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ABSTRACT

Distribution shifts in time-series data are complex due to temporal dependencies,
multivariable interactions, and trend changes. However, robust methods often
rely on structural assumptions that lack thorough empirical validation, limiting
their practical applicability. In order to support an empirically grounded inductive
approach to research, we introduce our Time-Series Shift Attribution (TSSA)
framework, which analyzes problem-specific patterns of distribution shifts. Our
framework attributes performance degradation from various types of shifts to each
temporal data property in a detailed manner, supported by theoretical analysis of
unbiasedness and asymptotic properties. Empirical studies in real-world healthcare
applications highlight how the TSSA framework enhances the understanding of
time-series shifts, facilitating reliable model deployment and driving targeted
improvements from both algorithmic and data-centric perspectives.

1 INTRODUCTION

Machine learning models are increasingly deployed in high-stakes settings such as healthcare with a
variety of applications such as early disease screening (Cohn et al., 2003; Soriano et al., 2009) or
patient risk assessment (Naghavi et al., 2003; Twetman & Fontana, 2009). While model reliability
is vital in such stakes settings, ML model performance often degrades when faced with distribution
shifts. This challenge becomes particularly pronounced in time-series data, where unlike static
data, the non-stationary properties of time-sereis such as trends, seasonality and inherent temporal
dynamics add additional complexity to the nature of these distribution shifts. In particular, we refer
to a unique challenge manifested in time series namely “shifts in non-stationary properties”, where
the patterns themselves evolve over time.

In critical fields such as healthcare, ignoring these temporal distribution shifts can have life-threatening
consequences, posing risks to patient safety and care quality. For instance, predictive models trained
on patient data prior to a major public health crisis, such as the COVID-19 pandemic, may exhibit
significant performance drops when deployed in post-pandemic settings (Roland et al., 2022). For
example, during the COVID-19 pandemic, not only did static features like the proportion of high-risk
patients change (Ngiam et al., 2023; Singh et al., 2023), but also temporal relationships between vital
signs like heart rate and respiratory rate or trends in blood oxygen levels also changed in complex
ways over time. Consequently, understanding the changes beyond just static shifts is crucial not just
to maintain model performance, but also to ensure patient safety and maintain trust in AI-assisted
decision-making systems.

Addressing this problem of understanding distribution shifts in time series remains underexplored
and particularly challenging. Exisiting approaches (Lu et al., 2023; Liu et al., 2024b) draw on
methods similar to those used for general static out-of-distribution (OOD) generalization, such as
distributionally robust optimization (DRO) (Sagawa et al.; Duchi & Namkoong, 2021; Liu et al.,
2022) and causal invariant learning (Peters et al., 2016; Kuang et al., 2018; Arjovsky et al., 2019).
These methods, although theoretically compelling, typically overlook the inherent temporal dynamics
of time-series data. Moreover, they frequently rely on structural assumptions about distribution
shifts without rigorous empirical validation, potentially limiting their practical utility (Gulrajani &
Lopez-Paz; Yang et al., 2023; Gagnon-Audet et al., 2023; Liu et al., 2023a).

In response to these limitations, we emphasize the importance of adopting an inductive approach—one
that is grounded in understanding time-series-specific patterns of distribution shifts—to effectively
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Figure 1: Overview of our TSSA framework.

address real-world distribution shifts. Rather than arbitrarily applying robust methods or fine-tuning
models when performance drops on new test data, we argue for first identifying the specific temporal
factors driving the decline. This targeted understanding can guide more effective model adjustments
or data collection (Liu et al., 2023a) and enable more judicious model deployment. Recent works (Cai
et al., 2023; Feng et al., 2024) propose decomposition approaches to understand and attribute
performance drop to different factors. However, they focus on “static” settings and cannot deal with
the “shifts in temporal dynamics” problem for time-series data, which necessitates modeling the
changes in temporal data properties for time series. Hence, the key question of this work is: How to
attribute performance degradation between populations to temporal data properties?

To tackle this problem, we propose Time-Series Shift Attribution (TSSA) framework, which analyzes
distribution shifts for time-series data from a data-centric perspective. As shown in Figure 1, our
framework involves two parts: (i) Define metrics that characterize the behavioral properties of time-
series data, along with a sufficiency measure that reflects the optimal predictive power in estimating
the deployed model’s prediction error for each sample using these metrics; (ii) Attribute performance
degradation to each data property in a detailed manner. We derive an unbiased doubly robust estimator,
incorporating a sample-efficient model architecture for attribution.

Contributions: TSSA is a framework which to the best of our knowledge is the first to address
the issue of time-series distribution shift understanding and attribution bringing several con-
tributions: 1⃝ Technically: we explicitly model and decompose time-series into interpretable
properties and link them to shifts using the TSSA framework, providing a doubly robust estima-
tor for a nuanced attribution and understanding of why and how model performance changes
across distributions for time-series predictors. 2⃝ Theoretically: we characterize the unbiased-
ness and asymptotic properties for the attribution estimator. 3⃝ Emprically: we demonstrate
through 4 case studies in real-world health-care applications how our TSSA framework en-
hances the understanding of time-series shifts and informs both reliable model deployment and
targeted improvements in ML models as well as data collections.

2 PRELIMINARIES

In the context of time-series classification, let X = [U, V1...t]
T ∈ X represent the input covariates,

where U ∈ Rdu denotes static features and V1...t ∈ Rdv×t denotes multi-variate time-series data up
to time step t. Let Y ∈ Y represent the target prediction outcome. Consider a time-series prediction
model f , which aims to predict the outcome Y based on the covariates X . Suppose f is trained on
data pairs (X,Y ) sampled from a training distribution P. Let ℓ(f(x), y) be a loss function quantifying
the prediction error, such as cross-entropy loss or 0-1 loss.

In this work, we consider a situation where we observe a performance degradation from P to a target
population Q, i.e. EQ[ℓ(f(X), Y )] > EP[ℓ(f(X), Y )]. In time-series data, performance degradation
can arise from several factors, including changes in the distribution of input variables such as U and
V1...t, alterations in the temporal properties of the time series V1...t, and the presence of missing
variables. Understanding and attributing these shifts is crucial for effectively improving model
robustness and ensuring accurate predictions in new settings.

Consider a time-series model designed to predict patient mortality risk based on demographic features
and various health metrics monitored in a hospital. The model may have been trained on data collected
from the patient population prior to a major public health event but deployed during or after the event,
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where there could be a significant shift in patient demographics or the emergence of new factors
influencing mortality. Additionally, the model may need to be deployed across diverse settings, such
as different countries or hospitals. In such cases, we may have sufficient labeled data during the
event to evaluate the model, but not enough to train a new one, as investigated in Section 5. Given
that collecting new data is extremely costly and could delay patient care, we aim to understand and
attribute the performance drop in order to determine in a principled manner the best way to adapt our
model or collect the targeted data. Before presenting our methodology, we first discuss the challenges
associated with time-series data, and then review the literature on performance drop attribution.
Challenges in time-series data Distribution shifts in time-series data are complex, involving both
temporal shifts within distributions (e.g., trends, seasonality) and changes between distributions, a
challenge we call the “shifts in shifts” problem. Unlike static data, time-series requires addressing
these evolving patterns. For instance, pre-pandemic blood oxygen levels in healthy individuals were
stable, but during COVID-19, they dropped significantly and continued fluctuating in recovered
patients. This highlights the need to consider temporal shift patterns alongside standard shifts.

Attributing performance drops Cai et al. (2023) propose decomposing performance drops into two
general sources: covariate shifts (X) and concept shifts (Y |X). Building on this, Feng et al. (2024)
employ Shapley values for a more detailed decomposition. However, designed for static data, they
cannot be directly applied to time-series data, where, as discussed above, the distribution shifts are
much more complicated. Furthermore, since we are only concerned with the contribution of a single
data property to the model’s performance degradation while all other properties (or features) remain
constant, a comprehensive calculation of Shapley values may be unnecessary and less appropriate.
Additionally, there are studies that quantify the importance of shifts in individual features within
a (partially) known causal or problem structure (Wu et al., 2021; Thams et al., 2022; Zhang et al.,
2023). However, these methods rely heavily on expert knowledge, and any misspecification could
introduce significant risks in practice.

To the best of our knowledge, our work is the first to analyze detailed shift patterns in time-series
data. While extensive research on time-series forecasting addresses temporal shifts within a single
distribution (Kim et al., 2021; Fan et al., 2023), our work focuses on the more general problem of
shifts in temporal dynamics. This work primarily aims to understand performance drops in time-series
classification models. In the following sections, we will introduce metrics to quantify these temporal
shifts (Section 3.1) and develop a framework to attribute performance degradation to specific shift
patterns (Section 3.2), to address the aforementioned challenges and limitations. More related works
on distribution shifts, Shapley Value, and time-series anomaly detection can be found in Appendix A.

