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Abstract

What does it truly mean for a language model to “reason” strategically, and can
scaling up alone guarantee intelligent, context-aware decisions? Strategic decision-
making requires adaptive reasoning, where agents anticipate and respond to others’
actions under uncertainty. Yet, most evaluations of large language models (LLMs)
for strategic decision-making often rely heavily on Nash Equilibrium (NE) bench-
marks, overlook reasoning depth, and fail to reveal the mechanisms behind model
behavior. To address this gap, we introduce a behavioral game-theoretic evaluation
framework that disentangles intrinsic reasoning from contextual influence. Us-
ing this framework, we evaluate 22 state-of-the-art LLMs across diverse strategic
scenarios. We find models like GPT-03-mini, GPT-01, and DeepSeek-R1 lead in
reasoning depth. Through thinking chain analysis, we identify distinct reasoning
styles—such as maximin or belief-based strategies—and show that longer reason-
ing chains do not consistently yield better decisions. Furthermore, embedding
demographic personas reveals context-sensitive shifts: some models (e.g., GPT-
40, Claude-3-Opus) improve when assigned female identities, while others (e.g.,
Gemini 2.0) show diminished reasoning under minority sexuality personas. These
findings underscore that technical sophistication alone is insufficient; alignment
with ethical standards, human expectations, and situational nuance is essential for
the responsible deployment of LLMs in interactive settings.

1 Introduction

The rapid development of large language models (LLMs) and generative Al has significantly broad-
ened their applications, transitioning from basic text generation (41) and completion tasks to serving
as sophisticated agents (45} 1605 215 [17). While existing benchmarks primarily assess LLMs on
isolated language or math tasks (33523 58)), real-world deployment often demands more complex
forms of decision-making, particularly strategic reasoning, where agents must interact with other
entities whose actions directly influence the outcomes (64;[31;22). Specifically, one-shot strategic
reasoning refers to an agent’s ability to select a single, irreversible action where the outcome depends
on both its own choice and that of other agents in this interaction. Consider an Al agent operating
in a business environment where strategic interaction is critical. In procurement, for instance, it
must anticipate supplier counteroffers when negotiating orders; in advertisement bidding, it predicts
competitors’ bids to set optimal prices. In each case, the agent faces a one-shot decision that directly
impacts its payoff and cannot be revised post-execution (43;12).

Related Literature and Research Gap. Research on LLM decision-making typically begins
by examining their behavior as independent decision-makers (45 [11; [34; [16). From an economic
perspective, LLMs exhibit human-like patterns in preferences under uncertainty and risk (40). In
social science, they have demonstrated alignment with human responses in moral judgment and
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Figure 1: Framework overview

fairness-related tasks (155;139;152). Other studies further reveal alignments between LLMs and human
judgments across diverse decision contexts (3446} 40). However, when demographic profiles are
embedded into prompts, systematic inconsistencies and fairness concerns emerge (29; 40).

Strategic decision-making extends individual reasoning into interactive contexts, where outcomes
depend not only on one’s own choices but also on the anticipated actions of others. Existing
evaluations of LLM strategic reasoning are predominantly grounded in game theory. Several studies
explore LLMs’ abilities in achieving rationality within game-theoretic frameworks, such as mixed-
strategy Nash Equilibrium (NE) games (53) and classic strategic games like the prisoner’s dilemma
(55 128). Some works investigate the adaptability of LLMs to various prompts that influence cooperative
and competitive behavior (50), and others evaluate their capacity to replicate human-like reasoning
patterns in multi-agent settings (1;161). While these studies provide a good starting point, many are
limited to binary assessments of whether or not LLMs meet NE (35} [18)) without quantifying their
strategic reasoning capabilities or exploring the underlying mechanisms. While NE is a cornerstone
concept in evaluating rational behavior, evaluating solely whether LLMs can achieve NE is an
incomplete assessment of their reasoning capabilities (36;32). The primary limitation of using NE as
a measurement lies in its strict assumptions and focus on outcomes rather than the decision-making
processes (3). It makes it difficult to interpret why LLMs deviate from optimal strategies. Also,
NE assumes perfect rationality, which fails to account for the variability and bounded reasoning
capability inherent in real-world problems. For LLMs—probabilistic models trained on human-
generated data—this assumption is particularly problematic (63} 42). Their stochastic nature makes
NE impractical as a comprehensive evaluation metric, and its assumption of perfect rationality falls
into the circular reasoning fallacy when assessing LLMs’ rationality. Recent work begins to address
these issues by incorporating stepwise evaluation (19) or applying models like Cognitive Hierarchy
(CH) (65)), but these approaches still rely on deterministic assumptions about context and agent type.

Key Contributions. To bridge this gap, we propose a framework, as shown in Figure (1| that
moves beyond assessing LLMs with traditional game theory. We develop a method to quantify and
characterize LLMs’ strategic decision-making, capturing bounded rationality, response to incentives,
and belief formation. Our approach combines a diverse library of matrix games with a structured
modeling framework based on Truncated Quantal Response Equilibrium (TQRE) stemming from
behavioral game theory (51;/59). The key contributions are as follows:

1. We introduce an evaluation framework for assessing strategic reasoning in LLMs under various
conditions. Applying to 22 state-of-the-art (SOTA) models on 13 abstracted real-world games, we
find that massive models such as GPT-03-mini and DeepSeek-R1 achieve top reasoning depth across
most tasks, while smaller models occasionally match or even outperform them in specific game types.

2. Based on our evaluation results, we investigate why different models exhibit varying reasoning
depth across games by analyzing the reasoning chains of three top-performing models in baseline
competitive, cooperative, and mixed-motive games. Analysis reveals that each model’s performance
is closely tied to its dominant reasoning style, but does not benefit well from long reasoning chains.

3. Finally, we examine the social effects and alignment of LLMs relative to human behavior when
demographic features are assigned. We find that embedding demographic attributes prior to reasoning
can reveal biases, even in advanced models such as DeepSeek-R1 and GPT-4o, particularly when
processing minority-related features. This indicates that superior reasoning capabilities do not
inherently lead to desirable or ethical outcomes, underscoring the need for careful calibration and a
balanced approach in future LLM development.



2 Theoretical Foundations

2.1 Literature on Behavioral Game Theory

Classical game theory begins with the formalism of NE, in which subjects are assumed to be fully
rational: they possess unlimited reasoning capacity, have perfect knowledge of the game, and make
deterministic best responses (48). While mathematically sound, empirical evidence demonstrates
frequent deviations from NE. For example, subjects often exhibit bounded rationality and stochastic
behavior, such as overbidding in auctions or early cooperation in public goods games (25; 20). This
gap between theory and observed behavior prompted the emergence of behavioral game theory, which
progressively relaxes NE’s strong assumptions (7} 95 8 154)).

The first core insight is that subjects do not always select the utility-maximizing option determin-
istically. Instead, they respond to incentives in a probabilistic pattern, leading to stochastic choice
models, as proposed in the Quantal Response Equilibrium (QRE) model (44;130). Another observa-
tion is that subjects differ in their depth of strategic reasoning levels. Rather than assuming that all
players engage in unbounded thinking, models such as CH posit that individuals operate at varying
levels of sophistication (54;19). To capture both bounded reasoning and probabilistic behavior, we
adopt the TQRE model, which combines the key behavioral refinements of QRE and CH. Instead of
assuming convergence to a Nash fixed point, TQRE models subjects as reasoning at limited depths
and responding stochastically, thus capturing more realistic strategic behavior, structured as below.

2.2 Modeling Preliminaries

Bounded-rational Belief Formation. Each subject draws a reasoning level k ~ Poisson(r), 7 >
0, where 7 is the average depth of strategic thought. A level-k subject does not know each opponent’s
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Given that opponents act independently, the joint belief over all others’ actions a_; € A_; is

Pr(a_;) =[] 5" (a5)
i

, where the notation a_; stands for the actions of all players except i.

Expected Utility (EU) and Stochastic Choice. Given Pr(a_;), a level-k subject’s expected payoff
for each action a;; € A; is
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, where u; is the payoff function. To allow for decision noise, set A\, = v k with v > 0, and convert
utilities into choice probabilities:
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Population-Level Aggregation. Finally, the overall probability that a randomly selected subject
plays a;; is the mixture over reasoning levels:
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By estimating 7, we measure the reasoning depth LLLMs entertain when making an interactive
decision. We thus recover a cognitively grounded metric of bounded strategic reasoning that moves
beyond NE-based assumptions to characterize how LLMs reason in multi-agent environments. For
more details of the model specification, see the Appendix [A]

Our modeling approach offers two key advantages over traditional NE-based evaluations. First, by
incorporating bounded rationality and heterogeneous reasoning levels, it avoids the circularity of



assuming optimal behavior to test for rationality. Instead, it enables empirical estimation of strategic
depth without presupposing NE play. Second, it captures the anticipatory nature of strategic reasoning:
each agent’s EU is grounded in beliefs about opponents’ actual behavior, where 7 quantifies the
model’s depth of recursive belief modeling, i.e., layers of back-and-forth reasoning about others’
reasoning it engages in. This provides a cognitively meaningful measure of interactive sophistication.

Interpreting v (decision precision). In the logit choice rule, v scales how deterministically utilities
are translated into actions conditional on beliefs. Larger ~ yields more deterministic (near—best-
response) behavior, while lower ~ reflects noisier or more exploratory choice behavior. Importantly,
~ does not encode preferences over outcomes—it captures the consistency of choice given utilities
and beliefs. Because y can be context- and scale-dependent, we report it primarily to avoid con-
flating shallow reasoning with stochastic execution, while using 7 as our core measure of strategic
sophistication. Full -y estimates are reported in Appendix [B]

3 Experiment Setup and Estimation Framework

3.1 Game Library Design

We develop a library of 13 matrix games spanning 7 core types from behavioral game theory, grouped
into complete-information (fully known payoffs) and incomplete-information (need to reason with
uncertainty) settings. Each game varies in stakes and strategic structure.

Complete Information Games include four classic structures as the examples in Table[I} Each cell
displays the payoffs for Player 1 (row chooser) and Player 2 (column chooser), respectively. Players
choose their strategies, and the payoffs reflect the resulting outcome for each pair of chosen actions.

1. Competitive: Each player’s gain is the other’s loss, which tests adversarial reasoning.

2. Cooperation: Risky coordination, where mutual cooperation yields the highest joint payoff.

3. Mixed-Motive: Social dilemmas balancing private vs. joint outcomes (e.g., Prisoner’s Dilemma).
4. Sequential: temporal structure, with Player 1 moving first and Player 2 responding; we elicit
decisions from the first mover.

Table 1: Representative matrices for complete information games

(a) Competitive (b) Cooperation (c) Mixed-Motive (d) Sequential
10-10 0,5 5.8 88 07 33 05 05 03 00
410,10 50  8-5 70 55 50 1,1 52 33 -1-1

0,0 5-5  -55 24 43 02

Incomplete Information Games incorporate belief-based reasoning about unknown payoff structures
or player type. Examples of payoff matrices are shown in Table 2}

1. Bayesian Coordination: Players choose actions under uncertainty over the governing payoff
matrix. Agents are given priors (e.g., 30% vs. 70%) over two types.

