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Abstract001

Elasticsearch (ES) is a distributed RESTful002
search engine optimized for large-scale and003
long-text search scenarios. Recent research004
on Text-to-Query has explored using large lan-005
guage models (LLMs) to convert user query006
intent to executable code, making it an increas-007
ingly popular research topic. To our knowledge,008
we are the first to introduce the novel seman-009
tic parsing task text-to-ES. To bridge the gap010
between LLM and ES, in detail, we leverage011
LLMs to generate Domain-Specific Language012
(DSL) and corresponding post-processing code013
to support multi-index ES query. Consequently,014
we propose the text-to-ES benchmark that015
consists of two datasets: Large Elasticsearch016
Dataset (LED), containing 26,207 text-ES pairs017
derived from a 224.9GB schema-free database,018
and ElasticSearch (BirdES)with 10,926 pairs019
sourced from the Bird dataset on a 33.4GB020
schema-fixed database. Compared with ten021
advanced LLMs and six code-based LLMs,022
the model we trained outperformed GPT-4o023
by 21.79% on the LED dataset, setting a new024
state-of-the-art, and achieved 98% of GPT-4o’s025
performance on the BirdES dataset. Addition-026
ally, we provide in-depth experimental analyses027
and suggest future research directions for this028
task. We will release our code and datasets in029
the future.030

1 Introduction031

Elasticsearch (ES) is a distributed RESTful search032

engine (Akdal et al., 2018b) that offers powerful033

full-text search capabilities and supports schema-034

free scenarios, allowing it to process petabytes of035

data in seconds1. At present, people can only inter-036

act with the ES database by manually writing ES037

query, which presents several challenges. (1) Using038

wrong keywords. For instance, in the green part039

of Figure 1, it is difficult to organize appropriate040

1https://www.elastic.co/cn/elasticsearch

Single-Index
Identify the 54 arxiv categories that have seen 
the least number of papers updated in the year 
2024.

#DSL Query
query={

"query": {"range": {"update_date": 
{"gte": "2024-01-01", "lte": "2024-12-31"}},

    "aggs": {"categories": {"terms": {
     "field": "categories.keyword",
     "size": 54,"order": {"_count": "asc" }}

data = esclient.search("arxiv",query)
#Post-Processing Code 
category_list_pre=[data["aggregations"]["ca
tegories"]]
...
result = category_list

Multi-Index
Calculate the percentage whereby Hamilton 
was not at the 1st track of the the f1 circuit 
since 2010.

Answer: 74%Answer: alg-geom math.AG、astro-ph hep-ph...

#DSL Query
query_one = {"query":{"term": 
{ "surname.keyword": "Hamilton"}...}}
data_drivers=esclient.search(“formlua”,query_one)
query_two = {"query":{"range": {"year": 
{ "gte": 2010 } }}...}
data_races=esclient.search(“formlua”,query_two)
#Post-Processing Code 
#index-join
join=pandas.merge(data_drivers,data_races,)
...
result=(positions_count * 100.0) / total_count

Figure 1: Example of converting natural language to ES
query statement. Left: Query involves a single index.
Right: Query involves multiple indexes. The green part
denotes the Domain-Specific Language query body, the
red part denotes the index join option, and the purple
part denotes the post-processing code.

ES keywords to express information from natural 041

language, such as aggregation information. (2) In- 042

dex join error. In the red part of Figure 1 right 043

where a natural language question involves multi- 044

ple indexes, assessing the logic of index joining is 045

quite Challenging. (3) Generating wrong post- 046

processing code. In the purple part of Figure 1, 047

both single-index and multi-index query require 048

writing appropriate post-processing code, which is 049

complex. 050

Text-to-Query refers to the process of utilizing 051

large language models (LLMs) to automatically 052

translate user intent into executable code, which 053

can alleviate the three challenges faced by ES. Cur- 054

rently, the most rapidly developing area is text- 055

to-SQL (Zhong et al., 2017; Yu et al., 2018; Li 056

et al., 2024b), which transforms natural language 057

into SQL query. Similarly, text-to-Cypher (Guo 058

et al., 2022) focuses on the automated generation of 059

knowledge graph Cypher query, alongside related 060

processes such as text-to-OverpassQL (Staniek 061

et al., 2024), text-to-CQL (Lu et al., 2024) and 062

text-to-SPARQL (Yin et al., 2021). However, there 063

is a lack of research on the automatic generation of 064
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Dataset # Size # Row/Index # Column/Index # Scale Domain Schema-Free

WikiSQL 81,654 0.01k 6 0.2GB SQL ✕
Spider 10,181 1k 5 1.7GB SQL ✕
Bird 12,751 530k 4 33.4GB SQL ✕

BirdES(ours) 10,962 530k 4 33.4GB ES ✕
LED(ours) 26,207 88k 37 224.9GB ES ✔

Table 1: Comparison of text-to-SQL datasets. Size represents the number of datasets. Row/Index indicates the
average number of data rows per index, while Column/Index denotes the average number of columns per index,
with LED reaching a maximum value of 37. Scale refers to the corresponding database size of the dataset, with LED
achieving an enormous size of 224.9 GB. Domain represents the query statements used in the dataset. Schema-Free
indicates the flexibility of the dataset; in LED, the schema of any two rows can differ, whereas in SQL, the schema
of any two rows must remain consistent. For more schema-free details, see the Appendix A12.

queries for ES.065

In this paper, we explore the text-to-ES task066

and evaluate the performance of LLMs. To our067

knowledge, we are the first to propose this task, a068

novel semantic parsing problem well-motivated in069

real-world applications. The task aims to convert070

natural language to ES query. To bridge the gap071

between LLMs and ES, we leverage LLMs to gen-072

erate Domain-Specific Language (DSL) and cor-073

responding post-processing code, enabling ES to074

support multi-index query, as illustrated in Figure 1075

right. Based on the text-to-ES task, we propose the076

text-to-ES benchmark that consists of two datasets.077

To address the challenges of writing ES query, we078

collected data from Wikipedia and Kaggle to create079

LED, a Large-scale ES Dataset grounded in text-to-080

ES, containing 26,207 text-to-ES pairs with a total081

size of 224.9 GB. In this manner, we constructed082

the Bird ElasticSearch (BirdES) dataset, derived083

from the Bird (Li et al., 2024b) dataset in the text-084

to-SQL domain. The BirdES dataset consists of085

10,962 text-to-ES pairs, with nearly 80% of the086

data representing multi-index query and featuring087

a highly complex index structure. The comparison088

table with text-to-SQL is shown in Table 1.089

Ultimately, we conduct extensive experiments090

using ten advanced models and six code models091

on our LED and BirdES datasets. The model092

we trained outperformed GPT-4o (OpenAI, 2024)093

by 21.79% on the LED and achieved 98% of094

GPT-4o’s performance on the BirdES. We also095

performed manual sampling evaluations on our096

datasets, achieving scores of 95% and 99%, re-097

spectively. In addition, we suggest future research098

directions for this task. We believe that our work099

will contribute to advancing real-world applications100

of text-to-ES research. Our contribution is as fol-101

lows.102

• To our knowledge, we are the first to propose 103

a semantic parsing task text-to-ES. To bridge 104

the gap between LLMs and ES, we leverage 105

LLMs to generate DSL and post-processing 106

code to support multi-index ES query. 107

• We propose the large text-to-ES benchmark 108

consists of two datasets, LED and BirdES. 109

LED has 26,207 Text-ES pairs with a 224.9 110

GB schema-free database, and BirdES has 111

10,962 Text-ES pairs with a 33.4 GB schema- 112

fixed database. 113

• We conduct extensive evaluation and analysis 114

experiments using ten advanced and six code 115

LLMs. The model we trained outperformed 116

GPT-4o by 21.79% on the LED and achieved 117

98% of GPT-4o’s performance on the BirdES. 118

Additionally, we perform manual sampling 119

assessments on our datasets. 120

2 Releated Work 121

2.1 Text-to-Query 122

Text-to-Query is the process of using LLM to con- 123

vert user intent into executable code. Firstly, text- 124

to-SQL based on large language models (LLMs) 125

is mainly divided into two categories. The first 126

category is GPT-based frameworks for text-to- 127

SQL. Notable examples are DEA-SQL (Xie et al., 128

2024), which employs a complex pipeline to en- 129

hance accuracy, alongside DIN-SQL (Pourreza and 130

Rafiei, 2024a), MBR-Exec (Shi et al., 2022), Coder- 131

Reviewer (Zhang et al., 2023b), LEVER (Ni et al., 132

2023), SELF-DEBUGGING (Chen et al., 2023), 133

StructGPT (Jiang et al., 2023), Least-to-Most (Tai 134

et al., 2023). The second category that enhances the 135

text-to-SQL process through training models. Rep- 136

resentative works include CodeS (Li et al., 2024a), 137

which compiles extensive SQL-related data during 138
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STEP1:Question Template Construction