3 METHOD

In this section, we introduce our Time-Series Shift Attribution (TSSA) framework, designed to pro-
vide a detailed analysis of model performance degradation in time-series data. The key challenges are
two-fold: capturing the temporal properties of time-series data and attributing the overall performance
degradation to individual features or properties. Corresponding with these two challenges, as shown
in Figure 1, our framework contains two parts: (1) Temporal Property Characterization: We define
and extract temporal properties, such as global, local and structural properties of the time series,
that influence predictive performance. The sufficiency of these metrics is assessed through a novel
Sufficiency Measure, designed to quantify the extent to which each temporal feature contributes to
model performance degradation. (2) Performance Attribution: We attribute model performance
deterioration to individual temporal properties. This attribution is conducted with a doubly robust
estimator, ensuring both unbiasedness and asymptotic consistency under mild assumptions. We also
leverage a shared representation space to efficiently estimate risk models and propensity scores,
particularly in scenarios with limited target population data, thereby improving estimation reliability.

3.1 DESIDERATA FOR TIME-SERIES METRICS

To systematically capture the complex nature of distribution shifts in time series data, we propose the
following desiderata for metrics to attribute performance shifts, which cover various aspects of time
series behavior subjected to distribution shift. We categorize these desiderata into four main groups:

Global Characteristics Capture the overall, long-term behavior of the time series. These
could encompass: (1) Overall Statistics: The overall statistics of a sequence of data, like
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the average value and standard deviation. (2) Trends: Metrics to capture long-term di-
rectional movements in the data. (3) Frequency: Metrics to identify and quantify cycli-
cal patterns or periodic components. (4) Noise level: Metrics to quantify the signal-to-
noise ratio. In this work, we introduce 8 metrics to capture the global characeteristics,
including the average, max, min, standard deviation values, standardized trend, smoothed trend,
maximum frequency, and signal-to-noise ratio.
Local Dynamics Assess short-term behaviors and local patterns within the time series. These could
encompass: (1) Variability Assessment: Metrics to measure the degree and nature of fluctuations in the
time series. (2) Local Non-stationarity: Metrics to detect short-term shifts. (3) Outlier and Anomaly
Detection: Metrics to identify outlier or unusual values. In this work, 6 metrics are included to capture
the local dynamics, namely short-term variability, high-frequency energy, normalized Jitter index,
relative strength index, KPSS non-stationary test, and the number of breakout points.
Structural Changes Identify significant shifts or changes in the underlying data-generating process.
These could encompass (1) Metrics to detect abrupt shifts in the statistical properties of the time series.
(2) Metrics to capture the shifts in local trends associated with abrupt shifts. We introduce 2 metrics
to capture the structural changes, including the number of change points, and the trend variability.
Inter-series Relationships Address the interactions between multiple time series. These could
encompass metrics to capture relationships and dependencies between different time series. We
introduce the covariance variability among multiple time series to capture this.

These desiderata are motivated by the multifaceted nature of distribution shifts in time series data.
Global characteristics can reveal shifts in overall patterns, while local dynamics can capture more
subtle changes that might be masked in aggregate measures. Structural changes are crucial for
identifying significant alterations in the underlying process, and inter-series relationships are essential
for understanding shifts in complex, multivariate time series. While not exhaustive, as shown
in Table 1, these metrics are drawn from various fields, and represent a comprehensive attempt to
instantiate each desideratum, and more metrics can be added in future developments. The detailed
definitions can be found in Appendix F.

Table 1: Various metrics to quantify temporal properties from different aspects.
Temporal Property Name Metric Domain

Global Characteristics

Overall Statistics Average, Standard Deviation, Max, Min values Statistics
Standardized Trend Equation (16) Statistics
Smoothed Trend Savitzky-Golay Filter (Savitzky & Golay, 1964) Analytical Chemistry
Maximum Frequency Dominant frequency by FFT Signal Processing
Signal-to-Noise Ratio Equation (17) Signal Processing

Local Dynamics

Short-Term Variability Equation (19) Signal Processing
High-Frequency Energy Equation (20) Signal Processing
Normalized Jitter Index Equation (21) Signal Processing
Relative Strength Index Equation (22) Finance
KPSS Non-Stationary Test p-Value from KPSS Test Economics
Breakout Points Equation (18) (Bollinger Bands (Bollinger, 1992)) Finance

Structural Changes Change Points PELT (Killick et al., 2012) Statistics
Trend Variability Standard deviation of local trends Statistics

Multivariate Interaction Covariance Variability Equation (23) Finance

With these metrics, we combine the static features U with the metrics of all time-series features V1...t,
collectively referred to as X̃ in the following sections of this paper.
Sufficiency Measure Before moving on to the attribution, one natural question is whether the
designed metrics are good enough to capture the temporal properties of time series. Since the ultimate
goal is to understand the predictive performance drop, the primary requirement for these metrics is
that they should relate to predictive performance. Therefore, we propose a sufficiency measure to
evaluate the optimal predictive power of the metrics, defined as:

Suff.(X̃) := min
g∈G

E
[
Loss(g(X̃), ℓ(f(X), Y ))

]
, (1)

where Loss(·, ·) denotes some loss functions (e.g., mean squared error, 0-1 loss) to measure the
gap between the predicted error and the real error of the deployed (and fixed) model f , G can be
chosen as any model classes (e.g., neural networks, XGBoost, etc.). This metric measures the optimal
power in predicting the deployed model’s prediction error for each sample using the data property
metrics. The smaller it is, the more predictive the metrics become. Therefore, it can serve as a
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guideline to measure the quality of the metrics. In Proposition 2, we demonstrate how this sufficiency
measure affects the asymptotic properties of our attribution estimation (introduced in Section 3.2).
Moreover, in our first case study (Section 5.1), we demonstrate how temporal property metrics can
help to effectively identify, in a highly interpretable manner, both the “safe region”, where the model
performs reliably, and the “risk region”, where it is less reliable. In Appendix D, we discuss more
about the utility of our sufficiency measure.

3.2 PERFORMANCE DROP ATTRIBUTION

Based on the collection X̃ of static features U and temporal data properties in Table 1, we propose to
attribute the performance drop, i.e., EQ[ℓ(f(X), Y )]− EP[ℓ(f(X), Y )] to each component in X̃ . To
assess how a specific data property contributes to the performance drop, inspired by treatment effect
estimation, we control for the distribution of all other features except the data property of interest. For
instance, if we are interested in understanding the effect of blood pressure on the performance decline,
we could first control for the distribution of all other features like demographics, blood oxygen level,
heart rate, to be the same across both populations. The remaining performance drop, after controlling
for other factors, could then be attributed to the effect of blood pressure. Additional demonstrations
on the relationship between our TSSA approach and average treatment effect (ATE) estimation can
be found at Appendix C.

Objective of Attribution For a specific data property S of interest, let X̃\{S} denote all other
properties/features in X̃ , abbreviated as X̃−S in the remainder of this work. To “control” for the
effects of X̃−S , we define the conditional risks under distributions P and Q as follows:

RP(X̃−S) := EP[ℓ(f(X), Y ) | X̃−S ], RQ(X̃−S) := EQ[ℓ(f(X), Y ) | X̃−S ], (2)

where ℓ(f(X), Y ) denotes the deployed model’s original prediction error on the sample (X,Y ).
Note that when measuring prediction error ℓ(f(X), Y ), we use the original samples rather than the
extracted temporal properties. Building on this, we define the attribution score of feature S as:

Attr.(S) := E[RQ(X̃−S)−RP(X̃−S)], (3)

which quantifies the performance gap between Q and P, while holding the marginal distribution of all
features except the feature of interest, X̃−S , constant. From a distribution shift perspective, Attr.(S)
quantifies the performance drop introduced by (Y, S)|X̃\{S}-shifts between P and Q.

Furthermore, in cases where we do not isolate a specific feature (i.e. feature of interest is set to the
empty set), i.e., Attr.(∅), the attribution score captures the “systematic” (and unavoidable) difference
between P and Q, potentially caused by missing information. For example, in predicting patient risk,
individuals from two populations may have similar health indices yet experience vastly different
outcomes due to missing information, such as differing living habits across regions or the absence of
key health metrics in the records. Note that this term reduces to the concept of “Y |X-shift” introduced
by Cai et al. (2023). To effectively estimate Equation (3), we propose a doubly robust estimator for
our objective Equation (3) as it is resilient to misspecification, ensuring reliable attribution even when
some assumptions might be violated.