2. Signaling: The sender sees both real and fake matrices; the receiver must infer the true game.
Payoffs reflect sender/receiver misalignment.

Table 2: Representative matrices for incomplete information games

(a) Bayes type 1 (b) Bayes type 2 (c) Signaling (sender) (d) Signaling (receiver)

75 33 54 22 3210 23 12

We also include the SW10 matrix from (54), a benchmark for identifying human reasoning levels.
The complete payoff matrix tables are attached in the Appendix. While our experiments use abstract
normal-form games (N, {A4;}, {u;}), these payoffs directly mirror real-world interactions. For
example, in a recommender system, the e-commerce platform chooses to recommend one of two
items, a; or as, and the user choose to purchase (b;) or not (b2), yielding utilities w1 (a;, b;) for the
platform and us(a;, b;) for the user. Similarly, in a negotiation, the proposer offers one of two deals,
a; or ag, and the responder either accepts (b;) or rejects (bz), capturing the payoffs of agreement.
Thus, payoff matrices capture essential strategic structures in various decision-making scenarios.



3.2 Evaluation Procedure

To quantify the average strategic reasoning depth (7) from observed behaviors, we proceed as follows:

Step 1. Empirical Choice Frequencies. For each LLM and each game, we collect 30 independent
trials and record the frequency c;; with which the model chose action a;;.

Step 2. Model-Implied Choice Probabilities. Under the bounded-rationality framework, a level-k
agent’s probability of selecting a;; is given by a logit function over its expected utility Ui(f), scaled
by Ax = v - k. Aggregating across reasoning levels k = 0, 1, 2, ... with Poisson weight fj(7) yields:

exp(»kai(j’,c) ke
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Example: In a two-player game where each player i € {1, 2} has actions A; = {a;1, a;2} and Player
1’s utilities satisfy

pis(,7) = D fr(7)
k=0

ui(ai1,a21) = Ur1, wi(ai1,az22) = Uiz, wui(aiz,a21) = Uz1, wui(aiz,az2) = U2z

, one computes U 1(’;) by summing each payoff U;; weighted by the probability that the opponent (a
level-(< k) mixture) plays the corresponding action. That expected utility then enters the probability

(k)

function to yield plﬁ , and the mixture over k produces p11(7,7).

Step 3. Maximum Likelihood Fit. We estimate (7, ) by maximizing the log-likelihood of the
observed counts under the model:
max D ey mpij(r, )
©,J
, where c;; is the count of times action a;; was chosen. Numerical optimization yields the values of
7 that best fit the LLM’s choice distribution.

3.3 Model Selection.

Given the rapid evolution of LLMs in both open- and closed-source communities, we select repre-
sentative models from each to demonstrate our framework’s effectiveness and highlight behavioral
differences. While including more models is desirable, our selection captures common trends and sup-
ports meaningful evaluation. The selected models include GPT-40 (37), GPT-ol-preview (38)), GPT-
03-mini (49), DeepSeek-R1 (27), DeepSeek-V2.5 (13), DeepSeek-V3 (14), gemma-2-27b-it (56,
Gemini-2.0-Flash-Thinking (55)), Granite-3.1-8B-Dense (47), Granite-3.1-3B-MoE, Claude-3-Opus
(2), internlm2_5-20b-chat (6), Meta-LLaMA-3.1-405B-Instruct (26), Meta-LLaMA-3.1-8B-Instruct,
QwQ-32B-Preview (57;162), and glm-4-9b-chat (24).

3.4 Fit Diagnostics and Chance Baseline

We evaluate the maximum log-likelihood (MLL) for each model-game pair and contextualize these
against a uniform chance baseline. For simultaneous games with m possible actions for Player 1 and
n for Player 2, the baseline log-likelihood is defined as

MLLchance = — In(mn).

For example,

2 x 2 = MLLgpance = — In(4) = 1.386,
3 x 3 = MLLepance = — In(9) = 2.197.

For sequential games, since only the first mover’s action is analyzed, the baseline reduces to

MLLchance = - ln(m),

where m is the number of available actions (e.g., m = 3 = 1.099). Values close to this baseline
indicate random or level-O-like behavior, whereas higher (less negative) MLL values reflect better fit
quality. Appendix [B]reports per-model fits and baselines, complementing Table



4 Evaluation Results and Comparison

In this section, we present reasoning depth evaluations, followed by an analysis of reasoning variation
across game types through models’ reasoning chains. By identifying distinct reasoning styles, we
provide both quantitative and qualitative insights into how LLMs reason in interactive settings.

4.1 Strategic Reasoning Capabilities Across Models

Table [3| presents the reasoning depths evaluated through the framework for each model across games.
Among all models, GPT-o1, GPT-03-mini, and DeepSeek-R1 outperform others, with GPT-o1 ranking
first in 6 games, GPT-03-mini leading in 7 games, and DeepSeek-R1 securing the top position in 5
games. Some games have co-leaders, where multiple models achieve the highest evaluated strategic
reasoning level. In these cases, certain LLMs consistently select strategies that align with theoretically
robust principles while also demonstrating accurate anticipation of the opponent’s behavior. However,
not all models achieve this level of capability, indicating variations in reasoning depth. This shows
both the strengths of top models in structured settings and the effectiveness of our framework in
distinguishing optimal decision-making from suboptimal or inconsistent reasoning. Additionally, our
findings reveal significant variations in reasoning capabilities across different game types.

GPT-o01 consistently ranks among the top models in competitive and incomplete-information games,
indicating a strong capacity for goal-oriented and adversarial reasoning. DeepSeek-R1 excels in
cooperative and mixed-motive settings, likely due to its reinforcement learning-based optimization
for social interaction and mutual benefit. GPT-03-mini performs robustly across all game types,
particularly in cooperative, mixed-motive, and incomplete-information scenarios, reflecting a balanced
ability to manage trade-offs, adapt to uncertainty, and apply probabilistic inference.

The performance gap between stronger models, such as DeepSeek-R1, GPT-o1 and GPT-03-mini,
and weaker ones, like DeepSeek V2.5, DeepSeek V3, and GPT-40, is notable across most games.
Nevertheless, advanced models do not always dominate all game types. Smaller models like Gemma-
2-27B and LLaMA-3.1-8B sometimes match or outperform larger counterparts, and DeepSeek-R1 is
a top model despite not being the largest. Additionally, derived from a much smaller base model,
R1-distilled models can outperform significantly larger models [H This suggests that model size is not
the sole factor in reasoning quality. Instead, context, model structure, and training data likely play a
crucial role, highlighting the strong influence of contextual adaptation on LLMs’ reasoning abilities.

Table 3: Strategic reasoning depth (7) across different game settings

Complete Information Game Incomplete Information Game
Competitive Cooperation Mixed-motive S Bayesian Sionali
Games Games Games - Games 1gnaiing
BL  HS LS BL  HP AP BL HpPun LPan O =535 p=0g  Oames
GPT-40 1.543 1936 0.729 0.602 0.143  1.505 1.665 0.537 1.499 0.222 1.973  1.953 3.590
GPT-ol 4741 4311 3.126 2.800 0.628 1.322 0.143  0.069 1.481 2.846 4.225 4.225 3.980
GPT-03-mini 1.309 2.087 2.430 3.550 4.226 3.944 3352 3944 2931 0.635 4.225 4.225 3.079
Gemma-V2 0320 1.485 1.593 0.183 0.003 1.118 0981 0290 0.851 0.735 1.831 0.187 3.069
Gemini-2.0 1202 1202 1.958 2.487 1.609 0.070 2461 0223 1230 1.683 4.225 4.225 3.920
Claude-3-Opus 1.131 0.982 0.036 3390 1.322 1.505 1.333  1.000 1.220 0.717 2.014 4.225 3.623
Granite-3.1-8B 1.428 0.003 3.429 1.127 0.128 1.476 1.360 0.198 1.376 1.480 1.191 1.261 1.527
Granite-3.1-MoE ~ 1.098 1.257 1.336 3396 2405 2515 3.895 3.524 2508 1.560 2.119  2.407 2.832
LLaMA-3.1-405B  0.988 0.910 0.177 0379 0.001 1.118 1.368 0290 1.180 0.688 1.658 0.226 1.543
LLaMA-3.1-8B 1.298 0964 1.548 1.066 0.717  0.000 1431 0173 1475 0.357 0.340  0.069 2.336
InternLM-V2 0.124 0.882 1.511 0.869 0.143 1.311 1.449 0537 1.396 0.579 0.943  0.384 0.339
QwQ-32B 3599 1435 3.892 2398 3434 0916 2.564 0.406  1.427 0.144 0405 1.197 2.904
GLM-4 1.177 0.962 1.488 1.250 0436 1.247 1392 0.173  1.481 0.748 0.810  0.639 1.252
DeepSeek-V2.5 1.108 0913 1.413 1.215 0.480 1.247 1269 0.290 1.190 0.174 0.736  1.120 1.455
DeepSeek-V3 0.142  0.390 0.042 0.183 0.003 1.118 1.399 0.173 1346 0.883 1.295 1.347 3.410
DeepSeek-R1 0.075 1.198 0.233 3.550 4.226 3.944 2718 1322 2929 0.516 4225 4.225 3.079

Note: Bold values indicate the highest strategic reasoning level (7) observed for that game. Abbreviations: HS = High Stake, LS = Low Stake,
BL = Baseline, HP = High Payoff, AP = Asymmetric Payoff, H-Pun = High Punishment, L-Pun = Low Punishment.

4.2 Empirical Exploration for Variations of Leading LLM in Different Game Types

To investigate why certain advanced models perform well in specific game types while others do not,
we focus our analysis on three top-performing models, DeepSeek-R1, GPT-01, and GPT-03-mini, in
baseline competitive, cooperative, and mixed-motive games.

"Full results in Appendix [B| Table



We gather available internal or summarized reasoning traces from each model and link them with its
observed behavioral choices. For each model-game pair, we extract the empirical strategy distribution
from 30 independent trials and identify the dominant or mixed-strategy pattern. We then examine the
corresponding reasoning traces through qualitative analysis, aligning textual reasoning steps with
revealed strategic behavior to evaluate coherence between what the model says and what it does. To
ensure robustness and mitigate subjectivity, we collect a diverse set of reasoning traces from different
models and anonymize them before analysis. Researchers who coded each CoT trace for reasoning
style did so without knowing which model produced it, following a “blind review” procedure that
minimizes post-hoc bias. A pre-defined structured coding rubric was used to classify reasoning
styles (e.g., maximin, belief-based anticipation, opponent-oriented logic), and cross-validation was
performed by having multiple researchers independently code overlapping subsets and compare
results for consistency. Finally, we record the completion tokens required by each model to quantify
computational demand and analyze whether longer reasoning chains correspond to improved or
diminished decision quality.

Based on the summarization in Table ] we observe that each model’s performance in different game
types reflects the strategic logic it tends to apply. While these styles are not mutually exclusive or
deterministic, they offer a coherent lens for interpreting variation in performance.