STEP3: Rewrite and Quality Check

STEP2:Value Fill

Find articles id  where the word 
OPENAI appears in the title or 
content, published post-2005-
11-07, with  limit of 30 entries.

Get articles id that match the 
term OPENAI in either title or 
content, published after 2005-
11-07, and limited to 30.

Check Consistency

#DSL Query query = {"size": [size],"multi_match": {"query": [term],
"fields": ["title","content"]},"range":{"date":{"gte":[start_date]},
"_source": ["ID"]}response = es.search("allsides",query)
# Code Post Process...result = response_processed

Get articles id that match the term [term] in either title or content, published 
after [start_date], and limited to [size]. Text

ES

Question10Question9Question1
Get articles id that match the 
term OPENAI in either title or 
content, published after 
2005,11,7 and limited to 30.

term:OPENAI,China...

size:30,23,14...

phone_code:973,233..Value Pool

Value Inject
template

GPT4o Expert

Text

ES

Annotation
Find places......template2
Retrieve total...template1

...

query={ES template2...}

query={ES template1...}

...Expert

Verify
Template Pool

Collect

BirdES
STEP1:Pre Classification

STEP2:SQL-To-ES

Note:Different types with different transformation prompts

STEP3:Quality Check

Multi Table

Two Table                   Three Table  ...         

Single Table

Rule
✅

Target Pool

❌ Verify

Initial Pool

SELECT AVG(amount) FROM payments WHERE paymentDate 
BETWEEN '2004-01-01' AND '2004-06-30'

SQL1

query_ratings={...}
query_movies={...}
join_data=pandas.merge(data_r
atings,data_movies)

SELECT ... FROM ratings AS T1 
INNER JOIN movies AS T2 ON 
T1.movie_id = T2.movie_id WHERE 
T2.list_followers > 5 and T1...

SELECT AVG(amount) FROM 
payments WHERE 
paymentDate BETWEEN 
'2004-01-01' AND '2004-06-
30'

query={
“range”:{“gte”: “2004-01-
01”,“lte”: “2004-06-30”},
 “avg”:{“field”:“amount”}
}...

Single

Multiple

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

Classify     

A
B
C

4.21

3.11

SQL

5.33
D
E ...

price A
B
C

Category

E
D

Fruit
Meat
Veg.

...

SQL

    MAX             GROUP BY  ...

Check

LED

Figure 2: Detailed flowchart of data construction. On the left, the LED data construction process is depicted, where
Text-ES template pairs are created using multiple experts in collaboration with GPT-4o. The templates are populated
with values from the database, and the constructed data is rewritten using GPT-4o. On the right, the BirdES data
construction process is illustrated, where SQL statements from the Bird dataset in the text-to-SQL domain are
transformed into ES query to build BirdES, which is subsequently evaluated.

its pre-training phase. Other similar works include139

Granite (Mishra et al., 2024), CLLM (Kou et al.,140

2024), DAIL-SQL (Gao et al., 2023), Symbol-141

LLM (Wu et al., 2024), StructLM (Zhuang et al.,142

2024), and DTS-SQL (Pourreza and Rafiei, 2024b).143

In the field of Text-to-Cypher, the first dataset,144

SpCQL, was proposed by (Guo et al., 2022). Addi-145

tional contributions in this area include works such146

as (Zhao et al., 2022, 2023a; Liang et al., 2024;147

Zhao et al., 2023b). Beyond these two domains,148

notable efforts include Text-to-CQL (Lu et al.,149

2024), which transforms natural language into cor-150

pus query statements, and Text-to-SPARQL (Soru151

et al., 2017; Luz, 2019; Jung and Kim, 2020; Yin152

et al., 2021), which converts natural language into153

SPARQL query statements. We are the first to pro-154

pose the text-to-ES task, which bridge the gap in155

this domain in terms of automatic querying of ES156

database.157

2.2 Domain-Specific Language Generation158

DSL is a programming or scripting language de-159

signed for specific application domains. Before160

LLMs emerged, Akdal et al. (2018a) used Model-161

driven techniques to generate ES query. At present,162

LLMs excel in generating code for languages like163

Python. For instance, Bassamzadeh and Methani 164

(2024) utilized retrieval augmentation for Web 165

API DSLs, while autoDSL (Shi et al., 2024) cre- 166

ated a framework for generating DSLs for non- 167

displayed query with LLMs, especially for non- 168

standard experimental constraints. Although Akdal 169

et al. (2018a) explore integrating heuristic rules to 170

generate ES query, we propose an advanced LLM- 171

based text-to-ES task, which serves as a more stan- 172

dardized approach for the automated generation of 173

ES query. 174

3 Text-to-ES Task Formulation 175

Text-to-ES refers to the process of converting a 176

natural language question Q into an ES query E ca- 177

pable of retrieving relevant data from ES database. 178

The schema information can be represented as 179

S = ⟨F , I⟩, where F and I are fields and in- 180

dexes respectively. Finally, the text-to-ES could 181

be formulated as: 182

D, C = f(Q,S | θ),
E = C(D),

(1) 183

where the function f(· | θ) represents a model 184

with parameters θ, D represents DSL and C repre- 185

sents post-processing code. The post-processing 186
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code assists Elasticsearch in executing multi-index187

queries.188

4 Data Construction189

4.1 LED190

The LED dataset encompasses nearly all commonly191

used DSL from the official ES documentation2.192

4.1.1 Template Construction193

The template construction aims to create numerous194

Text-ES template pairs, as shown in Figure 2, based195

on index mapping information and the DSL types196

from the official ES documentation. We collected a197

substantial amount of long-text data from open data198

platforms such as Kaggle3 and PaperWithCode4.199

Additionally, we incorporated geographic data to200

leverage ES’s geographic query capabilities. After201

collection, we engaged three ES experts to collab-202

orate with GPT-4o in constructing 2,783 text-ES203

template pairs, as illustrated in the left of Figure 2.204

Ultimately, approximately 2,600 text-ES template205

pairs were constructed.206

4.1.2 Value Filling207

The value-filling step inserts appropriate values208

into the created templates to form text-ES pairs.209

We employed both automated data retrieval and210

manual input methods. We directly extract relevant211

data from the ES index for non-open fields, such212

as names and geographical locations. For open213

fields, such as title keywords, the values are manu-214

ally crafted based on the ES index data. Through215

the two approaches, we develop a Value Pool. By216

inputting a text-ES template into the Value Pool,217

we generate approximately ten text-ES pairs. For218

the well-filled data, we execute each text-ES pair219

one by one. If the execution fails or the result is220

empty, we carefully revise that data.221

4.1.3 Question Rewrite222

The question rewrite step is intended to enhance the223

semantic richness of the LED data. Some semantic224

redundancy occurs in the data generated by tem-225

plate construction in the previous phase. To address226

this, we carefully rewrite a portion of the problems227

as In-Context Learning (ICL) (Dong et al., 2022)228

examples, providing clearer guidance for subse-229

quent rewrites in GPT-4o, ultimately improving230

2https://www.elastic.co/query-dsl.html
3https://www.kaggle.com
4https://paperswithcode.com