Doubly Robust Estimation for Attribution Consider the original data (U i, V i
1...t, Y

i)nP
i=1 ∼ P and

(U j , V j
1...t, Y

j)
nQ

j=1 ∼ Q, we first calculate the temporal properties in Table 1 for V1...t, and convert
the data into (X̃i, Y i)nP

i=1 ∼ P and (X̃j , Y j)
nQ

j=1 ∼ Q. To estimate the attribution, i.e. Equation (3),
we first learn two predictors µ̂P(·), µ̂Q(·) to approximate the conditional risk function RP(·), RQ(·)
in Equation (2) respectively from the observation data. Then we fit a domain classifier π̂(·) as
(propensity score estimator):

π̂(x−S) ≈
{
π(x−S) := Pr

(
x−S from Q

∣∣X̃−S = x−S

)}
. (4)

We use non-parametric models for RP(·), RQ(·), π(·), ensuring flexibility in learning the relationships
between variables without relying on strong parametric assumptions. Throughout the theoretical
analysis in this paper, we consider generic nonparametric regression estimators, and all strategies
could be used directly with different ML models, e.g. tree-ensembles. Then we formulate the
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Augmented IPW (AIPW) (Robins et al., 1994) estimator as:

Âttr.(S) =
1

nP + nQ

( nP+nQ∑
i=1

(
µ̂Q(X̃

i
−S)− µ̂P(X̃

i
−S)

)
+

nQ∑
j=1

RQ(X̃
j
−S)− µ̂Q(X̃

j
−S)

π(X̃j
−S)

−
nP∑
i=1

RP(X̃
i
−S)− µ̂P(X̃

i
−S)

1− π(X̃i
−S)

)
,

(5)

where RQ(X̃
j
−S) denotes the ground-truth value on sample X̃j

−S that can be calculated from our
observation data (the same for RP(X̃

i
−S)). We also demonstrate the compatibility of our attribution

with Shapley Value in Appendix B.

This aforementioned formulation ensures double robustness, meaning that our attribution remains
consistent and unbiased as long as either the conditional risk predictors or the propensity score
estimator is correctly specified. With the propensity score estimator π̂(·) in use, we rely on the
overlap assumption between P and Q, a common requirement in causal inference (Wager, 2020).
There are several approaches to address potential non-overlap in practice (Cai et al., 2023). In
this work, we adopt a simpler strategy to mitigate the effects of non-overlap by excluding samples
with propensity scores that are extremely close to 0 or 1. Furthermore, in Section 4, we prove the
unconfoundedness, unbiasedness, and the asymptotic properties of our estimator in Equation (5).

Sample-Efficient Estimation of µ̂P(·), µ̂Q(·), and π̂(·) with Neural Networks In non-parametric
estimation, we generally have sufficient samples for µ̂P(·) (from the training population P). However,
in real-world applications, data from the target pop-
ulation Q is often scarce, making it challenging to
estimate µ̂Q(·) and π̂(·) accurately. To mitigate
this, given the functions share the same input X̃−S ,
we propose to learn a shared representation space,
thereby sharing information between the two popu-
lations, and improving the sample efficiency of our
estimates. Motivated by Shi et al. (2019), we adopt
the model architecture as shown in Figure 2. Note
that more advanced architectures (Curth & Van der
Schaar, 2021) can be adopted here, and this is not
the focus of this work. Through this model, we
share information between samples from P and Q
to learn the representation space, which helps for
the estimation of µ̂Q(·) and π̂(·). Specifically, the
loss function is:

!𝑋!"# , 𝑅ℙ# #%&
'

∼ ℙ

!𝑋!"
( , 𝑅ℚ

(
(%&

*
∼ ℚ

!𝜇ℙ(⋅)

&𝜋(⋅)

!𝜇ℚ(⋅)
ℎ!(⋅)
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𝑤!"(⋅)

𝑤!#(⋅)

Figure 2: Sample-efficient estimation with
neural networks. Ri

P denotes the conditional
risk associated with i-th sample drawn from P
(similar for Rj

Q). hϕ(·) represents the shared
representation learner, and wθ1 , wθ2 , wθ3 de-
note three separate predictors.

min
ϕ,θ1,θ2,θ3

nP∑
i=1

(wθ1(hϕ(X̃
i
−S))− Y i)2︸ ︷︷ ︸

for µ̂P(·)

+

nQ∑
j=1

(wθ3(hϕ(X̃
j
−S))− Y j)2︸ ︷︷ ︸

for µ̂Q(·)

+

nP+nQ∑
i=1

ℓCE(wθ2(hϕ(X̃
i
−S)), Y

i)︸ ︷︷ ︸
for π̂(·)

,

where ℓCE(·, ·) denotes the cross-entropy loss.

4 THEORETICAL ANALYSIS

In this section, we characterize the unbiasedness and asymptotic properties for our estimation.

Proposition 1 (Unconfoundedness & Unbiasedness). Denote T ∈ {0, 1} as an indicator variable:

T = 0, if X̃−S is from P; T = 1, if X̃−S is from Q, (6)

which can be likened to a treatment variable. For any attribute S ∈ X̃ , we have:{
RP(X̃−S), RQ(X̃−S)

}
⊥⊥ T | X̃−S . (7)

Based on this, assume that for all X̃−S , the overlap assumption holds, i.e., 0 < π(X̃−S) < 1, then the
estimator in Equation (3) is consistent if either the µ̂P(·), µ̂Q(·) are consistent or π̂(·) is consistent.
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Proof can be found in Appendix H. In addition to the unconfoundedness and unbiasedness, based
on Wager (2020), we quantify the consistency between our estimator and the oracle one as follows.
Proposition 2 (Consistency). Consider the oracle estimator that uses the true µP(·) = RP(·),
µQ(·) = RQ(·), and π(·) rather than the estimates thereof:

Âttr.
⋆
(S) =

1

nP + nQ

nP+nQ∑
i=1

(
RQ(X̃

i
−S)−RP(X̃

i
−S)

)
, (8)

Assume that all samples are independent, and for all X̃−S , the overlap assumption holds, then:

|Âttr.(S)− Âttr.
⋆
(S)| = OP

(
max

τ∈{P,Q}
E
[
(µ̂τ (X̃−S)−Rτ (X̃−S))

2
] 1

2

︸ ︷︷ ︸
sufficiency measure in Equation (1)

E
[
(π̂(X̃−S)− π(X̃−S))

2
] 1

2

)
.

Proof can be found in Appendix H.
Remark 1. Proposition 2 quantifies how closely our estimator approximates the oracle. We can
make the following observations: (i) The first term, maxτ∈{P,Q} E

[
(µ̂τ (X̃−S)−Rτ (X̃−S))

2
]
,

characterizes the prediction error of µ̂P(·) and µ̂Q(·). This term directly corresponds to the sufficiency
measure in Equation (1), which represents the objective of our designed temporal data properties,
thereby linking the two stages of our framework. (ii) For any oP (n−1/4)-consistent machine learning
methods to estimate µ̂P, µ̂Q, π̂, i.e.

max
τ∈{P,Q}

E
[
(µ̂τ (X̃−S)−Rτ (X̃−S))

2
] 1

2E
[
(π̂(X̃−S)− π(X̃−S))

2
] 1

2 ≪ 1√
n
, then we have (9)

√
n
(

Âttr.(S)− Âttr.
⋆
(S)

)
→p 0. (10)

5 EXPERIMENTS

We design 4 case studies to comprehensively demonstrate the effectiveness and usage of our TSSA
framework, including different real-world shift patterns and prediction tasks. Through our exper-
iments, we use the Medical Information Mart for Intensive Care (MIMIC) (Johnson et al., 2016)
dataset. It is representative of complex real-world medical time series and contains 23,100 patients
from which 9 static demographic features (such as age, gender, admission type etc) and 53 time-series
health indexes (such as blood pressure, Braden mobility, temperature etc) have been measured.

5.1 CASE STUDY 1: TEMPORAL PROPERTIES GUIDING RELIABLE MODEL DEPLOYMENT

In the first case study, we demonstrate the importance of our time-series data properties (Appendix F)
through the interpretable guidance for model safe deployment. Consider a typical intensive-care
scenario where the classifier, fθ(·), is trained on historical data but is deployed across different
patients and at various stages of their care. Since different patients are likely to exhibit varying feature
patterns, it is challenging for a single model to perform consistently well across all incoming patients.
Therefore, in high-stakes scenarios like this, it is crucial to identify in advance the types of data where
the model performs reliably and clinicians can trust its predictions—referred to as the safe region.
Similarly, it is important to recognize the data patterns where the model performs poorly and should
not be relied upon, referred to as the risk region.
Experiment Setup The task is to predict patient mortality based on 24-hour recordings. We follow
the standard design outlined by Jarrett et al., randomly splitting the patients in the MIMIC-III dataset
into a training set (18,490 patients, P) and a test set (4,610 patients, Q), ensuring no patient overlap
between the two sets. For the validation set, we use the same patients as in the training set but select
different time segments for their time-series features, denoted as Pval. We train a Transformer model,
fθ(·), on the training set, perform region analysis based on the validation data, and use the test set to
verify the effectiveness of the identified regions.
Methodology in Region Analysis Given the high-stakes nature of the task, these regions must be
highly interpretable, rather than relying on opaque, non-interpretable parametric models. Inspired
by Lim et al. (2021); Liu et al. (2023a), we fit a decision tree model, h(X̃) on the validation set
(Pval), to predict the prediction error ℓ(fθ(X), Y ) of the trained model fθ(·), using the extracted data
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(c) Error Rate on Different Sets.

