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ABSTRACT

Grokking—delayed generalization that emerges well after a model has fit the
training data—has been linked to robustness and representation quality. We ask
whether this training regime also helps with machine unlearning, i.e., removing
the influence of specified data without full retraining. We compare applying stan-
dard unlearning methods before versus after the grokking transition across vision
(CNNs/ResNets on CIFAR) and language (a transformer on a TOFU-style setup).
Starting from grokked checkpoints consistently yields (i) more efficient forgetting
(fewer updates to reach a target forget level), (ii) less collateral damage (smaller
drops on retained and test performance), and (iii) more stable updates across
seeds, relative to early-stopped counterparts under identical unlearning algorithms.
Analyses of features and curvature further suggest that post-grokking models learn
more modular representations with reduced gradient alignment between forget and
retain subsets, which facilitates selective forgetting. Our results highlight when a
model is trained (pre- vs. post-grokking) as an orthogonal lever to how unlearning
is performed, providing a practical recipe to improve existing unlearning methods
without altering their algorithms.

1 INTRODUCTION

The rise of machine learning has brought transformative advancements across domains, yet this
progress comes with growing concerns about data privacy, regulatory compliance (e.g., GDPR,
CCPA), and the "right to be forgotten." Traditional machine learning models stubbornly retain
information from their training data, making selective data removal challenging without costly
retraining. This has made machine unlearning—the process of removing specific data influences from
trained models—a critical research area with significant computational and performance challenges.

A key challenge in machine unlearning is that existing methods often degrades model performance on
retained data or requires extensive computational resources. The effectiveness of unlearning depends
heavily on the internal structure and representational quality of the trained model. Models with
better-organized, more disentangled representations should theoretically enable more selective and
stable forgetting. This raises a fundamental question: what training dynamics produce models that
are inherently better suited for unlearning?

Recent discoveries in deep learning provide a surprising answer. The phenomenon of grokking
(Power et al., 2022)—where models achieve delayed but strong generalization long after overfit-
ting—challenges traditional training paradigms. Grokked models demonstrate superior robustness
(Humayun et al., 2024) and generalization (Liu et al., 2022) compared to early-stopped counterparts,
suggesting they develop fundamentally different internal representations.

This connection between representation quality and unlearning effectiveness leads to an intriguing
paradox. On one hand, grokked models develop better generalization and more robust representations,
which should theoretically facilitate selective forgetting by creating more disentangled knowledge
structures. On the other hand, grokking requires extensive training on the data, potentially causing
models to "remember" information more deeply, making unlearning more difficult. This raises a
critical question: which effect dominates in practice?

We resolve this paradox by demonstrating that the representational benefits of grokking outweigh
the memorization concerns. As illustrated in Figure ??, while extended training before grokking
indeed makes unlearning progressively more difficult—with unlearning accuracy increasing and
tracking closely to retain accuracy due to entangled representations—the grokking transition funda-
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(a) Training dynamics showing grokking phenomenon
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(b) Unlearning across multiple training checkpoints

Figure 1: Grokking Enables Superior Machine Unlearning. (a) Training Dynamics: ResNet train-
ing on CIFAR-10 showing grokking transition from conventional early stopping at θpre (pink region)
through overfitting to delayed generalization at θgrok (blue region). (b) Unlearning Performance:
Gradient ascent unlearning effectiveness across training checkpoints. Higher UA indicates worse
unlearning (model remembers what it should forget). Pre-grokking shows concerning upward UA
trend with high volatility and poor selectivity (UA ≈ RA), indicating entangled representations where
unlearning algorithms cannot distinguish forget from retain data. Post-grokking shows dramatic
improvement: UA drops significantly below RA and stabilizes, demonstrating selective forgetting
capability. This UA-RA separation reveals that grokking reorganizes representations into more
modular, disentangled structures enabling precise unlearning operations.

mentally changes this dynamic. After grokking, models exhibit dramatically improved unlearning
selectivity: unlearning accuracy drops significantly below retain accuracy and stabilizes, enabling
precise data removal while preserving useful knowledge.

Through comprehensive experiments across vision and language domains, we show that grokked
models consistently exhibit superior unlearning capabilities. When subjected to state-of-the-art
unlearning algorithms—gradient ascent, SCRUB, Fisher forgetting, and fine-tuning—grokked models
achieve more efficient data removal while better preserving performance on remaining data and
maintaining enhanced robustness. Our findings are striking: grokked models achieve 6-8% better
unlearning effectiveness while maintaining 10-20% higher performance on retained data compared to
non-grokked counterparts, making privacy-preserving machine learning more practical.

Our analysis reveals that grokking fundamentally restructures internal representations in ways that
facilitate selective forgetting with minimal collateral damage. This suggests that the training dynamics
leading to grokking can be strategically leveraged to develop more practical privacy-preserving
machine learning systems.

Our contributions are as follows:

• We establish the first systematic connection between grokking and machine unlearning, resolving
the apparent paradox between extensive training and effective forgetting.

• We provide comprehensive empirical evidence across vision (CNNs/ResNets on CIFAR) and
language (transformers on TOFU) domains, demonstrating that grokked models exhibit superior
unlearning capabilities across diverse algorithms (gradient ascent, SCRUB, Fisher forgetting,
fine-tuning).

• We reveal the mechanistic basis for grokking’s unlearning advantages through gradient correlation
and local complexity analyses, showing that grokked models develop more orthogonal optimization
pathways and simpler representational structures that facilitate selective forgetting.

