significantly more
fine-grained temporal information, as
they capture the unfolding of actions
and events over time. Existing mul-
timodal video understanding bench-
marks (Xu et al., 2016) mostly evalu-
ate models’ coarse-level understand-
ing of videos. An example from the
existing video understanding bench-
mark is the question, “What action
is happening in the video?” with the
answer, “Cooking.” However, such
types of coarse-level video questions have been demonstrated to be easily solved with just a sin-
gle frame (Wu, 2024) or even by a text-only LLM (Tan et al., 2024; Mangalam et al., 2024).

Such phenomena arises due to a fundamental limitation in text descriptions in those benchmarks.
As a result of their coarseness, the positive and negative options for video question-answering can
usually be distinguished without understanding the temporal dynamics. For example, in Figure 1,
models only need to choose between “The man is cooking” and “The man is exercising”, which can
be answered without understanding the temporal aspects.

To address this limitation, we carefully design a human annotation pipeline to curate highly detailed
descriptions about the activities in the videos. Given the detailed video clip descriptions, such as
A right hand holds a piece of peeled ginger while a knife is held in the left and makes 3 slices off
the ginger., the negative captions can be curated to truly reflect whether a model understands the
temporal dynamics, such as changing “three slices” into “two slices”. In a nutshell, such highly
detailed temporal annotations can be used to carefully examine whether a multimodel video model
truly understands the temporal state transition in videos.

Our benchmark enriches several fundamental video understanding tasks due to its detailed captions:

• Fine-grained video question answering. Given a detailed positive caption, multimodal video
models need to distinguish it from the associated negative where a slight modification is made to
temporal descriptions, e.g., “push the eyeglasses up” versus “pull the eyeglasses down”, or “cut
3 slices off” versus “cut 2 slices off”.

• Long video understanding with fine-grained activity inspection. Since the video clips are
extracted from a long source video, the respective video clip descriptions can be concatenated to
form a longer video description which can be pivoted to the long video understanding task, where
we find that all current multimodal video models suffer.

• Dense video-text matching and retrieval. Our detailed video captions can be naturally employed
to evaluate video-language embedding models such as XCLIP (Ni et al., 2022). Given a positive
caption and several negative captions, we can evaluate whether CLIP (Radford et al., 2021) based
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Table 2: Comparsion between TemporalBench and other video understanding benchmarks.# Words/s
denote the average number of words per second, and A & M denotes Auto & Manual during the
annotation process.

Dataset Num QA # Video Open-domain Annotation Avg Sec # Words/s

MVBench 4,000 3,641 ✓ Auto 16 0.22
EgoSchema 5,000 5,063 ✗ A & M 180 0.12
LongVideoBench 6,678 3,763 ✓ Manual 473 0.16
Video-MME 2,700 900 ✓ Manual 1018 0.006
SEED-Bench 3,757 2,320 ✗ A & M 110 0.97
MMWord 6,627 1,910 ✓ A & M 102 0.56

TemporalBench (short) 9,867 2,179 ✓ A & M 8 6.27
TemporalBench (long) 5,485 1,574 ✓ A & M 123 2.62

video embedding models can distinguish the subtle differences in captions. In addition, given a
set of positive video-text pairs, video retrieval performance can be evaluated, similar to image
retrieval on COCO (Lin et al., 2014) and Flickr30K (Young et al., 2014).

Our details video captions support tasks like fine-grained video captioning shown in the Supp.,
and enable future tasks such as video grounding from detailed text descriptions and text-to-video
generation with detailed prompts.

3.1 VIDEO COLLECTION

We collect video clips from a wide range of sources across diverse domains, where the majority
comes from existing video grounding dataset test/val split. Our dataset includes a wide spectrum of
video types from seven sources, including (1) procedure videos e.g., COIN (Tang et al., 2019), (2)
human activities e.g., ActivityNet-Captions (Yu et al., 2019a) and Charades (Krishna et al., 2017),
(3) ego-centric videos e.g., EgoExo4D (Grauman et al., 2024), (4) movie descriptions (Rohrbach
et al., 2015), (5) professional gymnasium videos e.g., FineGym (Shao et al., 2020), and (6) un-
expected humor videos Oops (Epstein et al., 2020). We sample around 300 video clips from the
validation and test sets of each video dataset, which results in 2K videos. The statistics of Tempo-
ralBench is shown in Table 1, comparsion with existing benchmarks are shown in Table 2 and also
Table 6 in the appendix.

We intentionally filter out video clips that (1) are mostly static by leveraging optical flow (Farnebäck,
2003), (2) contain multiple scene transitions by detecting shot changes in videos and (3) last longer
than 20 seconds. We observe that the large amount of information in long videos make it difficult
for annotators to provide detailed action descriptions. The distribution of video lengths is shown in
the Supp. Additionally, we remove the audio from the videos during annotation to ensure that all in-
formative signals come solely from the visual frames, preventing the answers from being influenced
by the audio.

3.2 VIDEO CAPTION ANNOTATION PROCESS

Positive Captions Annotation. We employ a two-stage human labeling process for curating video
captions with fine-grained activity descriptions, where the qualified Amazon Mechanical Turk
(AMT) workers are first instructed to give a detailed video caption. Then, authors of this work
refine the caption by correcting the mistakes and adding missing details w.r.t. the actions. The over-
all pipeline is shown in Figure 2. All video clips are annotated following the same pipeline except
for Finegym (Shao et al., 2020) as it has already provided accurate and detailed action descriptions
for professional gymnasium videos. Consequently, we reuse its annotations.

We first use 3 probing video captioning questions with 2 in-context examples as the onboarding
task for AMT master workers, where prompts are shown in the Supp. We manually inspect the
soundness and amount of temporal details of the AMT worker captions to select high quality AMT
video captioning workers. During the annotation process by AMT workers, we also continue to
remove the unqualified workers based on the ratio of the captions that authors in this paper refined.
In this way, we ensure that the AMT provides a high quality initial point for positive captions.
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(a) Original Negative Captions (b) Heuristics-guided Negative Captions

𝐶

𝑁!(𝐶)

𝑁!(𝑁! 𝐶 )

𝑁"(𝑁! 𝐶 )

𝑁"(𝐶)

𝑁#(𝐶)

Figure 3: An illustration of multi-choice QA with (a) original and (b) heuristics-guided negative
captions. Orange blocks indicate the altered contents from the positive option (green box).

Negative Caption Annotation. Our negative captions are aimed at confusing multimodal video
models with respect to fine-grained activity details, such as changing “cut a ginger twice using a
knife” to “cut a ginger three times using a knife”. We construct negatives upon two granularities:
word level and event level. Specifically, word level negatives denote the case where a certain word
or phrase is replaced while event level negatives denote the case where the order of two events are
reversed. Empirically, we find that LLMs can produce more creative and diverse negatives compared
to AMT workers and authors. Therefore, we leverage three leading LLMs, GPT-4o (OpenAI, 2024),
Gemini-1.5-Pro (Gemini Team, 2024) and Llama-3.1-405b (Dubey et al., 2024) to curate a diverse
set of negative caption candidates instructed by 3 in-context examples, with up to 9 negatives at
word level and 6 negatives at event level. Prompts are shown in the Supp.

Afterwards, the authors of this work review those negative caption candidates in the format of multi-
choice QA. Essentially, we build a reliable evaluation pipeline w.r.t. the detailed captioning, alle-
viating the limitation of previous This process results in our complete TemporalBench dataset with
∼2K high-quality human-annotated video captions and ∼10K (short) video question-answer pairs.

3.3 A PITFALL IN MULTI-CHOICE QUESTION ANSWERING

Multi-choice QA is standard for evaluating LMMs (MMMU (Yue et al., 2024a), MathVista (Lu et al.,
2024), EgoSchema (Mangalam et al., 2024)). However, recent studies (Cai et al., 2024; Yue et al.,
2024b) show that pure LLMs often match or exceed LMM performance without visual input. This is
attributed to (1) poorly designed questions answerable without the video, or (2) data contamination.

We identify another critical pitfall. If all negatives are slight modifications of the correct answer,
LLMs can detect a “centralized” description as a cue (Figure 3). To test this, given positive cap-
tion C and negative N(C), we derive further negatives from N(C) (e.g., N1(N(C)), N2(N(C))).
With options [C,N(C), N1(N(C)), N2(N(C))], N(C) becomes “centralized”. Surprisingly, text-
only GPT-4o selects N(C) 66.4% of the time, and C only 6.4%. This aligns with psychology
findings (Furman & Wang, 2008) where humans exploit similarity cues in multiple choice.