Figure 3: Region Analysis. (a)-(b): Visualizations of the safe and risk regions, defined by interpretable
decision rules based on the extracted temporal properties. (c) The error rates on the validation set, the
entire test set, the safe region, and the risk region. Error rates in the risk region exceed overall test
error, while error in the safe region is much lower than overall test error, thereby guiding safe model
deployment by identifying and avoiding usage for patients in the risk region. Note that the regions
are learned on validation set Pval with no access of the test set in advance.

properties and static demographic features X̃ (Appendix F). The decision tree partitions the data into
distinct regions, each defined by interpretable decision rules and corresponding to a unique leaf node.
By analyzing the samples within each leaf, we can identify regions with the highest and lowest risk,
as the label assigned by the decision tree represents the original prediction error.
Analysis In Figure 3a and Figure 3b, we visualize the safe and risk regions identified based on
temporal properties, defined by interpretable and easy-to-understand decision rules. To demonstrate
how this guides safe model deployment, we calculate the error rates for the entire test set, the safe
region, and the risk region separately. From Figure 3c, while the overall error rate on the test set
is relatively reasonable (22.4%), the error rate in the risk region is much higher (52.0%), nearing
the level of random guessing. In contrast, the error rate in the safe region is significantly lower
(3.7%). Our region analysis offers not only interpretability by design, but also a tool for reliable
model deployment. Clinicians can confidently apply the model on patients in the safe region while
avoiding use for patients in the risk region, thus ensuring reliable model deployment, which is
important from the perspective of trustworthy ML in high stakes settings like healthcare. Further
results in Appendix G.3 reinforce the superiority of our temporal-property-based region analysis.
Take-away 1: Temporal properties enable accurate and interpretable identification of safe and risk
regions, ensuring the reliable and smart deployment of ML models in critical care.

5.2 CASE STUDY 2: AGE SHIFTS IN MORTALITY RISK PREDICTION

In real-world healthcare settings, shifts in population distribution are commonly observed. For
instance, significant variations in patient age distributions often arise across different hospitals
and regions. To rigorously assess the effectiveness of our attribution method, we design scenarios
reflecting these variations in patient age on MIMIC-III, and verify that our framework attributes the
observed performance degradation to the appropriate features or properties.
Experiment Setup: Shifts in Patient Age The task is to predict patient mortality based on 24-hour
recordings. We consider a data collection process that oversamples patients under the age of 65,
where the average age of the patients in training is 57, while in the test set, the average age is 77.
The training set contains 11,476 patients (training distribution P), and the test set contains 6,408
new (but older) patients (target distribution Q). For the validation data, similar with Case Study 1
(Section 5.1), we choose the same patients as in the training set but select different time segments for
their time-series features. We train a Transformer model fθ(·) on P and evaluate it on Q, where we
observe a performance drop of 13.9pp on accuracy (from 87.7% to 73.8%), and 8.8pp on Macro-F1
score (from 72.5% to 63.7%). In the subsequent analysis, we keep the model fθ(·) fixed during
evaluation and apply our TSSA framework to attribute its performance drop to various features. More
details can be found in Appendix G.6.
Analysis We begin by presenting the feature attribution results in Figure 4a, which show the
average attribution scores along with standard deviation errors from 10 random runs. The findings
reveal that the top features identified by our framework are predominantly demographic variables
(yellow bars), with the ”Age” feature correctly attributed as the most influential to the performance
drop. Other key features, such as Admission Location (e.g., emergency room, referral, transfer from
other hospitals) and Previous ICU Stay Duration, have a relatively strong correlation with the Age
feature. This aligns well with our problem setting, where we perform oversampling based on the
“Age” feature. Furthermore, can we use the attribution to guide actions to remedy model performance.
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(c) Macro-F1 Score.
Figure 4: Results for Case Study 2: (a) We visualize the top 10 most important features, which are
mainly demographic features (yellow bars), with age being the most prominent. This corresponds
with our “prior” knowledge and verify that our framework attributes to the appropriate features.
(b)-(c) We do some balancing the top three features respectively during the training phase and plot
the accuracy and Macro-F1 score for each model. The results show a significant improvement in
performance over original model and simple finetuning when we intervene on these top features.

For each of the top 3 identified features (i.e., Age, Admit Location, and Previous ICU Stays), we
apply simple balancing by reweighting the data based solely on the inverse density ratio of that
specific feature to achieve a uniform distribution. As shown in Figure 4b and Figure 4c, we observe
significant improvements in both test accuracy and Macro-F1 score. This demonstrates that the
top features identified by our framework directly influence the performance drop observed between
the training and test patients. Additionally, this highlights how our attribution results can inspire
further algorithmic interventions. In this case study, this inductive approach shows that even simple
algorithmic modifications can lead to significant improvements.

Take-away 2: Our attribution framework accurately attributes the performance drop to relevant
demographic features and inspires straightforward yet effective algorithmic interventions, such as
data balancing (as done in our intervention), and targeted data augmentation.

5.3 CASE STUDY 3: PREEMPTIVE DIAGNOSIS UNDER TEMPORAL SHIFTS

Beyond shifts in patient age, temporal variations in patients’ conditions represent another prevalent
type of shift in healthcare data. In preemptive diagnostic scenarios, our target is for the model to
detect mortality risks at the earliest possible stage (Filippin et al., 2015). This proactive approach
not only enhances patient outcomes by facilitating timely interventions but also underscores the
importance of adapting models to account for the dynamic nature of patient health over time. In this
case study, we explore how our attribution framework can offer valuable insights for this.
Experiment Setup: Preemptive Diagnosis under Temporal Shifts To evaluate reliability in the
early detection of mortality risk, we examine the temporal shifts between the training and test patients.
Specifically, for the training set P, we utilize the last 24-hour time segments for all time-series
features, while for the test set Q, we select the first 24-hour time segments for all features. This setup
allows us to assess whether the model can effectively withstand these temporal shifts and accurately
identify patients at high risk of mortality in the early stage. We train a Transformer model fθ(·) on P,
which comprises 12,574 patients, and validate it on an additional 5,547 patients. To control for other
shifts, we use the same set of patients for both the validation and test sets Q; the only difference lies
in the time segments used: the last 24 hours for validation and the first 24 hours for testing. In this
case, we observe a performance drop of 13.8pp in accuracy (from 90.0% to 76.2%) and 24.8pp in
Macro-F1 score (from 64.1% to 39.3%), highlighting the necessity to investigate the reasons behind
this significant decline. Then for the subsequent analysis, we keep the model fθ(·) fixed during
evaluation and apply our TSSA framework to attribute its performance drop to various features.
Analysis In Figure 5a, we present the average attribution scores along with standard deviation
errors from 10 random runs. In contrast to Figure 4a, which displays attribution based on age shifts,
the prominent features in this analysis are primarily temporal properties, including the smoothed
slope, high-frequency energy, and break points. For instance, for the top feature—–the smoothed
slope of Braden Activity—–we randomly selected ten patients and visualized the last 24-hour (blue)
and the first 24-hour (red) time series for Braden Activity in Figure 5b. Here, we observe that the
trends, as indicated by the smoothed slope metric (top feature), and break points (sixth feature) of
this time series differ significantly. As demonstrate by Valiani et al. (2017), mobility status during
hospitalization provides substantial prognostic value in hospitalized older adults. The Braden Activity
score could be an efficient and valuable source of information about mobility status for targeting
post-hospital care of older adults. Our attribution results provide valuable insights for clinicians.
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Figure 5: Results of Case Study 3&4: (a) We visualize the top 10 most important features for Case
Study 3. We can see that the performance drop is primarily driven by extracted temporal properties.
(b) We randomly select 10 patients to compare the curves of the top feature (Braden Activity). A
significant difference in both the slope and breakpoints is observed. (c) We visualize the top 10 most
important features for Case Study 4, where they are all temporal properties.

First, it is essential to monitor changes in the Braden Activity feature closely. Second, as illustrated
on the right side of Figure 5b, many of these changes may go unrecorded or unmeasured during the
early stages of patient care. To enable timely detection, clinicians should prioritize the assessment of
this feature from the outset. Overall, these findings underscore the potential of our results to enhance
clinical practices and improve feature collection.

Take-away 3: Our attribution framework provides valuable insights to guide ML engineers and
clinicians, like implementing timely and effective feature monitoring and collection.

