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Abstract

The bisimulation metric (BSM) is a powerful tool for computing state similarities
within a Markov decision process (MDP), revealing that states closer in BSM have
more similar optimal value functions. While BSM has been successfully utilized in
reinforcement learning (RL) for tasks like state representation learning and policy
exploration, its application to multiple-MDP scenarios, such as policy transfer,
remains challenging. Prior work has attempted to generalize BSM to pairs of MDPs,
but a lack of rigorous analysis of its mathematical properties has limited further
theoretical progress. In this work, we formally establish a generalized bisimulation
metric (GBSM) between pairs of MDPs, which is rigorously proven with the
three fundamental properties: GBSM symmetry, inter-MDP triangle inequality,
and the distance bound on identical state spaces. Leveraging these properties,
we theoretically analyse policy transfer, state aggregation, and sampling-based
estimation in MDPs, obtaining explicit bounds that are strictly tighter than those
derived from the standard BSM. Additionally, GBSM provides a closed-form
sample complexity for estimation, improving upon existing asymptotic results
based on BSM. Numerical results validate our theoretical findings and demonstrate
the effectiveness of GBSM in multi-MDP scenarios.

1 Introduction

Markov decision processes (MDPs) serve as a foundational framework for modeling decision-making
problems in Reinforcement Learning (RL) [1]. To enable efficient analysis of MDPs, Ferns et al.
[2] proposed the bisimulation metric (BSM) based on the Wasserstein distance, also known as the
Kantorovich–Rubinstein metric, to quantify state similarity in a policy-independent manner. BSM
provides theoretical guarantees that states closer under this metric exhibit more similar optimal value
functions. Meanwhile, BSM is a pseudometric [3] satisfying: (1) Symmetry: d(s, s′) = d(s′, s),
(2) Triangle inequality: d(s, s′) ≤ d(s, s′′) + d(s′′, s′), and (3) Indiscernibility of identicals: s =
s′ ⇒ d(s, s′) = 0. These three properties, combined with BSM’s measuring capability on optimal
value functions, have driven its applications across diverse RL applications. It has been successfully
employed in state aggregation [4, 5], representation learning [6, 7], policy exploration [8, 9], goal-
conditioned RL [10], safe RL [11], etc.

However, since BSM is inherently defined over a single MDP, its application to theoretical anal-
yses involving multiple MDPs faces notable obstacles. For instance, Phillips [12] applied BSM
to policy transfer by constructing a disjoint union of the source and target MDPs’ state spaces.
While this allows inter-MDP comparisons through BSM, the disjoint union enforces zero transi-
tion probabilities between states across the two MDPs. Consequently, this method fixes the total
variation distance between their transition probabilities at one, hindering further simplifications and
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analysis. It necessitates iterative calculation of distances across the entire state space, leading to
prohibitive computational costs in deep RL tasks as noted in [13]. Also, in order to compute state
similarities in continuous or large-space discrete MDPs, Ferns et al. [14] proposed a state similarity
approximation method through state aggregation and sampling-based estimation. Although they
proved the convergence of approximated state similarities to actual ones by leveraging properties of
BSM and the Wasserstein distance, their approach only derived a fairly loose approximation error
bound and failed to obtain an explicit sample complexity (i.e., the lower bound on the number of
samples required to achieve the specified level of accuracy) for the estimation error. Specifically, the
estimation error bound (see Eq. 7.1 in [14]) depends on the former aggregation process, resulting in
an asymptotic sample complexity rather than a closed-form expression. In addition, for representation
learning, Zhang et al. [6] and Kemertas and Aumentado-Armstrong [15] leveraged BSM to establish
value function approximation bounds under optimal and non-optimal policies, respectively. However,
BSM-based analysis between the original and aggregated MDPs results in loose bounds, particularly
with large discount factors.

Several works have attempted to extend the definition of BSM for evaluating similarity between
multiple MDPs [16–18]. Notably, when extended to multi-MDP scenarios, this modified version
of BSM loses its pseudometric properties, as s and s′ in d(s, s′) represent states in different MDPs.
To the best of our knowledge, prior works have typically extended the single-MDP formulation
to two MDPs, without rigorously retaining the metric properties. Specifically, Castro and Precup
[16] utilized its evaluation capability on optimal value functions to analyze policy transfer. Due to
the lack of metric properties, the derived theoretical performance bound is limited to transferring
the optimal policy within the source MDP, as it can only reflect the effect of one-step action rather
than the long-term impact of the transferred policy (see Theorem 5 in [16]). While Song et al.
[17] successfully employed such a modified BSM in assessing MDP similarities and improving
the long-term reward in policy transfer, their investigation focused on empirical validation rather
than in-depth theoretical analysis. Furthermore, a comprehensive survey on various state similarity
measures between MDPs [18], which highlighted the modified BSM as an effective approach, also
emphasized the limited theoretical guarantees in current methodologies. This raises the following
two questions:

Q1. Does the modified BSM possess any metric properties when computing state similarities between
multiple MDPs, akin to the pseudometric properties of BSM within a single MDP?

Q2. If so, how can these properties facilitate the theoretical analysis involving multiple MDPs?