• We demonstrate that grokked models provide a practical training paradigm for privacy-preserving
applications, achieving more efficient data removal while maintaining enhanced robustness and
performance retention without requiring new unlearning algorithms.
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2 BACKGROUND AND RELATED WORKS

2.1 GROKKING: DELAYED GENERALIZATION IN DEEP LEARNING

Discovery and properties. Grokking refers to a training regime where models first overfit, then
after prolonged stagnation, undergo sharp transitions to strong generalization (Power et al., 2022).
Originally observed in modular arithmetic with Transformers, grokking has since been documented
across diverse tasks—group theory (Chughtai et al., 2023), image classification (Liu et al., 2022)—and
architectures, suggesting a fundamental training dynamic robust to optimization choices (Gromov,
2023).

Theoretical interpretations. Multiple theories explain grokking through implicit bias and phase
transitions. Lyu et al. (2023) formalize a transition from "lazy" (kernel-like) to "rich" feature-learning
regimes, while Zhu et al. (2024) identify data-dependent thresholds for reliable grokking. These
accounts suggest discontinuous shifts in representation space, with gradient descent eventually
preferring simpler, generalizable solutions over complex memorizing ones (Davies et al., 2023).

Mechanistic insights. Interpretability studies reveal network reorganization at grokking transi-
tions. Nanda et al. (2023) show Transformers transition from distributed co-adaptation to modular
subcircuits implementing algorithmic solutions. This distributed-to-modular shift involves com-
petition between dense memorizing and sparse generalizing circuits (Merrill et al., 2023; Varma
et al., 2023), with landscape changes toward flatter minima (Notsawo Jr et al., 2023). Crucially,
post-grokking models exhibit more structured, modular representations (Humayun et al., 2024; Furuta
et al., 2024)—precisely the type of organization we hypothesize enables effective selective forgetting.

2.2 MACHINE UNLEARNING: SELECTIVE DATA REMOVAL

Machine unlearning aims to remove the influence of a designated subset Dforget ⊂ D from a
model’s parameters, producing behavior indistinguishable from training on Dretain = D \ Dforget.
Applications range from class unlearning (removing entire categories) to sample unlearning (specific
identities or documents) (Choi & Na, 2023; Poppi et al., 2024).

Exact vs. approximate unlearning. Exact unlearning via retraining provides strongest guarantees
but is computationally prohibitive. Approximate methods seek functional equivalence to retraining
while avoiding full computational cost (Bourtoule et al., 2021; Izzo et al., 2021).

2.2.1 APPROXIMATE UNLEARNING METHODS

Gradient-based methods apply gradient ascent on Dforget: w ← w + η∇wLforget(w), but often
harmDretain performance. Enhanced variants like∇τ (Trippa et al., 2024) interleave ascent on forget
data with descent on retain data.

Influence-based methods estimate parameter shifts from data removal: ∆w ≈ − 1
nH

−1∇wℓ(z;w),
where H is the training loss Hessian (Koh & Liang, 2017; Izzo et al., 2021). Practical implementations
use structured approximations due to computational constraints.

Fisher forgetting injects curvature-guided noise aligned to Fisher information on Dforget, randomiz-
ing sensitive parameters while preserving others (Golatkar et al., 2020).

Distillation-based methods train students to match teachers on Dretain while diverging on Dforget.
SCRUB uses negative-KL divergence (Kurmanji et al., 2023), while Bad Teacher employs dual
teachers for controlled knowledge transfer (Chundawat et al., 2023).

LLM approaches typically use constrained fine-tuning with KL anchoring. Methods include
Negative Preference Optimization (NPO) (Zhang et al., 2024) and Representation Misdirection
(RMU) (Li et al., 2024). Evaluation benchmarks like TOFU (Maini et al., 2024a) reveal that current
methods fail to match retraining baselines, highlighting the need for improved approaches.

2.3 EVALUATING MACHINE UNLEARNING

Evaluating unlearning requires assessing forgetting effectiveness, retention of useful performance,
privacy verification, and efficiency.

3
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Core metrics. Standard measures include Unlearning Accuracy (UA) on Dforget (lower indicates
better forgetting), Retain Accuracy (RA) on Dretain (higher indicates better preservation), and Test
Accuracy (TA) on held-out data. Relative metrics like Retain Retention (RR) compare against
retrained baselines.

Privacy metrics. Membership Inference Attacks (MIA) test whether Dforget samples can be identi-
fied; effective unlearning should achieve 50% MIA accuracy (random chance) (Carlini et al., 2021).
For LLMs, Extraction Strength (ES) measures resistance to information extraction attacks (Maini
et al., 2024a; Wang et al., 2025). Advanced diagnostics like U-LiRA probe residual memoriza-
tion (Hayes et al., 2025), while recent work highlights concerns about shallow forgetting that can be
reversed (Xu et al., 2025).

Efficiency. Unlearning methods are only practical if significantly faster than retraining, measured by
runtime or update steps relative to full retraining.

Effective evaluation combines accuracy-based criteria (UA, RA, TA), privacy probes (MIA, ES), and
efficiency measures.

3 LEVERAGING GROKKING FOR ENHANCED UNLEARNING

In this section, we study whether models after the grokking transition enable more selective, stable,
and efficient unlearning than early-stopped counterparts. Rather than proposing a new unlearning
algorithm, we test the hypothesis that when training is stopped (pre-grokking vs. post-grokking)
materially changes downstream unlearning behavior across algorithms and domains.

3.1 VISION MODELS: GLOBAL GROKKING ANALYSIS

We evaluate on CIFAR-10 using CNN and ResNet architectures, where we observe clear model-
wide grokking transitions characterized by sharp validation accuracy improvements after prolonged
stagnation.