Table 4: LLMs’ reasoning styles and examples
Model Domi R ing Style Repr ive Excerpts
“I select the row that maximizes our minimum payoff.” (competitive game)

Consistent maximin,

GPT-ol Payoff pessimism (risk-averse) “Even though Row 0 gives 8 in the best case, Row 1 guarantees at least 5.” (coordinative game)
yoll p "Worst-case payoff for me (assuming the opponent minimizes our payoff): 0" (mixed strategy game)
C e .. . “Player 2 is likely to choose column 1, so I respond with row 0.” (competitive game)

Belief-guided decision-making « . L ) ”
GPT-03 e o Column 2 guarantees the highest minimum payoff... That’s why I selected column 2.

with fallback to maximin p 8

(mixed motive game)

Opponent oriented decision, Player_Z» will likely choose the column that maximizes their own payoff... so I choose row 0.

DeepSeek-R1 (competitive game)

Lack of adversarial consideration . ; Lo, Lo
... neither player benefits from deviating” (coordinative game)

GPT-o1 consistently applies minimax reasoning, evaluating each option by its worst-case outcome.
In nearly every reasoning chain we extracted, the model explicitly states, “I will now use minimax to
help me make a decision.” This leads to strong performance in competitive games, where minimizing
potential losses aligns with an optimal strategy. However, the same strategy becomes overly cautious
in cooperative or mixed-motive games, where achieving mutual benefit often requires trust and
risk-taking. GPT-o1 also exhibits a highly defensive stance, at times assuming that the opponent’s
objective is to minimize its payoff, interpreting interactions as fully adversarial. GPT-03-mini
demonstrates greater flexibility. It primarily engages in belief-based anticipation, attempting to infer
the opponent’s likely move and respond accordingly. This allows it to perform well in cooperative
and mixed-motive settings, where alignment with the other player is key. Yet under uncertainty,
GPT-03-mini sometimes falls back to the worst-case logic, which can limit its potential in competitive
games but also protects against major failures. DeepSeek-R1 adopts a strategy that begins with
assumptions about the opponent’s likely action, typically based on the idea that the opponent will
pursue their own payoff. This logic works well in cooperative games, where the players’ incentives
are aligned, but lacks the adversarial caution required in competitive games. R1 also tends to exhibit
strategic trust, assuming that when mutual benefit is unavailable, the opponent will not deviate simply
to harm the other player, in contrast to GPT-o1, which at times assumes spiteful intent.

An additional observation relates to token usage, as shown in Appendix [B] Table [§] Contrary to
intuitive expectations, higher token counts in internal reasoning do not correlate with better reasoning.
In fact, GPT-o1 and DeepSeek-R1 are leaders in competitive and cooperative games, respectively,
while they produce the shortest CoT outputs within their strongest games. We observe that longer
reasoning chains often suggest hesitation and uncertainty, rather than deeper insight. Conversely,
more concise CoT responses tend to signal higher confidence and more direct strategy choices.
Notably, in competitive games, DeepSeek-R1 often exhibits repeated self-doubt in its CoT, but this
results in redundant reasoning loops that inflate token usage without improvement. This points to
future research on improving token efficiency in CoT generation, such as incorporating RL-based
training that encourages decisive and diverse reasoning over repetitive patterns.



Table 5: CoT effect on reasoning examples
Model Prompt Excerpt
"I should pick the row that gives me the maximum value among these worst-case...
Wait, I made a mistake... Let me reconsider using the concept of maximin..."
"Row 0 and Row 2 both have a worst-case of =5, but Row 0 offers a potential payolff of 10,
so I choose Row 0."

Example of Improvement:

Claude-3-opus

Example of Decline: "We assume Player One picks the row that minimizes our payoff, so..."
GPT-40 "Break tie with average... Column 2 is better."

4.3 Effect of CoT Prompting

Our empirical study of top-performing models with embedded internal CoT reasoning motivates us
to explore whether CoT prompting can also enhance models that do not natively generate internal
reasoning. The strategic reasoning level after explicitly adding the CoT prompt is presented in
Appendix [B| Table[9] Intuitively, many believe CoT can likely enhance a model’s reasoning ability.
However, our results show that CoT’s impact on strategic reasoning is mixed, with no consistent
improvement across all models and game types, which is consistent with prior findings suggesting
that the "CoT does not always help" (18;10), particularly in strategic settings.

For example, Figure 2] compares 7 in the Competitive-Base game with and without CoT prompting.
While some models improve, others remain unchanged or even decline. We select two representative
cases: with the largest improvement and sharpest decline: Claude-3-Opus and GPT-40. Table [3]
presents excerpts from their CoT reasoning chains to illustrate the underlying dynamics
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Figure 2: Comparison between baseline and CoT ~ Figure 3: Comparison among human participants
Note: Green marks the largest increase; red marks the largest decline and LLMs on the SW game

If we look at their gaming strategies, Claude-3-Opus quickly identifies a clear attempt to apply
the maximin strategy at an earlier stage, an appropriate approach for the competitive game. It
initially makes calculation errors, referring to incorrect cells during its payoff analysis, but the model
explicitly identifies and corrects these mistakes mid-chain. This self-correction enables it to recover
and ultimately arrive at a robust decision that aligns with its strategic intent. In contrast, GPT-4o starts
with a fundamentally flawed assumption, mistakenly believing that the opponent will act adversarially
to minimize its payoff. Based on this incorrect premise, the model applies a tie-breaking rule using
average values across columns, stuck in a verbose reasoning loop that reinforces the wrong strategy.
These again imply that CoT does not guarantee better reasoning. When a model begins with a sound
strategy, CoT can support useful self-correction and refinement. However, when the underlying
reasoning is misaligned from the beginning, extended chains often lead to repetitive and unproductive
loops rather than meaningful improvement, which echoes one of our findings in Section[4.2]

5 Detecting Social Effect with Human

While reasoning depth is useful for evaluating LLMs’ strategic capacity, model sophistication alone is
not enough. Real-world deployment requires alignment with contextual goals, ethical constraints, and
human norms. To examine these factors, we compare LLM reasoning with human performance in
identical games and examine how assigned demographic personas influence model behavior, shedding
light on identity-induced strategic shifts and fairness in Al decision-making.

?Full reasoning chains are in Appendix @



Figure 3] compares all models against human subjects in a single-scenario setting (545 [51), with six
models surpassing human performance. However, this ranking should not imply that “a higher score is
better”. In many applications, alignment with human reasoning is more critical than outperformance.
Our framework supports such evaluation by quantifying reasoning depth across subjects, offering a
path to calibrate LLMs for human-aligned behavior. For instance, businesses can use representative
human samples to fine-tune models toward user-aligned decisions.

To further evaluate the alignment of LLMs with human strategic reasoning, we construct a diverse
set of socio-demographic personas spanning a broad range of individual characteristics, inspired by
(29). These personas are structured into two tiers: foundational demographic features (Panel 1) and
advanced identity attributes (Panel 2), as detailed in Table[6]

Table 6: The Personas across 10 socio-demographic groups that we explore in this study.

Group Persona
Panel 1: Foundational Demographic Features
Sex male, female
Education Level below lower secondary, lower secondary, upper secondary, short-cycle tertiary, bachelor, and graduate degrees
Marital Status never married, married, widowed, divorced
Living Area rural, urban
Age 15-24,25 - 34,35 - 44, 45 - 54, 55 - 64, 65+
Panel 2: Advanced Demographic Features
Sex Orientation heterosexual, homosexual, bisexual, asexual
Disability physically-disabled, able-bodied
Race African, Hispanic, Asian, Caucasian
Religion Jewish, Christian, Atheist, Other Religious

lifelong Democrat, lifelong Republican, Barack Obama supporter,

Political Affiliation Donald Trump supporter

We then perform Ordinary Least Squares (OLS) regressions using the estimated behavioral parameters
as dependent variables. The general specification of the regression is:

Reasoning_Depth, = By + 8, Dni + €;

Here, i indexes each observation, D,,; is the n-th binary demographic indicator, (3, denotes its
estimated effect on the behavioral parameter, and ¢; is the error term.
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Figure 4: Significant demographic shifts in reasoning depth

Note: Each point reflects the significant change in reasoning depth relative to a reference group through OLS. Reference categories are: Male
(gender), Heterosexual (sexual orientation), Age 25-64 (age), Able-bodied (disability status), Single (marital status), Other Religious (religion),
and Democrat (political affiliation). Positive (negative) shifts indicate higher (lower) reasoning depth relative to the reference group.

Figure [d] shows estimated shifts in reasoning depth across demographic conditions with statistically
significant effects from OLS regressions. A consistent pattern emerges around gender: when
prompted with a “female” persona, several large models—such as GPT-40, InternLM V2, and Claude
3-Opus—exhibit increased reasoning depth, suggesting deeper multi-level reasoning under female
identity framing. Sexuality-based variation reveals further heterogeneity. While “homosexual” and
“bisexual” personas raise reasoning depth in models like GPT-40 and GLM 4, they lead to significantly
reduced 7 in Gemini 2.0 and Granite MoE. These divergent effects highlight both the contextual
flexibility of LLM reasoning and the risk of identity-induced attenuation. Other demographic factors
can also cause disturbance in reasoning depths. We include full results of this study in Appendix

Mechanism note. Observed persona-induced shifts likely stem from statistical associations in
training corpora that link demographic descriptors to behavioral patterns, potentially modulated by
reinforcement learning from human feedback (RLHF). Models often deny explicit bias yet reveal



implicit adaptation under identical payoffs, indicating latent contextual priors. Our framework
surfaces these implicit shifts and quantifies their magnitude for downstream auditing and fairness
alignment.

6 Conclusion and Discussion

This study sets a new milestone in evaluating LLM strategic reasoning by assessing while accounting
for contexts, addressing the limitations of NE-focused benchmarks. We find that strong performance
on standard tasks (e.g., math) does not always guarantee higher reasoning depth. Analysis also
reveals the limitations of CoT prompting in strategic settings, where its benefits are not universal
and can, at times, impair reasoning. These findings inform ongoing efforts to refine LLM reasoning
workflows for complex decision-making. Additionally, our demographic analysis exposes how biases
can emerge even in top-performing models, underscoring the need for fairness-aware evaluation.

Effectiveness of CoT. While CoT can enhance the reasoning process in language models, its
effectiveness hinges on task comprehension and alignment with intended objectives. Our analysis
shows that well-aligned CoT prompts support structured reasoning and improved outcomes, whereas
misaligned prompts can amplify errors—even in models trained with RL from Human Feedback
(RLHF). DeepSeek-R1 illustrates that, despite strong performance in some games, it underperforms in
others, exhibiting repetitive self-questioning and redundant token generation without better solutions.
RLHF helps refine strategies, but without the intrinsic ability to evaluate context-dependent strategies,
models may remain trapped in ineffective reasoning loops. These findings highlight the need for
adaptive, context-aware reasoning and raise a key open question: how can external prompts be better
aligned with a model’s internal reasoning processes to ensure robust and interpretable behavior?

Alignment and Fairness in AI Reasoning. Superior strategic reasoning depth does not equate to
ethical decision-making. When demographic cues are introduced, models can adjust their strategies
based on the given role, indicating that their decisions can encode and present societal biases. This
is especially concerning in multi-agent interactions, where solely prioritizing strategic efficiency
may lead to inequitable or adversarial outcomes. In interactive settings, LLMs that adjust strategies
based on demographic cues risk perpetuating bias in negotiations and resource allocation, leading to
real-world inequalities over time. This presents a critical challenge to balance strategic reasoning
with fairness. Unconstrained optimization may encourage exploitative tactics, while rigid fairness
constraints could hinder adaptability. Future development must move beyond performance metrics to
integrate ethical safeguards, ensuring that LLMs engage in fair and justifiable decision-making in
dynamic multi-agent environments.