Motivated by this, we propose decomposing multi-choice QA into multiple binary QAs, eliminat-
ing the “centralized option.” We introduce Multiple Binary Accuracy (MBA), which reflects the
compounded difficulty of answering all sub-questions: MBA =

∏M
j=1 accj , where accj is the cor-

rectness of sub-question j (e.g., 92%5 = 65.9%). Given M negatives, random chance drops from
1

M+1 (multi-choice) to ( 12 )
M (MBA). Since ( 12 )

M < 1
M+1 for M > 1, MBA is a significantly more

challenging metric.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We evaluate both (1) multimodal video text generation models, including GPT-4o, o1, o4-
mini (OpenAI, 2024), Gemini-2.5-Pro (Gemini Team, 2024), Claude-3.5-Sonnet (Anthropic, 2024),
Qwen2.5VL, Qwen2VL (Wang et al., 2024), LLaVA-OneVision (Li et al., 2024a), LLaVA-Next-
Video (Zhang et al., 2024b), MA-LMM (He et al., 2024a), VideoLLaVA (Lin et al., 2023),
InternLM-Xcomposer-2.5 (Zhang et al., 2024a), Matryoshka Multimodal Models (Cai et al., 2024),
and (2) multimodal video embedding models, including XCLIP (Ni et al., 2022), ImageBind (Gird-
har et al., 2023), and LanguageBind (Zhu et al., 2024). We exponentially increase the number of
frames to study its effect on video understanding. TemporalBench takes comparable inference com-
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Table 3: TemporalBench performance of various mmodels under the binary QA accuracy (BA) and
multiple binary QA settings (MBA) for short videos. The prefix “T-” indicates MBA performance
for the annotated subset in our TemporalBench. We show the result with the best average MBA
performance for each model with respect to the number of frames, denoted as # Frames.

Model # Frames T-ActivityNet T-Charades T-FineGym T-Movie T-Oops T-COIN T-EgoExo4D BA MBA

Human Performance - 68.7 82.2 36.1 74.2 69.7 70.6 71.0 89.7 67.9
Random Chance - 11.1 13.8 6.2 12.1 5.6 11.2 5.6 50.0 9.5

Video Embedding Models: Text + Multiple Frames as Input
XCLIP 8 14.2 16.1 7.3 19.9 8.8 15.6 6.8 51.6 12.9
ImageBind 2 17.4 16.8 7.3 19.0 11.2 16.1 9.1 53.0 14.0
LanguageBind 8 22.4 15.1 6.6 19.3 10.9 15.6 11.1 52.8 14.5

Video Multimodal Generative Models : Text + Multiple Frames as Input
Gemini-2.5-Pro 1FPS 81.1 78.0 68.7 81.9 81.5 78.8 81.5 78.7 43.6
OpenAI o1 32 82.0 75.9 70.2 80.6 79.7 80.0 82.1 78.6 43.0
OpenAI o4-mini 32 78.7 74.5 71.0 78.7 79.6 78.4 81.7 77.5 40.7
Gemini-2.5-Flash 1FPS 78.4 71.8 64.0 78.4 79.2 78.0 78.6 75.5 36.7
GPT-4o 16 48.8 42.6 18.8 41.7 31.6 46.5 36.5 75.7 38.5
Gemini-1.5-Pro 1FPS 34.9 24.5 8.3 35.6 22.8 34.3 21.8 67.5 26.6
Claude-3.5-Sonnet 8 29.9 27.5 11.1 28.2 16.3 29.6 20.5 65.5 23.6
Qwen2-VL-72B 32 43.8 42.6 16.7 45.1 36.7 43.6 37.1 75.8 38.3
Qwen2.5-VL-7B 1 FPS 71.3 65.7 56.0 71.0 69.1 68.0 70.0 67.2 26.1
Qwen2-VL-7B 32 32.4 32.2 4.9 35.9 18.4 25.5 21.8 64.4 24.7
LLaVA-OneVision-72B 8 45.2 36.2 11.8 41.1 31.0 34.5 30.3 72.1 33.0
LLaVA-NeXT-Video-34B 32 30.6 26.8 10.4 24.8 18.0 25.2 17.3 64.0 22.0
MA-LMM 4 12.5 16.4 3.5 11.0 5.1 11.4 4.9 48.0 9.4
M3 6 21.0 20.1 6.6 19.6 10.2 15.1 10.4 56.4 14.8

pute as existing video understanding benchmarks such as NextQA Xiao et al. (2021). Details are
shown in the Supp.

To study the effect of single frame bias and text bias, we also evaluate models trained on single im-
ages, including LLaVA-1.5 (Liu et al., 2024a), LLaVA-NeXT (Liu et al., 2024b), and Phi-3V (Abdin
et al., 2024). In the latter case, we evaluate the LLMs including GPT-4o (OpenAI, 2024), Gemini-
1.5-Pro (Gemini Team, 2024), Yi-34B (Young et al., 2024), Vicuna (Chiang et al., 2023) and Flan-
T5 (Wei et al., 2021) without using videos at all.

4.2 HUMAN PERFORMANCE

We use Amazon Mechanical Turk to evaluate human performance. Note that we exclude the positive
caption annotators to ensure that there is no data contamination. Again, we use an onboarding test
using a held out binary video QA evaluation set which has clear answers.

4.3 FINE-GRAINED VIDEO QUESTION ANSWERING ON SHORT VIDEOS

Figure 4: Model performance on Temporal-
Bench with varying numbers of frames for short
video understanding.

The results for multimodal generative models
and embedding models are shown in Table 3.
Note that we show the result with the best av-
erage multiple binary QA (MBA) performance
for each model with respect to the number of
frames. Results under different frames can be
found in the Supp. Several interesting findings
arise:

The performance of any video model is far
from human performance. As shown in Ta-
ble 3, humans show an average performance of
67.9% on MBA, which is significantly higher
than the best models, Gemini 2.5 Pro, by
∼24%. Therefore, there is a large gap be-
tween models’ performance and human perfor-
mance. Note that we are employing standard
AMT workers instead of domain experts, mean-
ing that the expert-level accuracy can be even
higher, especially for professional videos like FineGym.
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Models show limited performance gains with more frames. Shown in Figure 4, with more frames,
multimodal video models usually show better performance. However, performance generally satu-
rates around 8-16 frames, meaning that models struggle to improve fine-grained activity understand-
ing even with more frames. This is a clear contrast with human performance, showing that there is
a large space for multimodal video models to improve.

Multiple Binary QA is a more challenging metric. Multiple Binary QA, as proposed in Sec-
tion 3.3, prevents a model from exploiting cues in the answer choices, and evaluates whether a
model truly understands the temporal dynamics in the video by splitting a single M + 1-way multi-
ple choice question into M binary choice questions. For example, Gemini-2.5-Pro receives 78.7%
accuracy but only 43.6% on multiple binary accuracy, showing a huge gap. These results indicate
that understanding the fine-grained temporal dynamics is still a challenging task for current propri-
etary models and open-sourced models.

Video embedding models show near chance performance. All multimodal video embedding
models, including XCLIP, LanguageBind, and ImageBind show near random chance performance.
One reason could be that their small embedding size (typically a vector of size 768-2048) is insuffi-
cient to capture fine-grained temporal details.

4.4 LONG VIDEO UNDERSTANDING

Since our benchmark is annotated at the video clip level, we can easily extend it to long video un-
derstanding by concatenating the captions of different video clips within the same original video. In
our study, we choose video datasets from AcitivityNet, Charades, EgoExo4D, COIN and FineGym.
We randomly sample video clips within the same original video, and then crop a new video segment
whose starting time corresponds to that of the earliest sampled video clip and whose ending time
corresponds to that of the latest sampled video clip. We then concatenate all the sampled video cap-
tions together to form a single long detailed description corresponding to the new video segment.
Given this positive caption, we generate negative captions for it by replacing the positive caption of
one of the sampled video clips with its negatives. The model is then tasked to choose the correct long
caption out of multiple choices. We control the random chance multiple binary QA performance to
be ∼9.5%, resulting in an apple-to-apple comparsion with in Sec 4.3. In this way, we investigate
whether multimodal video models can understand and distinguish fine details in a long video. Note
that each caption for the short video is highly dense and informative, thus can be uniquely matched
to its corresponding clip in the long video. Finally, we sampled 1,574 videos with durations ranging
between (0, 20] minutes, shown in the Supp.

We show in Figure 6 and table in the Supp., that all multimodal video models show a significant
performance drop for this task compared to short video understanding. This is also reflected in all
models performing better on relatively shorter videos (e.g., Charades) compared to longer videos
(e.g., FineGym). These results indicate that finding the subtle temporal dynamic differences in
a long video is indeed an extremely difficult task. It is similar in nature to the needle-in-the-sea
task (Kamradt, 2023) in NLP except in the temporal domain. We hope that TemporalBench for
long video understanding can serve as a very challenging task for future video understanding model
development.

5 IN-DEPTH ANALYSIS

Table 4: Effect of the “Centralized” Caption on
text-only GPT-4o.

Percentage of Predictions Aligned with −→ C N1(C)

[C,N1(C), N2(C)), N3(C))] 83.3 6.4
[C,N1(C), N1(N1(C)), N2(N1(C))] 17.7 66.4

Why multiple binary QA instead of multi-
choice QA? As discussed in Section 3.3, in
the standard multi-choice QA setting, if neg-
atives are all slightly variations of the posi-
tive caption, we find that LLMs can determine
the “centralized” caption, and take a shortcut
to achieve better performance. To demonstrate
this, based on one negative caption N(C) in TemporalBench, we intentionally generate two negative
captions derived from N(C) (instead of C), resulting in N1(N(C)) and N2(N(C)). Given two set
of options [C,N1(C), N2(C)), N3(C))] and [C,N1(C), N1(N1(C)), N2(N1(C))] shown in Fig-
ure 3, text-only GPT-4o displays different behaviors. As shown in Table 4, under the intentionally
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Figure 5: Per-category binary QA accu-
racy (BA) of various video models on
short video QA.