To answer Q1, we present a formal definition for the modified BSM in multi-MDP scenarios, which
we refer to as generalized BSM (GBSM), and rigorously establish three metric properties that align
with the pseudometric properties of BSM. These properties are summarized as (1) GBSM symmetry,
(2) inter-MDP triangle inequality, and (3) the distance bound on identical state spaces. To answer Q2,
we apply GBSM in the theoretical analyses of policy transfer, state aggregation, and sampling-based
estimation of MDPs, yielding explicit bounds for policy transfer performance, aggregation error, and
estimation error, respectively. Notably, when the compared MDPs are identical, the error bound of
GBSM reduces to the error bound of BSM for a single MDP. We prove that the GBSM-derived bound
is strictly tighter than the bound directly obtained from BSM, along with an explicit and closed-form
sample complexity for approximation that advances beyond the asymptotic results of [14]. Numerical
results corroborate our theoretical findings.

2 Background

Before describing the details of our contributions, we give a brief review of the required background
in reinforcement learning and the bisimulation metric.

Reinforcement Learning We consider an MDP ⟨S,A,P, R, γ⟩ defined by a finite state space S,
a finite action space A, transition probability P(s̃|s, a) (a ∈ A, {s̃, s} ∈ S, and s̃ denotes the
next state), a reward function R(s, a), and a discount factor γ. Policies π(·|s) are mappings from
states to distributions over actions, inducing a value function recursively defined by V π(s) :=
Ea∼π(·|s)

[
R(s, a) + γEs̃∼P(·|s,a) [V

π(s̃)]
]
. In RL, we are concerned with finding the optimal policy

π∗ = argmaxπ V
π , which induces the optimal value function denoted by V ∗.
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Bisimulation Metric Different definitions of BSM exist in the literature [2, 4, 14]. In this paper, we
adopt the formulation from [4], setting the weighting constant to its maximum value c = γ. The
BSM is then defined as:

d∼(s, s′) = max
a

{
|R(s, a)−R(s′, a)|+ γW1(P(·|s, a),P(·|s′, a); d∼)

}
,∀s, s′ ∈ S. (1)

Here, W1 is the 1-Wasserstein distance, measuring the minimal transportation cost between distri-
butions P(·|s, a) to P(·|s′, a), with d∼ as the cost function. Ferns et al. [2] showed that this metric
consistently bounds differences in the optimal value function, i.e., |V ∗(s)− V ∗(s′)| ≤ d∼(s, s′).

3 Generalized Bisimulation Metric

We now present a formal definition of the proposed GBSM and derive its key metric properties.

Definition 3.1 (Generalized bisimulation metric). Given two MDPs M1 = ⟨S1,A,P1, R1, γ⟩ and
M2 = ⟨S2,A,P2, R2, γ⟩, the GBSM between any state s ∈ S1 and any state s′ ∈ S2 is defined as:

d((s,M1), (s
′,M2)) = max

a

{
|R1(s, a)−R2(s

′, a)|+ γW1(P1(·|s, a),P2(·|s′, a); d1-2)
}
. (2)

For notational simplicity, we use d1-2(s, s′) to denote d((s,M1), (s
′,M2)), where the superscript

1-2 indicates the direction of GBSM from M1 to M2. Before proving the existence of GBSM, we
first introduce the Wasserstein distance [19], which is defined through the following primal linear
program (LP):

W1(P,Q; d) = min
λ

∑|S1|

i=1

∑|S2|

j=1
λi,jd (si, sj) ,

subject to
∑|S2|

j=1
λi,j = P (si) , ∀ i ;

∑|S1|

i=1
λi,j = Q (sj) , ∀ j ;λi,j ≥ 0, ∀ i, j.

(3)

Here, P and Q are distributions on S1 and S2, respectively, and si ∈ S1, sj ∈ S2. It represents the
minimum transportation cost from P to Q under cost function d : S1 × S2 → R+, and is equivalent
to the following dual LP according to the Kantorovich duality [20]:

W1(P,Q; d) = max
µ,ν

∑|S1|

i=1
µiP (si)−

∑|S2|

j=1
νjQ(sj),

subject to µi − νj ≤ d(si, sj), ∀ i, j.

(4)

Then the existence of such a d1-2 satisfying Eq. 2 is established by the following theorem.

Theorem 3.2 (Existence and convergence of GBSM). Let d1-2
0 be a constant zero function and

define

d1-2
n (s, s′) = max

a

{
|R1(s, a)−R2(s

′, a)|+ γW1(P1(·|s, a),P2(·|s′, a); d1-2
n−1)

}
, n ∈ N (5)

Then d1-2
n converges to the fixed point d1-2 uniformly with n → ∞. Let R̄ = maxs,s′,a |R1(s, a)−

R2(s
′, a)|, and the convergence of d1-2

n to d1-2 satisfies

d1-2(s, s′)− d1-2
n (s, s′) ≤ γnR̄/(1− γ). (6)

Proof Sketch. The existence of d1-2 is established through the fixed-point theorem [21] and the
definition of the Wasserstein distance, similar to the proof of BSM in [2]. The convergence is proved
via the LP in (3) and induction. (See Appendix A for the complete proof.)

Similar to BSM, which evaluates the state similarity through the optimal value function, GBSM
naturally bounds differences in the optimal value function between two MDPs.