Limitations and Future Directions: While our study sheds light on LLM reasoning patterns and
benchmark alignment, the causal link between prompts and decision outcomes remains underexplored.
Future work should investigate how individual cognitive skills—such as logic, math, and contextual
understanding—interact to shape reasoning capabilities. Moreover, our current framework is semi-
dynamic; extending it to real-time multi-agent interactions may reveal new reasoning dynamics and
performance disparities. Exploring such settings could provide deeper insights into adaptive LLM
behavior and strategy formation.

Broader Impact: This study provides practical insights into how the internal decision-making
processes of large language models translate into real-world social outcomes through quantitative
evaluations. Unlike explicit discrimination, these biases emerge through adaptive reasoning, making
them more difficult to detect and regulate. As organizations increasingly rely on Al to guide complex
decisions affecting diverse populations, researchers and practitioners must remain cautious: subtle
reasoning biases in sophisticated Al could inadvertently widen existing societal gaps. Addressing
these challenges today will ensure that LLMs become inclusive tools promoting societal equity, rather
than unintentionally reinforcing historical injustices.
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A Detailed Model Specification

In this appendix we provide a fully detailed statement of the model and then work through a concrete
two-player, two-action example for clarity.

A.1 Game and Payoff Structure
* Z={1,...,N}: setof players.
e A;: finite action set of player .
« A, =1] i At joint action space of all players except i.
* a; € A;,a_; € A_;: player ¢’s action and opponents’ profile.

* u;(a;,a_;): payoff to ¢ when playing a; against a_;.

A.2 Reasoning Levels and Noise

* Agents draw a reasoning level k € {0,1,2,...} from a Poisson distribution with mean
T>0:
Tk,e—T

ko
» Each level-k agent has precision (inverse noise)

fx = Pr(level = k) = k=0,1,2,...
e =7k, ~v>0.
Higher \;, means more sharply payoff-driven (less random) choices.
A.3 Level-/ Strategy Distributions
For each opponent j # 4 and each potential level h, we assume a level-h strategy

oA 001, Y oM(a) =1

a;€EA;

This is the probability that a level-h thinker j chooses action a;.

A.4 Mixed Marginal Belief

A level-k agent does not know which of the levels 0, ..., k — 1 its opponents occupy, so it forms a
mixture of their level-h strategies. Define the normalized weight
k) _ _Jn
h = k-1 L 0,,]{3*1
Zezo fZ

Then the agent’s marginal belief about opponent j is

k—1
_(k k h
o\ a;) =D Wi o (ay), a; € Aj.
h=0

A.5 Joint Belief

The notation
a_; = ((11, ey A1, A 1y - - - ,aN)
stands for the actions of all players except i. For example, if N = 3 and i = 1, then a_; = (az, a3),

meaning “opponent 2 plays as” and “opponent 3 plays as3.” Under the assumption that each opponent

j # i acts independently, in this example, Pr(as, a3) = 5§k) (a2) 6§k) (as), In general, the probability

of the profile a_; is
_(k
Pr(a—;) = Haj(. )(aj).
i
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A.6 Expected Utility at Level £

Given belief Pr(a_;), the expected payoff for player ¢ choosing a;; € A; is

v = 3 Pr(aci)uiai.a).
a_;€A_;

A.7 Choice Probabilities

Once a level-k agent has computed the expected payoffs Ui(f) for each action a;j, it converts these
into a probability distribution via a logit rule. The precision parameter A\; governs how sharply the
agent favors utility-oriented actions:

) exp( M USF)
Y ZaGAi exp()\k Uz'(f))

When Ay is small, payoffs have little influence and choices are nearly uniform; as Ay, — oo, the agent
approaches deterministic best-response behavior.

A.8 Population-Level Aggregation

Because agents’ reasoning levels k are drawn from the Poisson weights f, the overall probability
that a randomly chosen agent plays action a;; is the weighted average of level-specific probabilities:

k
Pij = E fkpgj)-
k=0

This mixture captures heterogeneity in both depth of reasoning and choice stochasticity across
the population. In implementation, the infinite sum is truncated at a sufficiently large K so that

Zk:O fk ~ 1
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B Additional Results

In this section, we present the complete results for the following model variants across all game
settings: vanilla models, vanilla models with CoT prompting, distilled models based on DeepSeek-R1,
vanilla models with embedded demographic features, and vanilla models with both CoT prompting
and demographic features.

Distilled Model

We evaluate DeepSeek-R1 distilled models across multiple architectures—LLaMA-70B, LLaMA-
8B, Qwen-32B, Qwen-14B, Qwen-7B, and Qwen-1.5B—to assess whether the distillation process
introduces additional biases in the inherited models. As shown in Table[7} R1-distilled models can
outperform significantly larger counterparts, despite originating from smaller base models. This
indicates that model size alone does not determine reasoning quality. Instead, factors such as
architectural design, training data, and contextual adaptation play a pivotal role in shaping LLM
reasoning capabilities.

However, our analysis reveals that knowledge distillation can also introduce new biases, as evidenced
in Table[TTb} While distillation enhances reasoning performance—particularly in cooperative and
mixed-motive game settings—it also increases sensitivity to demographic features. In the vanilla
LLaMA models, even with CoT prompting, bias remains limited, typically affecting only one or
two attributes. In contrast, R1-distilled versions of LLaMA-8B and LLaMA-70B exhibit amplified
demographic biases. For instance, DSk-R1-LLaMA70B shows marked sensitivity to age and race.

These findings highlight the critical importance of monitoring the distillation process. If the teacher
model is trained on malicious or skewed data, these biases may propagate to the student model,
potentially resulting in harmful behaviors. More concerningly, even when trained on ostensibly
neutral data, hidden biases can be transferred during distillation. This underscores the need for
rigorous auditing and bias mitigation when applying knowledge distillation in LLM development.

CoT + Demographic Features

Religion / Gemma Religion / InternLM
' mBase =CoT ! mBase ®CoT
1.2 0.8
0.9 0.6
3 3
“os =04
0.3 0.2
0 0
Atheist Christian Jewish Other Atheist Christian Jewish Other

a b
Figure 5: Im(pglct of CoT on the same models with the same demoéra)lphic features

To assess whether explicit step-by-step reasoning affects model fairness, we introduce CoT prompting
and analyze its impact on demographic correlations, as reported in Table[I2] Overall, we observe
that CoT increases the number of demographic variables exhibiting significant influence—even in
models that were previously neutral—indicating that CoT can shift how models interpret and weigh
user cues. For instance, Figure 5] shows that Gemma-2 exhibits a marked increase in sensitivity to
the “Jewish” attribute, while InternL.M, initially unbiased, develops religious disparities under CoT.
These findings raise important fairness concerns: CoT can both surface latent biases and introduce
new correlations, making fairness properties highly sensitive to prompt design. In particular, if a
model overemphasizes certain demographic signals, CoT may exacerbate rather than alleviate bias.
This highlights the necessity of prompt-specific bias audits and careful monitoring as CoT prompting
becomes more widely adopted.
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Table 7: Strategic Reasoning Performance (7) Across Different Game Settings Include Distilled
Models

Complete Information Game I plete Information Game
Competitive Cooperation Mixed-motive Se Bayesian Sienalin
Games Games Games Gargés Games C%amesg
BL HS LS BL HP AP BL H-Pun L-Pun p=0.5 p=0.9
GPT-40 1.543 1936 0.729 0.602 0.143 1.505 1.665 0.537 1499 0222 1973 1953 3.590
GPT-ol 4741 4311 3.126 2.800 0.628 1.322 0.143  0.069 1.481 2.846 4225 4.225 3.980
GPT-03-mini 1.309 2.087 2430 3.550 4.226 3.944 3352 3944 2931 0.635 4.225 4.225 3.079
Gemma-V2 0320 1.485 1.593 0.183 0.003 1.118 0981 0290 0.851 0.735 1.831 0.187 3.069
Gemini-2.0 1.202 1202 1.958 2487 1.609 0.070 2461 0223  1.230 1.683  4.225 4.225 3.920
Claude-3-Opus 1.131 0982 0.036 3390 1322 1.505 1.333  1.000 1.220 0.717  2.014 4.225 3.623
Granite-3.1-8B 1428 0.003 3.429 1.127 0.128 1.476 1.360 0.198 1.376 1480 1.191 1.261 1.527
Granite-3.1-MoE ~ 1.098 1.257 1.336 3396 2405 2515 3.895 3524 2508 1.560  2.119 2.407 2.832
LLaMA-3.1-405B  0.988 0.910 0.177 0.379 0.001 1.118 1.368 0290 1.180 0.688 1.658 0.226 1.543
LLaMA-3.1-8B 1.298 0.964 1.548 1.066 0.717 0.000 1431 0.173 1475 0.357  0.340 0.069 2.336
InternLM-V2 0.124 0.882 1.511 0.869 0.143 1.311 1.449 0537 1.396 0.579 0.943 0.384 0.339
QwQ-32B 3.599 1435 3.892 2.398 3434 0916 2.564 0406 1427 0.144 0405 1.197 2.904
GLM-4 1.177 0.962 1.488 1.250 0436 1.247 1392 0.173  1.481 0.748  0.810 0.639 1.252
DeepSeek-V2.5 1.108 0913 1413 1.215 0480 1.247 1269 0290 1.190 0.174  0.736  1.120 1.455
DeepSeek-V3 0.142  0.390 0.042 0.183 0.003 1.118 1399  0.173  1.346 0.883  1.295 1.347 3.410
DeepSeek-R1 0.075 1.198 0.233 3.550 4.226 3.944 2718 1.322 2929 0.516  4.225 4.225 3.079
DeepSeek-R1-Distill Models:
LLaMA-70B 0.488 0.028 0.072 0.730  0.619 1.512 2376 0.745 1.228 0.884  4.225 3.066 3.460
LLaMA-8B 0.341 0.261 0.150 0.628 - 0.000 1.394  0.633  1.266 0.068 1.796 1.966 3.245
Qwen-1.5B 0.421 0434 0.013 2.180 0.990 0916 1420 0397 1224 0.119 0.883 0.884 1.430
Qwen-14B 0.518 0.633 0.047 2487 0.606 1.945 1445  1.179 2.033 0.097 1.980 1.407 3.791
Qwen-32B 0.790 1.045 0.335 1.093 0916 0.406 2472 0773 1.399 0.075 4.225 4.225 3.731
Qwen-7B 0.120 1.045 0.084 0.907 0.163 1.470 1457  0.677 1.147 1.528 0.645 0.994 3.112

Note: Bold values indicate the highest strategic reasoning level (7) observed for that game. A dash (-) indicates
cases where the model struggles to establish a stable level of reasoning due to potential convergence challenges.
Abbreviations: **HS** = High Stake, **LS** = Low Stake, **BL** = Baseline, **HP** = High Payoff,