GPT-4o Qwen2-VL-72B LLaVA-OneVision-72B Gemini-1.5-Pro0

5

10

15

20

25

30

35

40

45
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38.5 38.3

33.0

26.6
30.1

25.0 23.0 24.7

Short Video QA
Long Video QA

Figure 6: Models’ MBA performance on short and long
video QA.

designed negative options, GPT-4o will choose N1(C) under 66.4% cases. This again demonstrates
the necessity and advantage of our multiple binary QA accuracy (MBA) metric design over the
standard multi-choice QA setting.

The person presses the phone 
panel with the right index finger so 
the liquid within diffuses and 
spreads from the corner to the 
central. The person presses and 
shakes the index finger for better 
application and removes the hand.

The person presses the phone 
panel with the right index finger so 
the liquid within diffuses and 
spreads from the central to the 
corner. The person presses and 
shakes the index finger for better 
application and removes the hand.

GPT-4o’s 
Choice

Ground
Truth

Q: Which caption best describes this 
video? Answer with the option's letter 
from the given choices directly.

(a) COIN

Q: Which caption best describes this 
video? Answer with the option's letter 
from the given choices directly.

A woman holds a sack of garbage with 
both hands and swings it back and 
forth five times. She attempts to throw 
it onto the truck when the garbage bag 
breaks, causing the trash to fly out and 
hit the ground. She turns around, 
mouth open in shock.

A woman holds a sack of garbage with 
both hands and swings it back and 
forth four times. She attempts to 
throw it onto the truck when the 
garbage bag breaks, causing the trash 
to fly out and hit the ground. She turns 
around, mouth open in shock.

GPT-4o’s 
Choice

Ground
Truth

(b) Oops

Figure 7: GPT-4o failure cases in TemporalBench: not un-
derstanding fine-grained details like motion direction, action
frequency, etc..

Performance on categories.
Broadly, TemporalBench evalu-
ates word level replacement and
event level re-ordering. Here we
further breakdown the word level
replacement into following cate-
gories: 1) Action Order (change
the order); 2) Action Frequency (1
times v.s. two times); 3) Action type
(put v.s. pull); 4) Motion Magnitude
(slightly v.s. intensively); 5) Motion
Direction/Orientation (forward v.s.
backward, circular v.s. back-and-
forth). 6) Action Effector (cutting
with left hand v.s. cutting with right
hand) 7) Others. We prompt GPT-4o
to perform 7-way classification,
where the statistics is shown in
Table 5 in the appendix. Results in
Fig. 5 indicate that multimodal video models show better performance on “others” category rather
than the other categories related to actions. Among the seven categories, models struggle most on
action frequency (counting), which shows that they do not memorize repeated occurrences well.
Results indicate that emphasizing on fine-grained temporal aspects is critical for the development
of multimodal video models, especially from the training data perspective. The visualizations of
failure cases in GPT-4o are shown in Fig. 7.

6 CONCLUSION AND FUTURE WORK

We propose TemporalBench, a novel video understanding benchmark, to evaluate fine-grained tem-
poral understanding abilities of multimodal video models. The video captions in our benchmark are
significantly denser than those in existing datasets such as MSRVTT and TGIF, offering detailed
temporal annotations. TemporalBench also provides a more challenging set of tasks that push cur-
rent multimodal models beyond coarse-level understanding. The empirical results reveal a substan-
tial gap between human performance and current state-of-the-art models. We also found a critical
pitfall for multi- choice QA, where we devise multiple binary accuracy (MBA) to address thi issue.
We hope that this benchmark fosters further research in developing models with enhanced temporal
reasoning capabilities. Our benchmark could also be easily utilized for other fundamental video
tasks such as spatio-temporal localization and text-to-video generation with fine-grained prompts.
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REPRODUCIBILITY STATEMENT

We visualize part of the dataset in the submission’s supplementary materials. We will also publicly
release it along with the code used to evaluate the LMMs upon the paper’s acceptance.

ETHICS STATEMENT

This research primarily utilizes publicly available video datasets, which have been collected and
annotated by qualified annotators and authors, ensuring compliance with ethical standards. We have
made every effort to ensure that the data used respects privacy and contains no personally identi-
fiable information. Furthermore, we acknowledge the potential implications of fine-grained video
understanding, especially in sensitive applications such as surveillance and autonomous systems. As
such, we advocate for responsible and ethical use of this research, urging caution in deploying these
models in real-world scenarios to avoid harmful or unintended consequences.
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A MORE VISUALIZATIONS OF OUR BENCHMARK

In this section, we present comprehensive visualizations of our fine-grained annotations with both
positive and negative descriptions. For each benchmark mentioned in Table 1 in the main paper,
we provide one video example with its positive annotation and one of the corresponding negative
descriptions (there are more than one negative for a single video in our dataset) in Figures 8 & 9.
The video examples (a - g) are displayed in the same order as their sources in Table 1 in the main
paper (7 in total).

Table 5: TemporalBench statistics on negative caption types.

Action Action Action Motion Motion Action Event Others Overall
Order Frequency Type Magnitude Direction Effector Reorder

129 530 2,802 320 1,536 1,109 2,099 1,342 9,867

B MORE TASKS THAT CAN BE SUPPORTED BY TemporalBench

B.1 VIDEO CAPTIONING

Our detailed video captions also enables analyzing a model’s fine-grained video captioning capabil-
ities. For this, we prompt multimodal video models to generate a caption for an input video, with
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Holding a hose in their left hand, a person is gently praying water on a wooden 
chair. First on the left arm, then the slats on the back and sides and down to the 
seat area then up along the top down a leg a bit around the front of the seat .

Holding a hose in their left hand, a person is gently spraying water on a wooden 
chair. First down a leg, then up along the top, the slats on the back and sides, 
down to the seat area, a bit around the front of the seat, and the left arm.

Positive

Negative

The person picks up the blue packet with both hands and puts it back on the table. 
The person picks up the tube and places it on the table. The person picks up a 
white packet and tears it open with both hands. The person pulls out the white tube 
with the right hand and keeps the packet on the table with the left hand.

The person picks up the blue packet with both hands and puts it back on the table. 
The person picks up the tube and places it on the table. The person picks up a 
white packet and tears it open with the right hand. The person pulls out the white 
tube with the right hand and keeps the packet on the table with the left hand.

Positive

Negative

A person lifts his right leg up while resting his left hand on the table. He puts his 
right leg into a shoe. He then lifts the left leg up and puts it into the other shoe.

A person puts his left leg into the other shoe while resting his left hand on the 
table. He lifts his right leg up and then puts it into a shoe.

Positive

Negative

(a)

(b)

(c)

Figure 8: Visualizations (I) of our fine-grained annotations of the videos with both positive and
negative descriptions.

Table 6: Comparison of video understanding benchmarks upon annotation type and density.

Benchmark Annotation Type Annotators Fine-Grained # Words/Sec∗

TempCompass Caption LLM+Human Some 2.12
YouCook2 Instructions Human Procedural 0.44
VITATECS Caption LLM+Human Yes 2.48
TOMATO QA Pairs Human Some 1.67
TVBench QA Pairs Parse+Human Some 0.07

TemporalBench Captions Human Yes 6.27
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An army man waves his right hand to direct the tanks and other vehicles down the 
right-side road. Other trucks and vans drive down the street. Left-side road drives 
up several red container truck. People in the background walk about on the street.

An army man waves his right hand to direct the tanks and other vehicles down the 
right-side road. Other trucks and vans park by the street. Left-side road drives up 
several red container truck. People in the background walk about on the street.

Positive

Negative

Two deer come out of the trees and run along a road into the trees on the other 
side. A third deer trips as it approaches the road, then turns back around and goes 
back to where it came from.

Two deer come out of the trees and run along a road into the trees on the other 
side. A third deer trips as it approaches the road, then turns back around and 
continues running to the other side.

Positive

Negative

The person presses the top of the sandwich with the left hand and slices the 
sandwich in a diagonal cut by running the knife held in the right hand in a up and 
down motion. They start cutting at the left bottom corner of the sandwich.

The person presses the top of the sandwich with the left hand and slices the 
sandwich in a horizontal cut by running the knife held in the right hand in a up and 
down motion. They start cutting at the left bottom corner of the sandwich.

Positive

Negative

The gymnast performs the following actions: giant circle; circle backward; with turn 
before handstand phase.

The gymnast performs the following actions: giant circle; circle forward; with turn 
before handstand phase.

Positive

Negative

(d)

(e)

(f)

(g)

Figure 9: Visualizations (II) of our fine-grained annotations of the videos with both positive and
negative descriptions.
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Table 7: Comparison of models for video captioning using Caption Similarity, CIDEr, BLEU, and
ROUGE metrics. Cosine similarity using sentence transformer reflects the captioning quality the
best.