5.4 CASE STUDY 4: VENTILATOR PREDICTION

We focus on predicting the use of mechanical ventilation in intensive care—–a procedure that is both
invasive and uncomfortable, requiring the induction of an artificial coma and carrying a significant
risk of mortality. Accurate predictions are crucial, as errors can lead to serious consequences.
Experiment Setup The task is to predict whether a patient requires mechanical ventilation. We
consider a realistic scenario in which a model trained on historical data (12,574 patients, first 24-hour
time series, denoted as P) must be deployed for new patients and future time segments (an additional
5,547 patients, second 24-hour time series, denoted as Q). This scenario accounts for shifts in both
demographics (across different patients) and temporal factors (across various time periods, such as
the first day versus the second day). We train a Transformer model, and observe a performance drop
of 12.4pp in accuracy (from 93.7% to 81.3%) and 10.1pp in Macro-F1 score (from 62.4% to 52.3%),
highlighting the necessity to investigate the reasons behind this significant decline.
Analysis We present the feature attribution results in Figure 5c. Notably, all top 10 features are
temporal properties, indicating that the expected demographic shifts among patients are unexpectedly
minor. To further explore this phenomenon, we exclude temporal shifts and build a new test set
denoted as Q′ where the time-series features are also derived from the first 24 hours (the same as
P). After evaluation, the drop from P to Q′ is only 0.6pp in accuracy and 0.3pp in Macro-F1 score.
Thus, this drop can be primarily attributed to demographic shifts among different patients. This
further supports our attribution results that indicate minor shifts among patients in this scenario.
Furthermore, our identified top features are closely related to the ventilator prediction. For example,
Platelet Count (Top-1) is recognized as a significant prognostic marker in intensive care (Mackay
et al., 2010; Ilban & Simsek, 2023). Therefore, our attribution results offer valuable insights for
ensuring reliable deployment and aiding clinicians in making more informed decisions.

Take-away 4: Our attribution framework effectively identifies the primary sources of distributional
shifts, providing actionable insights for guiding subsequent algorithmic interventions.

6 CONCLUSION

This paper presented the Time-Series Shift Attribution (TSSA) framework, which effectively attributes
performance degradation due to distribution shifts in time-series data, with a focus on healthcare
applications. Our empirical and theoretical results demonstrate its potential to enhance model
reliability and inspire both algorithmic and data-centric interventions in the future.
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A RELATED WORK

Besides the works introduced in Section 2, we will briefly review other methods related to our topic
in this section.

Distribution Shifts To tackle the challenge of distribution shifts (Liu et al., 2021b), several
methods have been proposed, with distributionally robust optimization (DRO) (Sagawa et al.; Duchi
& Namkoong, 2021; Duchi et al., 2023; Liu et al., 2023a) and invariant learning (Arjovsky et al.,
2019; Koyama & Yamaguchi, 2020; Liu et al., 2021a; 2024a) being among the most prominent
approaches. DRO techniques involve perturbing the data distribution within a predefined uncertainty
set and optimizing for the worst-case prediction risk. However, these uncertainty sets are often
selected based on theoretical considerations rather than empirical evidence, which can lead to
overly pessimistic outcomes in practice (Liu et al., 2023a). Invariant learning methods, on the
other hand, aim to discover representations that maintain a consistent relationship with the outcome
variable across different domains. Nevertheless, these methods depend heavily on the availability
of high-quality environments (Liu et al., 2021a), and the assumption of invariance may not hold in
real-world settings. For instance, unobserved confounders or missing variables—common in practical
scenarios—can prevent the existence of a robust invariant representation. Our work addresses the
distribution shift problem through an inductive approach, first aiming to understand the shift patterns.
This understanding can then inform targeted interventions from both algorithmic and data-centric
perspectives.

Time-Series Anomaly Detection In time-series anomaly detection, several works have addressed
concept drifts over time, developing both supervised and unsupervised methods (Le & Papotti, 2020;
Braei & Wagner, 2020; Liu et al., 2023b). Our approach differs from these methods in several key
ways: (i) our goal is to understand why a model’s performance declines in a prediction task by
attributing this drop to specific properties of interest, whereas anomaly detection methods focus
primarily on reliably detecting breakpoints; (ii) the shifts considered in time-series anomaly detection
are typically associated with breakpoints, whereas our work covers a broader range of temporal
properties (as shown in Table 1). Additionally, our attribution framework can be applied to diagnose
performance drops in anomaly detection methods as well.

Furthermore, in the following Appendix B, we demonstrate in detail the related works with Shapley
Value (Lundberg & Lee, 2017), as well as the compatibility of our approach with Shapley Value.

B SHAPLEY VALUE

One typical attribution method is the SHapley Additive exPlanations (SHAP) (Lundberg & Lee,
2017), which uses cooperative game theory to compute explanations of model predictions. However,
our work differs from previous ones in the following aspects:

• Different goals: Previous works focus on attributing model predictions to input features,
whereas our work aims to understand the performance degradation of the model when
transferring from one distribution to another.

• Different philosophies: Shapley values compute the average contribution of a feature
across all possible subsets of features. In contrast, our approach focuses on the impact of
a single data property on the model’s performance degradation, while keeping all other
properties (or features) constant. As a result, a full calculation of Shapley values may be
unnecessary and less suitable for our objectives.

• Different settings: Previous works typically address static settings, where models can be
refit with any subset of features. Our work, however, deals with time-series data, where
each time series involves multiple temporal properties, making it infeasible to “remove” one
property and refit the model to estimate SHAP values.
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Furthermore, our proposed attribution method is compatible with SHAP values, as our attribution
score can be integrated into SHAP as the “effect” function. In the following, we would like to first
demonstrate why we currently do not use Shapley Value, and then illustrate how our approach can be
integrated with Shapley Value.

Why we do not use Shapley Value One typical attribution method is the SHapley Additive
exPlanations (SHAP) (Lundberg & Lee, 2017), which uses cooperative game theory to compute
explanations of model predictions. However, our work differs from previous ones in the following
aspects:

• Different goals: Previous works focus on attributing model predictions to input features,
whereas our work aims to understand the performance degradation of the model when
transferring from one distribution to another.

• Different philosophies: Shapley values compute the average contribution of a feature
across all possible subsets of features. In contrast, our approach focuses on the impact of
a single data property on the model’s performance degradation, while keeping all other
properties (or features) constant. As a result, a full calculation of Shapley values may be
unnecessary and less suitable for our objectives.

• Different settings: Previous works typically address static settings, where models can be
refit with any subset of features. Our work, however, deals with time-series data, where
each time series involves multiple temporal properties, making it infeasible to “remove” one
property and refit the model to estimate SHAP values.

Compatibility with Shapley Value Furthermore, our proposed attribution method is compatible
with SHAP values, as our attribution score can be integrated into SHAP as the “effect” function.

First, recall the definition of Shapley Value: for a player i, the Shapley value ϕi(v) is calculated as:

ϕi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |! (v(S ∪ {i})− v(S)) (11)

Where N is the set of all players, S is a subset of players that does not include i, |S| and |N | are the
sizes of sets S and N , respectively, v(S) is the value function for coalition S , representing the payoff
that the players in S can generate. v(S ∪ {i})− v(S) is the marginal contribution of player i when
joining coalition S.

Second, we demonstrate how our TSSA approach can be integrated with Shapley Value. Denote the
attribution results of feature S given by our original approach as Âttr.(S). Then we can define the
Shapley Value as:

̂SHAP.Attr.(S) =
∑

V⊆X−S

|V|!(d− |V| − 1)!

d!
(Âttr.(V ∪ S)− Âttr.(V)), (12)

where d denotes the number of extracted features, X−S denotes the set of all features except S.
Therefore, our TSSA approach is compatible with Shapley Value, which we leave as a promising way
of future extension of this work.

C DISCUSSION ON THE RELATIONSHIP WITH AVERAGE TREATMENT EFFECT

Relationship with Average Treatment Effect (ATE) First, we would like to clarify that our TSSA
is an attribution approach, which is not designed to estimate ATE or solve causal problems. And we
only “interpret” our objective function as a special kind of ATE. That is, denote T ∈ {0, 1} as an
indicator variable:

T = 0, if X̃−S is from P; T = 1, if X̃−S is from Q, (13)
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which can be likened to a treatment variable. And our attribution objective can then be rewritten as:

Attr.(S) = E[R(X̃−S , T = 1)−R(X̃−S , T = 0)], (14)
where R(·, T = 1) denotes RQ(·), and R(·, T = 0) denotes RP(·) that can be viewed as two
outcome function (like in causal literature). Therefore, when studying the effect of one feature to the
performance drop, our attribution approach controls all the other attributes (to be identical between
group T = 1 and group T = 0), and then calculate its effect. Note that we are not studying original
ATE estimation problems.

Theoretical Analysis Beyond ATE Unlike in causal inference literature, where verifying the
unconfoundedness assumption can be challenging, our problem formulation enables us to prove the
unconfoundedness directly in Proposition 1, highlighting a key advantage of this approach. Based
on this, it follows naturally that the double robustness property, as characterized in Proposition 1,
ensures the unbiasedness of our estimator.

D UTILITY OF SUFFICIENCY MEASURE

In this section, we would like to clarify the utility of the sufficiency measure by addressing it from
the following two aspects.