Checkpoint Selection: We train on the full dataset D = Dretain ∪ Dforget and select two frozen
checkpoints for comparison. The pre-grokking checkpoint θpre represents the best early-stopped
model before the delayed generalization jump, while the grokked checkpoint θgrok is selected after
the transition (typically around step 500,000) with sustained validation gains.

Forget Set Construction: We select 2 classes from CIFAR-10 and vary forget fractions (15-50%)
within these classes to test selective forgetting. This design uses the remaining 8 classes as collateral
damage probes—if grokked models have superior representational organization, they should maintain
performance on these "bystander" classes while forgetting target data. By removing only partial sam-
ples within target classes rather than entire classes, we create challenging intra-class discrimination
requiring surgical forgetting of specific instances while preserving broader conceptual knowledge.

Evaluation: We test five algorithms spanning different paradigms: Gradient Ascent (GA), ∇τ
(gradient ascent + descent), Fisher Forgetting (curvature-guided), SCRUB (knowledge distillation),
and fine-tuning. We measure Unlearning Accuracy (UA), Retain Accuracy (RA), and Test Accuracy
(TA), reporting mean ± std over 3 runs with matched hyperparameters across θpre and θgrok.

Results: Table 1 presents comprehensive results across ResNet and CNN architectures on CIFAR-
10, revealing consistent and substantial advantages for grokked models regardless of architecture
complexity or unlearning algorithm choice.

Consistent Performance Gains Across Architectures. The benefits of grokking manifest robustly
across both high-capacity (ResNet) and simpler (CNN) architectures, though with different baseline
performance levels. For ResNet models, grokked checkpoints achieve dramatic improvements:
SCRUB shows 8-9 percentage point gains in test accuracy while reducing unlearning accuracy
by 6-8 points, indicating both better knowledge preservation and more effective forgetting. Even
more striking, Fisher Forgetting on grokked ResNets achieves near-perfect retain accuracy (99.42%)
while maintaining substantial unlearning improvements. CNN models, despite lower absolute
performance, exhibit proportionally similar benefits—for instance, SCRUB reduces unlearning
accuracy from 25.07% to 3.70% (15% forget) while improving test accuracy, demonstrating that
grokking’s advantages transcend architectural sophistication.
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Table 1: Unlearning performance comparison between pre-grokked (θpre) and grokked (θgrok) models
on CIFAR-10. Results show mean ± standard deviation over 3 seeds. "Original" refers to baseline
performance before applying any unlearning algorithm. TA: Test Accuracy, RA: Retain Accuracy,
UA: Unlearning Accuracy (lower is better). Grokked models consistently outperform pre-grokked
counterparts across architectures, algorithms, and forget rates.

Arch Method Ckpt 15% Forget 50% Forget

TA ↑ RA ↑ UA ↓ TA ↑ RA ↑ UA ↓

R
es

N
et

Original θpre 73.72±0.01 79.26±0.14 86.33±3.51 73.72±0.01 78.99±0.15 87.13±3.71
θgrok 80.713±0.09 100.00±0.00 100.00±0.00 80.910±0.10 100.00±0.00 100.00±0.00

SCRUB θpre 73.07±0.92 78.52±1.04 85.42±2.00 73.77±0.77 80.64±0.51 87.12±1.85
θgrok 81.87±0.36 89.67±0.21 79.48±0.53 81.12±0.25 96.45±0.61 79.53±0.12

∇τ
θpre 68.86±4.54 61.91±4.86 57.33±4.15 70.28±3.02 74.22±4.14 87.82±5.92
θgrok 75.99±1.83 84.33±2.36 47.11±0.99 75.54±1.35 93.28±1.67 87.23±1.85

GA θpre 69.67±5.73 75.22±5.71 75.58±15.91 12.44±1.82 69.19±0.28 48.23±0.14
θgrok 80.41±0.71 81.03±0.24 70.94±1.34 16.03±7.24 73.72±8.01 47.87±2.17

Fisher θpre 71.75±3.15 77.14±3.10 83.61±4.64 73.24±0.98 80.12±1.49 70.56±3.99
θgrok 80.88±0.11 99.42±0.02 80.44±0.63 80.80±0.60 90.42±1.04 68.33±1.80

Finetune θpre 32.22±0.56 30.41±0.55 97.33±0.89 44.68±25.22 43.68±30.65 94.14±6.08
θgrok 70.71±5.83 87.88±8.25 90.11±0.84 75.22±2.96 88.18±1.81 89.79±0.08

C
N

N

Orginal θpre 51.74±0.01 61.13±0.62 74.06±6.69 51.72±0.01 60.64±0.63 72.67±6.70
θgrok 64.87±0.36 100.00±0.00 100.00±0.00 64.15±0.35 100.00±0.00 100.00±0.00

SCRUB θpre 23.19±10.15 23.08±10.44 25.07±5.19 35.04±4.87 35.80±5.27 5.43±4.21
θgrok 27.93±3.81 27.37±3.22 3.70±3.88 38.16±2.35 38.76±3.37 3.78±3.48

∇τ
θpre 24.31±1.93 24.43±1.49 8.67±0.48 27.96±0.95 29.64±1.73 3.11±4.41
θgrok 28.79±0.62 28.79±0.85 2.26±3.18 31.03±0.93 32.76±1.38 6.03±3.25

GA θpre 11.75±2.54 11.74±2.31 11.63±6.04 17.21±2.50 16.74±0.09 5.92±1.20
θgrok 17.18±1.54 17.47±1.63 5.82±1.80 19.43±0.98 19.34±0.92 5.30±0.63

Algorithm-Agnostic Benefits with Method-Specific Patterns. Grokking’s benefits prove remarkably
consistent across diverse unlearning paradigms, with each algorithm showing clear improvements
when applied to θgrok versus θpre. However, we observe interesting method-specific patterns: gradient-
based approaches (GA,∇τ ) show the most consistent improvements across both forget rates, while
second-order methods like Fisher Forgetting deliver exceptionally stable performance with dramat-
ically reduced variance. Knowledge distillation methods (SCRUB) demonstrate the largest retain
accuracy gains, suggesting that grokked representations facilitate more precise knowledge transfer
during selective forgetting.