Model Similarity CIDEr ROUGE BLEU 1 BLEU 2 BLEU 3 BLEU 4

Video Multimodal Generative Models : Text + Multiple Frames as Input
GPT-4o 61.3 7.3 19.6 24.1 11.8 5.8 3.0
Gemini-1.5-Pro 56.5 10.9 19.1 19.0 9.2 4.5 2.4
Claude-3.5-Sonnet 54.1 8.6 17.1 24.4 10.3 4.4 2.1
Qwen2-VL-72B 56.1 9.3 19.1 15.7 8.0 4.1 2.2
Qwen2-VL-7B 51.9 6.9 18.0 12.5 6.1 3.0 1.6
LLaVA-OneVision-72B 55.0 9.7 18.7 23.7 11.3 5.6 2.9
LLaVA-OneVision-7B 50.1 0.3 14.5 11.1 5.1 2.2 1.1
LLaVA-NeXT-Video-34B 53.1 5.3 15.9 21.4 9.2 4.0 1.8
LLaVA-NeXT-Video-7B 50.1 2.3 15.8 18.1 7.0 2.6 1.1
InternLM-XC2.5 52.4 2.3 15.9 17.8 7.1 2.8 1.2
VideoLLaVA 46.0 4.5 16.9 12.6 5.4 2.3 1.0
MiniCPM-V2.6 47.2 1.5 14.2 15.5 5.4 1.9 0.8
Phi-3.5-Vision 42.9 3.7 16.5 20.4 8.4 3.4 1.6
MA-LMM 38.7 3.1 15.0 10.1 4.8 2.2 1.1
M3 47.8 3.0 16.4 16.7 6.9 2.8 1.2

Large Multimodal Models (LMMs): Text + 1 Frame as Input
GPT-4o 52.3 7.3 17.1 25.1 11.1 5.0 2.4
LLaVA-1.5-13B 47.9 4.9 18.0 22.6 9.8 4.2 2.0
LLaVA-1.5-7B 45.7 6.9 17.8 22.0 9.5 4.2 2.0
LLaVA-NeXT-34B 49.1 6.2 16.7 24.2 10.4 4.6 2.2
Phi-3-Vision 42.0 4.0 16.1 19.9 8.3 3.4 1.6

3 captioning examples in the prompt as guidance to mimic the style of our detailed video captions.
Note that we remove the FineGym captions due to its different structure compared to other video
captions, resulting in 1891 samples. We evaluate the resulting video captioning performance using
classical image captioning metrics, CIDEr (Vedantam et al., 2015), BLEU (Papineni et al., 2002)
at different n-gram levels, ROUGE (Lin, 2004), as well as the embedding similarity with sentence
transformer (Reimers & Gurevych, 2019) between the ground truth caption and the generated cap-
tion. Note that we for each model, we use the same number of frames as in Section 4.3 in the main
paper.

Results in Table 7 show that GPT-4o achieves the best performance. Interestingly, the results indicate
that the embedding similarity aligns most closely with the video QA task results from Sec 4.3 in the
main paper. Other classical captioning metrics show inconsistent results. For example, GPT-4o
obtains similar performance with one compared to 64 frames on both CIDEr and BLEU scores (e.g.,
for BLEU 1 24.1 vs. 25.1). On the other hand, all models show similar ROUGE scores. Thus, for
the zero-shot captioning task, our findings indicate that text embedding similarity may be the most
reliable metric.

B.2 FUTURE TASKS

Due to the detailed annotation of TemporalBench, more tasks can be supported.

• Video grounding from detailed text descriptions. Since the video clips are cropped
from the source video, with the documented starting and ending time, our benchmark can
serve as a fine-grained moment localizing benchmark from text descriptions. This is dif-
ferent from existing video grounding datasets such as Charades-STA (Gao et al., 2017),
COIN (Tang et al., 2019), Ego4D (Grauman et al., 2024) where the text descriptions are
usually very short, possibly resulting in low temporal localization performance due to the
vague and coarse descriptions.

• Text-to-Video (T2V) generation with detailed prompts. Given our highly detailed de-
scription, a T2V generation model can be evaluated by verifying if the generated videos
reflect the fine-grained action details.
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(a) Binary Accuracy (BA) per subset (b) Binary Accuracy (BA) per negative category

Figure 10: Visualization of binary accuracy for short video QA per (a) subset and (b) negative type.
Human performance is much better than GPT-4o, Qwen2-VL-72B, LLaVA-OneVision-72B, and
Gemini-1.5-Pro.

C EXTENDED COMPARISON OF NEGATIVE CAPTIONS

Here we show the extended comparison for the negative captions generated from the original cap-
tions and our detailed captions in TemporalBench in Figure 11. With fine-grained details, the nega-
tives are more difficult and temporal centric.

A right hand holds a piece of peeled ginger 
while a knife is held in the left and makes 3 
slices off the ginger. A piece of partially 
peeled ginger is held in the right hand while a 
spoon is held in the left and scraped long the 
ginger removing the skin. Partially peeled 
ginger is held in the right hand and a knife in 
the left which cuts off the skin.

Next, the cooking board is shown and it has 
two lemons ,ginger, and a bottle of honey.

Our Detailed Caption

Negative Caption

ginger➔ garlic

two lemons ➔ one lemon

a bottle of ➔ a jar of

3 slices ➔ 4 slices

held in the left hand ➔
held in the right hand 

3 slices off … then scraped➔
scraped … then 3 slices off 

Original Caption

A woman turns and transfers the mug from 
her right hand to left. She pushes her glasses 
with her right hand. She drinks from the cup 
with her left hand and puts her right hand on 
her waist. And she turns her head to the left 
and glances at the wall.

person holding a cup of water then drinks 
from it.

Our Detailed Caption

Water ➔ Juice

Drinks from it ➔ throws it

person ➔ kid

Right to left ➔
left to right

Push ➔ pull

Push … then drink ➔
Drink … then push fine-grained

temporal

Original Caption

Negative Caption

(a) Charades (exocentric) (b) COIN (egocentric)

coarse-grained
(mostly) static

Figure 11: Comparison of negative captions generated from the original captions and our
detailed captions in TemporalBench. With fine-grained details, the negatives are more difficult
and temporal centric.

D TemporalBench PERFORMANCE UNDER EACH CATEGORY

Multimodal video models’ performance under each category is shown in Table 8 and Figure 10 (b).
Results indicate that multimodal video models show better performance on “others” category rather
than the other categories related to actions. Among the seven categories, models struggle most on
action frequency (counting), which shows that they do not memorize repeated occurrences well.
Results indicate that emphasizing on fine-grained temporal aspects is critical for the development
of multimodal video models, especially from the training data perspective. The visualizations of
failure cases in GPT-4o are shown in Figure 12.
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The gymnast performs the balance beam, which 
include split leap (knees above horizontal alternately).

The gymnast performs the balance beam, which 
include cat leap (knees above horizontal alternately).

GPT-4o’s Choice

Ground-truth

Q: Which caption best describes this video? Answer 
with the option's letter from the given choices directly.

The man inserts the inner tube with his right hand 
into the wheel held in the left hand. He turns the 
wheel and presses it into the tube. He flips the tire 
over with both the hands.

The man inserts the inner tube with his right hand 
into the wheel held in the left hand. He turns the 
wheel and presses it into the tube. He flips the tire 
over with his left hand.

GPT-4o’s Choice

Ground-truth

Q: Which caption best describes this video? Answer 
with the option's letter from the given choices directly.

The person presses the phone panel with the right 
index finger so the liquid within diffuses and spreads 
from the corner to the central. The person presses 
and shakes the index finger for better application and 
removes the hand.

The person presses the phone panel with the right 
index finger so the liquid within diffuses and spreads 
from the central to the corner. The person presses 
and shakes the index finger for better application and 
removes the hand.

GPT-4o’s Choice

Ground-truth

Q: Which caption best describes this video? Answer 
with the option's letter from the given choices directly.

A woman holds a sack of garbage with both hands and 
swings it back and forth five times. She attempts to 
throw it onto the truck when the garbage bag breaks, 
causing the trash to fly out and hit the ground. She 
turns around, mouth open in shock.

A woman holds a sack of garbage with both hands and 
swings it back and forth four times. She attempts to 
throw it onto the truck when the garbage bag breaks, 
causing the trash to fly out and hit the ground. She 
turns around, mouth open in shock.

GPT-4o’s Choice

Ground-truth

Q: Which caption best describes this video? Answer 
with the option's letter from the given choices directly.

(a) COIN (b) Oops

(c) FineGym (d) EgoExo4D

Figure 12: The failure cases of GPT-4o in TemporalBench. GPT-4o does not understand the fine-
grained details well, including motion direction, action frequency, action type, and motion direction.
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Table 8: TemporalBench short QA performance under each category under BA. Multimodal videos
models struggle on certain tasks such as action frequency. We show the result with the best average
MBA performance for each model with respect to the number of frames.

