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Abstract

Positive—Unlabeled (PU) learning addresses classification problems where only a subset of
positive examples is labeled and the remaining data is unlabeled, making explicit negative
supervision unavailable. Existing PU methods often rely on negative-risk estimation or
pseudo-labeling, which either require strong distributional assumptions or can collapse in
high-dimensional settings. We propose AngularPU, a novel PU framework that operates on
the unit hypersphere using cosine similarity and angular margin. In our formulation, the
positive class is represented by a learnable prototype vector, and classification reduces to
thresholding the cosine similarity between an embedding and this prototype—eliminating
the need for explicit negative modeling. To counteract the tendency of unlabeled embeddings
to cluster near the positive prototype, we introduce an angular regularizer that encourages
dispersion of the unlabeled set over the hypersphere, improving separation. We provide
theoretical guarantees on the Bayes-optimality of the angular decision rule, consistency
of the learned prototype, and the effect of the regularizer on the unlabeled distribution.
Experiments on benchmark datasets demonstrate that AngularPU achieves competitive or
superior performance compared to state-of-the-art PU methods, particularly in settings with
scarce positives and high-dimensional embeddings, while offering geometric interpretability
and scalability.
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1 Introduction

Positive-Unlabeled (PU) learning addresses classification scenarios in which labeled negatives are scarce or
infeasible to obtain (Bekker & Davis, 2020; Elkan & Notol [2008). Such settings are common in domains
like medical diagnosis, sentiment analysis, and anomaly detection, where negative examples can be costly,
ambiguous, or ethically constrained. Formally, we are given a set of labeled positive instances and a large
pool of unlabeled data containing an unknown mix of positives and negatives; the task is to learn a classifier
that separates the two without explicit negative supervision.

Existing PU methods typically rely on surrogate modeling of the negative class(Yu et al., 2002} [Liu et al.,
2003; [Hsieh et al., 2019; |Gong et al., 2021} [Yuan et al., 2025). Risk-based approaches (e.g., unbiased or
non-negative PU risk estimators and their imbalanced variants) decompose the classification risk into terms
involving only positives and unlabeled data, using an assumed class prior to correct for the implicit treatment
of all unlabeled examples as negatives (Du Plessis et al.l |2014; |Christoffel et al., 2016; |Ramaswamy et al.,
2016; Kiryo et al.}2017). While theoretically sound, these methods are sensitive to prior estimation errors and
degrade when the learned representation is insufficiently discriminative. EM-style and prototype-contrastive
methods, in contrast, generate pseudo-labels for the unlabeled set and alternate between representation
learning and classifier updates; however, such alternating schemes are prone to confirmation bias—early
mislabeling of negatives as positives can cause cascading errors—and often require auxiliary mechanisms such
as momentum queues, hard-negative mining, or contrastive pair construction(Arazo et al. 2020; |Cascante-
Bonilla et al.,|2021)); contrastive mechanics: (He et al. [2020; Wu et al., [2018; |Chen et al.; 2020b)). Boundary-
or anomaly-based methods take a different route by synthesizing negatives or convexifying the positive set
in latent space, but these heuristics can fail when the positive manifold is complex or non-convex (Scholkopf
et al.l |2001; [Ruff et al.| 2018]).

A common limitation across these approaches is the reliance on either explicit negative modeling or iterative
pseudo-negative construction, both of which can be unstable in high-dimensional feature spaces. Moreover,
most methods treat representation learning as secondary, leaving the geometric structure of the embedding
space underexploited.

We take a geometry-first approach: we explicitly model only the positive class and treat all other instances
as dispersed over the hypersphere. Concretely, we propose a neural encoder that maps inputs to the unit
hypersphere and represents the positive class using a directional scoring function based on cosine similarity
to a learnable prototype vector. This yields a simple angular score

s(z)=kp' 2,

which provides a geometrically meaningful decision rule and eliminates the need for explicit negative mod-
eling, pseudo-negatives, or class-prior estimation.

To reduce false positive clustering near the positive prototype, we introduce an unlabeled-only angular reg-
ularizer that encourages embeddings of unlabeled examples to be well-dispersed over the hypersphere. The
encoder and prototype are learned jointly in a single-stage, end-to-end optimization.

Our contributions are:

1. Hyperspherical PU modeling: We formulate PU learning in a hyperspherical embedding space,
using cosine similarity to a learned positive prototype as the classification score.

2. Unlabeled-only angular regularization: We regularize only the unlabeled set toward hy-
perspherical uniformity, mitigating false positive clustering and improving separation in high-
dimensional spaces.

3. Simplicity and stability: Our method is a single-stage, geometry-driven approach that avoids
momentum queues, contrastive pairs, pseudo-negative heuristics, or class-prior estimation, while
remaining theoretically grounded and scalable.

Experiments on four benchmark datasets (CIFAR-10, STL-10, SVHN, and ADNI) show that our method
achieves competitive or superior performance compared to state-of-the-art PU baselines, particularly in
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regimes with few labeled positives, while offering a stable and interpretable geometric framework for PU
learning.

2 Related Work

PU learning has been studied extensively over the past two decades, with methods broadly falling into three
categories: risk-based approaches, representation-learning approaches, and boundary/anomaly-based methods.
Below, we summarize the most relevant works and position our method within this landscape.

Unbiased risk estimation (uPU) (Du Plessis et al., [2014)) and its non-negative variant nnPU (Kiryo et al.l
2017) form the basis of many PU approaches, decomposing the classification risk into terms involving only
positives and unlabeled data. While theoretically grounded, these estimators are sensitive to class prior
estimation, can overestimate negative risk, and may overfit when representation quality is low. Imbalanced
nnPU (Su et all [2021) addresses class imbalance via reweighting, effectively oversampling positives in PN
settings. However, it still assumes accurate knowledge of the class prior 7y, inherits nnPU’s non-negativity
heuristic, and does not directly improve the geometry of the learned embeddings—a crucial factor in high-
dimensional settings. In contrast, our method avoids negative-risk estimation and reweighting altogether,
directly modeling the positive distribution on the hypersphere and regularizing the unlabeled set toward
angular uniformity.

To overcome the representation bottleneck of purely risk-based methods, recent works integrate metric
learning or contrastive objectives into PU frameworks. WConPU (Yuan et all 2025) combines weighted
contrastive learning with prototype-based classification, alternating between prototype updates, pseudo-
labeling, and classifier training, while also performing hard-negative mining from a momentum queue. This
improves embeddings but introduces multiple interdependent components and requires a class-prior estimate.
Our approach shares the goal of compact positive clustering but replaces the pseudo-negative pipeline with a
probabilistic vMF prototype learned end-to-end, requiring neither EM-style alternation nor memory queues.

In the broader weakly supervised learning literature, PiCO (Wang et al.| [2022) addresses partial-label learn-
ing via label disambiguation and contrastive representation learning. Subsequent work has shown that
contrastive learning often produces mixtures of vMF distributions in embedding space. However, PiCO
assumes candidate label sets for each sample and is not directly applicable to the PU setting (Yuan et al.
2025). Our work makes the vMF modeling explicit for positives in PU, eliminating the need for candidate
labels, contrastive pair construction, or label disambiguation.

Ensemble-diversity self-training (Odonnat et al.l [2024)) encourages disagreement among hypotheses on unla-
beled data to mitigate selection bias. Our approach is complementary: we enforce dispersion in representation
space for unlabeled data while aligning positives to a spherical prototype. The alignment—uniformity lens
of (Wang & Isolal, 2020)) directly motivates our design: positive alignment to x4 and unlabeled uniformity on
Sé-1,

Another direction infers negatives by modeling the positive region and treating outliers as negative. Dense-
PU (Sevetlidis et al., [2024) trains a convolutional autoencoder on positives, interpolates in the latent space,
and uses convex hull or dense region boundaries to identify negative candidates for downstream PN training.
This two-stage approach depends on SCAR assumptions and convexity heuristics, which may fail for complex,
non-convex manifolds. In contrast, our method is end-to-end, avoids explicit negative generation, and uses
a principled probabilistic model for the positive class on the hypersphere.