Theorem 3.3 (Optimal value difference bound between MDPs). Let V ∗
1 and V ∗

2 denote the optimal
value functions in M1 and M2, respectively. Then the GBSM provides an upper bound for the
difference between the optimal values for any state pair (s, s′) ∈ S1 × S2:

|V ∗
1 (s)− V ∗

2 (s
′)| ≤ d1-2(s, s′). (7)
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Proof Sketch. We first construct a recursive form of the optimal value function by V (n)(s) =
maxa

{
R(s, a) + γEs̃∼P(·|s,a)

[
V (n−1) (s̃)

] }
, with base case V (0)(s) = 0 and limn→∞ V (n)(s) =

V ∗. The proof proceeds by induction on n. The key insight is that
(
V

(n)
1 (sk)

)|S1|
k=1

and(
V

(n)
2 (sk)

)|S2|
k=1

form a feasible, but not necessarily the optimal, solution to the dual LP in (4)
for W1

(
P1(·|s, a),P2(·|s′, a); d1-2

n

)
. (See Appendix B for the complete proof.)

Now, we start to establish the three fundamental metric properties of GBSM, which we term GBSM
symmetry, inter-MDP triangle inequality, and the distance bound on identical state spaces. These
properties are designed to align with pseudometric properties of BSM, including symmetry, triangle
inequality, and indiscernibility of identical.

Theorem 3.4 (GBSM symmetry). Let d1-2 be the GBSM from M1 to M2, and d2-1 be the GBSM
in the opposite direction, then we have

d1-2(s, s′) = d2-1(s′, s), ∀ (s, s′) ∈ S1 × S2. (8)

Proof. This property can be readily proved through induction. We have |R1(s, a) − R2(s
′, a)| =

|R2(s
′, a) − R1(s, a)| for the base case. With the assumption of d1-2

n (s, s′) = d2-1
n (s′, s), we

have W1

(
P1(·|s, a),P2(·|s′, a); d1-2

n

)
= W1

(
P2(·|s′, a),P1(·|s, a); d2-1

n

)
, and from (5) we have

d1-2
n+1(s, s

′) = d2-1
n+1(s

′, s). It is therefore concluded that d1-2
n (s, s′) = d2-1

n (s′, s) for all n ∈ N
and (s, s′) ∈ S1 × S2. Taking n → ∞ yields the desired result.

Theorem 3.5 (Inter-MDP triangle inequality of GBSM). Given MDPs M1 = ⟨S1,A,P1, R1, γ⟩,
M2 = ⟨S2,A,P2, R2, γ⟩, and M3 = ⟨S3,A,P3, R3, γ⟩, GBSMs between the three MDPs satisfy

d1-2(s, s′) ≤ d1-3(s, s′′) + d3-2(s′′, s′), ∀ (s, s′, s′′) ∈ S1 × S2 × S3. (9)

Here, the GBSM between any two MDPs can be arbitrarily reversed according to its symmetry.

Proof. First, we need to prove the transitive property of inequality on the Wasserstein distance, that is,
the Wasserstein distance between the three distributions follows W1(P1,P2; d1-2)≤W1(P1,P3; d1-3)+
W1(P3,P2; d3-2) if (9) holds, where P1, P2, and P3 denote arbitrary distributions on S1, S2, and S3.

Let (si, sj , sk) ∈ S1 × S2 × S3. Define λ1,3 as the optimal transportation plan for W1(P1,P3; d1-3)

in primal LP (3), with elements λ1,3
i,k satisfying

∑|S3|
k=1 λ

1,3
i,k = P1(si) and

∑|S1|
i=1 λ

1,3
i,k = P3(sk).

Similarly define λ3,2 for W1(P3,P2; d3-2) with elements λ3,2
k,j . Construct λ1,3,2 with elements λ1,3,2

i,k,j

satisfying
∑|S2|

j=1 λ
1,3,2
i,k,j = λ1,3

i,k and
∑|S1|

i=1 λ
1,3,2
i,k,j = λ3,2

k,j . Such a λ1,3,2 does exist according to the
Gluing Lemma in [22]. Then, note that∑|S2|

j=1

∑|S3|

k=1
λ1,3,2
i,k,j =

∑|S3|

k=1
λ1,3
i,k = P1(si),∑|S1|

i=1

∑|S3|

k=1
λ1,3,2
i,k,j =

∑|S3|

k=1
λ3,2
k,j = P2(sj),

thus
∑|S3|

k=1 λ
1,3,2 is a feasible, but not necessarily the optimal, solution to the primal LP in (3) for

W1(P1,P2; d1-2). Consequently, we have

W1

(
P1,P2; d1-2) ≤ ∑|S1|

i=1

∑|S2|

j=1

(∑|S3|

k=1
λ1,3,2
i,k,j

)
d1-2(si, sj)

(a)

≤
∑|S1|

i=1

∑|S2|

j=1

(∑|S3|

k=1
λ1,3,2
i,k,j

)(
d1-3(si, sk) + d3-2(sk, sj)

)
=

∑|S1|

i=1

∑|S3|

k=1
λ1,3
i,kd

1-3(si, sk) +
∑|S3|

k=1

∑|S2|

j=1
λ3,2
k,jd

3-2(sk, sj)

= W1

(
P1,P3; d1-3)+W1

(
P3,P2; d3-2). (10)

Here, step (a) stems from the assumption on d. We have now established the transitivity of the
inter-MDP triangle inequality on the Wasserstein distance.
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Armed with (10), we are ready to prove the inter-MDP triangle inequality of the GBSM through
induction. For the base case,

d1-2
1 (s, s′) ≤ maxa{|R1(s, a)−R3(s

′′, a)|+ |R3(s
′′, a)−R2(s

′, a)|}
≤ maxa{|R1(s, a)−R3(s

′′, a)|}+maxa{|R3(s
′′, a)−R2(s

′, a)|}
= d1-3

1 (s, s′′) + d3-2
1 (s′′, s′), ∀ (s, s′, s′′) ∈ S1 × S2 × S3.