Experiment Perspective First, for case study 1 (see Section 5.1), we select top-K features with
K ∈ {10, 20, 30, all}, calculate the sufficiency measure as well as the worst-accuracy (among
µP(·), µQ(·), and π(·)) of our attribution model. The results in Table 2 show a clear trend: better
sufficiency (corresponding to lower sufficiency score, which is the MSE) correspond to improved
prediction performance and more precise attribution, thereby highlighting the practical utility of this
measure. Note that lower sufficiency score represents better sufficiency, since the measure is defined
as mean-square error.

Theory Perspective Second, as demonstrated in Proposition 2, the attribution estimation error is
derived as:

OP

(
max

τ∈{P,Q}
E
[
(µ̂τ (X̃−S)−Rτ (X̃−S))

2
] 1

2

︸ ︷︷ ︸
sufficiency measure in Equation (1), error of µP, µQ

E
[
(π̂(X̃−S)− π(X̃−S))

2
] 1

2︸ ︷︷ ︸
error of π(·)

)
, (15)

which is directly controlled by the sufficiency measure. This theoretical result further underscores the
importance and relevance of this metric in ensuring robust and reliable attribution.

Why to report the worst accuracy? The attribution estimation error in Equation (15) is the
product of (1) the worst error of µP(·), µQ(·) and (2) the error of π(·). Therefore, we care about the
performance of all three predictors µP(·), µQ(·) and π(·). Thus, we report the worst accuracy among
µP(·), µQ(·) and π(·) to reflect the sufficiency of extracted features.

Table 2: Utility of sufficiency measure, where lower sufficiency score represents better sufficiency,
since the measure is defined as mean-square error.

Top-10 Features Top-20 Features Top-30 Features All Features

Sufficiency↓ 0.202 0.182 0.176 0.166

Worst-Acc↑
(among µP, µQ, π) 68.9 72.8 73.4 76.0

E VALUE OF OUR ATTRIBUTION ON INTERVENTIONS

In this section, we would like to demonstrate how our attribution can guide further interventions.
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What can TSSA provide Our attribution results are designed to provide a comprehensive frame-
work to understand the distribution shifts responsible for performance drops. Specifically, the
interpretability of both static features and extracted non-stationary properties allows clinicians to
identify the underlying reasons behind model failures.

How to leverage Our results provide a basis for both model-centric and data-centric intervention,
and can also inform a smart deployment.

• Model Intervention: When the model can be finetuned/re-trained, our TSSA can guide
target model interventions. For example, our results can be incorporated with distributionally
robust optimization to form some directed/targted uncertainty set, as shown in Liu et al.
(2023a). Also, our results can guide a more data-driven algorithmic design for better
robustness or fairness among demographic groups (e.g., defined by the identified feature
“Age”).

• Data-Centric Intervention: Our results can guide efficient data collection (for exam-
ple, collect more data from the risk region), data balancing (as done in our case study 2
in Section 5.2), and targeted data augmentation (only perturb sensitive features).

• Smart Deployment: When the model cannot be changed, our safe/risk regions can guide
engineers/clinicians about where to (not to) deploy the model, as demonstrated in our case
study 1 in Section 5.1 and Appendix G.3.

How to choose In practice, these three aspects should be incorporated together so as to further
improve the model. And we acknowledge that further efforts can be made on how to select better
algorithms in each kind based on the specific situations one face, which to the best of our knowledge
is still an untouched field.

F DETAILS OF TEMPORAL PROPERTIES

In this section, we first clarify the guidance and transparency in our metric selection, and then
introduce the metrics we used in detail.

F.1 GUIDANCE AND TRANSPARENCY IN METRIC SELECTION

Before introducing metrics used for extracting non-stationarity, we would like to clarify the guidance
and transparency in our metric selection.

Desiderata for metrics : To provide a principled and transparent basis for metric selection, we
introduce desiderata for the types of metrics (Section 3.1). Specifically, our desiderata define the
properties that metrics should capture in time-series data, grouped into four categories:

• Global Characteristics: Capturing long-term trends, averages, and periodicities.
• Local Dynamics: Measuring short-term variability and anomalies.
• Structural Changes: Identifying abrupt shifts in data generation processes.
• Multivariate (Inter-Series) Relationships: Quantifying dependencies between multiple

time series.

By organizing metrics into these categories, we offer a structured framework to guide practitioners in
selecting or tailoring metrics for their specific datasets. To systematically assess the quality and rele-
vance of metrics, we employ a sufficiency measure, which quantifies the predictive power of selected
metrics in explaining performance degradation. As theoretically demonstrated by Proposition 2,
metrics with better sufficiency (lower sufficiency score, experiments see Appendix D) contribute
enable more reliable attribution. We believe such a measure provides a data-driven measure to
evaluate and refine metric selection in addition.

While we acknowledge that our current set of metrics is not exhaustive, TSSA as a framework permits
users to extend it with additional metrics that align with the defined desiderata. By linking sufficiency
to predictive performance, this then ensures that newly added metrics have utility for attribution.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F.2 PROPERTY DEFINITION

To address the non-stationarity of time series, inspired from various fields, such as finance, statistics,
and signal processing, we identify numerous data property metrics. Specifically, for a sequence V1...t

of length t, we define metrics corresponding to different temporal properties:
1. Global Characteristics:

• Overall Statistics: We calculate the average, standard deviation, maximum, and minimum
values of each time-series feature.

• Standardized Slope: Widely used in financial and climate analysis, the standardized slope is
defined as:

Standardized Slope := Slope(V1...t)/Std(V1...t), (16)
which quantifies the strength of a sequence relative to its variability.

• Smoothed Trend: Drawing inspiration from analytical chemistry, we use the Savitzky-Golay
filter (Savitzky & Golay, 1964) to characterize the smoothed trend. This filter smooths
the data by fitting a polynomial to each segment of data points, effectively extracting the
underlying trend.

• Frequency: We calculate the dominant frequency for each time series using the Fast Fourier
Transform (FFT) i.e. we extract the dominant frequency (with the maximal amplitude) from
positive frequencies, where the positive frequency values are real numbers, calculated as
fk = k

NTs
(TS = 1 in our experiments).

• Signal-to-Noise Ratio: We compute the Signal-to-Noise Ratio (SNR) for each feature in a
time-series dataset by using a moving average to estimate the signal and residuals as noise.
The metric is defined as:

SNR =
E[∥Ṽ ∥2]

E[∥V − Ṽ ∥2]
, (17)

where V represents the original time-series feature, and Ṽ is the smoothed data (estimated
signal).

2. Local Dynamics:
• Breakout points: Inspired by the Bollinger Bands (Bollinger, 1992) widely applied in

financial analysis, we calculate the number of breakout points within the sequence V1...t as:∣∣∣V(V1...t)
∣∣∣ := ∣∣∣{i : |Vi| ≥ |Mean(V1...t)|+ 2 · Std(V1...t) for i = 1, . . . , t

}∣∣∣ (18)

which identifies the number of points that fall outside the 2-standard-deviation bands to
capture its local non-stationarity.

• Short-term Variability: We first calculate first differences ∆Vi = Vi − Vi−1, and the
short-term variability can be defined as:

σ∆V = Std(∆V2, . . . ,∆Vt), (19)

which is the standard deviation of first differences, and a larger standard deviation indicates
greater short-term fluctuation.

• High-Frequency Energy: To capture the high-frequency components, based on Discrete
Fourier Transform, we define the high-frequency energy as:

Ehigh :=

t−1∑
k=⌈ t

2 ⌉

t∑
j=1

Vje
−i2πkj/t, (20)

which calculates the squared magnitudes of the upper half of the frequency spectrum.
• Normalized Jitter Index: To provide a comprehensive characteristic of variability, we design

the normalized Jitter index as:

Jitter Index :=
ασ∆V + (1− α)Ehigh

mean(|V1...t|)
, (21)

where α ∈ (0, 1) is the hyper-parameter to adjust the information from time and frequency
domains to provide a comprehensive measure of fluctuation in a time series.
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• Relative Strength Index: In order to capture the speed and change of a signal, we use the
relative strength index (RSI) defined as:

RS :=

∑t
i=2 I(Vi > Vi−1) · (Vi − Vi−1)∑t
i=2 I(Vi < Vi−1) · (Vi−1 − Vi)

, RSI := 100− 100

1 + RS
, (22)

where RS captures the ratio of average gains to average declines of V1...t. Thus, the RSI
measures the momentum strength of a signal, particularly the relative magnitude of recent
gains versus declines.

• KPSS Non-Stationary Test: We calculate the p-value from the KPSS test (Kwiatkowski-
Phillips-Schmidt-Shin test), which is used to assess the stationarity of a time series.

3. Structural Changes
• Change points: From statistics, we utilize Pruned Exact Linear Time (PELT (Killick et al.,

2012)) to capture the optimal change point set for sequence V1...t, which identifies multiple
change points in the sequence such that the statistical properties (e.g., mean, variance)
remain consistent within each segment.

