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ABSTRACT

Split Learning (SL) partitions a deep neural network between client and server,
enabling collaborative training while reducing the client’s computational load.
However, it has been shown that the intermediate activations (“smashed data”)
of the client’s model, shared with the server, leak sensitive information. Existing
defenses are limited: many assume only passive adversaries, degrade accuracy
significantly, or have already been bypassed by recent reconstruction attacks.
In this work, we propose SEAL, a client-side obfuscation framework for SL. By
applying secret, client-specific periodic transforms, SEAL creates an exponen-
tially large, unsearchable function space that prevents reconstruction of smashed
data. We rigorously characterize the class of periodic functions that yield orthogo-
nal, reversible, and numerically stable transforms, ensuring both security and util-
ity preservation. Extensive experiments on image and text benchmarks show that
SEAL withstands state-of-the-art reconstruction attacks while maintaining high
accuracy.

1 INTRODUCTION

Large-scale deep neural networks (DNNs) have achieved state-of-the-art results across computer
vision, natural language processing, and healthcare applications. However, deploying such models
on edge or resource-constrained devices remains challenging due to their significant computational
and memory demands. Split Learning (SL) has emerged as a promising framework to mitigate
these challenges by partitioning a DNN between client and server: lightweight layers remain on the
client while the server executes the remaining heavy layers. This allows clients to benefit from large
models without sharing raw data.

While SL is motivated by privacy concerns, recent work has revealed that the intermediate acti-
vations of the model shared by the client with the server (“smashed data”) can still leak sensitive
information. In particular, a malicious or even honest-but-curious server can reconstruct client in-
puts or infer sensitive attributes through inference attacks. These vulnerabilities undermine SL’s
core privacy goal and limit its adoption in sensitive domains.

Existing defenses either (i) rely on statistical dependence minimization (Vepakomma et al., 2019),
which can be bypassed by stronger attacks (Pasquini et al., 2021); or (ii) adopt differential pri-
vacy (Abadi et al., 2016), which introduces severe utility degradation; one might also (iii) apply
fixed transforms such as DCT (Discrete Cosine Transform) (Ahmed et al., 1974), DST (Discrete
Sine Transform) (Jain, 1976), and wavelets (Mallat, 1989), which an adversary can brute-force and
exploit (as the basis periodic functions in these transforms are fixed and well-known). Advanced
cryptographic techniques like homomorphic encryption or Multiparty Computation, provide strong
leakage resistance but impose heavy overheads, limiting their practicality for high-dimensional ac-
tivations or constrained clients (Knott et al., 2021; Gilad-Bachrach et al., 2016).

In this work, we propose SEAL, a novel obfuscation framework for SL to prevent information
leakage to the server. The core idea is that each client applies a secret, dynamic transform based
on periodic functions to obfuscate its smashed data before sending it to the server. Unlike public
transforms, the client’s basis function is unknown to the server or any other participant, making the
transformation client-specific, i.e., each client will be able to select its own secret periodic function
for this transformation. This forces an adversary to brute-force over a large, unsearchable function
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space that prevents reconstruction of smashed data. The transform space is exponential because each
client selects independent parameters for its periodic function, with every combination yielding a
distinct valid transform. As both the sampling resolution of the function and the dimensionality of
the smashed data increase, the number of possible transforms grows exponentially Edelman et al.
(1998).

However, to design such frequency transformations, two properties are essential: (i) orthogonality,
ensuring independent transformed representations and reversibility, and (ii) energy compaction, re-
taining critical information in a few coefficients (mainly low-frequency components). Also, not all
functions can form valid transform matrices. Non-periodic functions are excluded, as they lack a
period and are unable to satisfy the orthogonality conditions required for invertible transforms.

Furthermore, only a subset of periodic functions can construct transformation matrices that are re-
versible, energy-preserving, and numerically stable. These periodic functions must form an or-
thogonal system with respect to integration over a period (Szeg, 1939; Katznelson, 2004), and the
sampling nodes must be chosen so that the associated evaluation matrix is non-singular and well-
conditioned (e.g., Chebyshev nodes) (Gautschi, 2004) (see Sect. 2.5). Hence, in SEAL, we detail the
steps to ensure that client-chosen secret functions are valid periodic functions and then the obtained
transformation preserves the properties of orthogonality and energy compaction.

Our contributions are as follows:

• We introduce SEAL, a technically involved client-side obfuscation framework for SL that
leverages secret, dynamically chosen periodic transforms to conceal smashed data. Unlike
fixed public transforms, these client-specific bases induce an exponentially large and effec-
tively unsearchable function space, making brute-force inference by an adversary compu-
tationally infeasible.

• We provide a rigorous theoretical foundation for the design of these transforms. Specifi-
cally, we characterize the class of periodic functions that yield orthogonal, reversible, and
numerically stable transformation matrices, and establish conditions (e.g., Chebyshev sam-
pling) under which energy compaction and invertibility are preserved. This analysis ensures
that obfuscation is both secure and utility-preserving, and cannot be trivially inverted, as
detailed in Section 4.

• We conduct extensive empirical evaluation on both image and text benchmarks, demon-
strating that SEAL withstands state-of-the-art reconstruction attacks while maintaining
high task accuracy, as detailed in Section 5.

2 PRELIMINARIES AND RELATED WORK

2.1 SPLIT LEARNING

Split Learning (SL) is a distributed learning paradigm in which a deep neural network is partitioned
into two segments: a client-side partial model and a server-side partial model. The client processes
raw input x through its portion of layers to produce an activation h(x) = X , called the smashed
data, which is transmitted to the server. The server continues the forward pass, computes gradients,
and sends back the gradient with respect to X for client-side backpropagation. The server then
continues training with the subsequent client. Compared to Federated Learning, clients in SL do not
hold full models, which reduces client-side memory and compute requirements (Vepakomma et al.,
2018; 2020; Thapa et al., 2021).