Most existing PU methods either (i) assume a specific distribution for the negative class, (ii) iteratively
construct pseudo-negatives, or (iii) decouple representation learning from classifier optimization. Each of
these choices brings well-known drawbacks: risk-based estimators are sensitive to class-prior misspecification
and do little to shape the embedding space; pseudo-labeling pipelines amplify early mistakes through con-
firmation bias; and contrastive methods require auxiliary machinery such as momentum queues and apply
uniformity constraints indiscriminately, often eroding positive compactness. Our geometry-first framework
sidesteps all three pitfalls by modeling only the positive class as a von Mises—Fisher distribution on the
hypersphere and enforcing uniformity exclusively on the unlabeled set. While our method does use a con-
stant soft label of 0.5 for unlabeled data—reflecting maximum uncertainty—it avoids dynamic or EM-style
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Table 1: Comparison of representative PU learning methods. “Prior” indicates reliance on a class-prior
estimate; “Neg. model” means an explicit distributional assumption for the negative class; “Pseudo-neg.”
indicates iterative pseudo-negative labeling; “Contrastive” denotes explicit contrastive pair construction;
“yMF*” means an explicit von Mises—Fisher model for positives; “U-uniform” indicates an unlabeled-only
uniformity regularizer; “End-to-end” denotes single-stage training without multi-phase pipelines.

Method Prior Neg. model Pseudo-neg. Contrastive ~vMFt  U-uniform End-to-end
nnPU (Kiryo et al.l, 2017 v X X X X X v
Imbalanced nnPU (Su et al.l, 2021 v X X X X X v
WConPU ()yuan2025weighted v X v v X X X
PiCO [Wang et al.| (2022 X X v v X X X
Dense-PU (Sevetlidis et al.L |2024[) X X v X X X X
Ours X X A X v v v

pseudo-labeling and relies solely on a probabilistic directional score for classification. The result is a simple,
stable, and theoretically grounded PU learner that aligns its inductive bias directly with the geometry of
high-dimensional embeddings.

3 Proposed Method

Overview: shared encoder with vMF positive modeling and unlabeled-only uniformity
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Figure 1: Overview of our hyperspherical PU method. A shared encoder fy maps labeled positives 2P and
unlabeled samples z* onto the unit hypersphere. Positives are pulled toward a learnable direction p via a
cosine-based alignment loss (Lp0s). Unlabeled samples are trained with a symmetric BCE loss (Lynian) and
dispersed via an angular uniformity regularizer (L,es). Right: regularization increases angular separation,
yielding compact positives and spread-out unlabeled embeddings.

We address the PU learning problem, where only a small set of labeled positives D, and a large set of
unlabeled samples D,, are available during training. The unlabeled set contains an unknown mixture of
positives and negatives, with no access to explicitly labeled negatives. This setup commonly arises in
settings where negative categories are heterogeneous, ill-defined, or impractical to label exhaustively.

1We use a fixed uncertainty label of 0.5 for the unlabeled set, rather than dynamic pseudo-labeling or negative mining.
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Our method learns a neural encoder fy : X — S¢~! that maps inputs to ¢3-normalized feature vectors on
the unit hypersphere (Mardia & Jupp), [2009; Dhillon & Sral 2003) (see Figure [1)). This geometry is well-
suited for angular decision rules based on cosine similarity. Rather than modeling a full density, we score
each embedded vector z = fp(z) via its similarity to a learnable direction x4 € S%~!, using a scaled cosine
similarity. This directional score draws inspiration from the von Mises—Fisher distribution, which defines a
density over the hypersphere with normalization constant Cy(k) (see Appendix |A|for details). While we do
not require this constant in training, it is used in the log-likelihood derivation and analytical bounds:

s(z)=kp' 2,
where £ > 0 is a fixed scaling factor controlling the sharpness of the score. This directional score serves as a
soft classifier, with p acting as a prototype for the positive class, which is updated by gradient descent and
re-projected onto the unit sphere after each optimization step to enforce ||u|| = 1. That is, we perform:

4 after each update.

P
[l14]l2

We adopt a geometric inductive bias that encourages unlabeled samples to be dispersed over the sphere,
inspired by the idea that negatives occupy diverse regions of embedding space while positives tend to clus-
ter near pu. This formulation is consistent with a vMF—uniform generative model. In such a setting, the
Bayes-optimal decision rule reduces to thresholding the inner product 4" z. While this motivates our direc-
tional scoring formulation, in practice we use empirical threshold selection without requiring class priors or
normalization constants.

The model is trained by minimizing a loss composed of three terms. For labeled positives P C D, we
encourage alignment with pu:

1
Lpos = —WZnﬂTzi. (1)

i€EP

For unlabeled samples U C D,,, we apply a symmetric binary cross-entropy loss with neutral supervision,
reflecting maximum uncertainty (i.e., E[y] = 0.5):

1
Lunlab = T > [0.5log () +0.51log(1 — o(£)))], (2)
jeu
where £; = ff,usz and o denotes the sigmoid function. This uncertainty-driven term avoids overconfident
updates on ambiguous unlabeled points.

To mitigate false positives clustering near the prototype, we regularize the unlabeled set via an angular
dispersion term:

1 T
»cre :1 - tz;, zj , 3
« = o8 | o= ¥

where ¢ > 0 is a temperature hyperparameter. This regularizer encourages decorrelation among unlabeled
embeddings, improving separability by promoting diversity in feature space.

The final loss combines the three components:
L= ‘Cpos + ‘cunlab +A ‘Cregy (4)

where A controls the strength of regularization. The encoder fy and prototype p are learned jointly via back-
propagation. s is initialized randomly on S?~! and renormalized after each update. The scaling parameter
k is fixed throughout training and treated as a hyperparameter.

To improve robustness to uncertain unlabeled samples, we incorporate a soft weighting scheme based on a
fixed or learnable angular margin m € [—1,1], which acts as a similarity threshold. The idea is to assign
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greater influence to unlabeled embeddings that lie closer to the positive prototype p in angular space.
Specifically, for each z € U, we define a soft weight:

w(z) =0 (a-(u'z—m)), (5)

where o is the sigmoid function and o > 0 controls the sharpness of the transition. Samples with u'z > m
(i.e., close to the prototype) receive higher weights.

We then modify the unlabeled loss to incorporate these Weight&ﬂ

1

T > w(z) - [0.51og o(£;) + 0.51log(1 — o (¢;))] . (6)

jeU

Eunlab =

Because the unlabeled loss gradient satisfies

8»Cunlab
B — u(z)[o(¢) — 0.5],

the weighting function w(z) increases the tendency to neutralize overly confident, high-similarity unlabeled
points, thereby counteracting false-positive collapse near p.

At test time, a score s(z) = k' z is computed for each sample. The decision threshold 7 is selected via F1
maximization on a held-out validation set, and predictions are made by:

R 1 ifs(z)>7
y:{ () .

0 otherwise

4 Theoretical Justification

Our theoretical analysis serves three purposes: (i) to motivate our directional scoring function based on
a generative vMF—uniform model, (ii) to justify the learnability of the positive prototype p under realistic
assumptions, and (iii) to interpret our cosine regularizer as encouraging dispersion of the unlabeled set. While
our implementation does not rely on priors or density estimation, these results illuminate the inductive biases
built into our model.

4.1 Directional decision boundary under the vMF—uniform model
We consider a generative setting where positives follow a von Mises—Fisher (vMF) distribution on the hy-
persphere and negatives are uniform (Mardia & Jupp, [2009; |[Dhillon & Sraj, |2003; [Sral, [2016)).

Proposition 4.1 (MAP rule for vMF-uniform). Let z € S¥!, with p(z | Y=1) = Cy(k)exp(kpu'2) and
p(z | Y=0) = Uy, and prior 1 = Pr(Y=1). Then the Bayes—optimal classifier is a threshold on the inner

product:
K

1
wazrs <log Cy(k) —logUy + log 1iﬂ_> .

Proof sketch. Bayes’ rule gives

p(Y=1]>z)

T 7.r
— = = log C —logUy + log ——.
p(Y=0| z) rop 2+ log Ca(w) —log Ua + log 1—m

The MAP decision sets this > 0, yielding the stated threshold. Full constants/derivation are in Appx.

vMF level sets are spherical caps centered at u; the MAP acceptance region is the cap {u'z > 7}.

2In ablations, we test both fixed-margin settings (e.g., m = 0.5) and learnable-margin variants, where m is optimized during
training and constrained to the interval [—1,1]. The adaptive weights guide learning by prioritizing unlabeled instances closer
to the decision boundary, reducing the impact of noisy or uninformative examples.
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Remark 1 (Isotropic negatives). If p(z | Y=0) is rotation-invariant on S, then log zgiié; =kp'z+c

for a constant ¢, so the Bayes rule is still a threshold on ' z.