the overall quality and diversity of the generated 231

outputs. 232

4.1.4 Quality Control 233

In the quality control phase, we concentrated on 234

two key dimensions: consistency and readability of 235

the rewritten questions. In terms of consistency, we 236

rigorously evaluate whether the rewritten questions 237

align with the corresponding ES query statements. 238

In terms of readability, our focus is on whether the 239

logical structure of the rewritten questions is clear 240

and coherent. We employed a random sampling 241

method, extracting 1,000 samples from the dataset 242

in three rounds for review. If over 98% of the 243

samples meet both completeness and readability 244

standards, it indicates that the dataset quality has 245

passed inspection. 246

4.2 BirdES 247

The BirdES dataset is derived from the text-to-SQL 248

dataset Bird. It was proposed to create a text-to- 249

ES dataset that more closely reflects real-world 250

scenarios and includes multi-index query. 251

4.2.1 Pre-Classification 252

The pre-classification step is designed to categorize 253

the SQL data into different classes. We initially 254

classify the queries into single-table and multi- 255

table based on the number of tables involved in 256

the SQL statements. Furthermore, we categorize 257

single-table query by keywords, dividing them into 258

categories such as MAX, LIKE, and GROUP BY 259

and so on. In contrast, multi-table query are classi- 260

fied based on the number of tables involved, such as 261

two-table, three-table, and so on. We use different 262

transformation methods for SQL data of different 263

categories. 264

4.2.2 Single Table Conversion 265

We employed a human-machine collaboration ap- 266

proach to transform 2,610 single-table SQL query 267

into corresponding single-index ES query. In detail, 268

the SQL WHERE clause corresponds to the Pre- 269

Process stage, which is analogous to the "query" 270

section in a DSL query, responsible for filtering 271

documents. The GROUP BY and HAVING clauses 272

represent the Intermediate-Process stage, equiva- 273

lent to the "aggs" (aggregations) part in a DSL 274

query, which handles data aggregation. The SE- 275

LECT clause corresponds to the Post-Process stage, 276

akin to the "_source" section of a DSL query, de- 277

termining the final output fields. Special functions 278

in MySQL, such as "CAST" and "CASE," require 279

4
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handling through post-processing code. For spe-280

cific examples see Appendix A7281

4.2.3 Multiple Table Conversion282

We also utilized a human-machine collaboration283

approach to convert multi-table data. In detail, we284

first used post-processing code to address the chal-285

lenge of ES not supporting multi-index query. We286

carefully constructed SQL-to-ES examples as in-287

context learning (ICL) for GPT-4o, allowing it to288

perform an initial transformation on 7,212 records.289

For any data that did not pass the transformation,290

we manually adjusted it one by one. Additionally,291

we meticulously transformed 1,140 multi-index292

records in the test set manually. It is worth mention-293

ing that we attempted to overcome the limitation of294

multi-index query by converting them into multiple295

single-index query. However, we found this ap-296

proach unfeasible, and Zhang et al. (2023a) faced297

the same constraint.298

4.2.4 Quality Control299

The quality control step focuses on primarily veri-300

fying whether the execution results of the original301

SQL and ES are consistent. It is important to note302

that discrepancies between the execution results of303

ES and SQL do not necessarily indicate that ES304

is incorrect. For example, when multiple records305

meet the query conditions but only one record is306

required, the returned results from SQL and ES are307

likely to differ, yet the ES query can still be cor-308

rect. This situation requires further confirmation309

by the annotator. As long as the DSL align with the310

question intent, we judge the ES query as correct.311

Ultimately, we performed three random samplings312

of 1,000 entries each, achieving an accuracy rate313

exceeding 90%.314

4.3 Data Statistics315

The total size of the LED index data is 224.9 GB,316

containing 26,207 Text-ES pairs. LED includes317

23,099 train samples, 1,569 dev samples, and 1,539318

test samples. LED has a higher average number of319

fields per index, with approximately 37 fields per320

index. The total size of the BirdES index data is321

33.4 GB, containing 10,962 Text-ES pairs. Nearly322

80% of the data consists of multi-index query. The323

BirdES dataset includes 9,428 train samples and324

1,534 test samples.325

Dataset Train Dev Test Total

BirdES 9,428 - 1,534 10,962
LED 23,099 1,569 1,539 26,207

Table 2: Statistics of our constructed BirdES and LED.

5 Experiment 326

5.1 Experiment Models 327

We select 16 representative LLMs covering 10 ad- 328

vanced models and 6 code models as follows: 329

Advanced Model We used the LLaMA series 330

models (Touvron et al., 2023) includes {LLaMA2- 331

7b-Chat, LLaMA2-13b-Chat, LLaMA2-70B-Chat, 332

LLaMA3-8B-Instruct, and LLaMA3.1-8b} and the 333

Qwen 2.5-Instruct series models (Yang et al., 2024) 334

covering {7B, 14B, 32B, 72B}. 335

Code Model We utilized the CodeLLaMA- 336

Instruct series models {7B, 13B, 34B} (Roziere 337

et al., 2023) and the Qwen2.5-Coder-Instruct series 338

models {7B, 14B, 32B} (Hui et al., 2024). 339

Fine-tuning Model Additionally, we chose 340

Qwen2.5-Coder-14B-Instruct as our base model 341

and trained two distinct models using the train set 342

of LED and BirdES datasets, respectively. 343

Human Evaluation We further designed a man- 344

ual answering method. In this approach, we ran- 345

domly selected 100 samples from both LED and 346

BirdES and invited three undergraduate students 347

(different from the data construction team in Sec- 348

tion 4) to answer the questions. The evaluation 349

method is consistent with the evaluation of the 350

model inference results. 351

5.2 Experiment Setup 352

In this section, we clarify the evaluation metrics 353

and implementation details. 354

5.2.1 Evaluation 355

Domain-Specific Language Exact Match Accu- 356

racy (DSLEM) refers to the measure of whether 357

the DSL in a generated query precisely matches 358

the DSL query in the ground truth. The calculation 359

formula is as follows: 360

DSLEM =
1

N

N∑
n=1

1(Qn, Q̂n) (2) 361

The ground truth DSL is represented as Qn and the 362

generated DSL as Q̂n. If Qn exactly matches Q̂n, 363

5



Models LED BirdES

DSL-EM EX VES DSL-EM EX VES

Advanced Models

LLaMA3-8B-Instruct (one-shot) 3.37 6.04 5.85 0.07 0.15 0.15
LLaMA3.1-8B-Instruct (one-shot) 10.66 16.89 17.26 0.59 1.17 1.29
LLaMA2-7B-Chat (one-shot) 4.48 5.07 5.06 0 0.22 0.22
LLaMA2-13B-Chat (one-shot) 13.84 24.37 24.51 0 0.39 0.72
LLaMA2-70B-Chat (one-shot) 21.64 26.97 27.45 0.29 0.81 0.74
Qwen2.5-7B-Instruct (one-shot) 0.51 7.01 7.27 1.24 9.61 12.04
Qwen2.5-14B-Instruct (one-shot) 2.14 15.91 16.25 1.62 16.96 19.68
Qwen2.5-32B-Instruct (zero-shot) 0 9.74 10.88 0 3.67 4.53
Qwen2.5-32B-Instruct (one-shot) 8.12 27.55 29.11 2.05 23.34 26.74
Qwen2.5-72B-Instruct (zero-shot) 0.83 17.86 20.14 0.29 12.33 17.68
Qwen2.5-72B-Instruct (one-shot) 27.95 43.28 43.86 2.93 25.03 26.74
GPT4o (zero-shot) 3.15 25.05 26.08 0.98 11.93 18.69
GPT-4o (one-shot) 30.15 48.73 49.42 2.35 25.75 35.12