Variants of SL include vanilla split learning, U-shaped split learning, and vertical split learn-
ing (Vepakomma et al., 2018; Thapa et al., 2021; Hardy et al., 2017). In U-shaped SL, labels and
the final layers of the neural network are kept on the client side so that even gradients arriving at
the server do not directly reveal label information. While in vertical SL, the server also owns one
initial partial model hs(x). These variants have been shown to be applicable in healthcare, federated
inference settings, and cross-silo collaboration (Li et al., 2024; Thapa et al., 2022; Shan et al., 2021).
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2.2 PRIVACY AND INFERENCE ATTACKS IN SPLIT LEARNING

Despite SL’s design to avoid sharing raw inputs and labels, the shared smashed data and cut-layer
gradients can still leak private information. Several attack classes have been studied. Reconstruc-
tion or model inversion attacks train inversion models or use optimization to recover client inputs
from smashed activations (Pasquini et al., 2021; Xu et al., 2024; Luo et al., 2023; Zhu et al., 2023).
For example, UNSPLIT shows that even an honest-but-curious server can reconstruct inputs and
models with only the client architecture and smashed data (Erdoğan et al., 2022). In Label infer-
ence attacks, servers infer labels from activation or gradient patterns. Similarity-based attacks (Li
et al., 2021) use cosine or Euclidean metrics, while in two-party and U-shaped SL, gradient re-
sponses can also leak labels (Liu et al., 2024). Finally, active or hijacking attacks let a malicious
server manipulate activations or gradients to increase leakage (Pasquini et al., 2021). In this work,
we defend against both passive and active inference attacks targeting input reconstruction.

2.3 PRIVACY DEFENSES IN SPLIT LEARNING

To protect the privacy of clients, multiple defenses have been proposed in the literature; we expand
this list with possible candidates for obfuscation transform-based defenses, highlighting the possible
shortcomings and limitations of these defenses.

Defenses such as NoPeek (Vepakomma et al., 2019) minimize dependence between inputs and
smashed data, with decorrelation or mutual-information losses reducing correlations in activations.
While effective against weaker adversaries, these defenses are circumvented by stronger reconstruc-
tion methods that exploit residual structure or side statistics (Pasquini et al., 2021; Xu et al., 2024).

Another class of defenses adds noise or applies differential privacy (DP). Gaussian or Laplace noise
injected into activations or gradients provides DP guarantees, but noise accumulates across layers
and rounds, severely reducing utility in deep models (Abadi et al., 2016). Even restricting DP to the
cut layer often fails against modern inversion attacks (Luo et al., 2023).

We also consider the case of transform-based defenses, which map activations into known frequency
bases such as DCT, PCA, or wavelets, often discarding high-frequency components. However, be-
cause these bases are fixed and public, the server can invert them (see Sect. 5.4), and their general-
ization across modalities and architectures is limited.

Finally, cryptographic techniques, including homomorphic encryption, MPC, and secret sharing,
offer stronger leakage resistance but are computationally and communication-intensive, making
them unsuitable for high-dimensional activations or resource-constrained clients (Vepakomma et al.,
2018). Further, the server must process consistent inputs, so clients using different ciphertext
keyspaces on their smashed data would impede the sequential nature of Split Learning training.

2.4 FREQUENCY TRANSFORMATIONS

A frequency transform represents a signal in an orthogonal basis, enabling operations such as com-
pression, decorrelation, and noise filtering. The key idea is to project the signal into a new coordinate
system where most of its energy is concentrated in a few coefficients, typically the low-frequency
ones. This allows efficient representation while preserving the ability to reconstruct the original
data. Formally, for a signal O and orthogonal basis B, the transform is S = B⊤ ·O ·B with inverse
O = B · S ·B⊤, ensuring exact reconstruction.

Frequency transforms are widely used in signal processing and machine learning. They provide
three essential properties: orthogonality, since the basis matrix B satisfies B⊤ · B = I , ensuring
independence of the transformed components in S = B⊤ · O · B and exact reversibility via O =
B · S · B⊤; energy compaction, where most of the signal’s total energy ∥O∥22 is concentrated in a
small number of low-frequency coefficients of S, enabling efficient storage and transmission; and
decorrelation, since the orthogonal projection reduces redundancy by making different entries of S
less correlated compared to the original data O. Together, these properties make frequency-domain
representations more compact, robust, and informative than raw signals, with applications in image
compression, audio analysis, and communication systems. Their analysis in SEAL is detailed in
Section 4.
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2.5 VALID PERIODIC FUNCTIONS

Not all functions can form valid transformation matrices. Non-periodic functions lack the regular-
ity and orthogonality needed for clean decomposition, often leading to imbalance (non-vanishing
integrals) and numerical instability. Hence, we restrict to periodic functions that guarantee transfor-
mations that are reversible, follow energy compaction, and are stable. Specifically, given function
f(x), it must satisfy two conditions: (i) Integral Symmetry: their integral over one period T must
vanish,

∫ T

0
f(x) dx = 0, ensuring balance and orthogonality and (ii) Non-zero Chebyshev Nodes:

f(x) ̸= 0 at all Chebyshev nodes x = kT (2n+1)
4N for k, n = 0, . . . , N − 1, so that sampling on this

non-uniform grid avoids linear dependencies and improves stability when constructing orthonormal
bases.

