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ABSTRACT
High-resolution point clouds (HRPCD) anomaly detection (AD)

plays a critical role in precision machining and high-end equipment

manufacturing. Despite considerable 3D-AD methods that have

been proposed recently, they still cannot meet the requirements

of the HRPCD-AD task. There are several challenges: i) It is diffi-

cult to directly capture HRPCD information due to large amounts

of points at the sample level; ii) The advanced transformer-based

methods usually obtain anisotropic features, leading to degradation

of the representation; iii) The proportion of abnormal areas is very

small, which makes it difficult to characterize. To address these

challenges, we propose a novel group-level feature-based network,

called Group3AD, which has a significantly efficient representation

ability. First, we design an Intercluster Uniformity Network (IUN)

to present the mapping of different groups in the feature space as

several clusters, and obtain a more uniform distribution between

clusters representing different parts of the point clouds in the fea-

ture space. Then, an Intracluster Alignment Network (IAN) is de-

signed to encourage groups within the cluster to be distributed

tightly in the feature space. In addition, we propose an Adaptive

Group-Center Selection (AGCS) based on geometric information to

improve the pixel density of potential anomalous regions during

inference. The experimental results verify the effectiveness of our

proposed Group3AD, which surpasses Reg3D-AD by the margin of

5% in terms of object-level AUROC on Real3D-AD.

CCS CONCEPTS
• Computing methodologies→ Visual inspection; Anomaly
detection.

KEYWORDS
Anomaly Detection, 3D Point Clouds, Contrastive Learning, Feature

Representation

1 INTRODUCTION
Anomaly Detection (AD) is a critical field inmachine learning aimed

at identifying unusual patterns or abnormalities that do not con-

form to expected behavior. Traditionally, AD has been extensively

applied in 2D image analysis, where methods primarily focus on

identifying anomalies through pixel-level discrepancies [25, 39].

However, these 2D techniques come with inherent limitations, such
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Figure 1: Ideal feature distribution of normal point clouds
and abnormalies for the high-resolution 3D anomaly detec-
tion task. Group-level features are used to express structural
information.

as the fixed perspectives and inability to capture complex geome-

tries, which often result in loss of important spatial information

and context [3, 8, 10, 22, 25, 39, 40]. Transitioning from 2D images

to 3D Point Clouds (PCD) effectively overcomes these limitations.

3D PCDs, which are sets of data points in space, provide a more

comprehensive representation of objects by capturing their shape

and spatial hierarchy in real environments [4, 16].

Despite the advantages, the field of 3D-AD faces many chal-

lenges [9, 24]. The High-Resolution (HR) of 3D PCDs introduces

computational and analytical complexities due to the sheer increase

in data volume and the intricacies involved in 3D space analy-

sis [21, 24]. Research based on HRPCD-AD has just emerged, and

how to construct efficient representations for AD tasks in HRPCD

has become a major challenge. There is an urgent need to improve

the precision of HRPCD-AD to meet the needs of industrial man-

ufacturing (IM) [21, 24]. The obstacle on the road to establishing

efficient representation is threefold. i) Existing HRPCD networks

necessitate downsampling for large datasets, risking the loss of

crucial anomaly information. ii) Recent 3D representation meth-

ods yield embeddings with insufficient distinction in AD. iii) The

proportion of anomalies in HRPCD is small and obscure, making it

easy to overlook [18, 21, 24, 25, 39].

To make the training of the network free from the constraints

of HR PCDs and too few training samples, we introduce the idea

of group-level feature enhancement. Existing HRPCD networks

clearly require downsampling operations when faced with items

composed of millions of points during training or inference [21, 24].

Among them, although Reg3D-AD [24] has a higher group density

in HRPCD reasoning in a way similar to PatchCore [29], it still

cannot be directly trained by HRPCD. There is a gap in the middle,

which affects the performance. IMRNet also realized the drawbacks

of downsampling and proposed adaptive sampling, but still did

not fundamentally solve the problem. We need to study a solution

that is not constrained by point cloud resolution. Unlike previous

3D contrastive learning studies [1, 23, 26], we build contrastive

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

learning at group level in a single sample to makes our network

training unconstrained by point cloud resolution and scale. The

divide and conquer design makes our network’s group batchsize

infinitely large in theory, although its batchsize is 1.