The Number Action Action Action Motion Motion Action Event
Model of Frames Order frequency Type Magnitude Direction Effector Reorder Others Average

Human Performance - 89.9 82.6 91.9 87.5 85.9 90.0 89.1 93.4 89.7
Random Chance - 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Video Embedding Models: Text + Multi-Frames as Input
XCLIP 8 46.5 50.8 50.9 56.9 51.2 51.7 50.1 55.6 51.6
ImageBind 2 44.2 44.7 55.4 50.9 52.5 50.5 48.6 61.8 53.0
LanguageBind 8 43.4 41.5 53.4 55.0 51.4 46.6 51.0 65.9 52.8

Video Multimodal Generative Models : Text + Multi-Frames as Input
GPT-4o 16 69.8 64.7 80.6 78.4 67.9 67.2 75.8 85.6 75.7
Gemini-1.5-Pro 1FPS 67.4 60.1 70.6 70.7 58.7 59.5 67.9 79.2 67.5
Claude-3.5-Sonnet 8 62.0 57.4 70.7 70.3 60.0 57.8 61.3 76.2 65.5
Qwen2-VL-72B 32 72.1 69.2 79.9 78.7 65.9 69.5 76.0 85.7 75.8
Qwen2-VL-7B 32 65.9 45.8 67.3 66.1 54.6 54.7 69.7 75.7 64.4
LLaVA-OneVision-72B 8 73.6 56.0 76.2 70.3 65.2 62.4 73.2 84.2 72.1
LLaVA-OneVision-7B 32 63.6 45.5 62.9 56.9 52.8 54.0 66.5 77.1 61.9
LLaVA-NeXT-Video-34B 32 61.2 56.0 66.4 61.6 58.5 59.3 63.4 74.1 64.0
LLaVA-NeXT-Video-7B 8 69.0 65.7 68.2 62.2 66.5 68.6 52.2 74.3 65.1
InternLM-XC2.5 1FPS 55.8 42.5 62.7 62.5 52.6 51.1 58.3 70.7 58.8
VideoLLaVA 8 69.8 70.2 71.4 70.0 70.6 70.2 50.5 75.5 67.1
MiniCPM-V2.6 1FPS 59.4 52.3 65.5 62.5 54.1 53.3 63.5 74.7 62.3
Phi-3.5-Vision 2 53.5 55.3 60.1 55.9 54.0 52.2 55.3 69.4 58.0
MA-LMM 4 54.3 43.0 48.0 47.8 46.3 48.8 48.6 49.6 48.0
M3 6 51.9 53.6 58.9 56.3 52.2 53.7 50.8 68.6 56.4

Large Multimodal Models (LMMs): Text + 1 frame as Input
GPT-4o 1 67.4 65.1 74.1 70.3 64.2 62.6 68.7 78.4 70.0
LLaVA-1.5-13B 1 57.4 51.9 57.6 53.8 50.4 53.9 54.2 63.1 55.7
LLaVA-1.5-7B 1 62.0 61.5 62.2 54.1 61.4 64.9 51.0 67.9 60.5
LLaVA-NeXT-34B 1 51.2 55.7 61.2 60.0 54.8 53.0 65.0 67.5 60.5
Phi-3-Vision 1 46.5 45.5 56.0 55.6 48.8 49.2 56.9 62.1 54.4

Large Larguage Models (LLMs): Text as Input
GPT-4o 0 65.1 59.8 73.7 70.0 61.5 60.1 69.3 68.6 67.7
Gemini-1.5-Pro 0 54.3 42.5 60.4 62.2 53.6 53.3 64.8 57.4 58.1
Yi-34B 0 51.9 62.3 60.1 60.3 57.1 55.1 65.4 58.0 59.9
Vicuna7b-1-5 0 55.8 47.2 51.7 48.4 50.1 49.4 49.9 51.4 50.5
Flan-T5-XL 0 53.5 57.7 60.2 59.7 56.1 56.9 54.9 60.7 57.9
Flan-T5-XXL 0 55.8 62.5 59.0 58.4 54.2 48.2 49.3 58.9 55.1

E PER SUBSET RESULTS FOR SHORT AND LONG VIDEO QA

The per subset results (denoted as “T-”) for short and long video QA under Binary Accuracy (BA)
are shown in Table 11, and Table 13, respectively. We also provide a visualization of per subset short
video QA performance in Figure 10 (a). The per subset results (denoted as “T-”) for long video QA
under Multiple Binary Accuracy (MBA) is shown in Table 12. Still, human achieves much better
performance than all multimodal videos. Interestingly, both human and AI models show worse
performance on Finegym, the professional video understanding dataset.

F MORE RESULTS WITH EXTENDED FRAMES

In the main paper, we only report the performance of each multimodal video models with the the
number of frames that leads to the best performance. Here we extend the results to show the results
of more frames in Table 9 and Table 10. Note that we include results for models including LLaVA-
Video Zhang et al. (2024c), Aria Li et al. (2024b) and LongVU Shen et al. (2024). Generally, with
more frames, performance saturates around 8-16 frames, meaning that models struggle to improve
fine-grained activity understanding even with more frames. This is a clear contrast with human
performance, showing that there is a large space for multimodal video models to improve.

G DATA ANNOTATION PIPELINE AND PLATFORM

Our six-stage annotation process includes: (1) AMT workers filtering through an exam, (2) Ini-
tial positive captions by filtered AMT workers, (3) author (experts) refined positive captions, (4)
LLM-generated negatives with targeted temporal changes, (5) meticulous author filtering, (6) AMT
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Table 9: TemporalBench performance of various models under binary QA accuracy (BA) and multi-
ple binary QA accuracy (MBA) setting for short and long question answering with different number
of frames. “Overall” denotes the average performance of short and long video QA performance.
(Part 1)

Model # Frames Overall MBA Overall BA Short MBA Short BA Long MBA Long BA Captioning

Human Performance - - - 67.9 89.7 - - -

Random Chance - 9.5 50.0 9.5 50.0 9.5 50.0 -

XCLIP 8 12.0 51.7 12.9 51.6 11.1 51.7 -

ImageBind 2 12.4 52.0 14.0 53.0 10.7 51.0 -

LanguageBind 8 13.3 52.2 14.5 52.8 12.0 51.6 -

GPT-4o 64 35.4 73.3 38.0 76.0 32.7 70.5 63.5
32 32.9 71.5 38.3 75.9 27.4 67.0 63.2
16 34.3 72.8 38.5 75.7 30.1 69.8 61.3
8 32.9 72.0 37.4 75.1 28.3 68.8 60.3
4 31.9 71.2 35.8 74.4 28.0 68.0 58.8
2 30.3 70.3 33.3 72.7 27.3 67.8 55.3
1 26.5 67.4 28.4 70.0 24.5 64.7 52.3
0 27.4 67.7 26.5 67.7 28.2 67.6 -

Gemini-1.5-Pro 1FPS 25.7 66.4 26.6 67.5 24.7 65.2 56.5
0 18.7 60.2 16.1 58.1 21.2 62.2 -

Claude-3.5-Sonnet 16 23.2 64.2 23.5 65.9 22.9 62.4 54.1
8 24.1 65.1 23.6 65.5 24.5 64.6 53.1
4 23.2 64.2 23.1 64.8 23.3 63.6 51.9
2 21.1 62.2 21.2 61.9 20.9 62.4 48.2
1 18.7 58.9 18.4 58.5 18.9 59.3 41.0

Qwen2-VL-72B 32 31.7 70.2 38.3 75.8 25.0 64.5 56.1
16 31.5 70.1 36.9 74.6 26.1 65.5 54.1
8 30.1 68.9 34.0 73.1 26.2 64.7 51.4
4 28.6 68.4 31.2 71.5 26.0 65.3 48.3
2 27.3 67.6 27.5 69.2 27.1 66.0 43.9

Qwen2-VL-7B 32 21.8 62.1 24.7 64.4 18.8 59.7 51.9
16 21.2 61.5 23.6 63.3 18.7 59.7 50.3
8 19.2 59.4 21.1 61.1 17.2 57.7 48.4
4 17.4 58.5 19.3 59.5 15.4 57.5 46.1
2 16.4 56.9 17.7 57.8 15.0 56.0 42.0

LLaVA-OneVision-72B 32 26.6 66.6 30.7 70.5 22.4 62.7 53.9
16 27.2 67.3 32.1 71.2 22.3 63.4 54.2
8 28.1 67.9 33.0 72.1 23.1 63.6 55.0
4 27.6 67.3 31.4 71.2 23.8 63.4 54.2
2 25.7 66.3 29.2 69.6 22.1 63.0 51.1
1 23.3 64.1 27.1 67.9 19.5 60.2 48.6

LLaVA-OneVision-7B 32 18.7 59.4 21.2 61.9 16.2 56.9 50.1
16 17.9 58.8 20.1 60.9 15.6 56.6 50.4
8 17.3 57.8 19.5 59.9 15.0 55.7 50.2
4 16.4 56.3 18.9 58.9 13.9 53.7 49.7
2 14.8 54.4 16.8 56.1 12.7 52.7 47.1
1 12.0 51.4 13.4 53.3 10.6 49.5 44.1

LLaVA-NeXT-Video-34B 32 19.9 61.1 22.0 64.0 17.7 58.2 53.1
16 20.3 61.1 21.8 63.7 18.7 58.4 53.3
8 20.5 61.9 21.4 63.3 19.5 60.4 53.4
4 20.4 61.7 20.7 63.0 20.0 60.3 52.5
2 19.9 61.2 20.0 61.8 19.7 60.6 48.9
1 19.0 59.8 19.0 60.5 18.9 59.1 46.2

worker/expert performance as validation. This ensures high-quality, challenging negatives. Specifi-
cally,

Positive Captions We use Amazon Mechanical Turk (AMT) with in-context examples for positive
caption annotation, shown in Figure 13. Then we use Label Studio to let authors refine the caption.
As shown in Figure 14, authors can edit the caption from AMT workers. Also, we provide the
original short video captions to let people better understand our task.