Code Models

CodeLLaMA-7B-Instruct (one-shot) 0.37 5.79 6.20 0 0.39 0.72
CodeLLaMA-13B-Instruct (one-shot) 19.42 26.19 26.20 0.13 0.52 0.43
CodeLLaMA-34B-Instruct (one-shot) 33.91 43.92 44.81 0.81 4.63 4.90
Qwen2.5-Coder-7B-Instruct (one-shot) 2.46 11.24 11.89 1.91 12.99 13.36
Qwen2.5-Coder-14B-Instruct (one-shot) 2.22 19.49 21.64 3.30 22.32 22.96
Qwen2.5-Coder-32B-Instruct (zero-shot) 0.38 15.72 17.83 0 4.91 5.41
Qwen2.5-Coder-32B-Instruct (one-shot) 26.57 43.79 44.84 3.34 24.81 28.16

Fine-tuning

Qwen2.5-14B-Coder-FeynMan (zero-shot) 6.88 23.52 24.19 1.54 4.47 3.68
Qwen2.5-14B-Coder-FeynMan (one-shot) 48.27 62.31 63.25 4.04 25.25 23.19

Human Evaluation

Human (sampleing) 81.00 95.00 97.29 83.00 99.00 99.56

Table 3: DSLEM denotes Domain-Specific Language Exact Match Accuracy. EX denotes Execution Accuracy.
VES denotes Valid Efficiency Score Performance comparison on LED and BirdES benchmarks. The best results
are highlighted in bold. The second results are highlighted by underline. All zero-shot experimental results can be
found in the Appendix A1.

the function 1(·) is a decision function used to de-364

termine whether Qn and Q̂n are equal. The detailed365

calculation process is provided in Appendix B.1.366

Execution Accuracy (EX) EX refers to the exact367

match between the generated query and the ground368

truth result. The formula is shown below:369

EX =
1

N

N∑
n=1

1(On, Ôn) (3)370

The terms On and Ôn represent the final out-371

put of the ground truth query code and the model-372

generated query code, respectively. The function373

1(·) is used to determine whether On and Ôn are374

identical, with the detailed calculation process pro-375

vided in Appendix B.2.376

Valid Efficiency Score (VES) VES is designed377

to evaluate the execution efficiency of the gener-378

ated ES query. The specific calculation process is 379

outlined below: 380

VES =
1

N

N∑
n=1

1(Vn, V̂n) ·R(Yn, Ŷn) (4) 381

Here, Ŷn and V̂n represent the ES query gener- 382

ated by the model and its corresponding execution 383

result, while Yn and Vn denote the ground truth ES 384

query and its execution result. The function 1(·) 385

is used to determine whether Vn and V̂n are equal. 386

R(·) is a function that evaluates the efficiency ratio. 387

Further details can be found in the derivation of 388

formulas section of Appendix B.3. 389

5.2.2 Implementation details 390

Zero-shot results can be found in Appendix A1. To 391

ensure the stability of the experiments, the temper- 392

ature for all models used was set to 0.0001, and 393
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Models Specialized TermLevel FullText Geography Joining Aggregation

DSLEM EX DSLEM EX DSLEM EX DSLEM EX DSLEM EX DSLEM EX

GPT-4o (zero-shot) 0.00 33.33 3.70 28.34 10.04 35.20 1.40 14.05 3.15 15.98 1.73 34.63
GPT-4o (few-shot) 28.00 48.58 34.09 50.92 20.80 38.40 51.87 62.15 33.41 45.04 18.61 46.32

CodeLLaMA-34B-Instruct 36.23 36.23 31.33 46.00 21.60 28.00 41.33 48.00 34.00 44.00 35.33 49.33
Qwen2.5-32B-Coder-Instruct 10.14 27.54 27.33 45.33 13.60 35.20 50.00 60.00 30.67 36.00 15.33 48.67

Qwen2.5-14B-Coder-Instruct (one-shot) 4.35 10.14 2.00 37.33 0 14.40 0.00 13.33 2.00 5.33 2.00 22.67

Qwen2.5-14B-Coder-FeynMan 43.48 46.38 54.00 63.33 34.40 63.45 56.00 64.67 48.67 62.67 48.00 68.00

Table 4: Model Performance on Different Categories in the LED Dataset.

all other hyperparameters were maintained at their394

default values. The model training method was395

LoRA (Hu et al., 2021), with learning rates and396

other parameters detailed in the Appendix D.2. Ad-397

ditionally, all experiments in the main results and398

analysis were conducted using a one-shot approach.399

For ICL selection, we utilize the llm-embedder400

(Zhang et al., 2024) model to select one example401

from the train set.402

5.3 Main Results403

The experimental results are presented in the Ta-404

ble 3. From the table, we notice that: 1) All405

LLMs perform poorly on the LED and BirdES406

datasets, with even GPT-4o achieving only 11.93%407

in a zero-shot setting. The best-performing model,408

Qwen2.5-Coder-FeynMan-14B, achieves accura-409

cies of 62.31% and 25.25%, respectively. 2)410

Among models of the same series, larger models411

tend to perform better. This is evident from the412

performance of the LLaMA2, Qwen2.5, CodeL-413

LaMA, and Qwen2.5-Coder series models shown414

in Table 3. 3) Models fine-tuned with code415

outperform their base models. CodeLLaMA416

outperforms LLaMA2 under the same parame-417

ters, and Qwen2.5-Coder models show similar re-418

sults. 4) The models fine-tuned on our dataset419

outperform their base models. The fine-tuned420

two Qwen2.5-14B-Coder-FeynMan significantly421

exceed the performance of its base model Qwen2.5-422

Coder-14B-Instruct on both LED and BirdES. The423

model we trained outperformed GPT-4o by 21.79%424

on the LED and achieved 98% of GPT-4o’s perfor-425

mance on the BirdES respectively. 5) One-shot426

demonstration significantly improves the per-427

formance. The models we trained improved by428

62.25% on LED and 82.30% on BirdES, while429

GPT-4o achieved improvements of 48.59% and430

53.66% on the same datasets, respectively.431

Models Single Multiple

DSLEM EX VES DSLEM EX VES

GPT-4o (zero-shot) 2.8 11.4 12.4 0.4 8.5 12.1
GPT-4o (one-shot) 2.8 34.5 36.5 2.2 13.6 21.9
Qwen2.5-72B-Instruct (one-shot) 2.63 32.89 33.00 4.21 22.37 30.00
Qwen2.5-Coder-32B-Instruct (one-shot) 2.89 33.16 33.00 3.16 21.32 25.00
Qwen2.5-14B-Coder-Instruct (one-shot) 3.42 31.58 32.00 3.68 17.89 20.00

Qwen2.5-14B-Coder-FeynMan (zero-shot) 1.58 7.63 5.00 2.11 3.68 3.00
Qwen2.5-14B-Coder-FeynMan (one-shot) 2.89 36.84 36.00 4.47 18.68 16.00

Table 5: Performance of Different Models in Single-
Index and Multi-Index Scenarios