To achieve better representation, we pose a key question: how
to create an ideal distribution required by HRPCD-AD in the
feature space? Currently, most network backbones that perform

well on HRPCD use the Point Transformer architecture [21, 24].

The embeddings represented by this encoder exhibit anisotropic

distribution in the feature space. Research [12, 13, 37] has shown

that transformer-based structures place more emphasis on local

contextual information in representation, while ignoring global

semantic information. This results in high-frequency groups being

distributed in a narrow area and close to the center in the fea-

ture space. While low-frequency groups are relatively sparse and

far from the origin. Commonly, calculating feature similarity is a

widely-used method, but this anisotropic spatial distribution will

bring problems to the measurement of feature similarity. Figure 1

shows an ideal feature space distribution. Specifically, excellent

spatial distribution of features should have both uniformity and

alignment [7, 14]. Uniformity requires that the vectors should be

distributed as widely as possible and isotropic in the space, while

alignment means that the distance between similar vectors in the

feature space should be small. Meanwhile, the excellent encoder

should be capable of higher anomaly sensitivity to easily distinguish

abnormal representation from normal representation in the feature

space. Considering above-mentioned distribution characteristics:

intercluster dispersion and intracluster compactness, we pro-
pose to construct the group-level contrastive learning architecture.

The proposed Intercluster Uniformity Network (IUN) pushes clus-

ters representing similar features far away in the feature space

to enhance the uniformity of feature distribution. On the basis of

IUN, the Intracluster Alignment Network (IAN) further tightens the

features in the same cluster to strengthen the alignment of feature

distribution.

To better capture subtle features, we design the Adaptive Group-

Center Selection (AGCS). Drawing inspiration from the practices

of quality inspection engineers, who often focus more intensively

on areas they suspect to be problematic to enhance the detection of

abnormalities, AGCS similarly prioritizes regions within 3D point

clouds that exhibit potential anomalies. Leveraging the Fast Point

Feature Histogram (FPFH) [32], AGCS intensifies the examination

of areas with significant local geometric variations. Finally, AGCS

enables our network to preserve more potential anomaly groups

during inference, thereby enhancing its AD capability.

Our contributions are succinctly outlined as follows:

• A novel Group3AD framework for the HRPCD-AD task is

designed, which optimizes the spatial information of 3D

point clouds, enhancing the precision of anomaly detection.

• We propose the Intercluster Uniformity Network (IUN) and

the Intracluster Alignment Network (IAN), which can dis-

perse features across clusters and tighten features within

clusters in the feature space, respectively. Both two networks

enhance feature uniformity and alignment, improving the co-

herence of feature representations for anomaly identification

and detection accuracy.

• An efficient Adaptive Group-Center Selection (AGCS) is de-

signed, which focuses on regions with potential anomalies,

enhancing model sensitivity and detection efficiency.

• The proposed Group3AD is flexible and scalable. Group3AD

can be directly integrated with other network architectures,

which promotes the wider application of various anomaly

detection tasks.

2 RELATEDWORK
2.1 2D Anomaly Detection
Since the introduction of the MVTec AD dataset [2], 2D image

anomaly detection (2D-AD) has garnered increased focus [25, 39].

Predominantly, research in this domain utilizes this 2D dataset for

exploring unsupervised AD techniques [3, 10, 11, 15, 15, 20, 27, 29,

30, 30, 34, 36, 41, 42]. The intention of image reconstruction-based

2D-ADmethods is to reconstruct abnormal images into approximate

normal images and achieve anomaly localization through pixel-level

comparison. The feature extraction based 2D-AD methods strives

to provide more informative embeddings, with more significant

differences between normal and anomalous features. Due to the

fact that many networks in the former use the method of training

from scratch, their performance may be inferior to that of the latter,

which uses robust pre-training models.

Notable examples includeDRAEM [41], SimpleNet [27], etc. They

create fake samples and identify anomalies through reconstruction

comparison, building supervised tasks in unsupervised datasets.

The representation of pre-trained networks has been proven to be

more powerful and effective. PatchCore [29] employs a memory-

efficient representation of normal data distribution through sparse

sampling of feature space patches for identifying outliers. Cut-

Paste [20] markedly enhances AD capabilities by artificially generat-

ing anomalies through cutting and pasting segments within images.