By the induction hypothesis, we assume that for an arbitrary n ∈ N,

d1-2
n (s, s′) ≤ d1-3

n (s, s′′) + d3-2
n (s′′, s′), ∀ (s, s′, s′′) ∈ S1 × S2 × S3.

The induction follows
d1-2
n+1(s, s

′)≤ max
a

{∣∣R1(s, a)−R3(s
′′, a)

∣∣+ ∣∣R3(s
′′, a)−R2(s

′, a)
∣∣

+ γW1

(
P1(·|s, a),P3(·|s′′, a); d1-3

n

)
+ γW1

(
P3(·|s′′, a),P2(·|s′, a); d3-2

n

)}
≤ max

a

{∣∣R1(s, a)−R3(s
′′, a)

∣∣+ γW1

(
P1(·|s, a),P3(·|s′′, a); d1-3

n

)}
+max

a

{∣∣R3(s
′′, a)−R2(s

′, a)
∣∣+ γW1

(
P3(·|s′′, a),P2(·|s′, a); d3-2

n

)}
= d1-3

n+1(s, s
′′) + d3-2

n+1(s
′′, s′), ∀ (s, s′, s′′) ∈ S1 × S2 × S3.

Here, the first inequality follows from (10), i.e., the transitivity of the inequality. Now we have
d1-2
n (s, s′) ≤ d1-3

n (s, s′′) + d3-2
n (s′′, s′) for all n ∈ N. Taking n → ∞, we establish the inter-MDP

triangle inequality of GBSM.

Since the identical states only exist within the same state space, we establish the distance bound only
when M1 and M2 share the same state space S. This property is formulated as follows:
Theorem 3.6 (Distance bound on identical state spaces). When M1 and M2 share the same S,

max
s

d1-2(s, s) ≤ 1

1− γ
max
s,a

{∣∣R1(s, a)−R2(s, a)
∣∣+ γR̄

1− γ
TV (P1(·|s, a),P2(·|s, a))

}
, (11)

where TV represents the total variation distance defined by TV(P,Q) = 1
2

∑
s∈S

∣∣P (s)−Q(s)
∣∣.

Proof. Consider a special transportation plan between distributions P and Q. This plan preserves all
mass shared between P and Q, defined as min{P (s), Q(s)} for all s. The remaining mass, where
P (s) > Q(s), is distributed to states where P (s) < Q(s). Then the total mass to be transported
is quantified by the total variation distance, where the transportation cost with the cost function d
is bounded by maxs,s′ d(s, s

′). The shared mass is given by 1− TV(P,Q), with the cost bounded
by maxs d(s, s). While this plan adheres to the definition of Wasserstein distance, it can hardly be
optimal. Then we have

W1(P,Q; d) ≤ TV(P,Q)maxs,s′ d(s, s
′) +

(
1− TV(P,Q)

)
maxs d(s, s). (12)

According to its recursive definition, GBSM is a mapping bounded by [0, R̄/(1− γ)], then

maxs d
1-2(s, s)≤maxs,a

{
|R1(s, a)−R2(s, a)|+ γTV

(
P1(·|s, a),P2(·|s, a)

)
maxs,s′ d

1-2(s, s′)
}

+ γmaxs,a
{(

1− TV
(
P1(·|s, a),P2(·|s, a)

))
maxs d

1-2(s, s)
}

≤max
s,a

{
|R1(s, a)−R2(s, a)|+

γR̄

1−γ
TV

(
P1(·|s, a),P2(·|s, a)

)}
+γmax

s
d1-2(s, s).

Rearranging the inequality yields the desired result.

A direct consequence of Theorem 3.6 is that if M1=M2, where R1=R2 and P1=P2, the right-hand
side of the inequality becomes zero. It indicates that

d1-1(s, s) = d((s,M1), (s,M1)) = 0, ∀s ∈ S1, (13)
confirming the indiscernibility of identicals of GBSM when the compared objects (state-MDP
pairs) are genuinely identical. We denote the maximization term maxa{|R1(s, a) − R2(s, a)| +
γR̄
1−γ TV(P1(·|s, a),P2(·|s, a))} in Theorem 3.6 as d1-2

TV(s, s) in the following.

We now have a formal definition of GBSM and have rigorously proved the metric properties. Notably,
when all compared MDPs are identical, GBSM reduces to the standard BSM. In this case, the three
fundamental properties of GBSM reduce to the corresponding pseudometric properties of BSM.
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4 Applications of GBSM in Multi-MDP Analysis

To demonstrate the effectiveness of GBSM in multi-MDP scenarios, we apply it to theoretical analyses
of policy transfer, state aggregation, and sampling-based estimation of MDPs.