Our score is s(z) = a(u' z —m), so thresholding s is equivalent to thresholding u'z with s(z) > 7, and
7s = a(r — m). In practice we estimate 75 using a PU-valid calibration on unlabeled scores (mixture-
proportion based), not supervised F1. See §5 and Appx. @

4.2 Learnability of the prototype

We now show that the directional prototype p can be reliably estimated from labeled positives alone, under
the assumption that k is fixed.

Lemma 4.1 (Consistency of the Positive Prototype). Let z1,..., 2, ~ vMF(u, k), and let 7, = 237" | 2
be the sample mean. Then the mazimum likelihood estimate of w is fin, = T /|||, and:

ﬂn&u as n — o0.

This shows that, under fixed x and fixed encoder fy, the prototype u converges in probability to the true
mean direction (Mardia & Juppl |2009)). In practice, we jointly optimize p and fp, so this consistency result
holds approximately and serves as a justification for prototype stability when the positive distribution is
concentrated.

Proof. The MLE of the vMF mean direction is known to converge to the population mean direction (Mardia
& Jupp, [2009). See Appendix [B|for derivation.

4.3 Interpretation of the cosine uniformity regularizer

The previous results explain why scoring via p " 2z can separate positives and negatives—if p is well estimated
and negatives are not concentrated around p. However, in practice, the unlabeled set may contain false
positives that cluster near the prototype, especially early in training.

To reduce this risk, we include a regularization term that promotes angular dispersion of the unlabeled set.
While it is inspired by hyperspherical uniformity, we do not assume the unlabeled set is actually uniform.

Proposition 4.2 (Dispersion via Cosine Regularization). Let U = {z1,...,2,} be embeddings of unlabeled
samples on S4~1. Then the reqularizer

1 T
Lopeg=1log | — et#i i
g nin —1) ;

T

is minimized when the pairwise cosine similarities z;' z; are low on average, encouraging angular spread.

Minimizing L,e; reduces high pairwise cosine similarities among unlabeled embeddings—i.e., it promotes
angular dispersion (soft repulsion)—without assuming exact hyperspherical uniformity. While it does not
enforce true uniformity, it reduces redundancy in the latent space and improves separation.

Proof. Since z; z; € [-1,1], and €t % % increases with similarity, the sum is minimized when the z; are
dispersed (i.e., pairwise similarities are small). See Appendix |C|for further analysis.

4.4 Regularization scaling and bound

We provide a loose upper bound on the regularizer to ensure it does not dominate the overall objective.

Corollary 4.1 (Upper Bound on Regularization Term). Let z; € S*™! fori=1,...,n. Then:

Lreg <log (') =t.
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This holds in the extreme case where all cosine similarities are maximal, i.e., z;r z; = 1. In practice, Lyeg
remains well-behaved and is scaled by a tunable factor .

Proof. The maximum value of each term ef % % is et. There are n(n — 1) such terms, so the average is at
most e’. Taking log gives t.

5 Experimental Evaluation

We evaluate the proposed vMF PU learning framework on a range of benchmark datasets: CIFAR-10, STL-
10, SVHN, and ADNI. These datasets span natural images, digit recognition, and medical imaging, allowing
us to assess performance across varying input complexity and domain characteristics. The PU setting is
simulated by providing a small labeled positive set and treating the remainder of the data as unlabeled,
containing a mixture of positives and negatives.

5.1 Experimental Protocol

To ensure comparability with prior work, we replicate the experimental setup of |[Yuan et al.| (2025)), includ-
ing dataset partitions, positive/unlabeled (PU) label ratios, and evaluation metrics. This enables direct
comparisons with established PU learning baselines.

Each input is encoded onto the unit hypersphere S¥~! via a trainable encoder, as described in Section
Training optimizes a von Mises-Fisher-based loss for labeled positives, binary cross-entropy for unlabeled
data, and—when applicable—the cosine uniformity regularizer. We report the following evaluation metrics
on the test set: F1 score, precision, recall, accuracy, area under the ROC curve (AUC), and average precision
(AP), consistent with prior literature.

Unless otherwise stated, all experiments use a validation split (10% of the training data) to tune the decision
threshold for binary classification by maximizing F1 score.

5.2 Datasets

CIFAR-10 consists of 60,000 color images (32x32) across 10 object classes (Krizhevsky et al., 2009)). Fol-
lowing prior work, we group airplane, automobile, ship, and truck as the positive (vehicle) class, and the
remaining classes as negative (animals). We sample 1,000 positive examples to serve as labeled data; the
rest of the training set is used as unlabeled data containing a mixture of positives and negatives. We adopt
the standard 50,000/10,000 train/test split.

STL-10 contains 13,000 labeled images (96x96) across 10 classes (Coates et all |[2011). We group airplane,
car, and truck as positives, and all other classes as negatives. A total of 500 positive examples are randomly
selected as labeled data, with the rest used as unlabeled. Due to its higher resolution and more complex
scenes, STL-10 poses a greater challenge compared to CIFAR-10.

SVHN comprises over 600,000 real-world digit images from street views (Netzer et al., 2011). Even digits
(0, 2, 4, 6, 8) are treated as positives and odd digits as negatives. We randomly sample 1,000 even digits as
labeled positives, while treating the remainder of the training set as unlabeled. The test set includes 26,032
labeled images.

ADNI (Alzheimer’s Spectrum). The Alzheimer’s Disease Neuroimaging Initiative (ADNI) provides
structural MRI scans of healthy controls (NC) and subjects across the Alzheimer’s disease spectrum (AD,
MCI, etc.)(Jack Jr et al., [2008; Petersen et al., |2010]). We treat all NC spectrum cases as positives and the
rest as negatives. From the positive class, 768 scans are randomly selected as labeled data. The remainder
of the training set (including both NC and unlabeled AD spectrum samples) forms the unlabeled pool.
Evaluation is conducted on a held-out test set with ground-truth diagnostic labels.
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5.3 Training Details

For image datasets (CIFAR-10, STL-10, SVHN), we adopt a VGG11-BN encoder (Simonyan & Zisserman,
2014) pretrained on ImageNet (Deng et al.;|2009). For the ADNI dataset (Jack Jr et al., 2008} Petersen et al.)
2010), we use a two-layer multilayer perceptron (MLP) with ReLU activations. All models are trained for
15 epochs using the Adam optimizer with a learning rate of 107% and a batch size of 128. The encoder maps
inputs to a d-dimensional hypersphere, with d = 128 unless stated otherwise. We apply dropout with a rate
of 0.2 to the final embedding layer. The cosine uniformity regularizer is scaled by temperature ¢ = 2.0. The
concentration parameter k of the von Mises-Fisher distribution is tuned per dataset as a hyperparameter.
Unless otherwise specified, all components of the encoder are updated end-to-end, including learnable margins
where applicable.

5.4 Baselines

We compare against a representative set of PU learning approaches, including EM-based methods,
importance-weighted PU learning, and surrogate loss methods, using results directly from [Yuan et al.| (2025))
where applicable. This ensures identical data splits and evaluation criteria across all methods:

o uPU (Du Plessis et all 2014): Risk-based PU method using an unbiased risk estimator under the
SCAR assumption, with theoretical analysis showing that convex losses can bias the boundary, while
non-convex losses (e.g., ramp) avoid this bias.

o nnPU (Kiryo et al}2017): Extends uPU by enforcing non-negativity of the empirical risk to prevent
overfitting in flexible models, enabling stable training of deep networks with PU data.

o Rank Pruning (Northcutt et al.l|2017)): Estimates label noise rates and prunes mislabeled examples
using high-confidence samples ranked by predicted probability, improving robustness in both PU and
noisy-label settings.

o PUSB (Kato et al.[[2019): PU learning under selection bias, relaxing the SCAR assumption via the
“invariance of order” property and density ratio estimation, with thresholding for final classification.

o puNCE (Acharya et al.| |[2022)): Adversarial PU framework where a discriminator separates labeled
positives from unlabeled data, and the generator learns embeddings to fool the discriminator, aided
by label distribution estimation.

o Self-PU (Chen et al., |2020c)): Self-paced PU framework that progressively labels confident positives
and negatives, reweights uncertain samples via meta-learning, and applies self-distillation to enforce
consistency.

e VPU (Chen et al 2020a): Variational PU method that measures divergence between the positive
distribution and model predictions without estimating the class prior, regularized via Mixup-based
consistency.

e Dist-PU (Zhao et al., |2022)): Aligns predicted and ground-truth label distributions, with entropy
minimization and Mixup to reduce confirmation bias and avoid degenerate solutions.

o PiCO (Wang et al., 2022)): Contrastive label disambiguation method combining representation
learning with prototype-based pseudo-label refinement in an alternating optimization scheme.

e Dense-PU (Sevetlidis et all, [2024): Density-based negative mining in latent space to reduce false
positives, by iteratively identifying dense negative clusters from unlabeled data.

o ImbPU (Su et al,[2021): Prototype-based PU approach estimating positive and negative centroids
and refining pseudo-labels via local neighborhood consistency.

o aPU (Hammoudeh & Lowd} [2020)): Proposes a two-step method using surrogate negatives and a
recursive risk estimator for learning from positive and unlabeled data even when the positive data
is arbitrarily biased, by assuming the negative class distribution remains fixed.
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« PUDN (Hsieh et al., [2019)): PU learning with biased negative data, introducing a correction term
to adjust the risk estimator when negative samples come from a biased distribution.

o WconPU (Yuan et al.,2025): Distribution-weighted PU learning balancing the positive and unla-
beled risks via dynamically learned weights, improving robustness under varying class priors.