5.4 Detailed Analysis 432

In this section, we focus on five problems: (1) 433

Which types of ES query affect the performance? 434

(2) Are multiple index ES queries more difficult 435

than single index? (3) How do the LLMs perform 436

at different levels of difficulty? (4) Can external 437

knowledge improve the performance of LLM? (5) 438

What types of errors can LLMs make in the text-to- 439

ES benchmark? 440

5.4.1 Analysis for different types of ES 441

For the LED dataset, we categorized the questions 442

based on the types outlined on the ES official web- 443

site. For example, queries related to geography 444

were classified as "Geography". Ultimately, we di- 445

vided the dataset into six categories: "Specialized", 446

"TermLevel", "FullText", "Geography", "Joining", 447

and "Aggregation,". Detailed descriptions of each 448

category can be found in Appendix D.3. As shown 449

in Table 4, we draw the following conclusions: 450

Compared to other models, Qwen2.5-14B-Coder- 451

FeynMan demonstrates significant improvement 452

across various categories. Specifically, it achieves 453

an accuracy of approximately 63% in nearly all 454

categories, except for "Specialized". This lower 455

performance in the "Specialized" category may 456

be attributed to its higher complexity, which in- 457

volves not only generating basic DSL but also 458

more intricate script code within the DSL (see Ap- 459

pendix A10). 460

7



5.4.2 Analysis for Single and Multiple Index461

For the BirdES dataset, we classified queries based462

on the number of indices involved, dividing them463

into two categories: single-index and multiple-464

index. From Table 5, we observe that: 1) All465

models performed better on the Single-Index than466

on the Multi-Index, with average improvements of467

over 12.8% and 9.82% in EX and VES in one-shot468

setting, respectively. 2) One-shot demonstration is469

limited for Multiple-Index. For example, the aver-470

age improvement of GPT-4o and Qwen-FeynMan471

on the single-index query is 73.11%, while it is472

58.89% for the multi-index query. This highlights473

the challenges of multi-index in text-to-ES tasks.474

5.4.3 Analysis for different levels of difficulty475

We follow the prior work (Li et al., 2024b) and476

set three levels {simple, moderate, challenging} in477

BirdES aligned with the Bird dataset. The results478

of different models at varying levels of difficulty479

are shown in Figure 3. We observe that as data480

complexity increases, model performance declines.481

This indicates that challenging SQL query continue482

to pose difficulties for ES query.483

Figure 3: Trend of Model Performance with Increasing
Difficulty.

5.4.4 Analysis for incorporating external484

knowledge485

Figure 4: Average score of LLMs on BirdES.

Leveraging the external knowledge from the 486

Bird dataset, we explore the impact on text-to-ES 487

tasks. We used all 7 models of Qwen2.5 along 488

with GPT-4o and two trained models in both "with 489

knowledge" and "without knowledge" settings. The 490

average results are presented in Figure 4. From the 491

figure, we observe that, in the presence of knowl- 492

edge, the model performs better on all three metrics 493

compared to the absence of knowledge. Both the 494

EX and VES improved by approximately 10%. De- 495

tailed results are in Appendix D.5. 496

5.4.5 Error Analysis 497

Figure 5: Distribution of error types.

To guide future research on LLMs in text-to-ES 498

tasks, we analyze 100 error samples generated by 499

the trained model and GPT-4o, the best LLMs on 500

LED and BirdES. After manual review, we catego- 501

rized three error types: (a) generating the wrong 502

post-processing code(GWPC), (b) using the wrong 503

keywords (UWK), and (c) index join error (IJE). 504

The error distribution is shown in Figure 5. In the 505

LED dataset, the main error type for GPT-4o and 506

FeynMan is UWK. In the BirdES dataset, the pri- 507

mary error types for GPT-4o and FeynMan are IJE 508

and UWK. Detailed examples of each category are 509

provided in the Appendix D.6. 510

6 Conclusion 511

In this paper, we first propose the text-to-ES task 512

and leverage large language models to generate 513

Domain-Specific Language and post-processing 514

code to support multi-index Elasticsearch query. 515

Based on our constructed LED and BirdES datasets, 516

we introduce a comprehensive text-to-ES bench- 517

mark. Additionally, we conduct extensive eval- 518

uations and analyses using ten advanced LLMs 519

and six code-focused LLMs. Our trained model 520

achieved outstanding results. Furthermore, we per- 521

form manual sampling assessments on our datasets. 522

We hope that our work will contribute to advancing 523

real-world applications of text-to-ES research. 524
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Limitation525

(1) Our dataset labeling requires collaboration be-526

tween humans and GPT-4o, and we cannot fully527

rely on GPT-4o for automated labeling yet. (2)528

We explored methods to improve text-to-ES per-529

formance on models in the 14B parameter range,530

but we also focused on enhancement methods for531

smaller models, such as those in the 7B range.532

Ethical Considerations533

Our dataset does not involve any task privacy issues.534

Additionally, the dataset was verified by ES experts535

to ensure high quality. We will release the datasets536

publicly for research purposes in the future. To our537

knowledge, we are not aware of any other potential538

ethical implications of the proposed dataset.539
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A Details of Our Datasets 735

A.1 Text-to-ES 736

Text: Identify the names and IDs of meteorites that belong to the class H4 and have a longitude between 
138.187 and -88.049.

# Query DSL
query = {
    "query": {
        "bool": {
            "must": [
                {"term": {"class.keyword": "H4"}},
                {"geo_bounding_box": {
                        "geolocation": {
                            "top_left": {
                                "lat": 90.0,
                                "lon": 138.187},
                            "bottom_right": {
                                "lat": -90.0,
                                "lon": -88.049}}
                    }
                }
            ]
        }},
    "_source": ["name", "id"]
}
index_name = "nasa_meteorites"
# Post Process Code
response = esclient.search(index=index_name, body=query)
result = [(hit['_source']['name'], hit['_source']['id']) for hit in response['hits']['hits']]

ES:

Figure A1: Example of LED text-to-ES

Text: Provide a list of titles together with its publisher name for all publishers located in the USA.

# Query DSL1
# Step 1: Query the `book_publishing_company_publishers` index to get documents where `country` is 'USA'
query_publishers = {
    "query": {"term": {"country.keyword": "USA"}}}
response_hits = [doc["_source"] for doc in scan(client=esclient, index="book_publishing_company_publishers", body=query_publishers, 
size=10000)]
# Extract fields for future use
publishers_data = [(hit["pub_id"], hit["pub_name"]) for hit in response_hits]

# Convert to DataFrame for ease of handling
publishers_df = pd.DataFrame(publishers_data, columns=["pub_id", "pub_name"])
# Query DSL2
# Step 2: Query the `book_publishing_company_titles` index to get all documents
query_titles = {
    "query": {"match_all": {}}}
response_hits = [doc["_source"] for doc in scan(client=esclient, index="book_publishing_company_titles", body=query_titles, size=10000)]
# Extract fields for future use
titles_data = [(hit["pub_id"], hit["title"]) for hit in response_hits]
# Post Process Code
# Convert to DataFrame for ease of handling
titles_df = pd.DataFrame(titles_data, columns=["pub_id", "title"])

# Step 3: Perform the inner join between the two DataFrames on `pub_id`
result_df = pd.merge(titles_df, publishers_df, on="pub_id", how="inner")

# Step 4: Convert the result into a list of tuples format
result = [(row["title"], row["pub_name"]) for _, row in result_df.iterrows()]

ES:

Figure A2: Example of BirdES text-to-ES

Figures A1 and A2 illustrate common queries for Single-Index and Cross-Index queries, respectively. 737

The paradigm we propose is to convert users’ natural language queries, which express their intent, into 738

DSL and Post Process Code. 739
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A.2 LED740

A.2.1 Template Construction741

SYSTEM:
Your task is to help me construct a query template for elasticsearch based on the information related to the elasticsearch index.
The template consists of two parts, one part is the question template composed of natural language and the other part is the es query
template composed of DSL+python.
My ultimate goal is to construct the real data by filling the template with values.
When a DSL query is executed using python code, the result of the query is stored into the 'response' variable, which is then parsed using the
tuple list [(),()...] to parse out the content mentioned in the question from the response.
Please generate as many templates as possible, with the requirement to cover as many types of DSL queries as possible.
Generate {size} pairs of template data.
Question should be expressed in a variety of ways, rather than using a single question.
If a join type field exists, generate a query corresponding to the has_child and has_parent types.
# index name：
{index_name}
 