4.1 Performance Bound of Policy Transfer Using GBSM

Using GBSM, we analyze policy transfer from a source MDP M1 to a target MDP M2 and derive
a theoretical performance bound for the transferred policy. This bound takes the form of a regret
(defined as the expected discounted reward loss incurred by following the transferred policy instead
of the optimal one [23]). Specifically, it is a weighted sum of the GBSM between the two MDPs and
the regret within the source MDP itself, formulated by the following.
Theorem 4.1 (Regret bound on policy transfer). Consider transferring a policy π from M1 to
M2. The transferred policy acts as π(·|f(s′)) for s′ ∈ S2, where f : S2 → S1 is a mapping from
target states to source states. The regret of π in M2 is bounded by

max
s′∈S2

|V ∗
2 (s

′)− V π
2 (s′)| ≤ 2

1− γ
max
s′∈S2

d1-2(f(s′), s′) +
1 + γ

1− γ
max
s∈S1

|V ∗
1 (s)− V π

1 (s)|. (14)

Proof Sketch. The proof of (14) is similar to the proof in [12] and is conducted by replacing the BSM
by GBSM. (See Appendix C for the complete proof.)

Special cases of Theorem 4.1 yield the following refined bounds:
Corollary 4.2 (Optimal mapping for policy transfer). When f(s′) = argmins∈S1

d1-2(s, s′),
∀s′ ∈ S2, the bound tightens to:

max
s′∈S2

|V ∗
2 (s

′)− V π
2 (s′)| ≤ 2

1− γ
max
s′∈S2

{
min
s∈S1

d1-2(s, s′)
}
+

1 + γ

1− γ
max
s∈S1

|V ∗
1 (s)− V π

1 (s)|. (15)

Corollary 4.3 (Policy transfer with identical state space). When M1 and M2 share the same state
space S and f(s) = s, we have

max
s∈S

|V ∗
2 (s)− V π

2 (s)| ≤ 2

(1− γ)2
max
s∈S

d1-2
TV(s, s) +

1 + γ

1− γ
max
s∈S

|V ∗
1 (s)− V π

1 (s)|. (16)

Proof Sketch. This corollary utilizes the distance bound on identical state spaces in Theorem 3.6.

In contrast to the approach of [12], which constructs a disjoint union state space for analysis, we
provide a similar theoretical bound by directly analyzing the relationship between the source and
target MDPs. This method avoids a constant total variation distance, thereby enabling simplifications
such as the bound based on d1-2

TV, as well as the approximation method in the following section.
Meanwhile, calculating BSM on the disjoint union of two MDPs renders a significant computational
complexity scaling with |S1+S2|2. In contrast, our GBSM is directly computing between M1 and
M2, with an reduced complexity scaling with |S1|·|S2|.

4.2 Approximation Methods and Corresponding Error Bounds

When the state space is extensive and actual transition probabilities are inaccessible, approxima-
tion methods are necessary for the efficient computation of state similarities. In the single MDP
scenario, Ferns et al. [14] proposed a state similarity approximation (SSA) method based on state
aggregation and sampling-based estimation. Let U ⊆ S be a set of selected representative states,
[ · ] : S → U an aggregation mapping, σ̃ = maxs∈S{d∼(s, [s])} the maximum aggregation distance,
and K the number of samples used to empirically estimate each transition probability. The SSA error
satisfies

max
s,s′

|d∼(s, s′)− d∼σ̃,K(s, [s′])| ≤ 2σ̃(2 + γ)

1− γ
+

2γ

1− γ
max
a,s

W1

(
[P̂](·|[s], a), [P](·|[s], a); d∼

)
.

(17)
Here, d∼σ̃,K denotes the BSM on the approximated MDP, [P] denotes the transition probability
between aggregated states, and [P̂] represents its empirical counterparts estimated from K samples.
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However, the BSM-based aggregation error bound 2σ̃(2 + γ)/(1− γ) is fairly loose, while the
sample complexity for the estimation error is limited to asymptotic expressions.

Beyond approximating state similarities, it is crucial to quantify the difference between optimal value
functions within the original MDPs and their approximated counterparts in aggregated MDPs. Using
a BSM-based analysis, Zhang et al. [6] established a value function approximation (VFA) bound on
this difference, given by 2σ̃/(1− γ), but it also suffers from looseness when γ becomes large.

To address this, we apply the GBSM to directly compute state similarities between the original
MDPs and their aggregated/estimated counterparts. Beyond extending the approach in [14] to the
multi-MDP setting, our GBSM-based analysis yields significantly tighter approximation bounds for
both SSA and VFA, and provides an explicit and closed-form expression for the sample complexity.

4.2.1 State Aggregation

Given the previously defined S, U , and [ · ], the aggregated state space [S] is defined such that the
reward function and transition probability of each state are replaced by those of its representative state,
given by R(s, a) = R([s], a) and P(·|s, a) = P(·|[s], a) for all s ∈ S . The aggregated transition prob-
ability is defined as [P](s′|s, a) =

∑
s′′∈S,[s′′]=s′ P(s′′|s, a). Note that [P](s′|s, a) = 0 when s′ /∈ U .

With this construction, we define the aggregated MDP for M1 as M[1] = ⟨[S1],A, [P1], R1, γ⟩.
First, we obtain the VFA bound directly from GBSM.
Theorem 4.4 (VFA error bound). Given MDP M1 and its aggregated counterpart M[1], the VFA
bound is given by

maxs∈S1 |V ∗
1 (s)− V ∗

[1](s)| ≤ σ1 ≤ σ̃1/(1− γ). (18)

where σ1 = maxs∈S1
d1-[1](s, s) and σ̃1 = maxs∈S1

d∼(s, [s]).