• Trend Variability: We calculate the local trend changes associated with the change points.
4. Multivariate Interaction

• Covariance Variability: To capture the varying relationships (w.r.t. time) among multiple
time-series features, inspired by literatures on local covariance (Papadimitriou et al., 2006;
Chen et al., 2010), we design a covariance variability for time-series features V1...T ∈ Rd×T

as follows:
Cov.Var(V1...T ) := Std(λmax(C(t))), (23)

where C(t) denotes the local covariance matrix at time t.

We list the metrics in Table 1, and more details as well as some other metrics are provided in the
Appendix. With these metrics, we combine the static features U with the metrics of all time-series
features V1...t, collectively referred to as X̃ in the following sections of this paper.

G ADDITIONAL EXPERIMENT RESULTS

In this section, we add more details of our experiments.

G.1 DATASET DESCRIPTIONS

Dataset Details Through our experiments, we use the Medical Information Mart for Intensive
Care (MIMIC) (Johnson et al., 2016) dataset, which is representative of complex real-world medical
time series. The whole dataset contains 23, 100 patients, from which 9 static demographic features—
including insurance status, marital status, ethnicity, gender, age, previous admission, previous ICU
stay time, admission type, and admission location—and 53 time-series health indexes, including
BUN, Braden activity, Braden friction/shear, Braden mobility, Braden moisture, Braden nutrition,
GCS (eye opening), GCS (motor response), GCS (verbal response), HCO3, MCH, MCHC, MCV,
O2 fraction, O2 pressure, O2 saturation, PTT, RDW, anion gap, arterial line, bicarbonate, calcium,
chloride, cordis/introducer, creatinine, dialysis catheter, diastolic blood pressure, glucose, heart
rate, hematocrit, hemoglobin, magnesium, mean airway pressure, mean arterial blood pressure,
multi lumen, norepinephrine, pCO2, pH, pO2, phenylephrine, phosphate, PICC line, platelet count,
potassium, red blood cells, respiratory rate, sodium, systolic blood pressure, temperature, tidal
volume, urea nitrogen, ventilator usage, and white blood cell counts. The time-series features are
measured every hour, and the average length is 85.4.

In case studies 1 ∼ 3, the outcome variable is mortality, and in case study 4, the outcome variable is
ventilator usage (where we exclude the mortality feature).

Advantages of the MIMIC Dataset The MIMIC dataset offers several advantages, making it
especially suitable for our study:
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• Real-World Complexity: MIMIC represents real-world clinical settings, including data
from a diverse set of patients across different demographics and medical conditions. This is
crucial for developing models that generalize well to actual hospital environments, where
variability is high and patient trajectories are complex.

• Granularity and Richness of Time-Series Data: The 53 time-series features in MIMIC
cover a wide array of physiological signals, lab measurements, and treatments. This
granularity allows for more comprehensive modeling of patient health. In comparison, many
other datasets may focus on a narrower subset of features, limiting their ability to capture
nuanced patient dynamics.

• Diverse Outcome Variables: The dataset supports the study of multiple clinical outcomes,
such as mortality and ventilator usage, which are critical in the context of ICU care. This
allows for different case study designs and enables us to explore various clinical scenarios
and broaden the scope of potential applications.

• Longitudinal Data with High Temporal Resolution: MIMIC provides high-resolution,
time-stamped data that tracks patients throughout their ICU stays. This temporal depth
allows for the detailed study of health trajectories over time, which is essential for building
predictive models that can anticipate patient outcomes based on continuous monitoring—a
capability that many smaller or less detailed datasets lack.

• Widely Used and Well-Validated: MIMIC has been extensively validated in the research
community and is a well-established benchmark dataset for various tasks in medical machine
learning. Its widespread use ensures the reliability and comparability of our results with
those of previous studies. Additionally, its consistent presence in peer-reviewed research
provides confidence in its data quality and facilitates benchmarking

Justification of the Temporal Shift Setting Then we would like to further clarify the early
diagnosis setup in case study 3. This partition reflects a practical clinical scenario where early-stage
predictions are critical in healthcare to identify patients at risk. Note, we are not predicting the past
but rather assessing how well a model trained on later-stage data can generalize and perform on
earlier data (which is temporally shifted). This is important in healthcare since while later-stage
data may eventually become available, clinicians often need to make decisions based on the first 24
hours of patient data to prevent adverse outcomes or to take actions. Hence, our setup evaluates the
model’s ability to perform early predictions and correctly identify patients at risk, which is essential
for preemptive and early care in clinical practice.

G.2 MODEL TRAINING DETAILS

As for the original model (under evaluation), we use Transformer model (n head:4, n layer:3,
hidden dim:32), learning rate is 1e−3, the total epoch number is 200, batch size is 256, and the
early stop is used during training (according to last 10 epoch). As for the attribution model: The
model architecture is shown in Figure 2, where we use two-layer MLP with hidden size selected from
{16,32,64,128} for each part according to the validation results, learning rate 1e−3, and batch size
64.

G.3 DIFFERENT TEMPORAL PROPERTIES MATTER FOR DIFFERENT TIME SERIES

To illustrate the necessity of incorporating various temporal properties, as discussed in Section 3.1,
we compute the feature importance scores within the conditional risk predictor µ̂P(·). The importance
score for each feature is determined using the gradient norm of that feature, given by:

EP
[
|∂µ̂P(X)/∂X̃j |

]
,

where a higher score indicates that the feature plays a more significant role in predicting the error of
the deployed model f(·). We visualize the feature importance in Figure 6. The results reveal that
different temporal metrics are important for different time-series features, highlighting the intricate
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Figure 6: Feature Importance. In case study 1, we visualize the top 30 most important features for
µ̂P(·). The results highlight that different temporal characteristics are significant for different time
series, demonstrating the complex nature of time series.

nature of time-series data. This not only highlights the complexity of the MIMIC dataset, but also
justifies the necessity of the temporal property characterization stage in our framework.

G.4 COMPARISON WITH “STATIC” REGION ANALYSIS

In Case Study 1, a straightforward approach would be to treat all time-series features as static features
and then apply the existing static region analysis method (Liu et al., 2023a). This approach offers
a natural baseline for comparison, as it simplifies the temporal aspect of the data. However, this
simplification may overlook important dynamic patterns inherent in the time-series data.

Table 3: Comparison of Region Analysis Methods on Test Set.

Safe Region Risk Region

Error Rate ↓ # Samples ↑ Error Rate ↑ # Samples ↑
Static 8.8% 215 36.7% 30
Ours 3.7% 241 52.0% 296

In Table 3, we present the error rate and the number of test samples falling within each region for
both the static method and our proposed method. A lower error rate indicates a better safe region,
while a higher error rate corresponds to a more effective risk region. Regarding sample size, a larger
number of test samples in a region suggests that the region is more robust and reliable.

From the results, it is evident that our region analysis method significantly outperforms the static
feature-based approach. Additionally, the risk region in our method encompasses a much larger
sample size, suggesting that our method, by incorporating temporal properties, captures more reliable
and generalizable regions.

G.5 SAMPLE EFFICIENCY OF OUR ARCHITECTURE

In case study 2, we examine the performance of our proposed architecture (Figure 2) in fitting the
functions µ̂P(·), µ̂Q(·), and π̂(·) across different target sample sizes. Since the outcome variables
are binary, we compute the worst balanced accuracy of our model, using XGBoost as a baseline for
comparison. For XGBoost, we train three independent models, one for each of the three functions.
Note that we mainly compare with XGBoost here since it has shown superior prediction power on
tabular data, and even outperforms neural networks (Gardner et al., 2022; McElfresh et al., 2024).

As shown in Figure 7, when the target sample size exceeds 30% of the training data, our proposed
model consistently outperforms XGBoost, highlighting the effectiveness of the shared representation
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Figure 7: The worst balanced accuracy under different target sample sizes.

Table 4: Intervention results. We compare our attribution-guided simple intervention with simple
finetuning.

Original Finetune Age Intervention Admit Loc. Intervention ICU Stay Time Intervention

Accuracy 73.8 77.0 83.9 79.2 84.3
Macro-F1 63.7 65.7 68.4 67.0 69.3

space. However, as the target sample size decreases further, our model performs similarly to XGBoost.
This outcome is expected, as tree-ensemble models like XGBoost are known to excel on tabular data,
even in low-data regimes. Additionally, for our attribution objective, a wide range of models can be
employed to estimate µ̂P(·), µ̂Q(·), and π̂(·), offering flexibility in model selection.

G.6 COMPARISON WITH SIMPLE FINETUNING

For case study 2, we add the results of finetuning, where we use 50% samples (3200) from the original
test set for finetuning, and test on the remaining 50% test samples. For our model intervention, we mix
the original training set with the finetuning samples, and then retrain a classifier with balanced weights
according to the identified features (age, ICU stay time, etc.). The results are shown in Table 4, where
we can see that our intervention can significantly outperform simple finetuning.