# index data summary:
{index_introduction}
 
# index mappings information:
{index_mappings}
 
# index field description:
{index_field_descritpion}
 
# An example of index fields value:
{index_field_value}
 
# Please refer to the example given to you below for your output format
[START]
question_template : "Locate and retrieve all meteorites whose mass falls within the range of [template_min_mass] to [template_max_mass] ,
belong to the category [template_category], and are located within a circular region centered at the coordinates (template_lat, template_lon)
with a radius of [template_X] kilometers.",
query_template:
```py
query="{{
  "query": {{
    "bool": {{
      "must": [
        {{
          "range": {{
            "mass": {{
              "gte": template_min_mass,
              "lte": template_max_mass
            }}
          }}
        }},
  {{
          "match": {{
            "class": template_category
          }}
        }}
      ],
      "filter": {{
        "geo_shape": {{
          "geolocation": {{
            "shape": {{
              "type": "circle",
              "coordinates": [template_lon, template_lat],
              "radius": "template_Xkm"
            }},
            "relation": "within"
          }}
        }}
      }}
    }}
  }},
  "_source": ["geolocation"]
}}
index_name="nasa_meteorites"
response = esclient.search(index=index_name,body=query)
result = [(hit['_source']['geolocation'],) for hit in response['hits']['hits']]"
```
[END]
 
# Your answer goes here:
[START]
question_template:
query_template:
[END]

Figure A3: The prompt used to construct templates of LED dataset

The prompt defines templates for the LED dataset, combining natural language questions and Elastic-742

search DSL queries. It supports complex queries, for generating diverse and structured data.743
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A.2.2 Question Rewrite 744

INSTRUCTION:
Please rewrite the following question while maintaining its original semantics. The rewritten question should convey the same core information
but explore different sentence structures, such as statements, questions, commands, or other creative formats. Avoid starting with fixed
formats, and try to employ diverse sentence structures and expressions. Aim to enhance the diversity of expressions while ensuring the
question’s intent and clarity remain intact, and strive for a unique and creative phrasing.

Original question: {question}
Rewritten question:

EXAMPLE:
Original question: Retrieve all cities located in Latvia within the Europe region that have a latitude greater than -4.620975614106303 and less
than 88.99647265103685.
Rewritten question:
# Here are some examples of rewriting given as references. Based on these examples, create more ways of rewriting divergently, but you only
need to reply with one rewriting answer.
1. I would like to know which cities in Latvia, Europe, have latitudes between -4.620975614106303 and 88.99647265103685.
2. List every city in Latvia, part of the Europe region, whose latitude falls between -4.620975614106303 and 88.99647265103685.
3. In european region, which cities locate in Latvian region with latitudes ranging from -4.620975614106303 to 88.99647265103685?

NOTE:
1. Do not add any other extra information.
2. Your answer only needs to provide a rewritten question, do not reply with any additional information.

Figure A4: Prompt for rewriting the questions in the LED dataset

This prompt is designed to rewrite questions in the LED dataset to maintain original meaning while 745

enhancing diversity. 746

A.3 BirdES 747

A.3.1 Single index 748

INSTRUCTION:
Convert the SQL query statement into a complete Elasticsearch query based on the Python client.The Elasticsearch's version is 8.11.2

CONSTRAINT:
1. Prohibit the use of bucket scripts
2.There is no need to define the Elasticsearch client in the generated code as the Elasticsearch client "esclient" is already provided, use
"esclient" directly.
3.The index name of Elasticsearch is lowercase of the SQL table name,using underline '_' to replace space ' ' in table name.
4.The final result should be stored in the "result" variable without printing it.
5.The equality sign in SQL is equivalent to an exact match (use field.keyword) in query.
6. If the return result of SQL involves addition, subtraction, multiplication, and division operations, please implement it in Python code.
7. When calculating the total quantity using count (*), use "field": "_index" instead of "_id"
8.Use script when judgment logic occurs.
9.When encountering nested queries, convert step by step.
10.Using the SCAN function for querying instead of search function, the scan function has been declared and can be used directly.

EXAMPLE:
sql:```sql{SQL_Example}```    ES:```py{ES_Example}```

Please provide the above information to convert this SQL into a query using Elasticsearch+Code.Don't generate other content.
SQL:{sql}
ES:

Figure A5: Prompt for transforming single table data from the Bird dataset into the BirdES dataset

The prompt provides instructions and constraints for converting single-table SQL queries from the Bird 749

dataset into Elasticsearch queries to generate the BirdES dataset. 750
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A.3.2 Multiple indexes751

### Task Description:
You need to convert the following MySQL query into an equivalent Elasticsearch query and implement it using the Python client. During the
conversion process, consider the data model, query conditions, and result processing to ensure the final results are consistent with the
behavior of the MySQL query.

### MySQL Query:
{sql}
### Data Model
{data_model}

### Conversion Steps:
Please follow these steps to complete the conversion:
1. **Parse the MySQL Query**:
    - Extract SELECT, FROM, JOIN, WHERE, GROUP BY, HAVING, ORDER BY, LIMIT clauses from the MySQL query.
    - Identify the tables involved and their join conditions.

2. **Construct the Elasticsearch Query**:
    - Build the equivalent Elasticsearch query JSON structure based on the MySQL query clauses.
    - Consider using the scan API to handle pagination and large data sets.

3. **Implement the Python Client Code**:
    - Use the elasticsearch Python client to construct and execute the query, and process the query results.
      - Firstly, use the ES query statement to filter out documents that meet the where criteria, and then use the Pandas library method to
convert the ES query results to DataFrame format and perform an inner join operation. Then, use the methods provided by the Pandas library
to implement group by and order by operations in SQL statements, and finally store the results in a list tuple data structure, with each tuple
representing a row of data that meets the criteria.
    - Handle possible null values (None) and duplicate values to ensure the final result is consistent with the MySQL query.

### Example:
#### MySQL Query:
sql:
```sql
{SQL_Example}
```

### Data Model
Data Model:
```data model
**Index Name 1**:`public_review_platform_days`
{{
    "mappings": {{
        "properties": {{
            "day_id": {{
                "type": "long"
            }}
        }}
    }}
}}
...
```
Elasticsearch Implementation in Python:
{ES_Example}
### Notes
1. Ensure to handle null values (None) and duplicate values to avoid calculation errors.
...
### Your Answer:

Figure A6: Prompt for transforming multi-table data from the Bird dataset into the BirdES dataset

The prompt provides instructions and constraints for converting multiple-table SQL queries from the752

Bird dataset into Elasticsearch queries to generate the BirdES dataset.753

A.4 Human Annotation754

We hired 25 annotators, including 5 ES experts and 20 students who are familiar with ES. The annotations755

mentioned in the article are first performed by the students, and then the experts check whether the756

annotation accuracy reaches 90%. If it does not reach 90%, the students continue annotating. The total757

cost for the annotations was $5,000.758

A.5 Sql-to-ES759

Figure A7 shows an example of converting SQL to ES. On the left side, the single table query’s SQL760

WHERE conditions are mapped to the "query" section of the DSL query, while AVG(list_followers)761

is mapped to the "aggregation" section of the DSL query. On the right side, multiple table query are762

converted into ES queries in a Cross-index Query scenario. The two SQL tables, "lists" and "lists_user,"763

correspond to the two ES indexes, "lists" and "lists_user."The WHERE conditions from the original SQL764

are used to query both indexes separately, and then the JOIN conditions from the original SQL are applied765

to perform an Index_JOIN using the pandas merge method, ultimately returning the results.766
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SELECT AVG(list_followers) FROM lists WHERE list_movie_number > 200

SQL:

ES:

# Query DSL
query = {
    "query": {
        "range": {
            "list_movie_number": {
                "gt": 200
            }
        }
    },
    "aggs":{
        "avg_list":{
            "avg":{
                "field":"list_followers"
            }
        }
    }
}
#Post Process Code

index_name = "lists"

response = esclient.search(index=index_name,body=query)

result=(response['aggregations']['avg_list']['value'],)

SQL:

ES:

SELECT T2.user_trialist FROM lists AS T1 INNER JOIN lists_users AS T2 ON T1.list_id = 
T2.list_id AND T1.user_id = T2.user_id WHERE T1.list_title = '250 Favourite Films'

# Step 1: Query the `movie_platform_lists` index to get documents where `list_title` is '250 Favourite 
Films'
query_movie_platform_lists = {"query": {"term": {"list_title.keyword": "250 Favourite Films"}}\
}
response_hits_lists = [doc["_source"] for doc in scan(client=esclient, index="movie_platform_lists", 
body=query_movie_platform_lists, size=10000)]

# Extract necessary fields for further processing
data_lists = [(hit["list_id"], hit["user_id"]) for hit in response_hits_lists]

# Step 2: Convert the extracted data into DataFrame format
df_lists = pd.DataFrame(data_lists, columns=["T1_list_id", "T1_user_id"])

# Step 3: Query the `movie_platform_lists_users` index to get all documents
query_movie_platform_lists_users = {
    "query": {
        "match_all": {}}
}
response_hits_lists_users = [
doc["_source"] for doc in scan(client=esclient, index="movie_platform_lists_users", 
body=query_movie_platform_lists_users, size=10000)]
# Extract necessary fields for further processing
data_lists_users = [(hit["list_id"], hit["user_id"], hit["user_trialist"]) for hit in response_hits_lists_users]

# Step 4: Convert the extracted data into DataFrame format
df_lists_users = pd.DataFrame(data_lists_users, columns=["T2_list_id", "T2_user_id", "user_trialist"])

# Step 5: Use Pandas to perform the inner join on DataFrames
joined_data = pd.merge(df_lists, df_lists_users, left_on=
["T1_list_id", "T1_user_id"], right_on=["T2_list_id", "T2_user_id"], how="inner")

# Step 6: Extract the 'user_trialist' field from the joined data and store it in the result list of tuples
result = [(row["user_trialist"],) for index, row in joined_data.iterrows()]

Figure A7: Example of transform SQL into ES

A.6 Other Notes 767

We strictly adhered to the usage guidelines of the Bird (Li et al., 2024b) dataset while constructing BirdES, 768

and the dataset we created does not contain any offensive content. 769
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B Supplement of Evaluation Metrics770

B.1 DSLEM771

1(Qn, Q̂n) =

{
1, Qn = Q̂n

0, Qn ̸= Q̂n

772

If Qn exactly matches Q̂n, the result is assigned a value of 1; otherwise, it is assigned a value of 0.773

B.2 EX774

1(On, Ôn) =

{
1, On = Ôn

0, On ̸= Ôn

775

If On and Ôn are exactly equal, the function 1(·) returns 1; otherwise, it returns 0.776

B.3 VES777

1(Vn, V̂n) =

{
1, Vn = V̂n

0, Vn ̸= V̂n

778

If Vn and V̂n are equal, the function 1(·) returns 1; otherwise, it returns 0. R(·) is defined as follows:779

R
(
Yn, Ŷn

)
=

√√√√ E (Yn)

E
(
Ŷn

)780

E(·) is a metric for calculating the execution time of ES queries. By comparing the actual execution time781

of an ES query with the time taken to generate the ES query, we determine whether the model-generated782

ES queries are more efficient.783

16



C Experimental Prompt 784

C.1 zero-shot 785

SYSTEM:Please write the necessary Elasticsearch query and Python code based on the given question and 
Elasticsearch index mapping information. Ensure that the syntax is correct and that the query fulfills the 
question's requirements and can be executed. The esclient=Elasticsearch() has already been defined, so 
there is no need to define it again; use esclient directly for querying. I'll provide the relevant mapping 
information in markdown format, where is_keyword denotes if a field is defined as a keyword type as well. 
Generate only code and nothing else.Code format sample:
```py
#Elasticsearch DSL query
query={{}}

#Use search or scan to get data 
response = esclient._()

#Store the final query execution result in tuple list format in the result variable
result =[(),]
```

INDICES DESCRIPTION:
{indices_desc}
QUESTION:{question}
ANSWER:

Figure A8: Prompt of zero-shot for LED, BirdES

C.2 few-shot 786

SYSTEM:Please write the necessary Elasticsearch query and Python code based on the given question and 
Elasticsearch index mapping information. Ensure that the syntax is correct and that the query fulfills the question's 
requirements and can be executed. The esclient=Elasticsearch() has already been defined, so there is no need to 
define it again; use esclient directly for querying. I'll provide the relevant mapping information in markdown format, 
where is_keyword denotes if a field is defined as a keyword type as well. Code format sample:
```py
#Elasticsearch DSL query
query={{}}
#Use search or scan to get data 
response = esclient._()

#Store the final query execution result in tuple list format in the result variable
result =[(),]
```
Examples:
INDICES DESCRIPTION:
{indices_desc1}
QUESTION:{question1}
ANSWER:{answer1}

INDICES DESCRIPTION:
{indices_desc}
QUESTION:{question}
ANSWER:

Figure A9: Prompt of few-shot for LED, BirdES

Figure A8 and Figure A2 are the prompt templates used in our experiments, where indices_desc refers 787

to the description information of the indexes. 788
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D Supplement of Experiment789

D.1 zero-shot results790

Models LED BirdES

DSL-EM EX VES DSL-EM EX VES

Advanced Models

LLaMA2-7B 0 0 0 0 0 0
LLaMA2-7B-Chat 0 0 0 0 0 0
LLaMA2-13B 0 0 0 0 0 0
LLaMA2-13B-Chat 0 0 0 0 0 0
LLaMA3-8B 0 0 0 0 0 0
LLaMA3-8B-Instruct 0 0 0 0 0 0
LLaMA3.1-8B 0 0 0 0 0 0
LLaMA3.1-8B-Instruct 0.06 0.12 0.13 0 0.07 0.13
Qwen2.5-7B-Instruct 0.13 2.92 0.19 7.530 7.66
Qwen2.5-14B-Instruct 0 5.84 6.59 0 0.44 0.51
Qwen2.5-32B-Instruct 0 9.74 10.88 0 3.67 4.53
Qwen2.5-72B-Instruct 0.83 17.86 20.14 0.29 12.33 17.68
Qwen1.5-7B 0 0 0 0 0 0
Qwen1.5-7B-Chat 0 0 0 0 0 0
GPT4o 3.15 25.05 26.08 0.98 11.93 18.69

Code Models

CodeLLaMA-7B 0 0 0 0 0.13 0.41
CodeLLaMA-7B-Instruct 0 0 0 0.06 0.13 0.43
CodeLLaMA-13B 0 0.06 0.15 0 0 0
CodeLLaMA-13B-Instruct 0 0 0 0 0 0
CodeLLaMA-34B-Instruct 0 3.19 3.25 0 0 0
CodeQwen1.5-7B 0 0 0 0 0.52 1.15
CodeQwen1.5-7B-Chat 0 0.06 0.06 0 0 0
Deepseek-Coder-6.7B-Base 0 0 0 0 0 0
Deepseek-Coder-6.7B-Instruct 0 0 0 0 0 0
Qwen2.5-Coder-7B-Instruct (Hui et al., 2024) 0.19 7.53 7.66 0 0 0
Qwen2.5-Coder-14B-Instruct 0 5.84 6.59 0 1.46 3.60
Qwen2.5-Coder-32B-Instruct 0.38 15.72 17.83 0 4.91 5.41

Fine-tuning

Qwen2.5-14B-Coder-FeynMan 6.88 23.52 24.19 1.54 4.47 3.68

Table A1: Performance of zero-shot on LED and BirdES

D.2 Training Details and Hyper-parameters791

We fine-tuned the Qwen2.5-Coder-14B-Instruct model on the training datasets of LED and BirdES,792

resulting in our model Qwen2.5-Coder-14B-FeynMan. We trained on four A100 (40GB) GPUs for793

approximately 16 hours, with the final loss reduced to around 0.09. We trained for one epoch with a794

learning rate of 5× 10−5, utilizing a cosine scheduler.795

D.3 Details types introduction796

We have categorized the data into six groups based on the functionality of keywords, referencing the797

classification method from the official documentation, which is noted in the main text as footnote 2.798