Proof. The first inequality is a direct consequence of Theorem 3.3. For the second one, We construct
an intermediate MDP defined by M1[S]

= ⟨[S1],A,P1, R1, γ⟩ and prove d1-1[S](s, s) = d1-[1](s, s)

for all s ∈ S1 through induction. For the base case, d
1[S]-[1]
1 (s, s) = maxa |R1([s], a)−R1([s], a)| =

0. By the induction hypothesis, we assume that d
1[S]-[1]
n (s, s) = 0 for any n, then

d
1[S]-[1]
n+1 (s, s) = maxa

{
|R1([s], a)−R1([s], a)|+ γW1(P(·|[s], a), [P](·|[s], a); d

1[S]-[1]
n )

}
≤ γmaxa

∑
s̃∈S1

P(s̃|[s], a)d1[S]-[1]
n (s̃, [s̃]).

The inequality here follows from a transportation plan that moves the mass from each s̃ to its
representative state [s̃]. Note that the reward function and transition probability of each state are the
same as its representative states in M1[S]

, thus d
1[S]-[1]
n (s̃, [s̃]) = d

1[S]-[1]
n ([s̃], [s̃]) = 0, and thereby

we have d
1[S]-[1]
n+1 (s, s) = 0. Now we have established d

1[S]-[1]
n (s, s) = 0 for all n ∈ N and s ∈ S1.

Taking n → ∞, we have d1[S]-[1](s, s) = 0, ∀s ∈ S1. Using the inter-MDP triangle inequality in
Theorem 3.5, we derive d1-1[S](s, s) = d1-[1](s, s) for all s ∈ S1.

Next, we prove the inequality between σ1 and σ̃1. For representative states su ∈ U1 ⊆ S1, we have
d1-1[S](su, su) =maxa

{
|R1(su, a)−R1(su, a)|+ γW1(P(·|su, a),P(·|su, a); d1-1[S])

}
=γmaxa

{
W1(P(·|su, a),P(·|su, a); d1-1[S])

}
≤γmaxa

{∑
s̃∈S

P(s̃|su, a)d1-1[S](s̃, s̃)
}

≤γmaxs d
1-1[S](s, s) = γmaxs d

1-1[S](s, [s]).

Here, the first inequality follows from a straightforward transportation plan that keeps all the mass
at its position. The last equality is because s and [s] share the same reward function and transition
probability in M1[S]

. Then, according to the inter-MDP triangle inequality in Theorem 3.5, we have

d1-1[S](s, [s]) ≤ d1-1(s, [s]) + d1-1[S]([s], [s]) ≤ d1-1(s, [s]) + γmaxs d
1-1[S](s, [s])

Taking the maximum of both sides, rearranging the inequality, and combining the established
d1-1[S](s, s) = d1-[1](s, s), we have

σ1 = maxs d
1-[1](s, s) = maxs d

1-1[S](s, s) = maxs d
1-1[S](s, [s])

≤ maxs d
1-1(s, [s])/(1−γ) = maxs d

∼(s, [s])/(1− γ) = σ̃1/(1− γ),
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demonstrating significant tightness compared to the BSM-based bound 2σ̃1/(1− γ) in [6].

Then the aggregation error bound for SSA is established as follows.
Theorem 4.5 (SSA aggregation error bound). Given MDPs M1, M2 and their aggregated
counterparts M[1],M[2], the SSA error bound is given by

maxs,s′ |d1-2(s, s′)− d[1]-[2](s, s′)| ≤ σ1 + σ2 ≤ (σ̃1 + σ̃2)/(1− γ). (19)

Proof. This theorem is easily derived by combining Theorem 3.5 and Theorem 4.4.

When the compared MDPs are identical, i.e., M2 = M1 = ⟨S,A,P, R, γ⟩, Theorem 4.5 reduces to
the aggregation error bound in the single-MDP scenario as

maxs,s′ |d1-1(s, s′)− d[1]-[1](s, s′)| ≤ 2σ1 ≤ 2σ̃1/(1− γ),

indicating significant tightness of the GBSM-based bound 2σ1 compared to the BSM-based one
2σ̃1(2 + γ)/(1− γ) [14].

4.2.2 Sampling-based Estimation

To estimate a probability distribution P through statistical sampling, we define the empirical distribu-
tion based on K samples as P̂ (x) = 1

K

∑K
i=1 δXi

(x), where {X1, X2, . . . , XK}, are K independent
points sampled from P and δ denotes the Dirac measure at Xi such that δXi

(x) = 1 if x = Xi and 0
otherwise. Then the empirical MDP for M1 is constructed by sampling K points for each P1(·|s, a),
defined by M1̂ = ⟨S1,A, P̂1, R1, γ⟩. The estimation error bound is derived as follows.
Theorem 4.6 (SSA estimation error bound). Given MDPs M1, M2 and their empirically estimated
counterparts M1̂,M2̂, the SSA error bound is given by

maxs,s′ |d1-2(s, s′)− d1̂-2̂(s, s′)| ≤ maxs d
1-1̂(s, s) + maxs′ d

2-2̂(s′, s′). (20)

To reach an error less than ϵ with a probability of 1− α, the sample complexity is given by

K ≥ − ln(α/2)
γ2R̄2|S·|2

2ϵ2(1− γ)4
, (21)

for each state-action pair in M1 (where |S·| = |S1|) and M2 (where |S·| = |S2|).