Self-Taught AD [3] leverages a student-teacher framework where

features from a pre-trained teacher network guide a student net-

work trained on normal data to detect anomalies based on feature

discrepancies. STPM [36] and MKD [33] both employ a teacher-

student architecture for AD, with STPM harnessing multi-scale

features directly, while MKD concentrates on distilling knowledge

from these multi-scale features through a more efficient network ar-

chitecture to enhance performance. Normalizing flow [19] methods

have created a feature distribution with anomaly sample deviation,

expanding its potential. Although 2D-AD methods cannot be di-

rectly used for 3D-AD, they highlight the importance of building

an easily distinguishable feature distribution and enhancing the

representational ability of the network [25, 39].

2.2 RGB-D Anomaly Detection
Despite significant advancements in 2D image anomaly detection,

the exploration of anomaly detection in 3D PCDs remains relatively

underdeveloped [5, 6, 9]. This field saw a notable surge in interest

following the release of the pioneering real-world 3D anomaly

detection dataset, known as MVTec 3D-AD [4]. This dataset has

sparked new investigations into the complexities and potentialities

of detecting anomalies within 3D environments. The key challenge

in 3D-AD lies in the effective harnessing of depth information,

which can significantly enhance detection capabilities in certain
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scenarios. This complexity, alongside the potential for improved

accuracy, positions 3D-AD as both a challenging and promising

avenue for future research.

While AST [31] achieves good results on the MVTec 3D-AD by

utilizing depth information to separate the background, it primarily

depends on 2D-AD techniques for anomaly detection, neglecting

the depth characteristics of objects. Designing the feature extraction

module for detecting anomalies in PCD demands fresh approaches.

Recent studies have made efforts to design networks with stronger

point clouds representation capabilities [8]. 3D-ST [5] introduces

a self-supervised learning strategy for representation learning in

PCD and employs a knowledge distillation-based modeling module.

While CPMF [8] streamlines anomaly detection by projecting point

clouds into 2D images from various angles to reduce feature extrac-

tion complexity and computational costs, this approach does not

fully leverage the advantages inherent in the 3D nature of point

clouds data. BTF [17] underscores the efficacy of traditional hand-

crafted PCD descriptors, yet notes the underperformance of learned

features. BTF attributes this paradox to the inadequate transferabil-

ity of existing pretrained features on the current small-scale PCD

datasets. The use of spatial information for AD tasks still deserves

further exploration [8, 21, 24, 38].

2.3 High-resolution 3D Anomaly Detection
Some methods have made efforts in the direction of PCD anomaly

representation. However, MVTec 3D-AD [4] is an RGB-D dataset

with low resolution, which cannot further explore the value of spa-

tial information in AD tasks. The proposal of the Real3D-AD [24]

dataset containing HR multi-view information of objects brings

more development space to AD. The point resolution and precision

of Real3D-AD are 4.28 and 9 times higher than MVTec 3D-AD,

respectively. The ultra-high accuracy brings more potential and

hope to AD tasks but poses significant challenges to establishing

representations. CPMF [8] aims to achieve PCD AD by merging

handcrafted PCD descriptions with the capabilities of pre-trained

2D neural networks. CPMF performs well on the RGBD dataset, but

poorly on Real3D-AD. Reg3D-AD [24] is a benchmark method built

on Real3D-AD, which is built on the memory bank and achieves

significant performance improvements using pre-trained models.

However, the pre-training of Reg3D-AD is difficult to establish di-

rectly onHRPCDdatasets. IMRNet [21] introduces a self-supervised,

scalable framework for 3D PCD AD, leveraging iterative mask re-

construction and geometry-aware sampling to identify and localize

anomalies with high accuracy. However, IMRNet has also been

affected by the negative performance impact of downsampling.

In view of this, our work aims to design a method that fully

utilizes the HRPCD spatial information to enhance the model’s

generalization ability with small samples in unsupervised manner.