Negative Captions Filtering Platform We first prompt LLMs (GPT-4o, Gemini, and Llama-3.1-
405b) to get initial negative captions, and then ask authors to choose the negatives that can reflect
the temporal dynamic. The visualization of the multi-choice platform in shown in Figure 15.
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Table 10: TemporalBench performance of various models under binary QA accuracy (BA) and multi-
ple binary QA accuracy (MBA) setting for short and long question answering with different number
of frames. “Overall” denotes the average performance of short and long video QA performance.
(Part 2)

Model # Frames Overall MBA Overall BA Short MBA Short BA Long MBA Long BA Captioning

LLaVA-NeXT-Video-7B 32 15.9 57.1 17.3 59.5 14.5 54.7 51.6
16 19.3 59.9 22.4 64.0 16.1 55.7 49.9
8 20.5 61.2 23.6 65.1 17.3 57.2 50.1
4 20.0 60.7 23.0 64.2 17.0 57.2 49.2
2 19.2 60.3 21.5 63.1 16.8 57.4 46.8
1 17.6 59.1 19.1 62.0 16.1 56.1 44.0

LLaVA-Video-72b 128 33.3 72.1 36.3 74.9 30.2 69.4 53.7
64 33.8 72.1 37.1 75.3 30.5 68.9 54.2
32 33.7 72.4 37.7 75.9 29.6 68.8 54.8
16 33.1 72.0 37.4 75.8 28.8 68.3 54.9
8 32.7 71.9 36.3 75.6 29.0 68.3 54.7
4 32.5 71.4 35.9 74.9 29.2 68.0 53.1
2 31.3 70.4 33.0 73.4 29.7 67.5 50.2
1 29.5 69.5 30.9 71.6 28.1 67.4 47.0

LLaVA-Video-7b 128 21.9 62.1 20.2 61.2 23.5 63.0 51.8
64 22.8 63.0 22.0 62.7 23.6 63.3 52.5
32 22.9 63.6 22.9 63.3 22.9 63.9 52.1
16 21.6 63.0 21.8 62.9 21.5 63.1 51.9
8 20.9 62.0 21.5 61.8 20.3 62.2 50.9
4 18.8 60.5 18.4 59.8 19.1 61.2 49.6
2 18.2 59.6 18.9 58.6 17.5 60.7 46.6
1 16.0 57.0 16.2 56.7 15.9 57.4 43.1

Aria 128 25.1 66.0 27.2 68.7 23.1 63.4 50.6
64 24.2 65.9 26.3 68.4 22.0 63.4 51.1
32 25.0 65.9 26.6 68.4 23.4 63.5 51.5
16 24.4 65.6 26.2 68.3 22.6 62.9 51.4
8 24.4 65.4 26.5 68.5 22.3 62.3 51.7
4 23.5 64.8 26.0 67.8 21.0 61.7 50.8
2 22.3 62.2 25.1 66.5 19.6 57.8 48.7
1 17.9 54.8 22.2 64.5 13.6 45.1 45.7

LongVU 1FPS 18.9 58.5 20.9 61.7 16.9 55.3 40.5

InternLM-XC2.5 1FPS 16.8 57.3 17.9 58.8 15.6 55.8 52.4

VideoLLaVA 8 20.3 61.6 25.5 67.1 15.1 56.0 46.0

MiniCPM-V2.6 1FPS 20.4 61.3 21.4 62.3 19.3 60.3 47.2

Phi-3.5-Vision 32 14.1 54.3 15.6 56.8 12.6 51.7 48.4
16 14.7 55.1 15.9 57.2 13.5 53.0 48.9
8 14.9 55.6 15.9 57.4 13.8 53.7 48.3
4 15.0 56.0 15.5 57.5 14.5 54.5 44.0
2 15.5 56.2 16.9 58.0 14.1 54.4 42.9
1 14.5 55.9 16.5 57.7 12.5 54.0 42.1

MA-LMM 4 9.1 47.4 9.2 48.0 9.0 46.9 38.7

M3 6 13.3 54.7 14.8 56.4 11.8 53.1 47.8

LLaVA-1.5-13B 1 13.7 55.1 13.1 55.7 14.2 54.5 47.9

LLaVA-1.5-7B 1 15.3 56.8 18.3 60.5 12.3 53.2 45.7

LLaVA-NeXT-34B 1 19.0 60.5 18.0 60.5 19.9 60.5 49.1

Phi-3-Vision 1 15.4 55.2 15.1 54.4 15.6 56.0 42.0

Gemini-1.5-Pro 0 18.6 60.1 16.1 58.1 21.2 62.2 -

Yi-34B 0 18.5 59.7 18.7 59.9 18.4 59.5 -

Vicuna7b-1-5 0 10.1 50.8 10.4 50.5 9.9 51.1 -

Flan-T5-XL 0 18.6 59.0 17.9 57.9 19.4 60.1 -

Flan-T5-XXL 0 15.9 56.0 15.1 55.1 16.7 56.9 -

H VIDEO STATISTICS

Video length distribution of (a) short video clips and (b) long videos in TemporalBench is shown in
Figure 16. For benchmarks without caption, we computed the number of words per second using
the length of question and answers.

For ∼10K short video QA, Qwen2VL-7B (16 frames) requires 34 minutes for MBA evaluation on 4
A6000 GPUs, comparable to existing benchmarks (e.g., 32 minutes for NextQA Xiao et al. (2021)
which owns multichoice QA format).
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Figure 13: Positive caption annotation platform for AMT workers.

In TemporalBench, each sub-question is answered with high human accuracy (e.g., , ∼92% BA on
most categories), but the product of probabilities will lead to an overall lower success rate (92%5 =
65.9%). SOTA models (GPT-4o) still lag significantly (38.5% on short video MBA), highlighting
TemporalBench’s difficulty.

I MORE RELATED WORKS

Existing works explored video understanding along different directions. YouCook2 Zhou et al.
(2018) emphasizes procedure videos but lacks fine-grained temporal understanding. VITATECS Li
et al. (2024d), TempCompass Liu et al. (2024c), TOMATO Shangguan et al. (2024) and
TVBench Cores et al. (2024) work towards better model temporal dynamics via the counterfactual
manner, but still lacks the dense captions for fine-grained details.

J PROMPTS FOR NEGATIVE CAPTION CURATION

We provide the prompts for the negative caption curation in Table 14 and Table 15 for the word
level replacement and event level re-ordering for the negative caption curation process, respectively.
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Figure 14: Positive caption refinement platform.

We leverage such prompts to gather responses from LLMs including including GPT-4o, Llama-3.1-
405B, and Gemini-1.5-Pro, followed by human filtering.

K LIMITATIONS

One cannot fully analyze the behavior of proprietary models included in this paper due to the lack
of access to these models, which are GPT-4o, Gemini-1.5-Pro and Claude 3.5 Sonnet.

L BROADER IMPACT

TemporalBench, a comprehensive benchmark for video understanding, has the potential to signifi-
cantly advance research in this field by offering improved metrics for model evaluation. Our work
aims to enhance the temporal reasoning capabilities of future video understanding models. How-
ever, the broader impact of more advanced video understanding technologies raises important so-
cietal concerns, including the risk of mass surveillance, privacy violations, and the development of
harmful applications like autonomous weapons. Therefore, we strongly encourage thoughtful con-
sideration when deploying these models in real-world scenarios to mitigate negative or unintended
consequences.
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Figure 15: Negative caption annotation platform.

M THE USE OF LLMS IN THIS RESEARCH

LLMs including Gemini and Claude are to help polish this paper, LLMs are also used during the
negative caption generation process.

N TOWARDS IMPROVING TEMPORAL FINE-GRAINED CAPABILITY

Here we explore enhancing video LLM’s temporal fine-grained capability, where we focus on cu-
rating high-quality temporal negatives. By leveraging LLaVA-Video’s dense captions and Gemini
2.5 Pro, we curate 5k high quality captioning binary QA problems. Finetuning upon Qwen-2.5-VL-
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(a) Short videos (b) Long videos

Figure 16: Video length distribution of (a) short video clips and (b) long videos in TemporalBench.

Instruct-7B leads to 3.5% improvements on the MBA score, which shows the positive signal towards
our goal.
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Table 11: TemporalBench performance of various multimodal generative models and embedding
models under the binary QA accuracy (BA) and multiple binary QA settings (MBA) for short
videos. The prefix “T-” indicates BA performance for the annotated subset in our TemporalBench.
We show the result with the best average MBA performance for each model with respect to the
number of frames, denoted as # Frames.