Scalability and Stability Advantages. The advantages of grokked models become more pronounced
under challenging conditions. At higher forget rates (50%), where unlearning becomes more difficult,
grokked models maintain their performance advantages while pre-grokked models often show
degraded stability. Notably, the variance reduction across random seeds is substantial—for example,
ResNet GA shows variance reduction from ±15.91 to ±1.34 in unlearning accuracy at 15% forget rate.
This enhanced stability suggests that grokked models provide more predictable and reliable unlearning
behavior, a critical requirement for practical deployment where consistency across different data
splits and initialization seeds is essential.

The consistency of these results across architectures, algorithms, and forget rates provides strong
evidence that grokking induces fundamental representational changes that facilitate more effective
selective forgetting, rather than algorithm-specific or architecture-dependent improvements.

Task-Dependent Efficiency Advantages. Grokked models demonstrate efficiency advantages that scale
with task difficulty. Figure 2 reveals that at moderate forget rates (15%), θgrok achieves effective
forgetting within 5-8 steps while θpre requires 15-20 steps—a substantial 60-70% computational
reduction. However, this efficiency gap narrows considerably at challenging forget rates (50%), where
both model types require similar numbers of steps to converge, though grokked models maintain more
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Figure 2: Efficiency Advantages Depend on Task Difficulty. Convergence dynamics of∇τ unlearn-
ing on CNN (CIFAR-10) comparing grokked (θgrok) and pre-grokked (θpre) models. (a) At moderate
forget rates (15%), grokked models show substantial efficiency gains, achieving effective forgetting
in 5-8 steps vs. 15-20 for pre-grokked models. (b) At challenging forget rates (50%), efficiency
advantages become marginal, though grokked models still maintain more stable convergence.

stable and predictable convergence patterns. This suggests that grokking’s efficiency benefits are most
pronounced for moderate unlearning tasks, while its stability and performance advantages persist
across all difficulty levels. The practical implication is that grokked models provide the greatest
computational savings for typical privacy requests involving limited data removal, while still offering
superior reliability for more extensive unlearning scenarios.

3.2 LANGUAGE MODELS: LOCAL GROKKING ANALYSIS

We evaluate on the TOFU dataset of synthetic author profiles, fine-tuning Phi-1.5 on the full training
set. Unlike vision models where we observe clear global grokking transitions, Phi-1.5 cannot
achieve model-wide grokking on TOFU. However, we identify a novel phenomenon: local grokking
regions—subsets of examples that exhibit grokking-like generalization behavior within the same
model, creating heterogeneous learning states across the dataset.

Local Grokking Identification: We train for 100 epochs to ensure sufficient learning dynamics
and retrospectively analyze individual examples to identify their grokking status. For each example,
we compare its loss at an early candidate checkpoint θcandidate (20 epochs) to its final loss at con-
vergence. Examples showing minimal loss reduction (typically <0.01 loss decrease) were already
well-generalized at the candidate checkpoint and represent locally grokked regions—they achieved
effective generalization early in training, analogous to the post-grokking state in vision models.
Conversely, examples with substantial loss improvements (>0.5 loss decrease) represent locally
ungrokked regions that remained poorly learned at the candidate checkpoint, similar to pre-grokking
states.

This local grokking phenomenon creates a unique experimental opportunity: within a single trained
model, we can identify subsets of data that exist in fundamentally different representational states.
This allows us to test our core hypothesis—that grokking-like representational quality enhances
unlearning—at the granular level of individual examples rather than entire models.

Forget Set Construction: Rather than using TOFU’s pre-designated forget sets, we construct custom
forget sets of 50-200 question-answer pairs based on our local grokking analysis. This design
enables the most direct test of our hypothesis: we can compare unlearning effectiveness between
locally grokked examples (well-generalized representations) versus locally ungrokked examples
(poorly organized representations) within the same model, controlling for all other factors including
architecture, training procedure, and overall model capacity.

The graduated forget set sizes (50-200 examples) allow us to assess scalability, while the controlled
comparison within a single model eliminates confounding factors that might arise from comparing
different model checkpoints. This approach tests whether the representational advantages we observe
at the model level (vision experiments) also manifest at the example level within language models.
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Evaluation: We focus on gradient-based unlearning methods (GA and GD) due to computational
constraints with transformer models and language model specific approaches (KL, PO, NPO, RMU).
We measure Extraction Strength (ES) scores following established language model unlearning
protocols, where ESretain (higher is better) indicates successful retention of non-target information,
and ESunlearn (lower is better) indicates effective forgetting of target data. The ES metric specifically
measures resistance to extraction attacks, providing a robust assessment of whether information has
been truly forgotten rather than merely suppressed.

All experiments report mean ± standard deviation over 3 independent runs with different random
selections of grokked/ungrokked examples to ensure our findings are not dependent on specific
example choices. This methodology allows us to test whether grokking’s unlearning benefits, clearly
demonstrated at the model level in vision tasks, also manifest at the representational level within
language models.