TermLevel involves precise search categories, such as range searches and exact matches. Fulltext799

pertains to ES queries aimed at strings, commonly used for full-text search. Geograph focuses on ES800

queries related to geographic data structures, such as Geo-grid searches. Joining relates to ES nested and801

parent/child type queries. Specialized includes specific queries, such as using scripts in DSL for querying.802

Finally, Aggregation refers to ES queries aimed at statistical analysis, such as max and min.803
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D.4 Specialized example 804

The script type under the Specialized category allows for writing complex painless code in DSL statements, 805

as shown in Figure A10. 806

Figure A10: Example of Specidalized

D.5 Details for ablation 807

Models without knowledge with knowledge

DSLEM EX VES DSLEM EX VES

Qwen2.5-7B-Instruct (Yang et al., 2024) 1.24 9.61 12.04 1.68 13.36 15.13
Qwen2.5-14B-Instruct (Yang et al., 2024) 1.62 16.96 19.68 2.56 22.02 24.21
Qwen2.5-32B-Instruct 2.05 23.34 26.74 3.02 33.77 38.49
Qwen2.5-72B-Instruct 2.93 25.03 26.74 5.07 35.09 38.20
Qwen2.5-Coder-7B-Instruct (Hui et al., 2024) 1.91 12.99 13.36 2.86 14.83 16.27
Qwen2.5-Coder-14B-Instruct 3.34 22.32 22.96 4.91 31.57 33.16
Qwen2.5-Coder-32B-Instruct 3.30 24.81 28.16 5.72 37.59 40.32
GPT-4o (OpenAI, 2024) 2.35 25.75 35.12 7.78 42.80 44.89

Qwen2.5-14B-Coder-FeynMan 3.67♣ 20.11♣ 17.67♣ 7.05♠ 40.61♠ 37.82♠

Table A2: Performance comparison on LED and BirdES benchmarks. The best results are highlighted in bold. The
base model is Qwen2.5-Coder-14B-Instruct. The symbol ♣ denotes training without knowledge, while ♠ indicates
training with knowledge.

As illustrated in Table A3 Without the provided knowledge information, the model cannot know to use 808

’h’ and ’c’ to represent carbon and hydrogen. 809

D.6 Error examples 810
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Type Question Knowledge
with knowledge Calculate the total atoms consisting

of the element carbon and hydro-
gen.

consisting of element carbon and hydrogen
refers to element in(’c’, ’h’)

without knowledge Calculate the total atoms consisting
of the element carbon and hydro-
gen.

-

Table A3: Example of with or without knowledge

Type Question Ground Truth Error of LLMs
UWK Calculate the average rating and the

total number of ratings for all books
published by Friedman/Fairfax Pub-
lishing in the year 1961.

#DSL query = { "size":
0, "query": { "bool": {
"must:̈ [ {"match": {"Pub-
lisher.keyword": "Friedman/-
Fairfax Publishing"}}, {"term":
{"Year-Of-Publication": 1961}}
] } }, "aggs": { "average_rating":
{"avg": {"field": "Book-
Rating"}}, "total_ratings":
{"value_count": {"field":
"Book-Rating"}} } }
#Post-processing Code [...]

#DSL query = { "size": 0, "query": {
"bool": { "must:̈ [ {"match": {"Pub-
lisher.keyword": "Friedman/Fairfax
Publishing"}}, {"term": {"Year-Of-
Publication": 1961}} ] } }, "aggs":
{ "average_rating": {"avg": {"field":
"Book-Rating"}}, "sum_rating": "sum":
"field": "Book-Rating" } }
#Post-processing Code [...]
##"sum" must be "value_count".

IJE Calculate the average number of
oxygen atoms in single-bonded
molecules.

#DSL1
query_toxicology_bond={
"query": { "term":{
"bond_type.keyword": "-
" } } } #Post-processing
code [...] #DSL2
query_toxicology_atom={
"query": { "term": { "ele-
ment.keyword": "o" } } }
#Post-processing code [...]
#index-join
joined_data=pd.merge(df_bond,
df_atom,
on="molecule_id",how="inner")
# Post-processing code [...]

#DSL1
query_toxicology_bond={ "query": {
"term": { "bond_type.keyword": "-" } }
}
#Post-processing code [...]
#DSL2 query_toxicology_atom={
"query": { "term": { "element.keyword":
"o" } } }
#Post-processing code [...]
# index-join
{NULL}
# Post-processing code [...]
##comment: No index-join was per-
formed.

GWPC Calculate the average score for each
post category, and list the categories
with an average score not less than
47 along with their corresponding
average scores.

# DSL query={...}
#Post-processing code
index_name=
"movies_posts_comments"
response=esclient.search (in-
dex=index_name, body=query)
result=[(bucket[’key’],
bucket[’avg_score’][’value’])
for bucket in response [’aggre-
gations’] [’tags’][’buckets’]]

# DSL query={...}
#Post-processing code
index_name= "movies_posts_comments"
response=esclient.search (in-
dex=index_name, body=query)
result=[(bucket[’key’],) for bucket
in response [’aggregations’]
[’tags’][’buckets’]]
##comment: should be (bucket[’key’],
bucket[’avg_score’][’value’])

Table A4: Examples of three main error types. correct, incorrect, and ## comment is colored.
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E Elasticsearch VS MySQL 811

E.1 Feature Comparison: ES vs SQL 812

Elasticsearch differs from traditional relational databases (RDBMS) in several key ways, as illustrated in 813

Table A5. In Elasticsearch, data is stored in indexes, whereas SQL databases organize data in tables.An 814

index in Elasticsearch is equivalent to a table in SQL, and query can only be directed to a single index. 815

Instead of using key-value pairs, Elasticsearch stores documents in JavaScript Object Notation (JSON) 816

format, which means that query statements are also expressed in JSON Query Domain Specific Language. 817

Additionally, Elasticsearch is schema-free, allowing two documents within the same index to have different 818

schemas, while rows in an RDBMS must adhere to an identical schema.

Elasticsearch element SQL element

Index Database
Mapping Schema

Document type Table
Document Row

Schema-Free Schema-Fixed

Table A5: Features Comparison between Elasticsearch and MySQL

819

E.2 Efficiency Analysis: ES vs SQL 820

Our experimental setup includes equivalent query Q_sql and Q_dsl for SQL and DSL. We measured the 821

average execution time of the query executed three times on the MySQL single table Table_mysql and the 822

Elasticsearch single index Index_es with the same scale of data. We inserted the original size of data each 823

time for T_mysql and T_es. We recorded the trend of SQL query time T_sql and ES query time T_es as 824

the data scale increases linearly. As shown in Figure A11, initially, the execution time of ES was higher 825

than that of SQL. However, as the data increased, the execution time of SQL increased linearly, while 826

the execution time of ES increased logarithmically. Eventually, after the number of returned documents 827

reached our set limit of 5000, both reached a stable trend. 828

Figure A11: Query time trend chart for SQL and ES with equivalent query statements as data scale grows
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TEXT
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Figure A12: Schema-Free and Schema-Fixed

E.3 Detail for Schema-Free829

ES features a schema-free index structure that allows for highly flexible data storage, enabling completely830

different structures for any two pieces of data within the same index. In contrast, SQL uses a schema-fixed831

table structure, which only permits data storage according to the initially defined schema. Figure A12832

shows the SQL table structure on the left, where each row has a uniform schema. On the right is the ES833

index structure, where each row can have a different schema; for example, the first row includes Elo rating,834

ActorID, and TEXT, while the second row uses a different schema with ActorID replaced by Fach.835
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