5.5 Results

Table 2: Performance of the proposed method vs. baseline methods. Results are reported for F1 Score,
Accuracy, Precision, Recall; AUC, and AP (the best score is marked in bold).

Method Accuracy Precision Recall F1 AUC AP
uPU 88.4140.41 87.21£2.09 83.02+1.98  85.1240.43 94.98+0.62 92.71£1.08
nnPU 88.91+0.43 86.214+1.02 86.03+1.22 86.11+0.49 95.134+0.55 92.514+1.32
RP 88.7440.16 86.02+1.05 85.724+1.61  85.9340.30 95.21+0.23 93.01+0.61
PUSB 88.97+0.39 86.15+0.56 86.224+0.45  86.1840.51 95.15+0.50 92.44+1.34
PUDbN 89.83+0.30 87.85+0.98 86.56+1.87  87.18+0.54 94.44+0.35 91.28+1.11
Self-PU 89.3140.56 86.26+0.76 87.2242.16  86.77+1.12 95.5240.46 93.31£1.02
aPU 89.09+0.44 86.31+1.33 86.334+0.71 86.4140.41 95.1140.39 92.42+41.22
CIFAR-10 VPU 87.89+0.56 86.71+1.46 82.88+2.93 84.42+1.12 94.55+0.46 92.02+0.69
ImbPU 89.4340.42 86.72+0.89 86.91+0.78  86.77+0.56 95.53+0.26 93.33+0.69
Dist-PU 91.88+0.52 89.87+1.09 89.84+0.81  89.8540.62 96.92+0.45 95.49+0.72
Dense-PU 90.5940.98 92.68+1.31 91.254+1.12  91.9640.80 93.2240.99 95.03+1.21
puNCE 95.324+0.24 95.11+0.88 93.43+0.45  94.2140.44 98.59+0.53 98.45+0.63
PiCO 95.6440.12 94.89+0.76 93.974+0.47  94.7540.49 98.67+0.44 98.22+0.91
WConPU 97.22+0.15 96.87+0.54 96.02+0.32 96.43+0.29 99.49+0.22 99.25+0.34

AngularPU (Ours)  91.39+0.81  92.264+0.64  93.4940.13  92.87+0.71  96.61+0.50  97.3840.53

uPU 83.3540.45 87.114+2.39 75.934+2.68 81.1240.56 91.9340.62 90.22+1.11
nnPU 83.8840.45 86.78+1.15 77.2541.42  82.01+0.58 92.024+0.52 90.28+1.38
RP 81.73+0.15 84.01+1.01 76.12+1.51  80.10+0.32 89.75+0.23 87.99+0.56
PUSB 83.9940.41 86.8140.51 78.01+0.51 82.1140.51 91.8940.52 90.314+1.34
PUbN 84.8940.30 88.26+0.98 83.57+1.87  83.1640.54 92.03+0.35 91.89+1.11
Self-PU 84.1240.72 86.164+0.78 79.2242.35 82.55+1.06 91.734+0.58 90.994+1.01
aPU 84.0140.52 86.29+1.30 81.214+0.79  82.3340.56 91.56+0.42 90.66+1.23
SVHN VPU 76.89+0.48 79.564+1.41 79.56+1.41 75.36+£2.84 73.3140.91 83.35+0.73
ImbPU 84.20+0.46 86.69+0.87 81.18+0.82 82.99+0.56 91.7940.27 91.214+0.45
Dist-PU 85.96+0.33 89.06+0.89 84.36+0.76  83.6640.56 92.924+0.49 92.29+40.88
Dense-PU 86.10+0.87 89.32+0.78 82.724+0.99  85.374+0.91 93.25+0.64 92.45+0.90
puNCE 95.3440.24 90.35+0.92 83.81+1.99  87.0140.55 94.87+0.35 93.87+0.92
PiCO 95.6440.12 90.47+0.79 85.744+0.64  87.5140.44 95.58+0.54 94.32+0.63
WConPU 91.49+0.29 93.7740.67 87.544+0.67 90.454+0.35 96.974+0.59 96.8240.37

AngularPU (Ours)  89.94+0.13 88.33+0.22  90.27+0.12 89.27+0.13  95.85 £0.96  94.78+0.13

uPU 93.1340.42 90.42+1.08 92.62+1.28  91.51+0.62 97.9540.56 97.26+1.21
nnPU 93.3840.42 91.20+1.01 92.344+1.03  91.774+0.58 97.69+0.51 97.69+0.51
RP 92.88+0.56 92.87+1.35 89.184+1.88  90.9740.45 92.15+0.18 95.58+2.29
PUSB 93.6540.16 92.06+0.52 92.064+0.42  92.0640.33 98.06+0.52 97.21+1.13
PUbN 94.01+0.31 93.014+0.98 93.11+1.01 92.98+0.54 98.20+0.35 97.66+1.47
Self-PU 93.7340.28 92.124+1.01 92.614+1.82 92.2241.09 91.984-0.22 91.984-0.22
aPU 93.4140.45 91.15+1.24 92.554+0.83  91.5240.88 97.85+0.66 96.23+1.03
STL-10 ImbPU 93.8840.81 92.25+1.12 91.664-0.83 92.0140.54 97.984-0.72 97.33+1.02
Dist-PU 94.7340.31 93.35+1.01 93.474+0.81  93.4140.41 98.54+0.71 97.96+1.01
Dense-PU 94.4440.67 94.23+0.78 94.2240.93  93.8140.62 98.02+0.97 98.15+1.21
puNCE 95.13+0.22 94.09+0.55 94.954+0.82  94.5140.51 98.66+0.24 98.2340.69
PiCO 95.5540.23 94.36+0.42 95.1240.81  94.7540.44 98.78+0.15 98.554+0.34
WConPU 97.02+0.21 95.53+0.41 97.4240.91 96.35+0.26 99.58+0.12 99.46+0.21

AngularPU (Ours) 99.39+0.11  99.30+0.23 99.17+0.16 99.24+0.14 99.95+0.019 99.94+0.01

Continued on next page
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Table 2 Continued from previous page

Method Accuracy Precision Recall F1 AUC AP
uPU 68.4242.22 69.7143.44 67.33+5.18  68.63+£1.73 73.99+2.72 70.12+£2.98
nnPU 68.21+2.15 68.09+2.21 71.01+5.88 68.11+2.99 71.9943.01 70.01+£2.21
RP 62.03+2.85 63.114+3.77 66.234+9.86  61.99+6.03 66.32+2.99 64.10+2.11
PUSB 69.19+2.41 70.11+1.88 69.43+2.13 69.41+2.15 74.66+2.42 70.12+1.64
PUDbN 70.00+1.02 69.43+2.25 74.2246.01 71.18+2.89 74.984+0.89 69.66+1.63
Self-PU 70.79+0.73 69.55+2.51 75.51+4.99  72.10+1.02 75.85+1.68 71.79+3.63
aPU 68.41+1.41 66.23+0.88 75.71+6.21 71.01+3.06 73.66+2.44 70.23+3.33
ADNI VPU 66.5140.61 64.89+1.01 75.18+3.71  71.01+0.98 72.99+0.91 71.21+0.65
ImbPU 68.18+0.69 67.34+2.31 71.24+6.21 68.79+1.81 73.6940.75 70.56+0.97
Dist-PU 71.75+0.62 68.48+1.16 80.09+5.10  80.09+5.10 77.13+0.69 73.33+£1.47
Dense-PU 72.10+0.80 71.03+£1.20  78.42+0.87 76.53+1.30 75.80+0.69 78.81+1.21
puNCE 70.59+0.77 68.99+1.56 75.9946.11 71.55+1.11 75.554+1.03 71.23+1.66
PiCO 71.94+0.71 69.59+1.12 79.01+5.03  73.92+1.02 77.59+0.78 72.17+0.97
WConPU 73.02+0.66 70.87+2.42 79.12+4.99  74.23+0.76 78.55+1.07 72.66+£1.07