3 THREAT MODEL

We consider a system with Nc clients, each holding private datasets, unknown to other clients. A
central server coordinates the training of DNN using the SL framework. SEAL integrates seamlessly
with different SL paradigms (Vanilla Vepakomma et al. (2018) and U-shaped Thapa et al. (2021)), as
it operates on the output of the client’s input layers, regardless of subsequent framework operations.
We define the adversaryA as a compromised server attempting to reconstruct a client’s private input
data from exchanged intermediate representations.

We consider both the case of Nc clients participating in the SL training (see Sect. 5.2) and for
consistency with prior works Erdoğan et al. (2022); Xiao et al. (2017); Zhu et al. (2023); Li et al.
(2024); Pasquini et al. (2021), we abstract the system into a two-party interaction between a victim
client and the server. These attacks assume this abstraction because their protocol dynamics remain
the same regardless of additional clients participating, and focus only on the interaction between a
victim client and A (see Sect. 5.3). Under this threat model SEAL is applied locally with clients
using their own private periodic function, never shared with others. Thus, privacy remains under
client control.

The capabilities of A are: A is assumed to be fully knowledgeable: it can observe and store inter-
mediate representations for reconstruction, has full knowledge of the DNN architecture (including
client-side structure and parameter types, and server-side structure and parameter values), and may
apply advanced reconstruction methods such as optimization, auxiliary datasets, or prior distribu-
tions. A is also aware of deployed defenses and can adapt its strategy, but it cannot tamper with
benign client-side datasets or operations, relying solely on shared intermediate outputs.

4 SEAL

4.1 INTUITION AND HIGH-LEVEL DESIGN

SEAL is a client-side transformation defense that protects intermediate representations in SL from
privacy attacks by the server. Before training, each client generates a private transformation matrix Q
from a chosen periodic function f with period T . Construction involves (i) sampling f at Chebyshev
nodes to avoid redundancy, (ii) normalizing rows to equal scale, and (iii) applying Gram–Schmidt
orthogonalization. The result is an orthonormal, energy-compacting, and numerically stable matrix
that generalizes fixed transforms (e.g., DCT) but remains secret to the server. This one-time setup
ensures efficiency during training.

During training and inference, the client applies Q to its smashed data X , removes high-frequency
coefficients to remove the irrelevant details leakage, and reconstructs the perturbed representation
back into the feature space. This process is illustrated in Fig. 1.

4.2 PRE-TRAINING PHASE: CONSTRUCTING Q

This section elaborates on the core components of the pretraining phase in SEAL.
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Figure 1: Overview of SEAL’s workflow. The pre-training phase (Steps 1, 2, 3) initializes the
transformation process by choosing f with T and calculating N ; it outputs a transformation matrix
QN×N . The training phase (Steps 4, 5, 6, 7) integrates SEAL into the SL framework by operating
on the client’s smashed data and sending the perturbed smashed data X̃ to the server.

Sampling with Chebyshev Nodes. The first step in constructing the Q is sampling the chosen
periodic function f at Chebyshev nodes rather than at uniformly spaced intervals. The reason is
that Chebyshev nodes ensure the function satisfies the required conditions, i.e., Integral Symmetry
and Non-zero Chebyshev Nodes. This non-uniform sampling avoids redundancy and numerical
instabilities that can arise with uniform grids, especially when the periodic structure aligns poorly
with the grid. Given a periodic function f with period T and smashed data of dimension N × N ,
we construct a raw matrix C ∈ RN×N :

Ck,n = f

(
k ∗ T ∗ (2n+ 1)

4N

)
, k, n = 0, . . . , N − 1

The resulting matrix CN×N captures the periodic structure of f while maintaining stability and
symmetry, laying the foundation for building the transformation.

Normalization. Once CN×N is generated, each row is normalized using the L2-norm to enforce
unit length. This ensures that all sampled basis vectors are on the same scale, preventing rows with
larger magnitudes from dominating the transformation. By scaling each row to have a unit norm, we
achieve geometric consistency and prepare the matrix for stable orthogonalization in the next step.
Each row Ci,: is normalized to unit magnitude:

C̃i,: =
Ci,:

∥Ci,:∥2
, ∥Ci,:∥2 =

√∑
j

C2
i,j

Orthonormalization via Gram–Schmidt. Finally, the normalized vectors are processed through
the Gram–Schmidt procedure to enforce orthogonality. Gram–Schmidt refines each vector by re-
moving its projection onto previously computed ones, resulting in a set of orthonormal basis vectors.
Next, we showcase the steps applied to C̃ to obtain an orthogonal matrix. For each column vector
uk = C̃:,k, its projection onto previously processed column vectors {qj}j<k = C:,j ∀j < k is
subtracted:

uk ← uk −
k−1∑
j=1

⟨qj , uk⟩
⟨qj , qj⟩

qj

and the result is normalized to unit length qk = uk/∥uk∥2. The resulting matrix Q = [q0, . . . , qN−1]
satisfies Q⊤ ·Q = I , guarantees orthogonality. Algorithm 1 integrates the above steps to construct
a robust transformation matrix QN×N based on a chosen periodic function f .
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Algorithm 1: Discrete Periodic Transform
Input: f (periodic function), T (period), N (dimension of smashed data)
Output: QN×N (transform matrix)
C ← Chebyshev-Nodes(f, T,N) ; // Generate Chebyshev nodes
for i ∈ [0, N − 1] do

C̃i,: ← Ci,:

∥Ci,:∥2
; // Normalize rows

Q← Gram-Schmidt(C̃) ; // Orthonormalize columns
return QN×N

Algorithm 2: SEAL: Perturbing Smashed Data
Input: f (periodic), T (period), ω (energy retention), client model M , input Idata

Output: X̃ (perturbed smashed data)
Pre-training (one-time):
N ← shape(M.output) ; // innermost dim.
Q← DPT(f, T,N) ; // Alg. 1
Training / inference:
X ←M(Idata) ; // compute smashed data
Z ← Q ·X ·Q⊤ ; // forward transform
I ← retain indices(Z, ω) ; // min set reaching ω energy
Zi,j ← 0 ∀(i, j) /∈ I ; // mask HF coefficients

X̃ ← Q⊤ · Z ·Q ; // reconstruct to feature space

return X̃

Together, Chebyshev sampling, normalization, and orthonormalization form the core novelty of
SEAL, letting each client build a private, well-conditioned transform that preserves utility while
resisting inversion.

A small note: For notational simplicity, we present the smashed data as N × N . However, SEAL
can also generalize to non-square inputs: for X ∈ R···×H×W , where H and W denote the least
significant dimensions of the smashed data, clients construct Q1 ∈ RH×H and Q2 ∈ RW×W ,
applying the separable transform Z = Q1 ·X ·Q2⊤ and X̃ = Q1⊤ · Z ·Q2.

4.3 TRAINING OR INFERENCE PHASE: PERTURBING SMASHED DATA

Algorithm 2 details the working of SEAL during the training (and inference) phase. SEAL operates
as a lightweight client-side module after the cut layer. Given input data Idata, the client computes the
smashed representation X using its local model M . The precomputed DPT matrix Q (from the pre-
training phase) is then applied to transform X into the frequency domain, producing Z = Q·X ·Q⊤.

To protect privacy and retain utility, we leverage energy compaction to generate perturbed X̃ . Most
of the signal energy is concentrated in the low-frequency components, while high frequencies tend
to capture fine-grained, identity-revealing details Lin et al. (2022); Wang et al. (2020). The total en-
ergy of the frequency matrix Z is Etotal =

∑N−1
i=0

∑N−1
j=0 |Zi,j |2 and a client-chosen retention ratio

ω controls how much of this energy to preserve. Following a zig-zag traversal of Z, we accumulate
energy until the partial sum Elow satisfies Elow/Etotal ≥ ω, retaining only the most significant coef-
ficients (for a detailed explanation of zig-zag traversal please see App. C and for a the exact and fast
index search please see App. D and App. E). The remaining coefficients are zeroed out, producing a
perturbed frequency matrix.

Finally, the inverse transform X̃ = Q⊤ · Z · Q reconstructs a perturbed smashed representation,
which is sent to the server in place of X . This process requires only matrix multiplications and
coefficient masking, adding negligible overhead, while adaptively tuning the privacy–utility tradeoff
via ω.
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Table 1: Baseline Evaluation of different Defenses, All values in percentage.
SEAL NoPeekNN DCOR DPSGD

Scenario MA MA MA MA
no-defense 94.6 94.6 94.6 94.6
all-clients 93.4 80.6 80.2 40.7
7-clients 93.7 82.1 81.5 40.9
5-clients 94.2 81.4 81.9 42.6
2-clients 93.9 85.6 81.1 71.3
1-client 94.1 85.7 83.8 72.2

5 EXPERIMENTS

This section evaluates SEAL against diverse reconstruction attacks, demonstrating its effectiveness
in protecting client data during training and inference. We first outline the setup and quantitative
metrics used to assert the effectiveness of SEAL (Sect. 5.1), we then analyze the base scenario of
training a Transformer with no adversarial behavior, showcasing the minimal impact that our defense
has on the overall SL framework (Sect. 5.2), followed by a quantitative and qualitative evaluation
of SEAL against representative reconstruction attacks (Sect. 5.3). Lastly, we evaluate our defense
against a knowledgeable adversary that uses known Discrete Transforms, or the exact secret function
chosen by clients (Sect. 5.4).

5.1 EXPERIMENTAL SETUP

All experiments were conducted using the PyTorch deep learning library (Paszke et al., 2019). The
simulated SL framework used a server equipped with four NVIDIA A6000 GPUs, an AMD EPYC
7773X CPU with 64 physical cores, and 768 GB of main memory. Clients were simulated using a
Raspberry Pi 4 Model B, featuring a Broadcom BCM2711 quad-core Cortex-A72 processor at 1.5
GHz, and 8 GB of LPDDR4 RAM, with swap memory enabled. Communication of smashed data
and gradients between machines was implemented using the Gloo1 library.

Metrics: Our evaluation of SEAL leverages the following key metrics.

Main Task Accuracy (MA) measures the model’s accuracy on the test dataset. It reflects the percent-
age of inputs for which the model delivers accurate predictions. This metric is essential to assess the
utility impact of SEAL to the SL system.
Structural Similarity (SSIM) Wang et al. (2004) evaluates the perceived similarity between two im-
ages by focusing on structural information, which aligns more closely with human visual perception.
It computes similarity based on three components: luminance, contrast, and structural correlation,
combining them into a single score. The SSIM between the original input x and the reconstructed
sample y is calculated as follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

Where µx and σ2
x are the mean and variance for x, similarly, µy and σ2

y are the mean and variance
of y. The covariance between x and y is σxy; lastly, C1 and C2 are constants used to stabilize the
calculations of luminance and contrast. The SSIM index ranges from -1 to 1, but in practice, values
are usually between 0 and 1, where 1 indicates pixel-perfect reconstruction. The attacker aims to
maximize SSIM, while SEAL strives to minimize it.