** AP** = Asymmetric Payoff, **H-Pun** = High Punishment, **L-Pun** = Low Punishment.

Table 8: Summary Statistics of Leading Models’ Completion Token Numbers for Baseline Games

Competitive games Cooperative games Mixed-strategy games
GPT-01 GPT-03-mini DeepSeek-R1 | GPT-01 GPT-03-mini DeepSeek-R1 | GPT-01 GPT-03-mini DeepSeek-R1
mean 774727 8938.33 10979.93 3197.80  5966.80 1764.67 3472.87  5944.07 2318.33
min 3994 6200 9050 2431 4786 1001 2585 4586 1599
max 14858 13223 13350 5690 7100 2931 5020 7659 3742

Table 9: Strategic Reasoning Performance (7) Across Different Game Settings in CoT

Complete Information Game Incomplete Information Game
Competitive Cooperation Mixed-motive Se Bayesian Sienalin
Games Games Games Gan?és Games Ggamesg
BL HS LS BL HP AP BL  H-Pun L-Pun p=0.5 p=0.9
Claude-3-Opus-CoT 4264 3.327 - 0270 1.053 1311 I.I8T 0.127 0.140 1.692  0.502 0.564 1.489
DeepSeek-V2.5-CoT 1.427 1.867 1.103 3.046 2510 1376 2.608 1.322 3319 1.646  1.058 0.854 0.405
DeepSeek-V3-CoT 1.179  0.480 - 3269 1322 0.628 2.815 1253 2831 0369 0913 1.039 0.079
Gemma-V2-CoT 0.566 0.848 1.469 0.629 0986 0.070 0511 0.069 0916 0.717  1.202 0.782 1.419
Gemini-2.0-CoT 1.005 1.410 - 1.080 0.777 1.515 1.350 0.896 1314 0.209 0.879 1.057 1.529
GPT-40-CoT 0.511 0.288 1.063 0.871 0.762 1.515 1411 0.629 1311 1.596  4.225  3.066 3.976
Granite-3.1-8B-CoT 3.646 1.048 4.247 1990 1.022 0.333 1426 0.020 1.480 1.440 2.141 1.138 0.908
Granite-3.1-3B MoE-CoT  3.193 3.301 0.159 0.400 0.177 2.256 1.518 1.160 1.139 2.843 1956 0223 2.009
LLaMA-3.1-405B-CoT 0314 1416 0.049 0.357 0.835 0.560 0.154 0.223  0.693 0.182  0.738 0.857 1.521
LLaMA-3.1-8B-CoT 0.942 1.007 0.263 0.118 0.829 0.342 1383  0.960 0.158 0.152  0.736  0.981 1.511
InternLM-V2-CoT 0512 1.039 1.552 1.067 1.021 1.247 1.371  0.927 1364 0.077 1.068 1.220 2.338
QwQ-32B-CoT 3207 1491 3.956 3.550 4.226 0.628 3352 3.944  3.080 0.068 0438 1.024 4.226
GLM-4-CoT 0.442  0.645 0.221 0.069 1.119 0.406 0.069 0.795 0.223 0360 1.058 0.871 1.486

Note: Bold values indicate the highest strategic reasoning level (7) observed for that game. A dash (-) indicates
cases where the model struggles to establish a stable level of reasoning due to potential convergence challenges.
Abbreviations: **HS** = High Stake, **LS** = Low Stake, **BL** = Baseline, **HP** = High Payoff,
**AP** = Asymmetric Payoff, **H-Pun** = High Punishment, **L-Pun** = Low Punishment.
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Table 10: Context Controller () Across Different Game Settings

Complete Information Game

Incomplete Information Game

Competitive Cooperation Mixed-motive Se Bayesian Sienalin
Games Games Games Gan?és Games Ggamesg
BL HS LS BL HP AP BL H-Pun L-Pun > p=05 p=09 i}
GPT-40 1486 0.595 4.076 0.000 0.000 5.000 0.846 0950 0.236 0.000  0.000 0.000 34.198
GPT-o0l 0.064  0.029 1.231 5.000 0.047 5.000 5.001 5.276  0.395 10.152  1.000 0.000 0.676
GPT-03-mini 1482 0595 1316 5.000 0.041 5.000 5.001 5276 0.120 0.089  5.000 0.071 35.734
Gemma-V2 22.898 0.592 3.010 0.000 0.000 1.045 0.031 0317 0.129 0.000  0.000 0.000 52.362
Gemini-2.0 1.471 0568 3.119 1.004 0.023 5.000 5.001 5.276  0.300 0.044  1.000 0.000 0.000
Claude-3-Opus 0.000  0.003 17.497 0.000 0.061 5.000 5.000 5.276  0.355 0.000  0.000 0.000 38.675
Granite-3.1-8B 0.125  5.000 0.144 0.000 0.000 5.000 0.000 0.000  0.000 0.000  5.000 0.000 0.000
Granite-3.1-MoE 2383 0931 3.874 5.000 0.040 5.000 5.000 1.010  2.860 0.065  5.000 0.054 0.000
LLaMA-3.1-405B  1.461  0.589 16412 0.000 0.000 5.000 0.025 0.441  0.000 0.000  0.000 0.000 37.102
LLaMA-3.1-8B 0.000  0.000 0.000 1.009  0.000 0.000 0.337 5861  0.081 0.000  0.000 0.000 48.384
InternLM-V2 16.153  0.000 0.000 0.000 0.000 5.000 0.000 0.593  0.061 0.000  0.000 0.000 42.306
QwQ-32B 0.045 0921 0.143 5.000 0.032 0.056 6.609 0.842 0.882 0.109  5.000 0.331 48972
GLM-4 0.000  0.000 0.000 0.000 0.000 0.000 0.000  0.000  0.000 0.000  0.000 0.000 38.796
DeepSeek-V2.5 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000  0.000 0.000 41.697
DeepSeek-V3 0.706  0.569 21.732 5.000 0.041 5.000 5.001 5.276  0.120 0.054  5.000 0.078 52.656
DeepSeek-R1 13.719 0.583 19.847 0.000 0.000 1.045 0.000 0.014 0.156 0.000  0.000 0.000 40.615

Note: Abbreviations: HS = High Stake, LS = Low Stake, BL = Baseline, HP = High Payoff, AP = Asymmetric Payoff, H-Pun = High
Punishment, L-Pun = Low Punishment.

Table 11: LLMs Sensitivity to Demographic Features through Regression Analysis

(a) SOTA LLM models
Feature GPT GPT GPT Gr;"l‘“e Gr;'l‘“e Claude . ma Gemini LLaMA LLaMA InternLM owo GIM
40 ol 03 g : V2 2.0 405B SB V2 4
MoE 8B Opus

Syearsold 0296 0051 0020 0.140 0017 0071 0106 0090 0.7 -0.001 0.026 0.027 _ 0.138
(0.184) (0.260) (0.130) (0.079) (0.207)  (0.067)  (0.140)  (0.084)  (0.338)  (0.088)  (0.175)  (0.090) (0.076)

>SSyearsold 0094 0226 0036 0098 0246 -0.009 0083 0054 019 0.030 0055  -0.101  0.027
(0.138) (0.197) (0.098) (0.060) (0.156) (0.051) (0.106) (0.063) (0.255) (0.066)  (0.132)  (0.068) (0.058)

Female 0.274% 0263  0.118 0.190%  0.153  0.146%% 0167  -0.057 -0432  0.063 0.073 0.067  -0.047
(0.126) (0.183) (0.091) (0.056) (0.145) (0.047) (0.098) (0.059) (0.237)  (0.062)  (0.123)  (0.063) (0.053)

Graduate 0208 -0283 -0.029 -0.070 0255  -0.069 0020  0.053  0.131 0.034 0.076  -0.122  0.141%
Level (0.170)  (0.245) (0.122) (0.075)  (0.195) (0.063)  (0.132)  (0.078) (0.317)  (0.083)  (0.165)  (0.082) (0.069)
Below 0.275% -0.154 -0.011 0095  0.128  -0.077  0.030  -0.090 0323  -0.064 0.120  0.006  -0.004
Secondary (0.139) (0.196) (0.098) (0.060) (0.156) (0.050) (0.106) (0.063) (0.254)  (0.066)  (0.132)  (0.066) (0.056)
Divorced 0062 0041 -0.014 -0049 -0336 -0.024 -0.179  -0.066 0211 -0.032 0.166 0.050  0.023
(0.163) (0.237) (0.118) (0.072) (0.188) (0.061) (0.128)  (0.076)  (0.307)  (0.080)  (0.159)  (0.078) (0.066)
Married 0.039 -0340 -0.155 -0.057 -0.401* -0.111  -0.177 -0.125  0.166 0.004 0.156 20.032  -0.129%
(0.166)  (0.239) (0.119) (0.073)  (0.190) (0.061)  (0.129)  (0.077)  (0.310)  (0.081)  (0.161)  (0.077) (0.065)

Widowed 0.097 -0081 -0.034 0043 -0321 -0.016 0024 -0063  0.016 0.022 0.203 -0.019  0.059
(0.175)  (0.246) (0.122) (0.075)  (0.195)  (0.063)  (0.132)  (0.079)  (0.319)  (0.083)  (0.165)  (0.078) (0.066)

Rural 0.076 -0285 0086  -0.028  -0.009 -0.00 0099  -0.036 -0289  0.048 -0.011 0.037  0.052
(0.126)  (0.179) (0.089) (0.055) (0.142) (0.046) (0.096) (0.057) (0.232)  (0.060)  (0.120)  (0.058) (0.049)

Asexual 0178 0198 -0.066 -0.100 0042 0076  -0224  -0.022 0230  -0.010 0.333*  0.082 0016
(0.171)  (0.248) (0.123) (0.076)  (0.197) (0.064) (0.134) (0.080) (0.321)  (0.084)  (0.167)  (0.080) (0.067)

Bisexual 20.176 0342 0055 -0.122  -0.004 0025  -0099 -0.162 0254  -0.145 0.438 -0.075  -0.017
(0.190) (0.277) (0.138) (0.084) (0.220) (0.071)  (0.149)  (0.089)  (0.359)  (0.094)  (0.186)  (0.092) (0.077)

Homosexual 0262 0111 -0076 0002  -0.418% 0086  -0.160  -0.057  -0.044  -0.143 0.345 0.109  -0.035
(0.183) (0.263) (0.131) (0.080) (0.209) (0.068) (0.142) (0.084) (0.341)  (0.089)  (0.177)  (0.086) (0.072)

Physically 0169 -0.144 0047 0036 0045  0.096* -0.099 -0.033  -0.I5]  0.095 0.012 0.000  -0.049
Disabled (0.125)  (0.181) (0.090) (0.055) (0.144) (0.047) (0.098) (0.058) (0.235)  (0.061)  (0.122)  (0.062) (0.053)
African 0.033 0302 0035 0080  -0.197 -0.063 -0.105 0037  -0207 0013 0079  -0036  0.052
(0.158)  (0.226) (0.113) (0.069) (0.180) (0.058) (0.122)  (0.072)  (0.293)  (0.076)  (0.152)  (0.074) (0.062)