3 APPROACH
3.1 Problem Definition
Our approach to 3D-AD aligns with the settings defined by Real3D-

AD [24], emphasizing the intricacies of handling HRPCD. Defined

formally, our task involves a set of training examples 𝑇 = {𝑡𝑖 }𝑁𝑖=1,
where each 𝑡𝑖 is a normal point clouds sample, belonging to a

specific category 𝑐 𝑗 , with 𝑐 𝑗 ∈ 𝐶 where 𝐶 represents the entire set

of categories. In testing, determine whether a sample in a certain

category contains anomalies, and if so, define the entire sample as

an anomaly and locate the anomaly area. The HR 3D-AD dataset is

unique in that it exclusively comprises point clouds, offering a more

nuanced and comprehensive representation of objects compared

to traditional RGB-D (treated as 2.5D) datasets, which may not

meet the precision requirements of industrial manufacturing due

to potential blind spots from single-view scanning.

3.2 Group3AD
This section delves into the detailed architecture of Group3AD, as

shown in Figure 2, a model specifically designed to enhance the

resolution and accuracy of 3D anomaly detection through group-

level feature contrastive learning. Group3AD is composed of three

principal components: Intercluster Uniformity Network (IUN), In-

tracluster Alignment Network (IAN), and Adaptive Group-Center

Selection (AGCS). These modules work in synergy to optimize fea-

ture representation, thereby improving the precision and efficiency

of anomaly detection.

3.2.1 Intercluster Uniformity Network (IUN). The IUN establishes

an intercluster contrastive learning task. Each cluster is composed

of group-level feature vectors with similarity. This network sets

each cluster as negative samples in contrastive learning, and widens

the distance between each cluster to obtain a uniform structured

sample space.

We construct fake anomalies on the original HR point clouds

so that the encoder can still maintain uniformity when encoding

anomaly groups during inference. Given the original point clouds 𝑃 ,

𝑃𝑖 represents the 𝑖th point in 𝑃 . Firstly, calculate the FPFH features

of the point clouds:

𝐹𝑃𝐹𝐻 (𝑃𝑖 ) = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐹𝑃𝐹𝐻 (𝑃𝑖 , neighbors(𝑃𝑖 )) . (1)

Next, select the point𝑐 with the highest FPFH feature as the center

of the local region:

𝑐 = argmax𝑝𝑖
𝐹𝑃𝐹𝐻 (𝑃𝑖 ). (2)

Then, based on the center point𝑐 , a random 𝑟 ∈ [1%, 10%] of the
total point clouds will be selected around c as the local area:

𝑃𝑙𝑜𝑐𝑎𝑙 = {𝑃 𝑗 | distance(𝑃 𝑗 , 𝑐) ≤ 𝑑, 𝑗 = 1, ..., 𝑁 }, (3)

where 𝑑 is a distance threshold that ensures 𝑃𝑙𝑜𝑐𝑎𝑙 contains approx-

imately 𝑟 of the points in 𝑃 are included. Subsequently, randomly

select a value with a variance 𝜎2 ∈ [0.01, 0.05] and use 𝜎2 to gener-

ate a normally distributed random noise 𝜖 with an average value of

0. Add noise to each dimension of 𝑃 to generate anomaly regions

𝑃𝑎𝑛𝑜𝑚𝑎𝑙𝑦 :

𝑃
anomaly,𝑖 = 𝑃local,𝑖 + 𝜖, (4)

where 𝜖 = N(0, 𝜎2). Repeat this process for all 𝑃 midpoints to

obtain the set of anomalies 𝐴:

𝐴 = 𝑃
anomaly,𝑖 | ∀𝑃local,𝑖 ∈ 𝑃local . (5)

Combine 𝐴 and 𝑃 to obtain 𝐹𝑎𝑘𝑒𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑃 :

𝐹𝑎𝑘𝑒𝐴𝑛𝑜𝑚𝑎𝑙𝑦 (𝑃) = 𝑃 ∪𝐴. (6)

We cluster group-level features using the K-means [28] algorithm

to determine which cluster (𝑃𝑖 ) belongs to. K-means determines

the number of clusters using the Elbow Method [35]. Determine



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

... ...
Registration

TemplateTraining Samples

Group-Level Feature Extraction

Coordinate Feature Extraction

En
co

de
r

... ...