H PROOFS

Proof for Proposition 1. As for unconfoundedness, the core is to prove that RP(X̃−S) and RQ(X̃−S)

are both functions relying solely on X̃−S . Since X̃−S is derived from the original input X via some
kind of transformations, we define g(X) := X̃−S . We first prove that RP(X̃−S) = RP(g(X)) =
EP[ℓ(fθ(X), Y )|g(X)] is a function of g(X). From measure theory, the conditional expectation
EP[ℓ(fθ(X), Y )|g(X)] is defined with respect to the σ-algebra σ(g(X)) and satisfies:

EP[ℓ(fθ(X), Y )|g(X)] = h(g(X)), (24)

where h(g(X)) is a measurable function of g(X). This implies that for any event A ∈ σ(g(X)), we
have:

E[EP[ℓ(fθ(X), Y )|g(X)] · IA] = E[ℓ(fθ(X), Y ) · IA], (25)

which implies that the conditional expectation EP[ℓ(fθ(X), Y )|g(X)] depends only on the value of
g(X). Note that here we use the Tower property (Billingsley, 2017), which states that E[E[X|G]] =
E[X], where G is a sub-σ-algebra. This means that when taking the conditional expectation of
a random variable X , and then the result is equal to the total expectation of X . For the above
equation, the inner conditional expectation EP[ℓ(X,Y )|g(X)] can be viewed as a function of g(X),
denoted as h(g(X)). And the outer expectation considers the expectation of h(g(X)) over some
event A ∈ σ(g(X)). Thus, by tower property, the result of LHS equals to E[ℓ(X,Y ) · IA] because
IA is measurable with respect to σ(g(X)), the σ-algebra generated by g(X). And this ensures that
EP [ℓ(X,Y )|g(X)] is well-defined and depends only on g(X).
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Based on this, we can re-write RP(X̃−S) and RQ(X̃−S) as h1(g(X)) and h2(g(X)). Then we have:

Pr(T,RP((̃X)−S), RP((̃X)−S)|X̃−S) (26)
=Pr(T, h1(g(X)), h2(g(X))|g(X)) (27)
=Pr(T |h1(g(X)), h2(g(X)), g(X)) · Pr(h1(g(X)), h2(g(X))|g(X)) (28)
=Pr(T |g(X)) · Pr(h1(g(X)), h2(g(X))|g(X)), (29)

which proves the conditional independence. Note that the last equation holds because h1(g(X)) and
h2(g(X)) are both functions of g(X).

Then we proceed to proving the unbiasedness (also known as the double robustness). Note that the
SUTVA assumption holds naturally in our problem setting. First, if µ̂P(·) and µ̂Q(·) are consistent, i.e.
µ̂P(·) = RP(·) and µ̂Q(·) = RQ(·), it is easy to show the consistency of our estimator (by plugging-in
µ̂P and µ̂Q). Second, if π̂(·) is consistent, i.e. π̂(·) ≈ π(·), denote the indicator

T =

{
1, if X̃−S is from Q
0, if X̃−S is from P,

(30)

our estimator can be re-written as:

Âttr.(S) =
1

nP + nQ

nQ+nP∑
i=1

(TiRQ(X̃
i
−S)

π(X̃i
−S)

− (1− Ti)RP(X̃
i
−S)

π(X̃i
−S)

)
︸ ︷︷ ︸

optimal IPW estimator

+
1

nP + nQ

nQ+nP∑
i=1

(
µ̂Q(X̃

i
−S)(1−

Ti

π(X̃i
−S)

)− µ̂P(X̃
i
−S)(1−

1− Ti

1− π(X̃i
−S)

)︸ ︷︷ ︸
additional term

)
.

(31)

To complete the proof, we need to show (i) the optimal IPW estimator is consistent, and (ii) the
additional term is equal to 0. The proof of consistency of the optimal IPW estimator is standard and
one can refer to Wager (2020, Chapter 2). For the additional term, we have:

E[1− Ti

π(X̃i
−S)

|X̃i
−S ] = 0, (32)

and therefore complete the proof of unbiasedness.

Proof of Proposition 2. Our proof builds on the established techniques presented in (Wager, 2020,
Chapter 3), with tailored adaptations and simplifications specific to our problem setting.

First, since in our problem setting, µP(·) = RP(c)̇ and µQ(·) = RQ(c)̇, the oracle estimator is
simplified to:

Âttr.
⋆
(S) =

1

nP + nQ

nP+nQ∑
i=1

(
RQ(X̃

i
−S)−RP(X̃

i
−S)

)
, (33)

where we do not have the propensity score term. Then we decompose Âttr.(S)− Âttr.
⋆
(S) as:

Âttr.(S)− Âttr.
⋆
(S) =

1

nP + nQ

nP+nQ∑
i=1

(
µ̂Q(X̃

i
−S)− µ̂P(X̃

i
−S)−RQ(X̃

i
−S) +RP(X̃

i
−S) (34)

+
RQ(X̃

i
−S)− µ̂Q(X̃

i
−S)

π̂(X̃i
−S)

Ti −
RP(X̃

i
−S)− µ̂P(X̃

i
−S)

1− π̂(X̃i
−S)

(1− Ti)

)
(35)

= ∆µQ −∆µP , (36)

where we define

∆µQ :=
1

nP + nQ

nP+nQ∑
i=1

(
µ̂Q(X̃

i
−S)−RQ(X̃

i
−S) +

RQ(X̃
i
−S)− µ̂Q(X̃

i
−S)

π̂(X̃i
−S)

Ti

)
, (37)
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and define ∆µP analogously. In order to prove Proposition 2, it suffices to show that ∆µQ satisfies
that conclusion. To prove this, we decompose ∆µQ as follows:

∆µQ =
1

nP + nQ

nP+nQ∑
i=1

(µ̂Q(X̃
i
−S)−RQ(X̃

i
−S))(1−

Ti

π̂(X̃i
−S)

) (38)

=
1

nP + nQ

nP+nQ∑
i=1

(µ̂Q(X̃
i
−S)−RQ(X̃

i
−S))(1−

Ti

π(X̃i
−S)

) (39)

− 1

nP + nQ

nP+nQ∑
i=1

Ti(µ̂Q(X̃
i
−S)−RQ(X̃

i
−S))(

1

π̂(X̃i
−S)

− 1

π(X̃i
−S)

). (40)

We first deal with the first term. Note that in practice, we typically use cross-fitting and therefore
µ̂Q(·) can be viewed as deterministic in the following. From Equation (32), the summands used to
build the first term become mean-zero. Therefore, we have:

E
[(

1

nP + nQ

nP+nQ∑
i=1

(µ̂Q(X̃
i
−S)−RQ(X̃

i
−S))(1−

Ti

π(X̃i
−S)

)

)2]
(41)

=Var
(

1

nP + nQ

nP+nQ∑
i=1

(µ̂Q(X̃
i
−S)−RQ(X̃

i
−S))(1−

Ti

π(X̃i
−S)

)

)
(42)

=
1

nP + nQ
Var

(
(µ̂Q(X̃

i
−S)−RQ(X̃

i
−S))(1−

Ti

π(X̃i
−S)

)

)
(independent terms) (43)

=
1

nP + nQ
E
[
(µ̂Q(X̃

i
−S)−RQ(X̃

i
−S))

2(1− Ti

π(X̃i
−S)

)2
]

(44)

=
1

nP + nQ
E
[
(µ̂Q(X̃

i
−S)−RQ(X̃

i
−S))

2(
1

π(X̃i
−S)

− 1)

]
, (45)

where the last equality is because of:

E[(1− Ti

π(X̃i
−S)

)2|X̃i
−S ] = E[1− 2Ti

π(X̃i
−S)

+
Ti

π2(X̃i
−S)

|X̃i
−S ] = (

1

π(X̃i
−S)

− 1). (46)

Then from the overlap assumption, we assume that for all X̃i
−S , η < π((̃X)i−S) < 1 − η, which

gives that

1

nP + nQ
E
[
(µ̂Q(X̃

i
−S)−RQ(X̃

i
−S))

2(
1

π(X̃i
−S)

− 1)

]
(47)

≤ 1

η(nP + nQ)
E[(µ̂Q(X̃

i
−S)−RQ(X̃

i
−S))

2]. (48)

Then for the second term, we have:

1

nP + nQ

nP+nQ∑
i=1

Ti(µ̂Q(X̃
i
−S)−RQ(X̃

i
−S))(

1

π̂(X̃i
−S)

− 1

π(X̃i
−S)

) (49)

≤
√

1

nP + nQ

∑
i:Ti=1

(µ̂Q(X̃i
−S)−RQ(X̃i

−S))
2 ·

√
1

nP + nQ

∑
i:Ti=1

(
1

π̂(X̃i
−S)

− 1

π(X̃i
−S)

)2 (50)

=OP

(
E
[
(µ̂Q(X̃−S)−Rτ (X̃−S))

2
] 1

2E
[
(π̂(X̃−S)− π(X̃−S))

2
] 1

2

)
. (51)
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