Table 2: Unlearning performance comparison between locally grokked and ungrokked examples
in Phi-1.5 on TOFU dataset. Results show Extraction Strength (ES) scores where ESretain (higher
is better) indicates successful retention and ESunlearn (lower is better) indicates effective forgetting.
"Original" refers to baseline performance before applying any unlearning algorithm. Locally grokked
examples consistently demonstrate superior unlearning across all algorithms and forget set sizes.

50 Examples 100 Examples 150 Examples 200 Examples

Method Grok unGrok Grok unGrok Grok unGrok Grok unGrok

ESretain (higher is better)

Original 0.649 0.649 0.649 0.649 0.648 0.648 0.647 0.647
GA 0.605 0.556 0.576 0.541 0.590 0.553 0.492 0.489
GD 0.620 0.571 0.542 0.445 0.634 0.594 0.621 0.585
KL 0.606 0.558 0.403 0.331 0.593 0.560 0.499 0.496
PO 0.645 0.639 0.628 0.605 0.590 0.553 0.453 0.451
NPO 0.619 0.591 0.536 0.508 0.583 0.575 0.522 0.511
RMU 0.643 0.630 0.578 0.578 0.321 0.304 0.212 0.119

ESunlearn (lower is better)

Original 0.597 0.597 0.630 0.630 0.658 0.658 0.661 0.661
GA 0.344 0.518 0.366 0.563 0.426 0.586 0.398 0.512
GD 0.348 0.523 0.291 0.497 0.475 0.611 0.470 0.596
KL 0.353 0.519 0.230 0.363 0.436 0.603 0.406 0.522
PO 0.511 0.577 0.466 0.615 0.426 0.586 0.372 0.480
NPO 0.360 0.554 0.290 0.529 0.438 0.617 0.428 0.564
RMU 0.560 0.586 0.551 0.556 0.291 0.303 0.110 0.129

Results: Table 2 presents results comparing unlearning effectiveness between locally grokked and
ungrokked examples within the same Phi-1.5 model, revealing consistent and substantial benefits for
examples that achieved early generalization.

Superior Forgetting with Preserved Retention. Locally grokked examples consistently demonstrate
superior unlearning performance across all tested algorithms and forget set sizes. For unlearning
effectiveness (ESunlearn, lower is better), grokked examples show substantial improvements: GA
achieves 0.344 vs. 0.518 for ungrokked examples at 50 samples, representing a 34% improvement
in forgetting effectiveness. This advantage scales remarkably well—at 200 samples, GA main-
tains strong performance (0.398 vs. 0.512), indicating that locally grokked representations remain
amenable to selective forgetting even under challenging conditions. Simultaneously, grokked exam-
ples generally maintain comparable or superior retention performance (ESretain, higher is better), with
most algorithms showing either matched or improved retention scores, demonstrating that enhanced
forgetting does not come at the cost of useful knowledge preservation.

Algorithm-Agnostic Benefits Across Method Families. The advantages of locally grokked examples
prove robust across diverse unlearning paradigms, spanning gradient-based methods (GA, GD),
divergence minimization (KL), preference optimization approaches (PO, NPO), and representation
manipulation (RMU). Gradient-based methods show the most consistent improvements, with GD
demonstrating particularly strong performance (e.g., 0.291 vs. 0.497 ESunlearn at 100 samples).
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Preference-based methods (PO, NPO) also benefit substantially from grokked representations, while
RMU shows more variable results but still generally favors grokked examples. This cross-method
consistency suggests that the representational advantages of local grokking are fundamental rather
than algorithm-specific, paralleling our findings in vision models.

Scalability and Consistency Patterns. The benefits of locally grokked examples remain consistent
across forget set sizes from 50 to 200 examples, though with interesting scaling patterns. Smaller
forget sets (50-100 examples) show the most dramatic improvements, with some algorithms achieving
40-50% better forgetting effectiveness for grokked examples. At larger scales (150-200 examples),
the absolute advantages remain substantial but proportionally smaller, suggesting that local grokking
provides the greatest benefits for moderate-scale unlearning tasks—precisely the scenario most
relevant for practical privacy applications. Notably, the consistency of these improvements across
scales indicates that locally grokked representations maintain their structural advantages even when
substantial portions of the model’s knowledge must be selectively removed.

These results establish that grokking’s unlearning benefits manifest not only at the global model level
(as demonstrated in vision experiments) but also at the granular level of individual examples within
language models. This finding suggests that the representational quality improvements associated with
grokking—better organization, modularity, and disentanglement—can be identified and leveraged
even within models that do not achieve global grokking transitions.

4 MECHANISM ANALYSIS OF UNLEARNING FOR GROKKED MODELS

4.1 GRADIENT ANALYSIS

To understand the mechanistic differences between grokked and pre-grokked models, we analyze
gradient patterns induced by forget and retain examples. For each model, we compute gradients
with respect to model parameters for both sets and calculate their cosine similarity. This reveals how
entangled the optimization signals are between data that should be forgotten versus preserved.

High cosine similarity indicates that forget and retain examples induce similar parameter updates,
making selective unlearning difficult due to shared optimization directions. Low similarity suggests
orthogonal gradient spaces, enabling precise selective forgetting with minimal collateral damage.

Table 3 presents results for CNN and ResNet architectures on CIFAR-10. Pre-grokked models exhibit
extremely high gradient correlations (0.990 for CNN, 0.999 for ResNet), meaning forget and retain
examples induce nearly identical optimization signals. This explains why unlearning in pre-grokked
models causes significant collateral damage.

Grokked models show substantially lower correlations (0.521 for CNN, 0.426 for ResNet), indicating
that grokking creates more orthogonal gradient spaces. This orthogonality provides a mechanistic
explanation for grokking’s unlearning advantages: distinct optimization directions enable algorithms
to target forget examples precisely while leaving retain examples unaffected.