Datasets. Aligned and extending existing work on SL (Pasquini et al., 2021; Erdogan et al., 2022;
Zhu et al., 2023; Xu et al., 2024), we leveraged five datasets (CIFAR-10, Tiny ImageNet, MNIST,
FMNIST, and IBDM) to perform our experiments. For a detailed description of the datasets and
model architectures used, please see App. A.

1https://github.com/pytorch/gloo
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Table 2: Evaluation of different attacks in multiple dataset scenarios, All values in percentage.
CIFAR-10 MNIST FMNIST ImageNet

Attack MA SSIM MA SSIM MA SSIM MA SSIM
FSHA 70.1 9.3 82.3 14.8 83.5 13.1 49.2 8.1

UnSplit 76.8 10.9 96.7 13.5 91.2 12.5 57.3 12.2
FSA 76.8 11.2 97.3 20.3 89.4 17.9 62.3 16.3

FORA 76.5 10.1 97.3 10.2 88.6 13.4 62.4 10.9
SDAR 77.0 11.4 97.4 11.7 91.3 14.7 63.1 10.0

5.2 BASELINE EVALUATION

To demonstrate the broad applicability of our defense mechanism to more general SL scenarios, we
extended our evaluation beyond image classification tasks, which typically rely on convolutional
layers. Specifically, we assessed the use of our Discrete Periodic Transform (DPT) in a different do-
main, showcasing its compatibility with multidimensional signals (not only 2-D images). To achieve
this, we simulate a real-world scenario where 10 clients trained a Transformer model (RoBERTa) on
partitions of the IBDM dataset, with no adversarial actions performed by the server. We evaluated
multiple configurations: (1) a standard SL setup without client-side perturbations or defense, (2)
SL scenarios where one or more clients applied existing defenses and SEAL. Each client used a
distinct f when applying SEAL. As shown in Table 1, for SEAL the Main Task Accuracy (MA) was
preserved across all cases, while other defenses were not able to operate properly, greatly reducing
the utility of the model. The results confirm seamless integration of SEAL into SL without loss of
utility.

5.3 ATTACKS EVALUATION

We consider five different reconstruction attacks: FSHA Pasquini et al. (2021), UnSplit Erdoğan
et al. (2022), FSA Luo et al. (2023), FORA Xu et al. (2024) and SDAR Zhu et al. (2023). In our
evaluation, we simulate 10 clients, each training on either CIFAR-10, MNIST, FMNIST, or Tiny
ImageNet. The clients targeted consistently employ SEAL using a ratio of retained energy ω = 0.7.
Each experiment uses a different secret periodic function, showing the results are not tied to any
specific choice of f . Table 2 shows that only on the MNIST and FMNIST datasets do attacks
reach a higher average SSIM over the entire test-set, mainly due to their figures’ predominantly
black background boosting the score. Furthermore, Figure 2 qualitatively shows the reconstruction
produced by the attacks on representative samples.

5.4 ADAPTIVE ATTACKS

Lastly, we evaluate SEAL under the presence of a knowledgeable adversary aware of the defense
mechanism employed by the victim client. Two scenarios are considered: in the first, the client
retains the secrecy of its periodic function, forcing A to guess the function used, and attempting
to reverse the perturbation using known transforms (Discrete Cosine Transform). In the second,
unrealistic scenario, A knows the periodic function and ω used by the victim client. Despite this
advantage, we show that energy removal causes irreversible distortion to the signal, preventing the
server from reconstructing perfect samples.

Data Reconstruction Using DCT. We extended FSHA Pasquini et al. (2021) by having the sim-
ulated client perform SEAL using the cosine function before passing its smashed data to the dis-
criminator. For UnSplit Erdoğan et al. (2022), the clone model also employed the Discrete Cosine
Transform (DCT) during the adaptive forward step. Additionally, FSA Luo et al. (2023) was mod-
ified, attempting to reverse the perturbation on the smashed data during the training phase of its
autoencoder. FORA Xu et al. (2024) was updated by equipping the substitute client with SEAL.
Lastly, SDAR Zhu et al. (2023) incorporated DCT in its simulator.

Data Reconstruction With Full Knowledge. We apply the same modification to all five evalu-
ated attacks, as previously described, with the only difference being that SEAL in this scenario is
implemented using the same secret function f employed by the victim clients.

8
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Baseline

FSHA

UnSplit

FSA

FORA

SDAR

FMNIST ImageNetMNISTCIFAR-10

Figure 2: Baseline and reconstructed samples when SEAL is applied

Table 3: Adaptive attacks using DCT and the client’s secret f , All values in percentage.

Attack CIFAR-10 MNIST FMNIST ImageNet
MA SSIM MA SSIM MA SSIM MA SSIM

FSHA DCT 64.3 6.6 82.0 6.7 76.7 7.6 50.4 6.4
f 69.2 70.7 84.7 74.8 80.8 81.3 49.6 87.9

UnSplit DCT 76.5 7.1 95.8 8.4 87.2 10.9 56.9 9.5
f 76.4 71.6 95.8 77.3 88.3 79.7 55.7 89.3

FSA DCT 76.6 8.9 96.1 10.4 87.4 12.4 61.5 10.2
f 76.0 73.4 96.2 76.8 87.5 76.4 62.7 86.4

FORA DCT 76.7 5.3 98.5 8.6 88.8 11.4 60.4 8.8
f 76.6 79.1 96.7 79.6 86.9 79.9 62.6 87.1

SDAR DCT 76.6 6.4 97.3 7.9 89.1 10.8 60.0 5.9
f 75.7 73.0 97.5 81.9 87.4 80.1 62.1 88.5

Adaptive Attack Result. WhenA uses DCT, Table 3 shows a sharp SSIM drop with little impact on
Main Task Accuracy (MA). In contrast, with knowledge of f , reconstruction improves substantially,
with high-fidelity recovery on CIFAR-10 and Tiny ImageNet. It is important to note, however, that
while these results may appear impressive, the practical feasibility of this attack is not achievable,
since the function f must remain secret to the clients and cannot be inferred from the smashed data
(for a qualitative evaluation, please see Figure 3 in App. B).