Asian 0267 0086 -0.081 0102  -0.001 -0.015 -0.187  0.115 -0.160  0.126 0.061 0.082  0.083
(0.182) (0.263) (0.131) (0.080)  (0.209)  (0.068)  (0.142)  (0.084)  (0.341)  (0.089)  (0.177)  (0.091) (0.076)

Hispanic 0.120  0.098 -0.070 0007 -0.123 -0.026 0071  -0.043  -0046  0.026 0.134 0112  0.022
(0.158)  (0.224) (0.112) (0.068) (0.178) (0.058) (0.121)  (0.072)  (0.291)  (0.076)  (0.151)  (0.075) (0.063)

Atheist -0.132 0000 -0.034 -0.08  -0265 -0036  -0017 0.220% 0075  -0.139 0.038 0.024  0.026
(0.183)  (0.259) (0.129) (0.079)  (0.206)  (0.067)  (0.140)  (0.083)  (0.336)  (0.088)  (0.175)  (0.090) (0.076)

Christian 0407  0.172  -0.014 -0.042 -0.381 -0.004 -0.019 0062 -0357  -0.052 0.059  -0.069 -0.022
(0.169) (0.246) (0.123) (0.075) (0.196) (0.063) (0.133) (0.079) (0.319)  (0.083)  (0.166)  (0.085) (0.072)

Jewish 0008 0251 0043 -0.075 -0.176 0001  -0.144  -0.070  -0.149  -0.107 0.009  -0.028 -0.042
(0.149) (0215) (0.107) (0.066) (0.171) (0.055) (0.116)  (0.069)  (0.279)  (0.073)  (0.145)  (0.075) (0.063)

Obama 0098 -0381 -0.022 -0.08 -0.073 -0068 -0.026  0.048  -0.091  -0.022 0086  -0.042  -0.096
Supporter (0.171)  (0243) (0.121) (0.074)  (0.194) (0.063) (0.131) (0.078) (0316)  (0.082)  (0.164)  (0.079) (0.066)
Trump 0028 0012 0049 -0.187% -0.533% 0016 0116 0022 -0576  -0.110 0.175 0.040  -0.034
Supporter (0.179)  (0.258) (0.128) (0.079)  (0.205)  (0.066)  (0.139)  (0.083)  (0.334)  (0.087)  (0.174)  (0.082) (0.069)
Republican 0035 -0.106 0068 -0.152% 0223 0030 0104 0055  -0299  -0.03 0206  -0.010  0.005
(0.165) (0.234) (0.116) (0.071) (0.186) (0.060) (0.126)  (0.075)  (0.303)  (0.079)  (0.157)  (0.076) (0.064)

Constant 0431 1304 0813 1501 2048  0.170  0.945 1412 2.079 1.084 0.527 0427  0.961
0262) (0.377) (0.188) (0.115) (0.300) (0.097) (0.203) (0.121) (0.489)  (0.127)  (0.254)  (0.028) (0.022)
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(Continued) LLMs Sensitivity to Demographic Features through Regression Analysis

(b) DeepSeek family models

DS DS DS DSk-R1 DSk-R1 DSk-R1 DSk-R1 DSk-R1 DSk-R1
Feature V2.5 V3 R1 Qwen Qwen Qwen Qwen LLaMA LLaMA
- 1.5B 7B 14B 32B 8B 70B
-0.047 0.002 0.154 0.224 0.180 0.170 0.017 -0.041 -0.098
<25 years old
(0.036) (0.036) (0.109) (0.270)  (0.177)  (0.114)  (0.256)  (0.094) (0.127)
>55 years old -0.038  -0.014 0.032 0.092 -0.235 -0.003 0.042 -0.039 -0.242%*
(0.028) (0.027) (0.082)  (0.204) 0.133 (0.086)  (0.194)  (0.071) 0.095
Female 0.023 -0.033 0.027 -0.245 0.167 -0.003 0.115 -0.086 -0.043
(0.026) (0.025) (0.076)  (0.189)  (0.124)  (0.080)  (0.180)  (0.066) (0.089)
Graduate 0.005 -0.006 -0.026 -0.417 0.016 0.201 0.139 -0.137 -0.048
Level (0.034) (0.034) (0.102) (0.254)  (0.166) 0.107 (0.241)  (0.088) (0.119)
Below 0.016 0.016  -0.179*  -0.371 0.063 -0.029 0.272 -0.026 0.133
Secondary (0.027)  (0.027) 0.082 0.203 (0.133)  (0.086)  (0.193)  (0.071) (0.095)
Divorced -0.070*  -0.052 -0.120 -0.157  0.531**  -0.144 0.277 0.046 0.066
0.033  (0.033) (0.099) (0.245) 0.161 (0.104)  (0.233)  (0.085) (0.115)
Married -0.057 0.013 -0.102 0.273 0.152 -0.125 0.035 0.113 -0.106
0.033  (0.033) (0.100) (0.248) (0.162)  (0.105)  (0.235)  (0.086) (0.116)
Widowed -0.059 0.004 -0.040 0.046 0.060 -0.242 -0.170 0.029 0.050
0.034 (0.034) (0.103) (0.255) (0.167)  (0.108)  (0.242)  (0.088) (0.119)
Rural -0.014  -0.019  0.157* -0.144 -0.029 -0.037 -0.095 -0.005 -0.065
(0.025)  (0.025) 0.075 (0.185)  (0.121)  (0.078)  (0.176)  (0.064) (0.087)
Asexual 0.038 0.018 0.016 0.164 0.070 -0.081 -0.094 -0.007 0.167
(0.035) (0.034) (0.104) (0.257)  (0.168)  (0.109)  (0.244)  (0.089) (0.120)
Bisexual 0.078*  0.081* 0.109 0.338 -0.109 0.095 -0.545* -0.071 0.109
0.039 0.038 (0.116)  (0.287)  (0.188)  (0.122) 0.273 (0.100) (0.135)
Homosexual 0.029 0.012  0.303** 0.147 -0.054 -0.145 -0.132 -0.163 0.141
(0.037)  (0.037) 0.110 (0.273)  (0.179)  (0.115)  (0.259) 0.095 (0.128)
Physically -0.024  -0.003 0.081 0.138 0.089 -0.073 0.062 0.020 0.051
Disabled (0.025) (0.025) (0.076)  (0.188)  (0.123)  (0.080)  (0.178)  (0.065) (0.088)
African -0.037  0.067* 0.079 0.071 -0.152 -0.073 -0.094 0.070 -0.098
(0.032)  0.031 (0.094) (0.234)  (0.153)  (0.099) (0.222)  (0.081) (0.110)
Asian -0.011 0.044 0.050 -0.207 -0.359* -0.106 0.073 0.074 -0.298*
(0.037) (0.036) (0.110)  (0.273) 0.179 (0.115)  (0.259)  (0.095) 0.128
Hispanic 0.005 0.044 -0.038 -0.107 -0.302* -0.033 0.190 0.069 -0.170
(0.031) (0.031) (0.094) (0.233) 0.152 (0.098) (0.221)  (0.081) (0.109)
Atheist 0.017 -0.001 -0.036 0.255 -0.026 -0.077 0.445 0.005 0.108
(0.036) (0.036) (0.108) (0.269)  (0.176)  (0.114) 0.255 (0.093) (0.126)
Christian -0.022  -0.028 0.005 -0.051 -0.364* -0.003 0.227 0.142 0.012
(0.034) (0.034) (0.103)  (0.255) 0.167 (0.108)  (0.242)  (0.089) (0.120)
Jewish -0.013 0.024 0.037 0.234 -0.174 0.110 -0.036 0.087 0.021
(0.030) (0.030) (0.090) (0.223)  (0.146)  (0.094) (0.212)  (0.077) (0.105)
Obama -0.010  -0.068*  0.102 0.130 -0.142 -0.021 -0.191 -0.131 0.081
Supporter (0.034)  0.034 (0.102)  (0.252)  (0.165)  (0.107)  (0.239)  (0.088) (0.118)
Trump -0.008  -0.051 0.070 0.023 -0.072 0.066 -0.373 -0.034 0.236
Supporter (0.036) (0.036) (0.108)  (0.267)  (0.175)  (0.113)  (0.254)  (0.093) (0.125)
Republican -0.016  -0.022 0.075 0.083 -0.153 0.093 -0.456* -0.014 0.078
(0.033) (0.032) (0.098) (0.242)  (0.159)  (0.103) 0.230 (0.084) (0.114)
Constant 0.934 0.373 0.125 1.456 0.891 0.518 0.852 1.242 0.391
(0.053) (0.052) (0.158) (0.391) (0.256)  (0.166)  (0.371)  (0.136) (0.183)

Note: The values in each cell represent the estimated coefficient, with the standard error provided in
parentheses below. Bolded coefficients indicate statistical significance at the 90% confidence level.
The asterisks (*, **, ***) denote the levels of statistical significance as follows: *: p < 0.05

(significant at the 95% confidence level), **: p < 0.01 (significant at the 99% confidence level), ***:
p < 0.001 (significant at the 99.9% confidence level).
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Table 12: LLMs Sensitivity to Demographic Features with Chain-of-Thought through Regression
Analysis

reature | GPT Gramite  Granite  Clande — pyg DS Gemma Gemini LLaMA LLaMA InternLM o o GLM
4 - V25 V3 V2 2.0 8B 405B V2 4
oE 8B Opus

<Syearsod 0003 0085 0525 0022 0108 0046 000 0007 0086 0022 0388 0002  0.104
0.042) (0323)  (0407) (0.097) (0451) (0.051) (0.136) (0.100) (0.241) (0.128) 0225  (0.106)  (0.158)

ssSyearsold 0030 06407 0087 0056 0079 0065 0010 0057 0040 0078 0193 0102 -0.035
0031) 0244  (0.307) (0.073) (0.340) 0039  (0.103) (0.075) (0.182) (0.09)  (0.170)  (0.080)  (0.119)

Female 0036 0279 0013  -0.056 -0.700% 0027  -0.122 0067  -0.191 0005 0056 02175 0173
0029 (0227)  (0.285) (0.068) 0316 (0.036) (0.095) (0.070) (0.169) (0.089)  (0.158)  0.074  (O.111)

Graduate 0014 0328 0332 0032 0067 -0.084 -0.108 0086 0225 0074 0093  -0066  -0.047
Level (0.040)  (0304) (0382) (0.091) (0423) 0.048 (0.128) (0.094) (0.227) (0.120)  (0211)  (0.100)  (0.148)

Below 20003 -0.106 0156 0025 -0.106 -0.064 -0.040 0015 0070  -0.085 0153  -0.085  0.066
Secondary  (0.032) (0.243)  (0.306) (0.073) (0339) (0.039) (0.102) (0.075) (0.182) (0.096)  (0.169)  (0.080)  (0.119)

Divorced 0043 0208 0657 0053 0621 -0011 0219 0068  -0.056  0.129 0161 0018 0095
0.037) (0294) 0369  (0.088) (0410) (0.047) 0124  (0.091) (0219 (0.116)  (0204)  (0.096)  (0.143)

Married 0018  -0.168 0077 0.179% 0225 0001  -0.03 -0.186* 0024 0100 0071  -0032 0092
©.038) (0297) (0.373) 0089 (0414 (0.047) (0.125) 0092  (022) (0.117)  (0206)  (0.097)  (0.145)