Model # Frames T-ActivityNet T-Charades T-FineGym T-Movie T-Oops T-COIN T-EgoExo4D BA MBA

Human Performance - 91.1 93.8 77.0 93.1 92.6 90.2 92.5 89.7 67.9
Random Chance - 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Video Embedding Models: Text + Multiple Frames as Input
XCLIP 8 52.7 52.8 49.0 53.9 53.5 52.3 48.1 51.6 12.9
ImageBind 2 52.9 52.6 47.5 55.4 56.8 52.4 53.4 53.0 14.0
LanguageBind 8 56.5 50.1 48.2 55.8 55.1 51.1 52.8 52.8 14.5

Video Multimodal Generative Models : Text + Multiple Frames as Input
GPT-4o 16 78.5 74.8 64.8 77.2 77.9 79.2 78.3 75.7 38.5
Gemini-1.5-Pro 1FPS 70.7 63.0 55.0 72.5 70.3 70.2 70.8 67.5 26.6
Claude-3.5-Sonnet 8 68.5 62.4 62.7 68.2 64.2 65.4 66.8 65.5 23.6
Qwen2-VL-72B 32 76.6 74.5 65.4 79.8 77.7 77.2 79.7 75.8 38.3
Qwen2-VL-7B 32 67.0 65.2 49.9 70.5 66.5 66.5 66.6 64.4 24.7
LLaVA-OneVision-72B 8 76.0 70.4 59.3 76.1 75.2 73.5 74.9 72.1 33.0
LLaVA-OneVision-7B 32 66.5 60.0 49.4 68.0 61.6 64.6 64.4 61.9 21.2
LLaVA-NeXT-Video-34B 32 67.5 62.9 56.3 68.0 66.1 63.4 64.5 64.0 22.0
LLaVA-NeXT-Video-7B 8 68.0 66.5 56.7 69.9 66.1 65.2 65.0 65.1 23.6
InternLM-XC2.5 1FPS 61.0 57.9 50.6 63.5 60.3 59.2 59.7 58.8 17.9
VideoLLaVA 8 71.8 63.4 61.6 68.2 68.5 68.9 67.3 67.1 25.5
MiniCPM-V2.6 1FPS 66.1 59.6 54.1 68.0 63.1 62.7 62.7 62.3 21.4
Phi-3.5-Vision 2 62.0 55.8 50.0 64.1 58.2 57.7 58.9 58.0 16.9
MA-LMM 4 49.8 48.8 42.3 48.0 49.9 49.0 48.8 48.0 9.4
M3 6 59.5 54.9 51.1 60.9 58.9 54.9 55.2 56.4 14.8

Large Multimodal Models (LMMs): Text + 1 Frame as Input
GPT-4o 1 69.1 67.1 64.8 71.0 71.9 71.0 74.0 70.0 28.4
LLaVA-1.5-13B 1 57.6 54.3 51.9 56.8 53.2 58.1 57.8 55.7 13.1
LLaVA-1.5-7B 1 64.2 58.6 55.7 61.0 57.5 62.7 63.9 60.5 18.3
LLaVA-NeXT-34B 1 59.7 60.3 55.0 61.8 62.0 61.0 63.7 60.5 18.0
Phi-3-Vision 1 57.4 54.5 45.2 57.5 52.8 55.8 58.9 54.4 15.1

Large Language Models (LLMs): Text as Input
GPT-4o 0 66.2 67.4 65.6 65.6 68.9 67.8 71.7 67.7 26.5
Gemini-1.5-Pro 0 58.5 57.6 50.6 59.8 57.6 58.6 64.3 58.1 16.1
Yi-34B 0 59.1 62.3 54.9 59.7 57.7 63.1 63.6 59.9 18.7
Vicuna7b-1-5 0 49.7 49.5 50.2 50.7 50.5 50.0 52.1 50.5 10.4
Flan-T5-XL 0 60.5 59.2 50.5 60.7 56.8 58.7 60.3 57.9 17.9
Flan-T5-XXL 0 56.7 49.3 52.0 59.0 54.6 56.1 56.2 55.1 15.1
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Table 12: TemporalBench performance of various multimodal generative models and embedding
models under long video understanding with binary QA accuracy (BA) and multiple binary QA
accuracy (MBA). The MBA performance under each dataset is also included. We show the result
with the best average MBA performance for each model with respect to the number of frames,
denoted as # Frames.

Model # Frames T-ActivityNet T-Charades T-FineGym T-COIN T-EgoExo4D BA MBA

Random Performance - 9.3 9.8 10.1 11.4 9.3 50.0 9.5

Video Embedding Models: Text + Multi-Frames as Input
XCLIP 8 11.1 12.4 6.5 10.8 11.8 51.7 11.1
ImageBind 2 10.2 8.1 9.3 10.8 12.4 51.0 10.7
LanguageBind 8 11.7 10.8 10.3 11.0 14.1 51.6 12.0

Video Multimodal Generative Models : Text + Multi-Frames as Input
GPT-4o 64 40.0 37.8 16.8 32.7 29.3 70.5 32.7
Gemini-1.5-Pro 1FPS 32.1 18.4 18.7 24.8 23.8 65.2 24.7
Claude-3.5-Sonnet 8 28.9 22.2 16.8 22.2 26.7 64.6 24.5
Qwen2-VL-72B 8 32.4 20.5 21.5 18.9 33.1 64.7 26.2
Qwen2-VL-7B 32 22.2 20.0 9.3 18.3 18.7 59.7 18.8
LLaVA-OneVision-72B 4 28.6 19.5 18.7 16.5 30.9 63.4 23.8
LLaVA-OneVision-7B 32 21.3 13.0 13.1 11.4 19.8 56.9 16.2
LLaVA-NeXT-Video-34B 4 23.5 22.2 19.6 17.9 19.2 60.3 20.0
LLaVA-NeXT-Video-7B 8 18.1 21.6 10.3 18.5 15.6 57.2 17.3
InternLM-XC2.5 1FPS 21.0 18.4 20.6 14.0 11.4 55.8 15.6
VideoLLaVA 8 20.0 16.8 15.9 9.8 16.6 56.0 15.1
MiniCPM-V2.6 1FPS 14.3 16.8 6.5 17.1 14.1 60.3 19.3
Phi-3.5-Vision 4 23.2 11.9 19.6 10.2 13.3 54.5 14.5
MA-LMM 4 10.2 9.2 2.8 11.4 11.6 47.1 9.2
M3 6 10.8 8.6 12.1 13.0 12.4 53.1 11.8

Large Multimodal Models (LMMs): Text + 1 frame as Input
GPT-4o 1 27.9 23.2 19.6 25.2 22.9 64.7 24.5
LLaVA-1.5-13B 1 14.3 11.9 10.3 15.4 14.7 54.8 14.2
LLaVA-1.5-7B 1 9.2 11.9 10.3 12.8 14.5 53.2 12.3
LLaVA-NeXT-34B 1 21.6 20.5 19.6 18.9 19.8 60.5 19.9
Phi-3-Vision 1 18.1 12.4 15.0 15.4 15.6 56.0 15.6

Large Larguage Models (LLMs): Text as Input
GPT-4o 0 27.6 32.4 17.8 24.2 33.5 67.6 28.2
Gemini-1.5-Pro 0 22.9 19.5 17.8 19.3 23.4 62.2 21.2
Yi-34B 0 19.7 19.5 14.0 15.9 20.6 59.5 18.4
Vicuna7b-1-5 0 6.3 9.2 9.3 10.6 12.0 51.1 9.9
Flan-T5-XL 0 21.6 15.7 23.4 18.1 19.8 60.1 19.4
Flan-T5-XXL 0 20.0 11.9 18.7 15.7 17.1 56.9 16.7
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Table 13: TemporalBench performance of various multimodal generative models and embedding
models under long video understanding with binary QA accuracy (BA) and multiple binary QA
accuracy (MBA). The BA performance under each dataset is also included. We show the result with
the best average MBA performance for each model with respect to the number of frames, denoted
as # Frames.

Model # Frames T-ActivityNet T-Charades T-FineGym T-COIN T-EgoExo4D BA MBA

Random Performance - 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Video Embedding Models: Text + Multi-Frames as Input
XCLIP 8 51.9 48.7 47.9 52.6 52.8 51.7 11.1
ImageBind 2 50.3 52.6 47.9 51.3 51.3 51.0 10.7
LanguageBind 8 51.9 46.4 48.2 52.0 53.7 51.6 12.0

Video Multimodal Generative Models : Text + Multi-Frames as Input
GPT-4o 64 74.8 73.8 61.2 70.1 68.7 70.5 32.7
Gemini-1.5-Pro 1FPS 67.0 61.6 60.6 65.9 65.9 65.2 24.7
Claude-3.5-Sonnet 8 66.8 63.7 56.7 63.1 66.6 64.6 24.5
Qwen2-VL-72B 8 68.5 59.6 62.5 59.6 70.0 64.7 26.2
Qwen2-VL-7B 32 60.7 58.0 49.9 59.8 61.9 59.7 18.8
LLaVA-OneVision-72B 4 67.0 63.5 61.2 55.8 69.3 63.4 23.8
LLaVA-OneVision-7B 32 60.0 53.6 57.6 53.2 59.8 56.9 16.2
LLaVA-NeXT-Video-34B 4 59.4 63.0 57.6 59.5 61.4 60.3 20.0
LLaVA-NeXT-Video-7B 8 60.9 58.6 51.5 56.7 56.1 57.2 17.3
InternLM-XC2.5 1FPS 59.6 58.9 57.0 54.9 52.8 55.8 15.6
VideoLLaVA 8 61.2 57.0 59.5 50.1 57.3 56.0 15.1
MiniCPM-V2.6 1FPS 53.7 58.6 41.3 54.8 53.9 60.3 19.3
Phi-3.5-Vision 4 60.3 52.3 58.1 50.3 55.1 54.5 14.5
MA-LMM 4 47.4 51.7 36.4 50.1 51.2 47.1 9.2
M3 6 52.5 52.9 51.0 53.4 53.6 53.1 11.8