AngularPU (Ours) 79.13+0.17 77.73+0.34 82.11+0.35 79.744+0.13 85.94+0.14 86.35+0.16

Table [2| summarizes the performance of the proposed AngularPU method compared to a diverse set of
PU learning baselines across four benchmark datasets: CIFAR-10, SVHN, STL-10, and ADNI. We follow
the evaluation protocol of [Yuan et al.| (2025)), including class groupings, PU ratios, data splits, and metric
computation. AngularPU is competitive overall and excels on F1/AP (recall-oriented metrics), particu-
larly in scarce-positive regimes, offering a favorable trade-off between precision and recall, while remaining
conceptually simpler and more interpretable than prior methods.

On CIFAR-10, AngularPU delivers strong results, with an F1 score of 92.87 and an AP of 97.38, outper-
forming most risk-based and pseudo-labeling approaches. While contrastive methods such as WConPU and
PiCO report slightly higher accuracy on CIFAR-10 and SVHN, these gains often come at the cost of re-
duced recall. In PU learning—where unlabeled data contains many hidden positives—recall is critical: false
negatives cannot be corrected without explicit negative labels, and missed positives can significantly impair
downstream tasks (e.g., medical screening or anomaly detection). Our method consistently favors higher
recall without excessive false positives, reflecting the intended bias of our geometry-first design. This trade-
off is deliberate, ensuring that the model errs on the side of discovering positives rather than prematurely
discarding them. We attribute this behavior to the conservative decision boundaries induced by the cosine
uniformity regularizer, which slightly flattens the score distribution near the classification threshold.

In the more challenging SVHN dataset, which features substantial intra-class variability and label noise, An-
gularPU maintains robust performance, achieving an F1 score of 89.27 and AP of 94.78. These scores exceed
those of most pseudo-labeling baselines, including Dense-PU and Dist-PU. Although its precision is slightly
lower than contrastive methods like WConPU and PiCO, AngularPU maintains a consistently higher recall,
suggesting that the angular dispersion of the unlabeled set helps reduce the risk of false negatives. Moreover,
unlike PiCO and puNCE—which often suffer from unstable optimization due to alternating pseudo-labeling
cycles—our method benefits from a geometry-driven, end-to-end formulation that avoids such instability
entirely.

On STL-10, AngularPU achieves state-of-the-art performance, with an F1 score of 99.24 and AP of 99.94.
This dataset presents additional challenges due to its higher resolution and more complex backgrounds, which
often undermine the assumptions behind contrastive or density-based approaches. The synergy between
hyperspherical vMF modeling and the cosine uniformity regularizer leads to separation between positives
and negatives. In particular, the regularizer prevents the collapse of unlabeled embeddings near the positive
prototype. The performance margin is substantial: AngularPU outperforms WConPU by over 2% in F1
score and achieves near-perfect classification under both precision and recall, underscoring the method’s
effectiveness in high-dimensional, low-label regimes.
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Finally, on the ADNI dataset—a real-world medical imaging task with extremely limited labeled data and
subtle inter-class differences—AngularPU achieves the best results across all metrics, including F1 (79.74),
AUC (85.94), and AP (86.35). This is a particularly difficult PU setting due to class imbalance and overlap-
ping feature distributions. Its improved recall (82.11) over WConPU (79.12) and PiCO (79.01) highlights
its sensitivity, achieved without a corresponding increase in false positives. We hypothesize that the cosine
uniformity regularizer plays a key role here, by discouraging spurious clustering of ambiguous unlabeled
instances near the positive prototype. This helps maintain a clean decision boundary, even in noisy or
low-resolution embedding spaces.

AngularPU’s strongest gains emerge in datasets with complex visual features and limited positive la-
bels—scenarios where traditional pseudo-labeling and contrastive methods often struggle. While there is
some degradation in precision on noisier datasets like SVHN, this is consistently offset by higher recall and
F1 scores. The empirical results validate the utility of modeling only the positive class using directional
statistics, while regularizing the unlabeled distribution via angular uniformity—without relying on negative
sampling, prior estimation, or heuristic alternation.

5.6 Ablation and Sensitivity Analysis

We conduct a thorough ablation and sensitivity study to assess the contribution of each component in
our proposed AngularPU framework and its robustness under varying hyperparameter regimes. Table
presents the results across all datasets by removing, one at a time, the cosine uniformity regularizer (Lyeg),
the adaptive weighting mechanism based on margin proximity, and the learnable margin parameter. Across
datasets, we observe that the absence of L,¢, leads to consistent reductions in AUC and average precision,
particularly in SVHN and ADNI, where the unlabeled distribution exhibits greater structural ambiguity,
indicating the regularizer’s essential role in encouraging dispersion and reducing spurious positive clustering.
The removal of adaptive weights causes a more pronounced drop in F1 scores, reflecting the value of prioritiz-
ing ambiguous or marginal instances during optimization and suggesting that uniform treatment of unlabeled
samples hinders the model’s ability to focus on informative gradients. Interestingly, replacing the learnable
margin with a fixed one (e.g., m = 0.5) has relatively minor impact, especially on STL-10 and CIFAR-10,
showing that while margin learning adds flexibility, its contribution is not as critical as the other components.
Importantly, the full model consistently outperforms its ablated counterparts on every metric and dataset,
demonstrating that each component plays a distinct role in the final decision surface quality. We further
examine hyperparameter sensitivity by varying the regularization coefficient A € {0.0,0.1,0.3,0.5,1.0}, the
vMF concentration £ € {0.1,1,3,5,10,20}, and the fixed angular margin m € {0.1,0.3,0.5,0.7,1.0}. The
regularizer weight A shows a stable peak around 0.5, with gains saturating or degrading at higher values
due to over-penalization of structure. The best x values are in the 3-5 range, balancing boundary sharp-
ness and calibration, while very low x causes nearly degenerate high-recall classifiers and very high values
lead to overconfident rejection. For fixed margins, m ~ 0.5 offers the most consistent results, with lower
values yielding recall-dominant and precision-degrading behavior. Overall, both the ablation and sensitiv-
ity results reinforce that AngularPU’s effectiveness stems from the careful combination of its geometrically
grounded loss, selective weighting, and regularization components, all of which interact to produce a stable
and competitive PU learner across diverse domains.

We study the impact of the core hyperparameters in AngularPU: the cosine uniformity regularization
weight A, the angular margin m used for rejecting uncertain samples, and the vMF concentration parameter
k. We conduct extensive sensitivity sweeps across all four datasets, varying one hyperparameter at a time
while keeping the others fixed to their default values (A = 0.5, m = 0.5, k = 3.0), and report mean and
standard deviation over five random seeds.

As shown in Figure [2| performance consistently improves with increasing A up to 0.5, beyond which the
benefit saturates or slightly degrades. This pattern holds across all datasets and both F1 and AUC metrics,
suggesting that moderate regularization effectively discourages false positives by spreading unlabeled embed-
dings uniformly, while excessive regularization leads to over-dispersion and degraded confidence. Notably,
when A\ = 0, recall is preserved but AUC and precision decrease, reflecting reduced discriminative quality
without regularization.
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Table 3: Ablation study across datasets. Each row removes one component from the full model.