Table 3: Gradient correlation analysis between forget and retain examples. Values represent cosine
similarity between gradient vectors. Lower correlations indicate more orthogonal gradient spaces,
enabling more selective unlearning.

Model Type CNN ResNet

Grokked Pre-grokked Grokked Pre-grokked

Gradient Correlation 0.521 0.990 0.426 0.999

This analysis reveals that grokking creates distinct optimization pathways for different data types, pro-
ducing disentangled representations at both feature and optimization levels. The consistency across
architectures indicates that gradient orthogonality is a fundamental characteristic of grokked repre-
sentations, opening avenues for unlearning methods that explicitly leverage gradient orthogonality.
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Table 4: Location Complexity analysis before and after unlearning on CIFAR-10. LCr, LCt, LCf

represent complexity on retain, test, and forget sets (lower is better). Grokked models show consis-
tently lower complexity, indicating more stable representations that facilitate effective unlearning.

Arch Stage Ckpt LCr LCt LCf

ResNet
Before θpre 27.98 29.35 28.83

θgrok 7.37 6.93 7.23

After θpre 35.41 34.82 32.24
θgrok 15.16 14.91 13.91

CNN
Before θpre 34.53 38.34 36.65

θgrok 9.87 9.80 9.11

After θpre 53.40 53.18 49.22
θgrok 18.86 18.76 17.12

4.2 LOCAL COMPLEXITY ANALYSIS

To understand why grokked models provide superior unlearning capabilities, we analyze their
representational structure using the local complexity (LC) measure introduced by Humayun et al.
(2024). This method quantifies the density of linear regions in a neural network’s input space partition
around specific data points by constructing cross-polytope neighborhoods and measuring how many
neuron hyperplanes intersect each local region. Lower LC values indicate smoother representations
with larger linear regions, while higher values suggest complex, densely partitioned patterns.

Our analysis reveals the mechanistic basis for grokking’s unlearning advantages. Table 4 demonstrates
that grokked models (θgrok) possess inherently simpler representations than pre-grokked models (θpre)
even before unlearning—ResNet grokked models show dramatically lower complexity (7.37 vs 27.98
for retain set). This advantage persists throughout unlearning: while both model types experience
increased complexity after the forgetting process, grokked models maintain substantially lower values
(15.16 vs 35.41 for ResNet retain set). This consistent pattern across architectures and data types
indicates that grokking creates flatter, more stable loss landscapes that enable controlled modifications
during selective forgetting, explaining the superior ability to remove specific information while
preserving broader capabilities with minimal collateral damage.

5 CONCLUSION

This work establishes the first systematic connection between grokking and machine unlearning,
revealing that grokked models possess fundamentally superior unlearning capabilities. Through
comprehensive experiments across vision (ResNet/CNN on CIFAR) and language (transformers
on TOFU) domains, we demonstrate that grokked models consistently achieve more effective data
removal while better preserving performance on retained data and maintaining enhanced robustness.

Our key insight is that grokking creates more than delayed generalization—it fundamentally re-
structures internal representations into simpler, more disentangled forms that facilitate surgical data
removal. Analysis using local complexity measures and gradient correlations reveals that grokked
models operate in flatter, more stable regions of the loss landscape, enabling controlled modifications
during selective forgetting with minimal collateral damage.

These findings have immediate practical implications for privacy-preserving machine learning. Rather
than developing new unlearning algorithms, practitioners can leverage grokking-enhanced training
to create models inherently better suited for data removal. This paradigm shift—from algorithmic
innovation to representational optimization—offers a more fundamental approach to addressing data
privacy and regulatory compliance challenges. Future work should explore theoretical foundations of
this connection and investigate training dynamics that can intentionally promote grokking-like states
optimized for unlearning.
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ETHICS STATEMENT

This research exclusively uses publicly available datasets (CIFAR-10, CIFAR-100, TOFU) and
pre-trained models (Phi-1.5) in accordance with their respective licenses and terms of use. The
TOFU dataset consists of synthetic author profiles specifically designed for unlearning research,
containing no real personally identifiable information. No sensitive data, proprietary datasets, or
private information were collected, generated, or analyzed during this study. All experimental
procedures follow standard academic research practices for machine learning and do not raise ethical
concerns regarding data privacy, consent, or misuse. Our research contributes to privacy-preserving
machine learning by improving unlearning techniques, which supports data protection rights and
regulatory compliance frameworks such as GDPR.

USE OF LLMS

Large language models were used in two distinct capacities during this research: (1) as experimental
subjects for our language model unlearning experiments (specifically Phi-1.5 fine-tuned on TOFU),
and (2) as writing assistance tools for improving the clarity, grammar, and presentation of this
manuscript. All core technical contributions, experimental design, data analysis, and scientific
conclusions were developed and conducted entirely by the authors. The use of LLMs for writing
assistance was strictly limited to grammar checking, style improvements, sentence restructuring,
and clarity enhancements, without altering the technical content, experimental results, or research
conclusions. No LLM-generated content was used for technical claims, experimental procedures, or
data interpretation.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, we provide comprehensive implementation details
throughout the paper and appendices, including specific hyperparameter settings, training procedures,
checkpoint selection criteria, and evaluation protocols. All experiments use publicly available datasets
and standard model architectures with clearly documented configurations. We report statistical
measures (mean ± standard deviation) over multiple independent runs with different random seeds
to ensure reliability. Our grokking identification procedures are precisely defined with quantitative
thresholds, and our unlearning evaluation follows established benchmarks. Upon publication, we will
release code, detailed experimental configurations, and processed datasets to facilitate replication and
extension of this work by the research community.