Large Multimodal Models (LMMs): Text + 1 frame as Input
GPT-4o 1 67.6 64.3 62.8 65.9 62.0 64.7 24.5
LLaVA-1.5-13B 1 55.1 52.3 52.9 55.0 54.8 54.5 14.2
LLaVA-1.5-7B 1 51.2 53.4 51.5 51.8 56.2 53.2 12.3
LLaVA-NeXT-34B 1 60.6 60.8 57.0 59.8 61.8 60.5 19.9
Phi-3-Vision 1 56.9 53.9 52.1 55.6 57.6 56.0 15.6

Large Larguage Models (LLMs): Text as Input
GPT-4o 0 67.1 68.1 63.6 65.1 71.3 67.6 28.2
Gemini-1.5-Pro 0 62.8 59.4 55.6 60.7 65.7 62.2 21.2
Yi-34B 0 59.0 60.2 56.5 59.5 60.4 59.5 18.4
Vicuna7b-1-5 0 49.0 52.4 49.3 51.2 52.2 51.1 9.9
Flan-T5-XL 0 61.3 57.7 59.8 58.8 61.7 60.1 19.4
Flan-T5-XXL 0 59.4 53.6 59.5 56.3 56.5 56.9 16.7
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Table 14: For each query, we illustrate the prompt construction process of the word level re-
placement for LLMs powered negative caption curation including GPT-4o, Llama-3.1-405B, and
Gemini-1.5-Pro, to collect query[‘response’] from query[‘context’], using few-shot
in-context-learning, where examples are from fewshot samples, each example including input
sample[‘context’] and output sample[‘response’]. Note that messages is the final
prompt. In this example, we provide the prompt used to generate the negative caption response.

messages = [ {"role":"system", "content": f“““You are a helpful assistant in generating negative captions for
videos designed to output JSON.
You are given a video caption. You are tasked to: Generate negative captions that changes the action descriptions being discussed
in exactly one of the entities by only changing or swapping one word or phrase.
For example, you can change ”open the drawer” to ”close the drawer”, or change from ”pull” to ”push”, or ”quickly” to
”slowly”. You should generate negatives that can not be solved by feeding one random frame into a multimodal model. For
example, changing ”wood chair” into ”plastic chair” is a bad practice. But changing ”man playing with one cat” to ”man playing
with two cats” is good. Swapping ”left leg” to ”right leg” is also good if this caption updates completely changes the motion in
the video.
All in all, the new description must meet all of these requirements:
1. The change of action descriptions must be sufficiently different to make the new description inaccurate, but it should also be
somewhat related to be challenging to an AI model.
2. Compared to the original description, the new description must differ in only one aspect. All other details must be kept the
same.
3. The new description must mimic the sentence structure of the original description.
4. The new description must be fluent, logical, and grammatically correct.
5. Pose challenging(difficult enough) negative captions so that a large multimodal text generation model should struggle to
distinguish the original caption v.s. negative captions.
Here are some examples whose output format you can have a reference:”””}]

fewshot samples = [
{ "context": “““ Original Caption: “A person is holding a glass cup using his left hand and biting a piece of bread twice
using his right hand, while two dogs are pacing back and forth behind him.”
Your answer: ”””,
"response":“““[ ”A person is holding a glass cup using his left hand and biting a piece of bread three times using his right
hand, while two dogs are pacing back and forth behind him.”,
”A person is drinking water from a glass cup using his left hand and biting a piece of bread twice using his right hand, while
two dogs are pacing back and forth behind him.”,
”A person is holding a glass cup using his left hand and biting a piece of bread twice using his right hand, while one dog is
pacing back and forth behind him.”, ]””” },
{ "context": “““ Original Caption: ”With the right hand holding the lemon at the top, the left hand holding a knife cuts the
lemon through the middle space between the thumb and index finger of the right hand. The left hand moves the knife from top
to bottom with a slight forward and backward motion. Eventually, the lemon is split into two halves.”
Your answer: ”””,
"response":“““[ ”With the right hand holding the lemon at the top, the left hand holding a knife cuts the lemon through the
middle space between the thumb and index finger of the right hand. The left hand moves the knife from top to bottom with a
slight forward and backward motion. Eventually, the lemon is split into four pieces.”,
”With the right hand holding the lemon at the top, the left hand holding a knife cuts the ginger through the middle space
between the thumb and index finger of the right hand. The left hand moves the knife from top to bottom with a slight forward
and backward motion. Eventually, the ginger becomes lots of pieces.”,
”With the left hand holding the lemon at the top, the right hand holding a knife cuts the lemon through the middle space
between the thumb and index finger of the right hand. The right hand moves the knife from top to bottom with a slight forward
and backward motion. Eventually, the lemon is split into two halves.”, ] ”””,
} ]

for sample in fewshot samples:
messages.append({"role":"user", "content":sample["context"]})
messages.append({"role":"assistant", "content":sample[‘response’]} )

messages.append({"role":"user", "content":‘\n’.join(query)})
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Table 15: For each query, we illustrate the prompt construction process of the event level re-
ordering for LLMs powered negative caption curation including GPT-4o, Llama-3.1-405B, and
Gemini-1.5-Pro, to collect query[‘response’] from query[‘context’], using few-shot
in-context-learning, where examples are from fewshot samples, each example including input
sample[‘context’] and output sample[‘response’]. Note that messages is the final
prompt. In this example, we provide the prompt used to generate the negative caption response.

messages = [ {"role":"system", "content": f“““You are a helpful assistant tasked with generating negative cap-
tions for videos. Your goal is to output results in JSON format. You are provided with a video caption, and your job is to:
- Generate a ”negative” version of the caption by rearranging the sequence of actions in the original caption. This rearrangement
should still make logical sense in real life.
Guidelines:
1. The changed order must still be reasonable. If reversing or rearranging the order of events is not logically possible, the
negative caption is not valid. For instance, if the original caption is ”AAAA then BBBB” (e.g., a fire starting before people use
water to extinguish it), switching to ”BBBB then AAAA” would be invalid.
2. The negative caption should differ only in the order of actions or events, while keeping the content of the events intact.
3. If there is only one event or all events happen at the same time (concurrently), output an empty array ‘[]‘.
4. The negative caption must remain fluent, logical, and grammatically correct.
5. The negative captions should be challenging enough that a large multimodal model would find it difficult to distinguish
between the original and negative captions.
Here are some examples whose output format you can have a reference:”””}]

fewshot samples = [
{ "context": “““Original Caption: ”A person is spraying cleaning liquid on the wooden chair in the external environment,
first from bottom to top on the right handrail, then top to bottom on one of the supporting pillars.”
Your answer: ”””,
"response":“““[ ”A person is spraying cleaning liquid on the wooden chair in the external environment, first from top to
bottom on one of the supporting pillars, then bottom to top on the right handrail”, ]””” },
{ "context": “““ Original Caption: ”A person leans back pulling the rope as the boat sails forward. In the background more
boats sail on the sea. The waves in the sea ebbs and flows. There is a also a text ”Accelerate” appearing at the bottom of the
scene.”
Your answer: ”””,
"response":“““[] ”””,
},
{ "context": “““ Original Caption: ”A man uses his left hand to put the unscrewed cap onto the table, then uses the same
hand to move a red cup closer to his right hand. He is then seen pouring something from the right hand into the left cup. He
then moves the cup back onto the table and picks the cap back up to screw it back on.”
Your answer: ”””,
"response":“““[ ”A man uses his left hand to move a red cup closer to his right hand, then uses the same hand to put the
unscrewed cap onto the table. He is then seen pouring something from the right hand into the left cup. He then moves the cup
back onto the table and picks the cap back up to screw it back on.”,
”A man is seen pouring something from the right hand into the left cup. Then he uses his left hand to put the unscrewed cap
onto the table, then uses the same hand to move a red cup closer to his right hand. He then moves the cup back onto the table
and picks the cap back up to screw it back on.”,
”A man uses his left hand to put the unscrewed cap onto the table, then seen pouring something from the right hand into the left
cup. He then uses the left hand to move a red cup closer to his right hand. He then moves the cup back onto the table and picks
the cap back up to screw it back on.”,
”A man uses his left hand to move a red cup closer to his right hand, then seen pouring something from the right hand into the
left cup. He then uses the left hand to put the unscrewed cap onto the table. He then moves the cup back onto the table and
picks the cap back up to screw it back on.”,
”A man is seen pouring something from the right hand into the left cup. Then he uses the left hand to move a red cup closer to
his right hand, then uses his left hand to put the unscrewed cap onto the table. He then moves the cup back onto the table and
picks the cap back up to screw it back on.”, ] ”””,
} ]

for sample in fewshot samples:
messages.append({"role":"user", "content":sample["context"]})
messages.append({"role":"assistant", "content":sample[‘response’]} )

messages.append({"role":"user", "content":‘\n’.join(query)})
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