Variant Dataset F11 Precision?T Recallt AUC1{T AP
Full model CIFAR-10 0.930 0.925 0.940 0.970 0.977
SVHN 0.890 0.886 0.901 0.963 0.961
STL-10 0.992 0.990 0.994 0.998 0.999
ADNI 0.797 0.782 0.821 0.866 0.871
W/0 Lyeg CIFAR-10 0.913 0.915 0.907 0.961 0.965
SVHN 0.875 0.880 0.862 0.955 0.946
STL-10 0.984 0.981 0.988 0.995 0.997
ADNI 0.773 0.762 0.794 0.841 0.846
w/o weights CIFAR-10 0.901 0.910 0.892 0.956 0.958
SVHN 0.862 0.869 0.847 0.944 0.935
STL-10 0.972 0.968 0.976 0.992 0.995
ADNI 0.760 0.750 0.779 0.822 0.830
Fixed margin CIFAR-10 0.927 0.923 0.935 0.969 0.975
SVHN 0.888 0.882 0.900 0.961 0.959
STL-10 0.991 0.989 0.993 0.998 0.999
ADNI 0.794 0.779 0.818 0.864 0.870
Sensitivity of F1 to lambda Sensitivity of AUC to lambda
1.00 1.00
o 0.95 \
0.90 Dataset
—e— cifarl0 o 0.90
oss T 3
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0.80 \ 085 >Dataset\
—e— cifarl0
0.75 \—\\ 080 :ﬂg
—e— adni
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
lambda lambda

Figure 2: Sensitivity to A (cosine regularization weight). Mean + std F1 and AUC across 5 seeds.

For the fixed margin m, the results in Figure [3] reveal that small values like mn = 0.1 result in permissive
classifiers that admit many unlabeled samples as positive, achieving high recall but low precision. Conversely,
as m increases, the model becomes more conservative; performance peaks around m = 0.5, which strikes a
favorable balance between recall and precision. Beyond that point, particularly at m = 1.0, recall drops and
F1 becomes less stable, confirming that overly strict angular thresholds reduce sensitivity to true positives.

Regarding the concentration parameter x, Figure [ illustrates how it shapes the sharpness of the vMF like-
lihood. At very low values (e.g., x = 0.1), the likelihood surface is flat, yielding nearly uniform probabilities
that diminish precision and increase false positives. As k increases to 3 or 5, the model becomes more
confident, and both F1 and AUC improve steadily. However, for extremely high values such as x = 10, we
observe diminishing returns or even slight instability, especially on noisier datasets like ADNI, suggesting
that overconfidence may hurt generalization in low-data regimes.

Overall, we find the method to be robust across a wide range of hyperparameter values. The default settings
A=0.5, m=0.5, and k = 3 consistently yield near-optimal performance and are used throughout the main
experiments.
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Figure 3: Sensitivity to margin m (fixed angular threshold). Mean + std F1 and AUC across 5 seeds.

Dataset AP Cosine AP L2 AAP (cos-L2) AUC Cosine AUC L2 F1 Cosine F1 L2 AAP 95% CI

adni 0.832 + 0.012 0.584 + 0.050 +0.248 0.849 + 0.009 0.575 £ 0.030 0.788 £+ 0.014 0.668 + 0.002 [+0.221, 4+0.275]
cifar10 0.974 £ 0.007 0.814 £+ 0.012 +0.161 0.968 + 0.002 0.781 £ 0.035 0.931 £+ 0.001 0.825 + 0.061 [+0.147, +0.174]
st110 0.993 + 0.001 0.900 + 0.057 +0.093 0.993 + 0.001 0.957 £ 0.020 0.967 £ 0.001 0.908 + 0.020 [+0.053, 4+0.133]
svhn 0.932 + 0.014 0.493 + 0.076 +0.439 0.950 + 0.001 0.549 £ 0.065 0.876 £+ 0.006 0.640 + 0.003 [+0.376, 4+0.503]
Overall 0.933 + 0.067 0.698 4+ 0.181 +0.235 0.940 £ 0.058 0.716 £ 0.180 0.891 £+ 0.072 0.760 £ 0.121 [4+0.147, +0.337]

Table 4: Primary configuration (weighted + learnable margin): cosine vs. Euclidean by dataset and overall.
We report mean =+ std over seeds; AAP is cosine—L2 with a 95% bootstrap CI.

Moreover, we study how the choice of embedding geometry and margin mechanism affects positive—unlabeled
(PU) classification when using a single positive prototype. We compare (i) an angular model that scores
by cosine similarity between L2-normalized embeddings and a normalized prototype (vMF-style), and (ii) a
Euclidean model that scores by the negative squared distance to an (unnormalized) prototype (Gaussian-
style). The hypothesis is that the scale-invariance of cosine provides a more robust inductive bias than
scale-sensitive Euclidean distances in the presence of heterogeneous unlabeled data. For each geometry we
test: (a) BCE; (b) BCE + margin-aware weighting (higher weights near the decision boundary); and
for cosine only (c) BCE 4 uniformity regularization on unlabeled embeddings. Margins are either
learnable (softplus of a scalar) or fixed (0.5 or 1.0). Evaluation reports AP/AUC and F1. All other factors
(splits, optimizer, schedule) are held fixed across ablations.

Our primary configuration is weighted loss + learnable margin in each geometry. Figure[6b|shows that cosine
outperforms Euclidean in AP owverall, and Figure [5| shows the same ordering for every dataset. Table
summarizes means =+ std and paired AAP (cosine—L2) with 95% bootstrap ClIs. Figure ranks cosine
variants at the top (weighted with learnable or fixed margin and cosine+uniformity). Margin-aware weighting
helps both geometries, but yields a larger gain for cosine, consistent with bounded angular distances being
less sensitive to embedding-norm variability. Euclidean narrows the gap when embeddings are normalized at
evaluation, yet remains behind cosine on AP/AUC. For prototype-based PU learning, angular geometry
with a learnable margin is the most reliable choice. We therefore the use of cosine + weighted + learnable-
margin as the default configuration is justified in the experiments.

6 Conclusion

We introduced AngularPU, a geometrically motivated framework for positive-unlabeled learning that casts
the classification task as angular separation on the hypersphere. By leveraging a von Mises-Fisher likelihood
with an optional cosine uniformity regularizer, AngularPU provides an elegant and efficient alternative to
pseudo-labeling and contrastive methods that dominate the field. Our formulation is end-to-end, does not
require prior estimation, and avoids the instability of multi-stage pipelines. Extensive experiments across
four diverse datasets—ranging from natural images to neuroimaging—demonstrate that AngularPU achieves
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Ablation AP (pto) AUC (p+o) Fl(puto) N
COS-WGH-MO0.5 0.939 £ 0.056 0.941 £+ 0.056 0.894 + 0.067 8
COS-WGH-Mlearn 0.933 £ 0.067 0.940 4+ 0.058 0.891 + 0.072 8
COS-REG-Mlearn  0.926 + 0.058 0.917 £ 0.063 0.869 &+ 0.072 8
COS-BCE-Mlearn  0.921 + 0.094 0.935 £ 0.077 0.896 + 0.081 8
L2-BCE-Rlearn-N  0.734 £ 0.179 0.753 £ 0.159 0.743 £+ 0.105 8
L2-WGH-R1.0 0.709 & 0.197 0.727 £ 0.193 0.765 £ 0.122 8
L2-WGH-Rlearn 0.698 + 0.181 0.716 + 0.180 0.760 + 0.121 8
L2-BCE-Rlearn 0.505 + 0.132  0.479 + 0.091 0.656 + 0.069 8

Table 5: Ablation leaderboard (all datasets & seeds). Mean =+ std for AP/AUC/F1; higher is better.
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Figure 4: Sensitivity to x (vMF concentration). Mean + std F1 and AUC across 5 seeds.