6 CONCLUSION

In this work, we present SEAL, a client-side obfuscation framework for privacy in Split Learning
by applying secret, client-specific periodic transforms to smashed data. These transforms create an
exponential search space, making brute-force reconstruction of smashed data infeasible, while pre-
serving orthogonality, invertibility, and stability. Experiments on image and text benchmarks show
that SEAL resists state-of-the-art reconstruction attacks without sacrificing accuracy. We envision
name as a foundation for privacy-preserving collaborative learning in edge intelligence, healthcare,
and other privacy-critical applications, and as a new step toward bridging signal-processing theory
with modern ML privacy guarantees.

9
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Ege Erdoğan, Alptekin Küpçü, and A Ercüment Çiçek. Unsplit: Data-oblivious model inversion,
model stealing, and label inference attacks against split learning. In Proceedings of the 21st
Workshop on Privacy in the Electronic Society, pp. 115–124, 2022.

Walter Gautschi. Orthogonal polynomials: computation and approximation. OUP Oxford, 2004.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Werns-
ing. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy.
In International conference on machine learning, pp. 201–210. PMLR, 2016.

Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guillaume
Smith, and Brian Thorne. Private federated learning on vertically partitioned data via entity
resolution and additively homomorphic encryption. arXiv preprint arXiv:1711.10677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In cvpr, 2016.

A K Jain. A fast karhunen-loeve transform for a class of random processes. IEEE Transactions on
Communications, 24(9):1023–1029, 1976.

Yitzhak Katznelson. An introduction to harmonic analysis. Cambridge University Press, 2004.

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and Laurens
van der Maaten. Crypten: Secure multi-party computation meets machine learning. Advances in
Neural Information Processing Systems, 34:4961–4973, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images,
2009.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Virginia Smith,
and Chong Wang. Label leakage and protection in two-party split learning. arXiv preprint
arXiv:2102.08504, 2021.

Zhuohang Li, Chao Yan, Xinmeng Zhang, Gharib Gharibi, Zhijun Yin, Xiaoqian Jiang, and
Bradley A Malin. Split learning for distributed collaborative training of deep learning models
in health informatics. In AMIA Annual Symposium Proceedings, volume 2023, pp. 1047, 2024.

Zhiyu Lin, Yifei Gao, and Jitao Sang. Investigating and explaining the frequency bias in image
classification. arXiv preprint arXiv:2205.03154, 2022.

Yige Liu, Yiwei Lou, Yang Liu, Yongzhi Cao, and Hanpin Wang. Label leakage in vertical federated
learning: A survey. In IJCAI, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364, 2019.

Sida Luo, Fangchao Yu, Lina Wang, Bo Zeng, Zhi Pang, and Kai Zhao. Feature sniffer: A stealthy
inference attacks framework on split learning. In International Conference on Artificial Neural
Networks, pp. 66–77. Springer, 2023.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Stephane G Mallat. A theory for multiresolution signal decomposition: the wavelet representation.
IEEE transactions on pattern analysis and machine intelligence, 11(7):674–693, 1989.

Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi. Unleashing the tiger: Inference attacks
on split learning. In ccs, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Chuanqiang Shan, Huiyun Jiao, and Jie Fu. Towards representation identical privacy-preserving
graph neural network via split learning. arXiv preprint arXiv:2107.05917, 2021.

Gabor Szeg. Orthogonal polynomials, volume 23. American Mathematical Soc., 1939.

Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, and Seyit A Camtepe. Advancements
of federated learning towards privacy preservation: from federated learning to split learning. Fed-
erated Learning Systems: Towards Next-Generation AI, pp. 79–109, 2021.

Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe, and Lichao Sun.
Splitfed: When federated learning meets split learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 36, pp. 8485–8493, 2022.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564,
2018.

Praneeth Vepakomma, Otkrist Gupta, Abhimanyu Dubey, and Ramesh Raskar. Reducing leakage in
distributed deep learning for sensitive health data. arXiv preprint arXiv:1812.00564, 2:8, 2019.

Praneeth Vepakomma, Abhishek Singh, Otkrist Gupta, and Ramesh Raskar. Nopeek: Information
leakage reduction to share activations in distributed deep learning. In 2020 International Confer-
ence on Data Mining Workshops (ICDMW), pp. 933–942. IEEE, 2020.

Haohan Wang, Xindi Wu, Zeyi Huang, and Eric P Xing. High-frequency component helps explain
the generalization of convolutional neural networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 8684–8694, 2020.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Xiaoyang Xu, Mengda Yang, Wenzhe Yi, Ziang Li, Juan Wang, Hongxin Hu, Yong Zhuang, and
Yaxin Liu. A stealthy wrongdoer: Feature-oriented reconstruction attack against split learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12130–12139, 2024.