LIMITATIONS

This work has several important limitations that should be acknowledged. First, our vision experi-
ments are conducted on relatively small-scale datasets (CIFAR-10/100) with simple architectures,
and scalability to larger, more complex datasets and modern architectures remains to be demonstrated.
Second, the language model experiments focus on a single model (Phi-1.5) and synthetic dataset
(TOFU), which may not represent the full diversity of large language model scenarios or real-world
text data. Third, our identification of "local grokking" in language models relies on loss-based
heuristics that may not capture all aspects of representational quality or generalization. Fourth,
while we demonstrate consistent improvements across multiple unlearning algorithms, the absolute
performance levels indicate that machine unlearning remains challenging and may not yet meet all
practical deployment requirements. Finally, our theoretical understanding of why grokking enables
better unlearning, while supported by empirical evidence, requires further investigation to establish
causal mechanisms.

BROADER IMPACT

This research addresses the critical challenge of machine unlearning, which has significant positive
implications for data privacy, regulatory compliance, and responsible AI deployment. Our findings
that grokked models enable more effective and efficient selective forgetting could facilitate practical
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implementation of "right to be forgotten" regulations, help organizations manage evolving data
privacy requirements, and reduce the computational costs associated with privacy-compliant model
updates. The efficiency gains we demonstrate (60-70% reduction in unlearning steps) could make
privacy-preserving machine learning more accessible to organizations with limited computational
resources.

However, we acknowledge potential negative implications that warrant careful consideration. Im-
proved unlearning capabilities could potentially be misused to selectively remove evidence of model
biases, discriminatory behaviors, or other problematic patterns that should be addressed rather than
hidden. Additionally, the ability to efficiently modify trained models might enable malicious actors
to remove safety constraints or ethical guidelines embedded during training. We emphasize that
our techniques should be deployed within appropriate ethical frameworks, regulatory oversight, and
institutional review processes.

We encourage future work to develop robust verification methods for ensuring complete and ap-
propriate unlearning, establish best practices for responsible deployment of these techniques, and
create safeguards against potential misuse. The research community should continue to balance the
legitimate privacy benefits of machine unlearning with the need to maintain model transparency,
accountability, and safety standards.
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A ADDITIONAL RESULTS

A.1 MEMBERSHIP INFERENCE ATTACK RESISTANCE

Membership Inference Attacks (MIA) represent a critical evaluation metric for unlearning effec-
tiveness, where an adversary attempts to determine whether a specific data point was included in
a model’s training dataset. For successful unlearning, the model should make forget data indistin-
guishable from data that was never used for training, resulting in MIA accuracy approaching random
guessing (50% or 0.5). Lower MIA scores on unlearned data indicate more effective forgetting and
better privacy protection.

Table 5 presents MIA resistance results for ResNet models on CIFAR-10 across three unlearning
algorithms. The results demonstrate that grokked models (θgrok) consistently achieve better privacy
protection compared to pre-grokked models (θpre), with MIA scores closer to the ideal 0.5 threshold.
This improvement is particularly pronounced for SCRUB, where grokked models show substantial
MIA score reductions (0.842→0.677 at 50% forget rate), indicating that the unlearned data has
become significantly more difficult to identify through membership inference attacks.

Table 5: Membership Inference Attack (MIA) resistance for ResNet unlearning on CIFAR-10. Lower
MIA scores (closer to 0.5) indicate better privacy protection and more effective unlearning. Grokked
models consistently demonstrate superior resistance to membership inference attacks across all
algorithms and forget rates.

Forget Rate GA ∇τ SCRUB

θpre θgrok θpre θgrok θpre θgrok

15% 0.571 0.556 0.597 0.582 0.682 0.614
50% 0.582 0.556 0.592 0.574 0.842 0.677

These MIA results provide additional evidence that grokking enhances not only unlearning perfor-
mance but also privacy protection. The consistent improvements across different algorithms and
forget rates suggest that the representational advantages of grokked models extend to resistance
against privacy attacks, making them more suitable for deployment in privacy-sensitive applications
where robust data removal is essential.

A.2 ROBUSTNESS PRESERVATION AFTER UNLEARNING

Grokked models are known to exhibit superior adversarial robustness compared to their pre-grokked
counterparts (Humayun et al., 2024). However, it remains unclear whether this robustness advantage
is preserved after unlearning procedures, which involve significant parameter modifications that could
potentially compromise the model’s defensive capabilities. We investigate whether the unlearning
process maintains the inherent robustness benefits of grokked models or if selective forgetting
operations degrade their adversarial resilience.

This question is particularly important for practical deployment, as machine unlearning is often
required in security-sensitive applications where both privacy compliance and adversarial robustness
are essential. If unlearning procedures destroy the robustness advantages of grokked models, it would
significantly limit their practical utility despite superior unlearning performance.

We assess post-unlearning adversarial robustness using Projected Gradient Descent (PGD) at-
tacks (Madry et al., 2017) on the CIFAR-10 test set. Adversarial examples are generated using the Fast
Gradient Sign Method (FGSM) (Goodfellow et al., 2014), defined as xadv = x+ ϵ · sign(∇xL(x, y)),
where x is the input, y is the target label, and ϵ controls the perturbation magnitude. We evaluate
robustness across multiple attack strengths (ϵ ∈ {0.05, 0.10, 0.15, 0.20}) to assess stability under
varying perturbation levels.

Table 6 presents the adversarial robustness results for ResNet models after unlearning with gradient
ascent (GA) and ∇τ algorithms. The results demonstrate that grokked models not only preserve
their robustness advantages after unlearning but actually maintain substantially higher adversarial
resilience compared to unlearned pre-grokked models. For gradient ascent, grokked models achieve
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0.181 accuracy under strong attacks (ϵ = 0.20) compared to 0.112 for pre-grokked models—a 62%
improvement that persists even after selective forgetting operations.