Proof. Inequality (20) is easily obtained from Theorem 3.5. In terms of the sample complexity, we
derive the following using Theorem 3.6

maxs,s′ |d1-2(s, s′)− d1̂-2̂(s, s′)|

≤ γR̄

(1− γ)2

(
maxs,a TV

(
P1(·|s, a), P̂1(·|s, a)

)
+maxs′,a TV

(
P2(·|s′, a), P̂2(·|s′, a)

))
=

γR̄

2(1−γ)2

(
max
s,a

{∑
s̃∈S1

∣∣P1(s̃|s, a)−P̂1(s̃|s, a)
∣∣}+max

s′,a

{∑
s̃∈S2

∣∣P2(s̃|s′, a)−P̂2(s̃|s′, a)
∣∣}) .

To ensure the estimation error remains below ϵ, we require |P1(s̃|s, a)− P̂1(s̃|s, a)| ≤ ϵ(1−γ)2

γR̄|S1|
and

|P2(s̃|s, a)− P̂2(s̃|s, a)| ≤ ϵ(1−γ)2

γR̄|S2|
. Next, by applying the Hoeffding’s inequality [24] that is defined

by Pr{|P̂ (s)− P (s)| ≥ ϵ} ≤ 2e−2Kϵ2 , we derive the desired sample complexity.

When the compared MDPs are identical, the estimation SSA bound in Theorem 4.6 reduces to
2maxs d

1-1̂(s, s) for BSM. We now prove the tightness of this new sampling error bound compared
to the existing bound 2γ

1−γ maxa,s W1(P̂(·|s, a),P(·|s, a); d∼) in [14]. According to the transitive
property of inequality on the Wasserstein distance defined in (10), we have

d1-1̂(s,s) = γW1(P(·|s, a), P̂(·|s, a); d1-1̂)

≤ γW1(P(·|s, a), P̂(·|s, a), ; d1-1) + γW1(P̂(·|s, a), P̂(·|s, a); d1-1̂)

≤ γW1(P̂(·|s, a),P(·|s, a); d1-1) + γmaxs d
1-1̂(s, s).
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Taking the maximum of both sides and rearranging the inequality yields

2maxs d
1-1̂(s, s) ≤ 2γmaxa,s W1(P̂(·|s, a),P(·|s, a); d1-1)/(1− γ).

Since d1-1 ≜ d∼, we have now proved the tightness of the new sampling error bound compared to the
one derived from BSM in [14].

Furthermore, in case the approximation combines both state aggregation and sampling-based estima-
tion, where the approximated MDP is defined as M[1̂] = ⟨[S1],A, [P̂1], R1, γ⟩, we have

maxs,s′
∣∣d1-1(s, s′)−d[1̂]-[1̂](s, s′)

∣∣≤2maxs d
1-[1̂](s, s)≤2maxs d

1-[1](s, s) + 2maxs d
[1]-[1̂](s, s)

via the inter-MDP triangle inequality. It enables a decoupled analysis of error, and thus results in an
explicit and closed-formed sample complexity, i.e., K ≥ − ln(α/2) γ2R̄2|U|2

2ϵ2(1−γ)4 for an error below ϵ

with probability of 1− α, where U is the set of representative states.

5 Extensions to BSM variants

The proposed GBSM framework is readily extendable to numerous variants of BSM to enhance its
applicability, such as lax BSM [25] and on-policy BSM [26].

Lax GBSM enables the computation of state similarities between MDPs with different action spaces.
To relax GBSM to lax GBSM, we first adapt (2) to

δ(d)((s, a), (s′, a′)) = |R1(s, a)−R2(s
′, a′)|+ γW1(P1(·|s, a),P2(·|s′, a′); d), (22)

and define the lax function as Flax(d|s, s′) = H(Xs, X
′
s′ ; δ(d)), where Xs = {(s, a)|a ∈ A1},

X ′
s′ = {(s′, a′)|a′ ∈ A2}, and H is the Hausdorff metric. Iterating from d1-2

lax,0(s, s
′) = 0 and

d1-2
lax,n+1 = Flax(d

1-2
lax,n|s, s′), d1-2

lax,n converges to a similar fixed point d1-2
lax that satisfies |V ∗

1 (s)−
V ∗
2 (s

′)| ≤ d1-2
lax (s, s

′) in Theorem 3.3. Next, the symmetry (Theorem 3.4) and triangle inequality
(Theorem 3.5) can be readily established for d1-2

lax . For MDPs sharing same S and A, we have
d1-2

lax ≤d1-2≤d1-2
TV/(1−γ) (Theorem 3.6). Since these fundamental metric properties hold, the bounds

for state aggregation (Theorem 4.5) and estimation (Theorem 4.6) also follow directly. For policy
transfer, a similar regret bound (replacing d1-2 in Theorem 4.1 by d1-2

lax ) can be established by defining
an additional action mapping g : A1 → A2 for transfer. Due to the introduction of max-min term via
Hausdorff metric, the lax GBSM-based transfer bound requires an assumption on this action mapping,
i.e., g(a) = argmina′ δ((f(s′), a), (s′, a′); d1-2

lax ) for each s′ and a. See Appendix D for the proof.