Sergey Zagoruyko. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

11

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Table 4: Client-Server Split of the DNN Architectures considered.
Number of Parameters

Model Client Server Total
ResNet18 He et al. (2016) 9 536 11 172 106 11 181 642

ResNet50 Zagoruyko (2016) 9 536 67 029 604 67 039 140
RoBERTa Liu (2019) 38 603 520 86 042 112 124 645 632

Xiaochen Zhu, Xinjian Luo, Yuncheng Wu, Yangfan Jiang, Xiaokui Xiao, and Beng Chin
Ooi. Passive inference attacks on split learning via adversarial regularization. arXiv preprint
arXiv:2310.10483, 2023.

A DATASETS AND MODEL ARCHITECTURES

A.1 DATASET

We considered low-dimensional datasets, such as MNIST and FMNIST, as well as high-dimensional
datasets, such as Tiny ImageNet, to analyze SEAL under different requirements to generalize our
findings. Further, to extend outside of the simple image domain, we considered the IBDM dataset
to tackle an NLP task in Split Learning. The datasets used are as follows:

CIFAR-10 consists of 50 000 training and 10 000 test images of size 32× 32 pixels, showing objects
and animals belonging to 10 different classes Krizhevsky et al. (2009). As DNN, we use the widely
adopted ResNet-50 architecture Zagoruyko (2016).
Tiny ImageNet consists of 100 000 training and 10 000 test images, spanning 200 different object
categories Le & Yang (2015). As DNN, we use again use the ResNet-50 architecture Zagoruyko
(2016).
MNIST consists of 60 000 training and 10 000 test grayscale images showing handwritten digits. As
DNN, we use the widely adopted smaller ResNet-18 architecture He et al. (2016).
FMNIST is composed of 60 000 training and 10 000 test grayscale images, depicting various types
of clothing across 10 classes Xiao et al. (2017). As DNN, we also use the widely adopted ResNet-18
architecture He et al. (2016).
IBDM Maas et al. (2011) is a dataset for binary sentiment classification, containing 25 000 training
and 25 000 testing movie reviews texts. This dataset was used in conjunction with the model
RoBERTa Liu (2019) on the sentiment analysis task.

A.2 MODEL ARCHITECTURES AND CLIENT PARTITION

In our evaluations, we assess the performance of our defense across different model architectures:
ResNet18, ResNet50, and RoBERTa. As Table 4 shows, we choose to partition the client-side
computation at the earliest possible feature extraction layer, e.g., the first residual block for ResNet
architectures, and after the word embeddings generation for RoBERTa. This decision is two-fold:
first, it more closely represents the limited computational capabilities of the clients, and second, it
maximizes the advantage for the proposed adversaries Pasquini et al. (2021); Erdoğan et al. (2022);
Xu et al. (2024); Luo et al. (2023); Zhu et al. (2023). By cutting the computation at these early
layers, we increase the client’s vulnerability, facilitating more effective reconstructions in no-defense
scenarios. This strategy enables us to rigorously evaluate the robustness of our defense on realistic
client-side constraints.

B QUALITATIVE EVALUATION OF ADAPTIVE ATTACKS

Figure 3 showcases howA employing an incorrect secret function to simulate SEAL, leads to worse
reconstructions, while in the case where f is known toA, it is able to obtain meaningful reconstruc-
tions. This further highlights the need for clients employing SEAL, to keep their f secret.
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Figure 3: Adaptive attacks employing DCT (left) and the client’s secret f (right)

(0,0)

(4,4)

(1,1)

Figure 4: ”Zig-Zag” Reading of a Frequency Matrix

C TRAVERSE OF A FREQUENCY MATRIX

Below is defined the algorithm used to traverse a Frequency Matrix, following Figure 4. Algorithm 3
takes as input the previous position in the matrix and the desired direction and returns the new
position in the reading. This algorithm is used by both Algorithms 4 and 5 to explore a frequency
matrix and calculate the indices of its low-frequency components.
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Algorithm 3: ZigZag Traverse
Input: i, j (Current indices), d (Current direction), N (Square matrix dimension)
Output: i, j, d (New indices and direction)
r, c← i+ d, j − d ; // Compute next position based on direction
if 0 ≤ r < N and 0 ≤ c < N then

i, j ← r, c ; // Update indices if within matrix bounds

else
if d = −1 then

Moving “up-right”;
if j = N − 1 then

Hit the right boundary;
i← i+ 1 ; // Move down

else
Hit the top boundary;
j ← j + 1 ; // Move right

else
Moving “down-left”;
if i = N − 1 then

Hit the bottom boundary;
j ← j + 1 ; // Move right

else
Hit the left boundary;
i← i+ 1 ; // Move down

d← −d ; // Change direction

return i, j, d

D ENERGY COMPACTION ALGORITHM DURING TRAINING

As follows is an outline of Algorithm 4, which produces the set of indexes of low-frequency com-
ponents of the frequency matrix Z that retain the ratio of energy ω. The algorithm uses the function
ZigZag Traverse(i, j, d,N ) defined in Algorithm 3 to navigate Z following the structure defined in
Figure 4.

Algorithm 4: Energy Compaction Property
Input: Z (Frequency matrix), ω (Desired energy retention ratio)
Output: Indexes (Set of matrix indices to retain)
N ← shape(Z) Etot ←

∑N−1
i=0

∑N−1
j=0 |Zi,j |2 ; // Total energy of transform

matrix
Elow ← 0 ; // Initialize retained energy
Indexes← {} ; // Initialize retained indices
i, j ← 0, 0 ; // Start at first position
d← −1 ; // Traversal direction: −1 = up-right, 1 = down-left

while Elow

Etot
< ω do

Elow ← Elow + |Zi,j |2 ; // Add energy of current element
Indexes← Indexes ∪ {(i, j)} ; // Retain current index
(i, j, d)← ZigZag Traverse(i, j, d,N) ; // Compute next position

return Indexes
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E ENERGY COMPACTION ALGORITHM BEFORE TRAINING

To reduce computational overhead, it is possible to precompute the set of low-frequency indices
(indexes) before the Split Learning training begins, using the Discrete Periodic Transform (DPT)
matrix and a randomly generated signal R. These indices can then be reused in every iteration dur-
ing training. This approach leverages the empirical stability of low-frequency components when
the transform matrix DPT remains fixed, significantly accelerating computations on resource-
constrained client devices. However, as stated, this optimization is empirical and comes at the
cost of losing the security guarantee provided by dynamically determining at each iteration which
components to keep using the ω ratio.