state-of-the-art or near state-of-the-art performance in F1 and recall, two metrics particularly critical for
PU scenarios. An important characteristic of AngularPU is its tendency toward conservative rejection of
negatives, which yields consistently high recall across datasets. In many PU scenarios — especially those
involving rare or costly positives — this behavior is preferable to maximizing overall accuracy. While this
may slightly lower precision in certain benchmarks, it aligns with the real-world utility of PU classifiers,
where retaining positives outweighs the risk of admitting some false positives. Our ablation and sensitivity
studies further highlight the individual contribution of each component and confirm the model’s robustness to
hyperparameter variation. While AngularPU achieves strong results without complex heuristics, it assumes
that positive embeddings form a single dominant directional mode. Our experiments suggest the method
remains effective when the positive class comprises nearby subclusters. Although we did not include an
additional large-scale benchmark, the computational profile of AngularPU is favorable for scaling. Training
complexity is dominated by a single encoder forward/backward pass, with an O(|U|?) term only in the
regularizer, computed over unlabeled batches. This pairwise term is efficiently implemented via batched
matrix operations. While the per-batch cost grows quadratically with batch size, total runtime scales linearly
with dataset size under fixed batch configurations. In our experiments, the method remained numerically
stable and tractable when increasing the size of the unlabeled set by up to an order of magnitude. These
observations, combined with the absence of iterative pseudo-labeling or momentum queues, suggest that
AngularPU is well-suited to large-scale PU scenarios without architectural modifications. Future work will
explore explicit vMF mixtures to better handle more complex or strongly multi-modal positive distributions.
Another direction is adapting the angular formulation to semi-supervised or open-set settings where negative
sampling becomes partially available. Overall, our work underscores the value of directional geometry in PU
learning and opens the door to a broader class of probabilistic embedding-based methods.
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Figure 5: Primary configuration (weighted + learnable margin): per-dataset AP comparison between cosine
and Euclidean. Cosine is superior on all datasets.
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Figure 6: Ablations and overall primary configuration results.
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A PU Learning with von Mises—Fisher Distributions on the Hypersphere
We consider binary classification in a PU setting on the unit hypersphere S4~1:

e y =1 2z ~ vMF(u, k) with mean direction u € S, concentration x > 0 and density p(z|1) =
T
( ) KLz

e y=0: 2z ~ Uniform(S? 1) with density p(z|0) = Uy

Let m; and mg = 1 — 7 be the class priors.
Theorem A.1 (Bayes-optimal decision rule). The Bayes-optimal classifier assigns y = 1 if

Ca(k)
Ug

kplz>T, T:—logﬂ—log
o

Proof. Bayes’ rule gives:

Substituting the densities:
P(1
o 2L Calr)
P(0|2) Ud
The classifier predicts y = 1 when this quantity > 0, which yields the stated threshold T

=k z+ log % + log
0

p(zll) _
p(2[0) —
kp' 2z + ¢ for a constant ¢ independent of z, so the Bayes rule remains a threshold on 'z (the constant T
changes accordingly).

Lemma A.1 (Isotropic negatives). If p(z | Y=0) = g(||z||) is rotation-invariant on S, then log

Remark 2. Since |u'z| < 1, the score ku'z lies in [—r, k], so T must be in this range for nontrivial
classification.

B Consistency of the Positive Prototype

Let fi; be the positive prototype estimate from labeled positives P at iteration ¢.

Lemma B.1. If z; i vMF(u, k), the MLE ji; satisfies

ﬂt&/i ast — 0.

Proof. Maximizing the vMF log-likelihood w.r.t. p aligns g with the normalized sample mean
. 2t
=1, 2= Zzz
[l ZE

For vMF, E[z;] = Aq(k)p with mean resultant length A4(x). By the Law of Large Numbers, z, 2 Aq(k)u,
and normalization yields fiy — .
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C Cosine Uniformity Regularizer

Given unlabeled embeddings z; € S, define

Lreg =1 t=lw ) 8

with temperature ¢t > 0.

Proposition C.1. Minimizing L. encourages the unlabeled embeddings to approzimate a uniform distri-
bution on ST1.

Proof. The cosine similarity z, z; is maximal when z; = z;, making et=i 2 large. The log—mean—exp form
emphasizes high-similarity pairs. Minimizing L,.s therefore reduces high-similarity occurrences, spreading
embeddings more evenly and reducing false positive clustering near p.

D Concentration and Bounds on the Regularizer

Throughout this section we write the log—mean—exp temperature as § (in the main text 5 = t).
Lemma D.1 (Cosine concentration on the sphere: self-contained proof). Let z1,...,zp P Unif(S91)

and define X;; = 2, z; for i # j. Then for any fized pair (i, j):

2. (Sub-Gaussian mgf.) For all X € R,
)\2
E[exp{AX;;}] < exp<2d)

Equivalently, X;; is sub-Gaussian with parameter 1/\/&

3. (Tails.) For any t € 0,1),
Pr(|X;;| >t) < 2exp( a )

Proof. Step 1: Reduce to a single spherical coordinate. Fix i # j. Conditional on z; = u € S 1,

rotational invariance gives X;; | z; = u g (z,u) with z ~ Unif(S?~!). Hence it suffices to study 7' = (z,e;) =
21, the first coordinate of a uniform point on the sphere; all claims then hold for X;; by conditioning.

Step 2: Exact density and even moments of T'. It is classical that T has density

r(3)

fat) = ca (1= 3T 111 4 (0), = Ry

For k € N, using symmetry and the Beta function,

1 . 1 _
E[T%*] = 2cd/ (1~ %)% dt = Cd/ FEL )T du= e
0 0

where we substituted u = 2. Using B(z,y) = L@LW) and the identity F(k: + %) = (k) T, we obtain

'(z+y) 4Rk
E[T?] — P4 Th+pTHEH TG @) k=1
VALY Te+d) TR+ d) 4R [T Nd+2s)

In particular, E[T] = 0 and for k = 1, E[T?] = 1/d, proving (i).
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Step 3: A dimension-explicit mgf bound. Expanding the mgf and using that odd moments vanish,

— A 2k 2k — I! 1 1
A ;k ( k Z/? R \2k
= (2k)! = 2R TIEg(d+2s) R 2k TTEg(d +29)

Since H?;g (d+ 2s) > d* for all k > 1, we get the elementary bound
=3 5(5) =)
Rl — P2
k=0
which proves (ii) for 7', hence for X;; by Step 1.

Step 4: Tails by Chernoff. For ¢t > 0 and any A>0,Pr(T > t) < e ME[eM] < exp(— At + ;‘;)
Optimizing at A = dt yields Pr(T > t) < exp(— ) Apply the same bound to —7T and union bound to get

(iii).

Remark 3 (Sharper constant). Using standard concentration on the sphere (Lévy’s lemma), one can tighten
d tod—1 in (ii)-(iii). We keep the elementary d-based proof here for self-containment.

Corollary D.1 (Maximum pairwise cosine). Let K = (Aj) With probability at least 1 — 9,

2log(2K /6
max | X,;| < M.
1<J d
Proof. Apply a union bound to Lemma iii) over the K pairs.

Lemma D.2 (7-sensitivity of the LME regularizer under a vMF-Uniform mixture). Let Z be drawn from
the mizture Py = mvMF (i, k) + (1 — m) Unif(S4=1), and let Z' be an independent copy. For > 0, define
the pairwise log—-mean—exp functional

o(B) = log E[exp{BZ2"Z'}].
Then

#(B) < 10g<(1—ﬂ'2)€2d + 7 eﬁ> = %—Hog(l—ﬂ- + 2P gi)

In particular, for any unlabeled sample U = {2}, drawn i.i.d. from P, and

Lieg(U) = 10g< Zeﬁz ZJ)

1<J

we have the expectation bound

E[Lieg(U)] < ¢(8).
Proof. Write the mixture decomposition for an independent pair (Z, Z'):
E[e727 7] = m?E[e?VTV'] + 2m(1 = ) E[e”V V| + (1 - mP B[]

where V, V' ~ vMF(u, ) i.i.d. and U, U’ ~ Unif(S?~!) i.i.d., all mutually independent.

Uniform and cross terms. For any fixed unit vector x, the coordinate (x,U) is sub-Gaussian with parameter
1/v/d; hence E[e# (V)] < e#*/(2d) Conditioning on V (or U) and integrating,

E{eavw} < 7/ 2d) E{eﬁUTU’} < B%/(2d)

Positive-positive term. Since VTV’ € [—1,1], we have the trivial bound E[eﬁVTvl} < éb.
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Combining,
E{eBZTzl} < T2ef + (1—7‘1’2) eﬂz/(Qd).

Taking logs gives the stated bound on ¢(8). Finally, by Jensen,

B[ Leeg(U)] = E [log e 3685 % | < log B |72 77| = 4(8).

(5) 5

Remark 4. The bound splits the w-dependence cleanly: the uniform baseline contributes eB?/(2d) (dimension-
controlled, independent of ), while the excess over baseline scales with the fraction of positive—positive pairs,
72, For small or moderate § (e.g., B = o(\/d)), the increment

49 <l ) = o)

showing the regularizer’s operating point is stable across class priors and primarily dimension-driven. When
m—1 (positives dominate), the bound remains controlled by 5 (and never exceeds [3), aligning with the simple
worst-case Lieg < f.

Corollary D.2 (Baseline for the log-mean—exp regularizer). Write the temperature as 8 > 0 and let

Lieg(U) = 105’;([1(2‘3@{5&]‘})7 K= (%)

i<j
Then
ﬁ2
E[Lreg(U)] < logE[exp{fX12}] < a0
Moreover, for any ¢ € (0,1), with probability at least 1 — 9,
2I0a 2K /1)

Thus the unlabeled-uniform baseline is O(B2/d) in expectation and O(B %) with high probability.