Notably, grokked models exhibit weaker correlation between robustness degradation and attack
strength, suggesting that their representational advantages create more stable defensive properties
that resist both adversarial perturbations and unlearning-induced modifications. This dual resilience
indicates that the superior representational organization of grokked models provides benefits that
extend beyond unlearning effectiveness to encompass broader model stability and security.

Table 6: Adversarial robustness preservation after unlearning on CIFAR-10 using ResNet. Values rep-
resent accuracy on adversarially perturbed test data generated using FGSM with varying perturbation
magnitudes (ϵ). Higher values indicate better robustness preservation. Grokked models maintain their
robustness advantages even after unlearning procedures across all attack strengths and algorithms.

Attack Strength Gradient Ascent ∇τ
θgrok θpre θgrok θpre

ϵ = 0.05 0.201 0.143 0.042 0.037
ϵ = 0.10 0.190 0.125 0.022 0.019
ϵ = 0.15 0.184 0.117 0.019 0.014
ϵ = 0.20 0.181 0.112 0.018 0.010

These findings provide compelling evidence that grokking creates fundamentally robust represen-
tations that withstand both adversarial attacks and unlearning modifications. The preservation of
robustness advantages after selective forgetting suggests that grokked models offer a unique combina-
tion of privacy compliance capabilities and security resilience, making them particularly valuable
for deployment in applications where both data protection and adversarial robustness are critical
requirements.

B DATASET INTRODUCE

TOFU: A Benchmark for LLM Unlearning. The Task of Fictitious Unlearning (Maini et al., 2024b)
is a benchmark specifically designed to evaluate machine unlearning methods in large language
models. Unlike vision datasets, where unlearning often involves removing classes or samples, LLM
unlearning requires forgetting fine-grained information such as facts, entities, or user-specific data.
TOFU addresses this by constructing synthetic author profiles consisting of biographical attributes
and question–answer pairs. Because the data is synthetic, it avoids privacy concerns while still
mimicking realistic unlearning scenarios.

The benchmark provides pre-specified forget sets (subsets of QA pairs tied to particular author
attributes) and retain sets (remaining knowledge), enabling controlled evaluation. It is widely used to
test whether unlearning methods can:

• Erase target knowledge (reducing memorization of the forget set),
• Preserve unrelated knowledge (maintain performance on retain/test sets), and
• Resist extraction attacks (e.g., extraction strength probes).

By standardizing tasks and evaluation metrics, TOFU has become the de facto testbed for assessing
the effectiveness, stability, and scalability of unlearning algorithms in the LLM domain. CIFAR-
10/100 for Machine Unlearning. The CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009)
are standard benchmarks for image classification, widely adopted in unlearning research due to their
balanced class structure and moderate difficulty. CIFAR-10 consists of 60,000 images across 10
object categories, while CIFAR-100 extends this to 100 fine-grained categories.

For unlearning studies, these datasets provide a natural setting to test both class-level forgetting
(removing entire categories) and sample-level forgetting (removing subsets of images within classes).
In particular, selective removal of instances within a class creates a challenging “surgical forgetting”
scenario: the model must erase target samples while preserving generalization to other samples of the
same class and unrelated categories.
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Their moderate size and well-established baselines make CIFAR-10/100 ideal for controlled un-
learning experiments, enabling systematic comparisons across algorithms, architectures, and forget
rates.

C IMPLEMENTATION DETAILS

To validate the efficacy of grokked models, we propose a methodology to enhance their machine
unlearning performance. We will use established deep learning architectures, specifically ResNet,
CNN, and Transformer-based Large Language Models (LLMs) for pre-training and grokking. We
will employ well-established machine unlearning algorithms,e.g.gradient ascent (GA), the Fisher
method, and influence functions. For the pre-training and the grokking of the ResNet and CNN
models, we will utilize the CIFAR-10 datasets. All computations will be conducted on a system
equipped with an Intel Core i7-10875H CPU and an NVIDIA RTX 4090 24GB GPU.

D LANGUAGE MODEL PHI-1.5 DETAILS

For our language domain experiments, we adopt Phi-1.5 Li et al. (2023), a compact yet capable
decoder-only transformer released by Microsoft. Phi-1.5 has approximately 1.3B parameters and is
trained on a curated mixture of high-quality synthetic and filtered web/textbook data, emphasizing
reasoning and factual consistency. Its moderate scale makes it particularly well-suited for controlled
unlearning experiments, where repeated fine-tuning and evaluation must be computationally feasible.

E EVALUATION METRICS FOR MACHINE UNLEARNING

Given a dataset D = Dretain ∪ Dforget ∪ Dtest, we evaluate unlearning performance using three
accuracy-based metrics:

Unlearning Accuracy (UA). UA measures how well the model “forgets” the designated forget set. A
lower UA indicates better forgetting:

UA =
1

|Dforget|
∑

(x,y)∈Dforget

1[ŷ(x) = y] ,

Retain Accuracy (RA). RA measures knowledge preservation on the retained training data:

RA =
1

|Dretain|
∑

(x,y)∈Dretain

1[ŷ(x) = y] .

Test Accuracy (TA). TA measures generalization on an unseen test set:

TA =
1

|Dtest|
∑

(x,y)∈Dtest

1[ŷ(x) = y] ,

where ŷ(x) is the model prediction.

Desiderata. Effective unlearning corresponds to low UA, while high RA and TA indicate preserved
knowledge and generalization ability.
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