On-policy GBSM computes state similarities between MDPs under non-optimal policies. To achieve
this, we rewrite (2) to

d1-2
π (s, s′) = |Rπ

1 (s)−Rπ
2 (s

′)|+ γW1(Pπ
1 (·|s),Pπ

2 (·|s′); d1-2
π ), (23)

where Rπ
. (s) =

∑
a π(a|s)R.(s, a) and Pπ

. (·|s) =
∑

a π(a|s)
∑

s̃ P.(s̃|s, a) are averaged reward
and transition probabilities for a non-optimal policy π. Our theoretical properties are also preserved
in this setting: the value difference bound in Theorem 3.3 now applies to the on-policy value function
by |V π

1 (s)−V π
2 (s′)| ≤ d1-2

π (s, s′). Then metric properties Theorem 3.4 and 3.5 follow directly,
and d1-2

π (s, s′) is bounded by an on-policy TV-based metric d1-2
TV,π(s, s

′) = {|Rπ
1 (s)−Rπ

2 (s)
∣∣+

γR̄
1−γ TV(Pπ

1 (·|s),Pπ
2 (·|s))} as the Theorem 3.6 for on-policy GBSM. As a direct consequence, we

have maxs |V π
1 (s)−V π

[1](s)| ≤ maxs d
1-[1]
π (s, s) ≤ maxs d̃π(s, [s])/(1 − γ), a tighter bound for

VFA with non-optimal policy compared with the existing result 2d̃π(s, [s])/(1 − γ) in [15]. See
Appendix E for the proof.

6 Numerical Results

In this section, we empirically validate the theoretical results derived from GBSM. To this end,
we construct MDPs with randomly generated reward functions and transition probabilities, along
with their aggregated and estimated counterparts. Specifically, we use random Garnet MDPs with
|S| = 20, |A| = 5, and a 50% branching factor. In the aggregated MDPs, the reward functions
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Figure 1: Experiments on random Garnet MDPs.

and transition probabilities for half of the states are replaced by those of their representative states,
while the estimated MDPs are established by introducing a Gaussian noise with a standard deviation
ranging from 0.1 to 0.3 to the transition probabilities.

To demonstrate the application of policy transfer between MDPs, we calculate the bound in Theo-
rem 4.1 and the existing measure between MDPs in [17], and calculate the ground-truth regret by
computing the precise value functions under a tabular Q-learning setting. Then, we calculate the aggre-
gation and estimation SSA bounds using BSM and GBSM, respectively. The BSM-based SSA bounds
are computed via (17). Since the estimation error bound in (17) depends on the aggregation process,
we decouple the two for clearer analysis. Specifically, the BSM-based aggregation SSA bound is given
by 2σ̃1(2+γ)/(1−γ), and the estimation SSA bound is 2γ

1−γ maxa,s W1(P̂(·|s, a),P(·|s, a); d∼) [14].
The GBSM-based SSA bounds follow from Theorem 4.5 (aggregation) and Theorem 4.6 (estimation).
For VFA bounds comparison, we employ the GBSM-based bound in Theorem 4.4 and compare with
the BSM-based bound 2σ̃1/(1− γ) in [6]. We also compare them with the ground-truth error values
to assess their tightness.

We conduct 100 independent experiments for each γ ∈ {0.1, 0.2, . . . , 0.9}. The x-axis represents the
experiment index of 100 independent trials, while the y-axis plots the values of ground-truth error
and (G)BSM-based bounds in each trial. Figure 1a shows that the empirical metric in [17] fails to
bound the transfer regret, while our GBSM-based bound is consistently effective. In terms of the SSA
and VFA error, as depicted in Figure 1b, 1c, and 1d, the bounds based on GBSM are significantly
tighter than those derived from BSM, which corroborates our theoretical findings and highlights the
effectiveness of GBSM in multi-MDP analysis. Complete results are provided in Appendix F.

7 Conslusion

Application and limitation The first application is the sim-to-real policy transfer, where GBSM can
be calculated between the simulated MDP and real-world MDP to predict transferred performance
and serve as a metric for improving the simulation environment. Meanwhile, the approximation
methods could be employed to address the inaccessibility of precise transition probabilities and reward
functions in the real world. Another potential application is in multi-task RL, where GBSM can
coordinate policy optimization across different MDPs, cluster similar tasks for efficient training, and
mitigate gradient interference issues. The limitation mainly lies in the discounted reward formulation
in GBSM. In real-world tasks, the goal is typically to maximize the long-term average reward.
However, most of the theoretical results in this paper are divided by 1−γ, and taking γ to 1 would
yield an infinite result. Investigating metrics tailored for the average-reward MDP is an important and
promising direction for future research.

Discussion In this paper, we have formally introduced GBSM and established its fundamental
theoretical properties, including GBSM symmetry, inter-MDP triangle inequality, and distance bound
on identical state spaces. Leveraging these properties, we provide tighter bounds for policy transfer,
state aggregation, and sampling-based estimation of MDPs, compared to the ones derived from
BSM. To our knowledge, this is the first rigorous theoretical investigation of GBSM beyond simple
definitional adaptation. We believe this work introduces a valuable new tool for multi-MDP analysis.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our paper contains everything that is covered in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: We discuss the need to develop further theory, algorithms, and implementations
for scenarios involving multiple MDPs in the conclusion.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All the proofs for results are included in the main text and appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This is a theory paper that only involves very simple numerical computations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]

Justification: This is a theory paper that only involves very simple numerical computations,
and there is no training data or training/evaluation codes.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[NA]

Justification: There is no training or test in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This is a theory paper that only involves very simple numerical computations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This is a theory paper that only involves very simple numerical computations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: To our knowledge, this theory paper has no positive/negative social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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