Algorithm 5: Alternative Energy Compaction Property
Input: DPT (Transform matrix), ω (Desired energy retention ratio)
Output: Indexes (Set of matrix indices to retain)
N ← shape(DPT ) Initialize random matrix RN×N Z ← DPTT ·R ·DPT ;
// Transform of the random matrix

Etot ←
∑N−1

i=0

∑N−1
j=0 |Zi,j |2 ; // Total energy of transform matrix

Elow ← 0 ; // Initialize retained energy
Indexes← {} ; // Initialize retained indices
i, j ← 0, 0 ; // Start at first position
d← −1 ; // Traversal direction: −1 = up-right, 1 = down-left

while Elow

Etot
< ω do

Elow ← Elow + |Zi,j |2 ; // Add energy of current element
Indexes← Indexes ∪ {(i, j)} ; // Retain current index
(i, j, d)← ZigZag Traverse(i, j, d,N) ; // Compute next position

return Indexes

F ABLATION STUDY OF ω

F.1 IMPACT OF ω ON PRIVACY AND UTILITY

In prior experiments, we varied the periodic function f(x) while fixing ω at 0.7 to balance pri-
vacy and utility. In Table 5, we instead fix f(x) and examine how varying ω affects SEAL on the
CIFAR-10 and MNIST datasets and in Table 6 on the FMNIST and Tiny ImageNet datasets. As ω
increases, more high-frequency components are retained, resulting in higher Main Task Accuracy
(MA) but also improved reconstruction quality for the adversary A (SSIM). At ω = 1, SEAL is
effectively disabled, offering no protection (No Defense). Importantly, as detailed in Section 2.4,
the number of frequency components removed does not scale linearly with ω. A 0.1 decrease in ω
corresponds to the removal of significantly more than 10% of the elements in the frequency matrix
Z. Consequently, even at ω = 0.9, where MA remains unaffected, we observe a noticeable drop
in SSIM, indicating reduced reconstruction fidelity. Conversely, values of ω below 0.7, such as 0.4
and 0.1, produce an alleged increase in privacy, but at the cost of degraded MA. This is due to the
removal of essential low-frequency components, which leads to impaired learning. Nevertheless,
MA does not collapse entirely, since the server and other clients do not deviate in their behavior for
training, except in the case of a fully malicious server, such as in FSHA Pasquini et al. (2021), where
the server actively alters gradients during training.
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Table 5: Efficacy of SEAL for different values of ω on CIFAR-10 and MNIST datasets, All values
in percentage.

ω 1.0 0.9 0.4 0.1
Attack Dataset MA SSIM MA SSIM MA SSIM MA SSIM

FSHA CIFAR-10 71.2 90.3 71.4 50.2 35.9 6.2 33.3 5.4
MNIST 86.5 98.2 86.7 57.7 59.3 8.2 54.6 7.5

UnSplit CIFAR-10 77.0 92.5 77.0 45.8 49.6 7.3 45.8 6.4
MNIST 99.0 97.1 97.4 50.9 65.3 7.9 60.0 6.6

FSA CIFAR-10 77.1 94.6 76.9 53.4 50.2 7.1 46.1 5.8
MNIST 98.7 98.3 97.5 58.0 65.6 8.5 60.1 6.7

FORA CIFAR-10 77.2 93.6 77.0 51.6 50.3 8.9 45.7 5.8
MNIST 99.1 98.2 97.6 56.5 65.8 7.2 60.1 6.2

SDAR CIFAR-10 77.0 92.7 77.1 51.1 49.9 5.4 46.4 5.1
MNIST 98.9 98.1 97.8 55.4 65.1 7.9 59.8 7.6

Table 6: Efficacy of SEAL for different values of ω on FMNIST and Tiny ImageNet datasets, All
values in percentage.

ω 1.0 0.9 0.4 0.1
Attack Dataset MA SSIM MA SSIM MA SSIM MA SSIM

FSHA FMNIST 83.6 96.5 82.7 56.0 45.2 6.3 39.9 6.1
ImageNet 59.7 91.0 57.2 40.1 37.8 7.9 30.3 6.5

UnSplit FMNIST 91.2 97.2 91.3 58.5 51.3 8.5 47.8 8.3
ImageNet 65.4 95.4 65.3 45.2 40.4 9.6 39.4 7.0

FSA FMNIST 91.1 98.2 91.0 60.4 50.8 9.1 47.8 8.7
ImageNet 65.4 94.3 65.4 43.3 41.4 9.2 38.7 7.3

FORA FMNIST 91.4 97.8 90.9 57.2 50.7 7.4 47.3 6.8
ImageNet 65.3 95.7 65.2 45.1 40.9 8.7 38.7 8.4

SDAR FMNIST 91.2 97.9 91.1 59.9 51.0 8.3 47.6 7.9
ImageNet 65.2 93.6 65.3 45.8 40.8 8.4 40.0 5.2
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