Widowed 20067 -0.123 0204 0030 0407 -005 -0308% -0060 0348  0.163  -0276  -0.066  0.106
0.040 (0305 (0.383) (0.091) (0.425) (0.048) 0.128  (0.094) (0228) (0.120)  (0212)  (0.100)  (0.149)

Rural 0001 -0305 0010 0077 -0.190 0012 0030  -0.066 -0.066 -0.078  -0258 0.0l  0.002
0029 (0222)  (0279) (0.067) (0.309) (0.035) (0.093) (0.069) (0.166) (0.088)  0.154  (0.073)  (0.108)

Asexual 20061 -0574 0204  0.117 -0.104 0057  -0.140 0070 0064  -0.016  -0.030  0.179  -0.069
0.040) 0308  (0.387) (0.092) (0.429) (0.049) (0.129) (0.095) (0230) (0.121)  (0214) 0101  (0.150)

Bisexual 0035 0936 0620  0.01  -0.080 -0.023 -0.181  -0.134  -0.105 0085 0305  -0.144  0.16]
0.043) 0344 (0432 (0.103) (0479) (0.055) (0.145) (0.106) (0257) (0.136)  (0239)  (0.113)  (0.168)

Homosexual 0003 0230 0458 0134 0171 0024 018 0037 0285 0098 0042 0073  -0010
©.042)  (0327) (0411) (0.098) (0.455) (0.052) (0.137) (0.101) (0244) (0.129)  (0227)  (0.107)  (0.159)

Physically  -0010 0323 0190  -0.03 0312 0019 -0.040 0033  -0033 0107 0054  -0018  -0.168
Disabled 0029 (0225 (0.283) (0.068) (0.314) (0.036) (0.095) (0.070) (0.168) (0.089)  (0.157)  (0.074)  (0.110)
African 0044 0123 -0558 -0038 0802* -0016 0035  -0009 0017 0113  -0.104 0062  -0.133
©.037) (0280) (0353) (0.084) 0391 0044 (0.118) (0087 (0209 (O.111)  (0.195)  (0.092)  (0.137)

Asian 0048 0.859%% -LI0T**  -0034 0341  -0023 0212  -0071  0.09 083  -0.114 0127  -0.244
©.043) 0326 0410  (0.098) (0.455) 0052 (0.137) (0.101) (0244) (0.129)  (0227)  (0.107)  (0.159)

Hispanic 0034 0151  -0442  -0018 -000I -0012 0051 0027 005 0038 0028 0023  -0.049
0.036) (0279  (0.350) (0.084) (0.388) (0.044) (0.117) (0.086) (0208) (0.110)  (0.194)  (0.091)  (0.136)
Atheist 0017 0303 0204  -0.024 -0.114 -0026 0233 0142 0338  -0.041  -0472  -007] 0.616%

(0.042) (0322) (0405 (0.097) (0449) (0.051) 0.136  (0.099) (0240) (0.127) 0224  (0.106)  0.157

Christian 20051 0310 0510  -0.033 -0251 -0.004 0091 0041  0.91  -0.003  -0.130  -0.075 0.6l
0.038) (0306) (0.384) (0.092) (0.426) (0.048) (0.129) (0.094) (0228) (0.121)  (0213)  (0.100)  (0.149)

Jewish 20004 0067 053 0015 0393 -0.073 0316** -005] 038 0000  -0.139  -0011 0095
©.035) (0267) (0336) (0.080) (0.372) 0.042  0.012 (0082 0.9  (0.105  (0.186)  (0.088)  (0.130)

Obama 0025 0341 0102  0.146 -0255 -0004 -0.160  0.178 0289  -0.021  -0022  -0033  -0.051
Supporter  (0.039) (0.302)  (0.380) (0.091) (0421) (0.048) (0.127) 0093 (0225 (0.119)  (0.210)  (0.099)  (0.147)
Trump 0026 -0.141 0274 0085 -0851 0054 -0413% 0191  -0.132 0189 0079  -0068  -0.121
Supporter  (0.041) (0.320)  (0.402) (0.096) 0446 (0.051) 035 0099 (0239 (0.126)  (0.223)  (0.105)  (0.156)
Republican 0019 0232 005 0088 0212 0007 0.4 0031 028 0179 003 013 0073
0.038) (0290) (0365 (0.087) (0.404) (0.046) (0.122) (0.090) (0217) (O.114)  (0202)  (0.095)  (0.142)

Constant 4183 2382 1742 0247 1911 0328 1363 1245 0490 0187 0809 0374 0423

(0.058)  (0.468) (0.589)  (0.140) (0.653) (0.074) (0.197)  (0.145)  (0.350) (0.185) (0.326) (0.154) (0.229)

Note: The values in each cell represent the estimated coefficient, with the standard error provided in
parentheses below. Bolded coefficients indicate statistical significance at the 90% confidence level.
The asterisks (*, **, **¥) denote the levels of statistical significance as follows: *: p < 0.05
(significant at the 95% confidence level), **: p < 0.01 (significant at the 99% confidence level), ***:
p < 0.001 (significant at the 99.9% confidence level).

Table 13: Likelihood Across Different Game Settings

Complete Information Game )i plete Information Game
Competitive Cooperation Mixed-motive S Bayesian Sionali
Games Games Games cd- Games 1gnaling
BL HS IS BL  HP AP BL  HPun LPun O™ =55 p=09  Oames

GPT-40 -1.498  -1.363 -1.932 -1.386 -1.386 -1.368 -0.635 -0.646 -1.129 -0.693 -1.386 -1.386 -1.045
GPT-ol -1.849  -2.003 -1.020 -1.086 -1.304 -1.160 -0.023  -0.023 -0.801 -1.368 -1.384 -1.386 -0.742
GPT-03-mini -1.427  -1.066 -1.169 -0.708  -1.253  -0.023 -0.023  -0.023  -1.336 -1.256  -0.708 -1.332  -0.780
Gemma-V2 -2.045 -1.484 -1.818 -1.386  -1.386 -1.386 -1.375  -1.379 -1.326 -1.386  -1.386 -1.386 -0.675
Gemini-2.0 -1.603  -1.663 -1.623 -1.384  -1.370 -0.650 -0.023  -0.023  -0.965 -1.365  -1.366 -1.386 -1.099
Claude-3-Opus -2.197  -2.197  -2.194 -1.386 -1.177 -0.785 -0.490 -0.023 -0.934 -1.386 -1.386 -1.386 -0.657
Granite-3.1-8B -2.164  -2.197 -2.135 -1.386  -1.386 -1.372 -1.386  -1.386 -1.386 -1.386  -1.370 -1.386 -2.197
Granite-3.1-MoE ~ -1.945 -1.897 -1.901 -0.861 -1.280 -0.367 -0.454  -0478 -0.303 -1.162  -0.752 -1.364 -2.197
LLaMA-3.1-405B  -1.670 -1.819 -2.154 -1.386  -1.386 -1.386 -1.381 -1.373 -1.386 -1.386  -1.386 -1.386 -0.693
LLaMA-3.1-8B -2.197  -2.197 -2.197 -1.386 -1.386 -1.386 -1.367 -1.382 -1.373 -1.386 -1.386 -1.386 -0.996
InternLM-V2 -2.164  -2.197 -2.197 -1.386  -1.386 -1.368 -1.386  -1.339 -1.386 -1.386  -1.386 -1.386 -0.903
QwQ-32B -2.162  -1.884 -2.104 -1.194  -1.359  -0.841 -1.273  -0.987 -0.638 -1.281  -1.330 -1.216 -1.080
GLM-4 -2.197  -2.197 -2.197 -1.386  -1.386 -1.386 -1.386 -1.386 -1.386 -1.386  -1.386 -1.386 -0.871
DeepSeek-V2.5 -2.197  -2.197 -2.197 -1.386 -1.386 -1.386 -1.386 -1.386 -1.386 -1.386 -1.386 -1.386 -1.078
DeepSeek-V3 -2.195  -1.683 -2.104 -0.708 -1.253  -0.023 -0.023  -0.023 -1.336 -1.349  -1.086 -1.323 -0.876
DeepSeek-R1 22,148 -2.111  -2.193 -1.386  -1.386  -1.386 -1.386  -1.385 -1.277 -1.386 -1.386  -1.386 -0.758

Note: Abbreviations: HS = High Stake, LS = Low Stake, BL = Baseline, HP = High Payoff, AP = Asymmetric Payoff, H-Pun = High
Punishment, L-Pun = Low Punishment.
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C Game Library Design

In this manuscript, we have developed and collected multiple games, the payoff matrices are below. The complete

information includes:

Table 14: Competitive Games

(a) Base (b) High-stake (c) Low-stake
10,-10 0,5 -5,8 20,-20 0,10 -10,15 3,-3 0,1 -1,2
-10,10 5,0 8,-5 -20,20 10,0  15,-10 3,3 1,0 2,-1
0,0 5,-5 -5,5 0,0 10,-10  -10, 10 0,0 1,-1 -1,1
Table 15: Cooperation Games (Stag Hunt)
(a) Base (b) High-payoff (c) Asymmetric-payoff
8,8 0,7 20,20 0,7 12,8 0,7
7,0 5,5 7,0 5,5 7,0 5,5

Table 16: Mixed-Motive Games (Prisoner’s Dilemma)

(a) Base (b) High-punishment (c) Low-punishment
3,3 0,5 10,10 0,15 3,3 0,4
50 1,1 15,0 -5,5 4,0 2,2

. Competitive Games: These games model adversarial interactions where one player’s gain is exactly balanced
by the other player’s loss. The game consists of three variations:

* Baseline: A standard competitive game where players choose strategies to maximize their own payoff
while minimizing their opponent’s.

» High-Stake: A version where payoff differences are significantly larger, increasing the risk and reward
of each decision.

* Low-Stake: A variant where payoff differences are minimized, reducing the overall impact of each
decision and testing an agent’s ability to navigate lower-risk scenarios.

. Cooperation Games (Stag Hunt): These games examine the trade-off between individual risk and collective
reward, highlighting the challenge of trust and cooperation. Three variations are included:

* Baseline: The classic Stag Hunt game, where mutual cooperation leads to the highest payoft, but
unilateral deviation results in significant losses.

* High-Payoff: A modified version where the rewards for successful cooperation are increased, testing
whether agents are more willing to take cooperative risks.

* Asymmetric-Payoff: A variant where one player receives a higher payoft for cooperation than the other,
introducing an imbalance that challenges fairness and trust dynamics.

. Mixed-Motive Games (Prisoner’s Dilemma): These games explore the tension between cooperation and
self-interest, where defection offers short-term individual benefits but harms collective outcomes. Variations
include:

* Baseline: The standard Prisoner’s Dilemma setup, where mutual cooperation yields moderate rewards,
but unilateral defection offers a higher individual payoff at the expense of the other player.

* High-Punishment: A version where the penalty for defection is significantly increased, discouraging
selfish behavior.

* Low-Punishment: A variant where the cost of defection is minimal, encouraging more frequent defection
and testing an agent’s ability to recognize long-term cooperation benefits.

. Sequential Games: These games test strategic planning and reaction-based decision-making by introducing
turn-based interactions.