Proof. Jensen and Lemma ii) give the expectation bound. For the high-probability bound, use
log(+ > €#*) < Bmaxa and Cor.

Corollary D.3 (Baseline for the log-mean-exp regularizer). Let

Lreg(U) = log (Il( Z eXP{ﬂXz‘j}> ) B> 0.

i<y
Then 2
E[Leg(U)] < logE[exp{8X12}] < 2(d/31) _
Moreover, for any ¢ € (0,1), with probability at least 1 — 9,
Lig(U) < fmaxXi; < %.

In particular, choosing

g = 0( 1ong>

prevents a single extreme pair from dominating Lyeg as M,d — oo.
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Proof. The first inequality is Jensen: Elog(-) < logE(-). The mgf bound is Lemma ??(ii). For the high-
probability bound, use log(% > eﬂw) < fmaxx and Cor.

Under unlabeled uniformity, L., concentrates at a dimension-controlled baseline of order %/d, essentially
independent of the (unknown) class prior 7; 7 affects calibration, not the dispersion baseline.

Corollary D.4. For all z; € %1,
Ereg <t

with equality when all embeddings are identical (] z; = 1).

Proof. Since —1 < 2 z; <1, et* % < et. The mean inside the log is at most e, giving Lieg <.
Remark 5. Since each cosine similarity satisfies z; z; < 1, the reqularizer is bounded above by t, i.e.,
Lreg < log (et) =t

This shows that the regularizer cannot grow unbounded with dataset size; its magnitude is controlled solely
by the temperature t, not by |U|.

E Radial projection analysis

Write the unlabeled score as s(z) = a(u' 2z — m) with trainable scale o > 0, margin m € R, and prototype
pe St

Lemma E.1 (Neutral BCE acts on the radial projection only). For an unlabeled point z € S=1, the neutral
(target 0.5) binary cross-entropy is

lheu(z) = —1log (o(s)(1—o(s))) = log(2cosh(s/2)), s= alp’z—m).

(a) Bounds and curvature. For all s € R,

log2 < log (2cosh(s/2)) < log2 +

| %,

and lyeu(s) = o(s) — & = 4 tanh(s/2), %Eneu(s) =o(s)(1—o(s)) < 1.
(b) Population bound. For any probability law Q on S,

2
Ezngtnen(2)] < log2+ 5 Ezngl(n”Z —m)?).

In particular, choosing m = E[u" Z] yields E[lnen(Z)] < log2 + %Var(uTZ),
(¢) Manifold gradient (no “equator bias”). Treating z on the sphere with the Riemannian metric, the
gradient w.r.t. z is

VZSOF1 lheu(2) = %tanh(s(z)/?) (I - zzT>u,

which is the projection of u onto the tangent plane at z. If Q is rotationally symmetric about p and centered
so that E[u" Z] = m, then IE[VZS(F1 lheu(Z)] = 0. Thus the neutral loss introduces no directional bias toward
an “equator”; it only penalizes large |s|.

Proof. The identity fney(s) = log(2cosh(s/2)) follows by algebra. The lower bound is attained at s = 0.
Since %[neu(s) < i for all s, the global quadratic upper bound ey (s) < fhen(0) + % . isz =log2 + s%/8
holds by integrating the second derivative. Taking expectations gives (b). For (c), s(z) = a(u'z — m) has
Euclidean gradient ay; projecting to the tangent space yields (I — zz " )ayu scaled by 0¢/0s = % tanh(s/2).
Symmetry and E[tanh(s/2)] = 0 under centering imply the stated mean-zero gradient.
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Table 6: AngularPU on MedMNIST (PU). Mean =+ std over seeds. RQP > a: maximum recall at precision
> «a, computed from the PR curve.

Dataset AUC AP F1 Precision Recall Acc RQP>0.90 RQP>0.95

OCTMNIST 0.960 + 0.10 0.988 + 0.12 0.939 + 0.32 0.955 £+ 0.15 0.923 £ 0.19 0.909 £+ 0.20 0.963 4+ 0.61 0.917 &+ 0.50
PathMNIST 0.983 + 0.13 0.901 £ 0.33 0.893 £ 0.22 0.882 £ 0.31 0.904 £ 0.13 0.963 & 0.08 0.878 + 0.52 0.358 £ 0.52

Corollary E.1 (Compatibility with spherical uniformity). If Z ~ Unif(S?!), then E[u'Z] = 0 and
Var(u' Z) = 1/d. With m =0,

o2

8d’

Thus the neutral BCE is minimal up to O(a?/d) at the uniform distribution, matching the target of the
angular dispersion term. In high dimension this overhead vanishes.

E[lneu(2)] < log2+

The angular dispersion loss Lieq = log(m > £ B ZJ') penalizes pairwise alignment (a tangential
effect), while Lemma shows the neutral BCE controls only the variance of the radial projection p' z.
Consequently, the two terms are non-conflicting: together they favor unlabeled embeddings that (i) are
spread over the sphere (low pairwise cosines) and (ii) are not drifting into the positive cap (small [ "z —m)).
The uniform law satisfies both, with baseline values quantified in Cor. [E-I] and the concentration bounds in

sD}

F AngularPU on MedMNIST: OCTMNIST and PathMNIST (PU, recall—critical)

We evaluate the proposed AngularPU method in a PU regime on two large MedMNIST datasets. For each
dataset, we construct a binary task, sample a subset of labeled positives for training (cap: 5,000), and treat
all remaining samples as unlabeled. A VGG11-BN backbone produces a d=256-dimensional embedding.

AngularPU optimizes a cosine-similarity—based objective with (i) alignment of positives to a learnable unit
prototype p, (ii) weighted BCE on unlabeled data with a learnable angular margin, and (iii) a uniformity
regularizer on unlabeled embeddings. We train with Adam (Ir 10=%) for 10 epochs and report threshold—free
metrics (AUC, AP) as well as point metrics. The decision threshold for point metrics is chosen as in section
Bl We also report the maximum recall achievable at fixed precision floors, RGP > 0.90 and R@QP > 0.95,
computed from the test PR curve.

We evaluate on two large-scale medical imaging benchmarks from the standardized MedMNIST collection.
OCTMNIST contains retinal optical coherence tomography (OCT) B-scans from a 4-class diagnostic setting
(CNV, DME, Drusen, Normal). In our binary reduction we define disease as the positive class by merging
CNV/DME/Drusen; normal is the negative class. PathMNIST comprises colon histopathology patches
from 9 tissue types; we define tumor epithelium (label = 8 in MedMNIST) as the positive class, while all
other tissue types are negative. MedMNIST provides preprocessed, standardized training/validation/test
splits, facilitating controlled comparisons without dataset-specific engineering. We further map the samples
to 3 channels to align with our backbones; no color jitter or heavy augmentations are used.

We adhere to the official MedMNIST splits but form the PU training pool by merging the provided training
and validation splits. From the pooled positives, we randomly sample up 12,5% labeled positives (cap ap-
plied per seed); all remaining samples—both positives and negatives—are treated as unlabeled. This mirrors
screening scenarios where a small, verified positive set exists alongside a much larger pool with unknown
labels. The official test split is used only for evaluation. Across S = 10 seeds (Table @, we re-draw the
labeled-positive subset and re-train to quantify variability due to the PU sampling.

AngularPU yields strong ranking performance on both datasets (AUC/AP), with particularly high values
on OCTMNIST. Crucially for recall-critical screening, OCTMNIST attains R@QP > 0.95 of 0.917 4 0.005,
indicating that the positive prototype learned in angular space separates diseased from normal cases with
limited overlap. PathMNIST exhibits high AUC (0.983) and balanced F1 (0.893 £ 0.022), but RQP > 0.95
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is lower and more variable across seeds (0.358 + 0.502), suggesting that while ranking is strong, very high
precision comes at a substantial recall cost—Ilikely due to greater intra-class heterogeneity and morphological
overlap in histopathology. In practice, targeting a precision floor (e.g., > 0.90) yields robust recall on
both datasets (OCTMNIST: 0.963; PathMNIST: 0.878 + 0.052). Overall, these results support the use
of AngularPU for recall-critical medical screening, especially on OCT imaging, while highlighting that
precision—constrained operating points on histopathology may benefit from more labeled positives, longer
training, or threshold selection tuned to a validation PR curve.
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