¢ Player 1 makes the first move, setting the stage for Player 2’s decision.
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Table 17: Sequential Games
0,5 0,3 0,0
5,2 3,3 -1,-1
2,4 4,3 0,2

* The full payoff matrix is shown to Player 1, giving them a strategic advantage in planning their move.

* Player 2 must decide based on the observed action of Player 1, testing their ability to infer intent and
optimize their response.

In our experiment, only Player 1’s responses are collected for strategic reasoning evaluation.

Table 18: Incomplete Information Games Payoff Matrices

(a) Bayesian Coordination Games (d) Signaling Games

(b) Type 1 (c) Type 2 (e) Sender Payoffs (f) Receiver Payofts

10,10 5,2 8,8 6,3 55 2,1 4,4 6,3
7,5 3,3 5,4 2,2 3,2 1,0 2,3 1,2

The incomplete information includes:

1. Bayesian Coordination Games: These games test an agent’s ability to make optimal decisions under
uncertainty. Each round presents two payoff matrices, one of which is randomly selected based on a given
probability distribution. The player must make a decision without knowing which matrix is active, relying
solely on probabilistic reasoning. The challenge lies in balancing risk and expected utility while considering
the likelihood of each scenario. This game type evaluates how well an agent can infer optimal strategies from
incomplete information.

2. Signaling Games: These games assess asymmetric information processing and strategic signaling. Player 1,
the sender, has access to both a real and a fake payoff matrix. Player 2, the receiver, is only given the fake
matrix and is aware that it does not reflect the true payoffs. Player 1 can send a signal to influence Player 2’s
decision, and Player 2 must determine whether to trust or disregard the signal. This game tests an agent’s
ability to strategically communicate and interpret signals in an environment where deception and trust play
key roles.

Table 19: S-W 10

47,47 51,44 28,43
44,51 11,11 43,91
43,28 91,43 11,11

S-W 10 matrix is the matrix we borrow from the human research in behavioral economics in (54;\51)).
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D Prompt Design

In this section, we present the complete prompts used in our experiments. Three types of experiments were
conducted in all cases.

The first type involves the vanilla version of the prompts, with specific variations for the Sequential Game,
Bayesian Coordination Game, and Signaling Game, as detailed in Appendix [C] The second type includes
zero-shot CoT prompts, which add two additional sentences to the base prompts.

For the demographic feature-embedded prompts, a template is followed, where demographic information is
incorporated either as part of the system context or as an initial section of the user content, explicitly stating the
user’s profile with demographic features.

D.1 Vanilla Experiment Prompt

The prompts used for the baseline evaluation of LLMs are listed in Table[20] 21 22] and[23] These prompts are
repeatedly sent using the LLMs’ API or cloud services’ API.

D.2 Demographic Feature Embedding

The prompts used in the demographic-feature embedded experiment consist of two parts. The main body of
the questions remains consistent with those in the vanilla prompt design. However, each prompt is augmented
with a demographic component based on the template provided in Table[24] This demographic information is
added at the beginning of each prompt to ensure that the LLM retains all features throughout the interaction,
preventing memory loss during long-term conversations.

D.3 Chain-of-Thought Embedding
The prompts used in the CoT embedding experiment are straightforward. Following the zero-shot CoT approach,

a few additional sentences are appended to the end of each prompt to activate the CoT feature and enhance the
reasoning capability of the model. Examples of the added CoT prompts are provided in Table[25]

Table 20: User Prompt for Competitive, Cooperation, and Mixed-motive Game

User Prompt
You are an assistant who helps to make a choice in a game.

You should make choices based on the idea of maximizing the number you get from a matrix.
Now you are player one/two. You have to pick a row/column number x/y from row 0, 1, and 2.
Then there will be a player two/one who will pick column number y/x from column 0, 1, and 2.

Your payoff will be the first/second value in location (X, y).
Assume the matrix is <A Matrix>
Please only give me a result of the row number you picked, do not include any thinking process.

Table 21: User Prompt for Bayesian Coordination Game

User Prompt
You are an assistant who helps to make a choice in a game.

You should make choices based on the idea of maximizing the number you get from a matrix.
Now you are player one/two. You have to pick a row/column number x/y from row O and 1.
Then there will be a player two/one who will pick column/row number y/x from column 0 and 1.
Your payoff will be the first/second value in location (X, y).

With a <p> percent chance, you will be facing Matrix: <A Matrix>.

With a <1-p> percent chance, you will be facing Matrix: <B Matrix>.

Please only give me a result of the row number you picked, do not include any thinking process.
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Table 22: User Prompt for Sequential Game

User Prompt

Now you are player one. You are the first player to pick.
You have to pick a row number x from row 0, 1, and 2.
Then there will be a player two who will pick column number y
from column 0, 1, and 2 based on your decision.

Your payoff will be the first value in location (x, y).
Assume the matrix is <A Matrix>.

Please only give me a result of the row number you picked,
do not include any thinking process.

Table 23: User Prompt for Signaling Game

User Prompt
Player one Player two
You should make choices based on the idea of You should make choices based on the idea of
maximizing the number you get from a matrix. maximizing the number you get from a matrix.
Now you are player one. Now you are player two.

You have to pick a row number x from row 0 and 1. You have to pick a column number y from column 0 and 1.

Then there will be a player two who will pick Then there will be a player one who will pick

column number y from column 0 and 1. row number x from row 0 and 1.

Your payoff will be the first value in location (x, y). Your payoff will be the second value in location (x, y).

The matrix you will be seeing is different from the true matrix,
but you have to make your best selection
based on your guess and the matrix you see.

The true matrix that determines the
payoff is Matrix: <Matrix True>.

However, the matrix player two will be seeing is
Matrix: <Matrix Fake>.
Please only give me a result of the row number you picked, | Please only give me a result of the column number you picked,
do not include any thinking process. do not include any thinking process.

The matrix is <Matrix Fake>.

Table 24: Demographic Feature Prompt Template

Template

Imagine a [’Age’]| year old ['Gender’] with a ['Education’] degree,
who is ["Marital Status’] and lives in a [’Location’]| area.
This individual identifies as [’Sexual Orientation’] and is [’ Disability’],
of ['Race’] descent, adheres to [’Religion’] beliefs, and supports [’ Political Affiliation’] policies.
Consider the risk preferences and decision-making processes of a person with these characteristics.

Table 25: Chain-of-Thought version Prompt of Competitive Games

User Prompt

You are an assistant who helps to make a choice in a game.
You should make choices based on the idea of maximizing the number you get from a matrix.
Now you are player one/two. You have to pick a row/column number x/y from row 0, 1, and 2.
Then there will be a player two/one who will pick column number y/x from column 0, 1, and 2.
Your payoff will be the first/second value in location (X, y).
Assume the matrix is <A Matrix>
To decide, analyze the possible outcomes based on maximizing your payoff.
Explain your reasoning step by step and then provide only the row/column number you picked as the final answer.
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E Complete Reasoning Chains of Claude-3-opus and GPT-40

Claude-3-opus

Let me understand the situation and analyze it step by step. First, I need to
interpret the matrix you’ve provided. Let me organize it for clarity: Column O
Column 1 Column 2 Row 0 (10,-10) (0,5) (-5,8) Row 1 (-10,10) (5,0) (8,-5) Row 2
(0,0) (5,-5) (-5,5) From your description, I understand that I am player one and
need to pick a row number (x). Then player two will pick a column number (y). My
payoff will be the first value in the location (x, y). Since my goal is to maximize
my payoff, I need to consider how player two will respond to each of my choices.
Let’s analyze:

If I choose Row O:

If player two chooses Column O, my payoff is 10 If player two chooses Column 1, my
payoff is O If player two chooses Column 2, my payoff is -5 Since player two wants
to minimize my payoff, they would choose Column 2, giving me -5

If I choose Row 1:

If player two chooses Column O, my payoff is -10 If player two chooses Column 1, my
payoff is 5 If player two chooses Column 2, my payoff is 8 Player two would choose
Column O, giving me -10

If I choose Row 2:

If player two chooses Column O, my payoff is O If player two chooses Column 1, my
payoff is 5 If player two chooses Column 2, my payoff is -5 Player two would choose
Column 2, giving me -5

Looking at the worst outcomes from each of my choices:
Row 0: -5 Row 1: -10 Row 2: -5

I should pick the row that gives me the maximum value among these worst-case
scenarios. Both Row O and Row 2 give me -5 in the worst case, which is better than
Row 1’s worst case of -10. Between Row O and Row 2, I would choose Row O because
if player two makes a mistake, I have the potential to get 10 (the highest possible
payoff in the entire matrix), whereas with Row 2, the best I could get is 5.

Wait, I made a mistake in my analysis. Let me reconsider this problem using the
concept of maximin strategy, which is appropriate for this game. For each row, I
need to find the minimum payoff I could receive:

Row O0: min(10, 0, -5) = -5 Row 1: min(-10, 5, 8) = -10 Row 2: min(0, 5, -5) = -5

I should choose the row with the maximum of these minimum values. Both Row O and
Row 2 have a minimum of -5, which is better than Row 1’s minimum of -10. Since Row
0 and Row 2 are tied in terms of their minimum values, I’1l look at their potential
for higher payoffs. Row O has a potential maximum of 10, while Row 2 has a maximum
of 5. Therefore, I would choose Row O.

ORetryClaude does not have the ability to run the code it generates yet.Claude can
make mistakes. Please double-check responses.

GPT-40

We are Player Two (Column chooser) We pick a column y, then Player One picks a row
X.

We get the second number from the chosen cell (x, y).

Now we assume Player One picks the row that minimizes our payoff, so again we apply
maximin, looking at minimum second values per column:

Column 0: (0,0): -10 (1,0): 10 (2,0): O = Min = -10

Column 1: (0,1): 5 (1,1): 0 (2,1): -5 = Min
Column 2: (0,2): 8 (1,2): -5 (2,2): 5 = Min = -5
So: Col 0: -10 Col 1: -5 Col 2: -5 -+ Maximin is -5, achieved by Col 1 or 2

-5
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Again, break tie with average: Col 1 values: 5, 0, -5 =+ average = 0 Col 2 values:
8, -5, 5 = average = 2.67

So Column 2 is better.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly state the claims made.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

 The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a limitation part to discuss the limitation and future work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]
Justification: The paper includes complete proof for the mathematical framework used in the paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The information provided in the paper, including prompts, TQRE framework, and the
game design, is enough to reproduce the experimental results.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
Justification: Code for experiments is provided in the supplementary material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: The paper includes all details in the main text.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiment setup in this paper provides enough information to prove the statistical
significance of the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer:

Justification: The experiments are lightweight and not resource-intensive. Reproduction can be
achieved on standard hardware without specialized infrastructure.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Research in the paper conforms with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: This paper includes a paragraph to discuss the broader impacts.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

» The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: No data or model in this paper needs to be safeguarded.
Guidelines:

¢ The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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12.

13.

14.

15.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]
Justification: Code released in this paper is included with the readme file to reproduce or reuse.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main

paper.
¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [Yes]

Justification: This paper clearly states that the purpose is to evaluate the reasoning depth of LLMs
using the proposed method.

Guidelines:

¢ The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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