Anomaly Generator

En
co

de
r

Intercluster 
Uniformity Network 

(IUN)

Intracluster 
Alignment Network 

(IAN)

Group-Level Feature 
Extraction Alignment Ranking Loss

Uniformity Ranking Loss

Registration

Test Samples

Adaptive Group-
Center Selection 

(AGCS)

High Local 
Density

... 
Search and Compute 
Anomaly Score

Template

Training Phase

Inference Phase

Memory Bank

Group Centers

Figure 2: The pipeline of Group3AD, which consists of three main components. (1) Group-Level Feature Extraction extracts
group-level features from the input 3D point clouds. (2) Intercluster Uniformity Network (IUN) and Intracluster Alignment
Network (IAN) enhance the feature separation between clusters and tighten the distribution within clusters, respectively,
for improving anomaly detection accuracy. (3) Adaptive Group-Center Selection (AGCS), used during inference, dynamically
focuses on regions with potential anomalies by adjusting the sampling density based on geometric information. This structured
approach ensures efficient anomaly detection in complex 3D environments.

the final size of 𝐾 by plotting the relationship between Within

Cluster Sum of Squares (WCSS) and the number of clusters (𝐾).

Find the "Elbow" point in the relationship diagram, which is the

position where the rate of WCSS decrease suddenly slows down as

𝑘 increases. This point is usually considered the optimal number of

clusters, as it represents the best balance between the intracluster

compactness and the number of clusters.

The calculation of WCSS is represented as:

𝑊𝑘 =
∑︁
𝑥𝑖 ∈𝐶𝑘

∥𝑋𝑖 − 𝜇𝑘 ∥22 , (7)

where 𝜇𝑘 is the 𝑘th cluster center, 𝐶𝑘 is the point set in the 𝑘th

cluster,𝑊𝑘 is the WCSS of the 𝑘th cluster, and ∥ 𝑋𝑖 − 𝜇𝑘 ∥2 is the
square of the Euclidean distance from point 𝑥𝑖 to the cluster center

𝜇𝑘 . The entire dataset𝑊 is the sum of all clustered WCSS:

𝑊 =

𝐾∑︁
𝑘=1

𝑊𝑘 . (8)

Assumingwe have𝑘 cluster centers, denoted as𝐶 = {𝐶1,𝐶2, ...,𝐶𝑘 },
where each cluster center 𝐶𝑖 is an 𝑛-dimensional vector. For any

two different cluster centers 𝐶𝑖 and 𝐶 𝑗 , we calculate the Euclidean

distance between them:

𝑑
(
𝐶𝑖 ,𝐶 𝑗

)
=


𝐶𝑖 −𝐶 𝑗 



2
, (9)

where ∥ · ∥ represents calculating Euclidean distance. We compare

the distances between each pair of cluster centers and select the

minimum value among these distances:

min _dist = min

1≤𝑖< 𝑗≤𝐾
distance

(
𝐶𝑖 ,𝐶 𝑗

)
. (10)

Define the uniformity ranking loss function as the reciprocal of

this minimum distance:

𝐿𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝑖𝑡𝑦 =
1

min _dist

. (11)

The larger the value of the uniformity ranking loss function, the

smaller the minimum distance between cluster centers, the lower

the discrimination between clusters, and the greater the loss. There-

fore, our goal is to minimize this loss function, thereby maximizing

the minimum distance between cluster centers and improving the

quality of clustering. The changes in the distribution of vectors in

the feature space represented by the optimized encoder through

the uniformity ranking loss are shown in Figure 3(b).

3.2.2 Intracluster Alignment Network (IAN). The IAN establishes

an intracluster contrastive learning task. Each cluster constitutes

one mini-batch. Each vector in the cluster constitutes one positive

sample in contrastive learning. Assumingwe have𝑘 cluster, denoted

as 𝐶 = {𝐶1,𝐶2, ...,𝐶𝑘 }, where each cluster 𝐶𝑘 contains a certain

number of points. We use 𝑃𝑘 = {𝑃𝑘1, 𝑃𝑘2, . . . , 𝑃𝑘𝑛} to represent the
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Figure 3: Flowchat of group-level feature distribution, con-
strained by IUN and IAN. The basic idea is to minimize the
intra-group distance and maximize the inter-group distance.

set of points 𝐶𝑘 contains. For any two points 𝑃𝑘𝑖 and 𝑃𝑘 𝑗 in cluster

𝐶𝑘 , we calculate the Euclidean distance between them:

𝑑

(
𝑃𝑘𝑖 , 𝑃𝑘 𝑗

)
=


𝑃𝑘𝑖 − 𝑃𝑘 𝑗 

 , (12)

where ∥ · ∥ represents calculating Euclidean distance. For each

cluster𝐶𝑘 , we need to find the maximum distance between all pairs

of internal points:

max _𝑑𝑖𝑠𝑡𝑘 = max

𝑃𝑘𝑖 ,𝑃𝑘 𝑗 ∈𝑃𝑘
𝑑

(
𝑃𝑘𝑖 , 𝑃𝑘 𝑗

)
, (13)

Thismeans thatwe compare the distances between all possible point

pairs within cluster𝐶𝑘 and select the maximum value among these

distances. Finally, we define the alignment ranking loss function as

the average of the maximum intracluster distance of all clusters:

𝐿
alignment

=
𝑇

𝑘

𝐾∑︁
𝑘=1

max _dist
2

𝑘
, (14)

where 𝑇 is a temperature coefficient that makes the training of the

network more stable. A larger intracluster distance usually means

that the points within the cluster are more dispersed. The larger the

value of this loss function, the more scattered the points within the

cluster, the lower the compactness of the cluster, and the greater

the loss. Therefore, our goal is to minimize this loss function and

improve the compactness of clustering.

3.2.3 Adaptive Group-Center Selection (AGCS). Although ourmethod

does not require sampling, we still need to use the Farthest Point

Sampling (FPS) algorithm to select the center points of the groups.

Obtaining more groups in areas with potential anomalies can en-

able the model to inject more computing power into these areas

to achieve stronger perceptual capabilities. In operation, our goal

is to allocate higher groups resolution in areas with significant

geometric changes, inspiring attention allocation mechanisms for

quality inspection engineers in their work.

To evaluate the geometric characteristics of points, we employ

the Fast Point Feature Histogram (FPFH) approach. The FPFH de-

scriptor is utilized to analyze variations in surface geometry by

comparing a point with the estimated surface normals of its neigh-

boring points. For each point 𝑝 within the PCD 𝑃 , We calculate the

surface normal of this point, denoted as 𝑛(·). We take 𝑛 neighboring

points around point 𝑝 , denoted as {𝑁1, 𝑁2, ..., 𝑁𝑛}. We calculate the

surface normal difference between point 𝑝 and its 𝑛 neighboring

points through Euclidean distance, and obtain the surrounding

Potential 
Anomaly  Area

Proposal Area

Figure 4: Adaptive group-center selection (AGCS). AGCS adap-
tively selects the points most likely to be within the anomaly
region in the selection of group centers via FPFH features.

variation feature 𝐹 . We have:

𝐹𝑝 =

𝑁∑︁
𝑖=1

∥ 𝑓 (𝑝) − 𝑓 (𝑁𝑖 )∥2 . (15)

This metric enables us to quantify the dissimilarity in geometric

attributes between a point and its neighboring points based on

their FPFH descriptors. Such analysis provides crucial insights into

the local geometry of the point clouds. In the sampling process

of center points, it is assumed that a total of𝑛 center points are

required. The center points 𝐶𝐹𝑃𝐹𝐻 sampled by the FPFH method

are 𝑎 × 𝑛, and the remaining (1 − 𝑎) × 𝑛 center points 𝐶𝐹𝑃𝑆 are

obtained through FPS sampling, where 𝑎 represents the assigned

weight. Ultimately, all center points 𝐶 are composed of both:

𝐶 = 𝐶𝐹𝑃𝐹𝐻 ∪𝐶𝐹𝑃𝑆 . (16)

The AGCS is implemented as detailed in Algorithm 1.

Algorithm 1 Adaptive Group-Center Selection (AGCS)

1: Input: Point clouds P, number of points 𝑁 , attention factor 𝛼

2: Output: Set of center points Cpoints

3: function AGCS(P, 𝑁 , 𝛼)

4: N← ComputeNormals(P) ⊲ Compute surface normals for

each point in the point clouds P
5: FFPFH ← ComputeFPFH(P, N) ⊲ Compute FPFH features

for the point clouds based on the surface normals

6: Fvar ← ComputeLocalVariation(FFPFH) ⊲ Evaluate local

geometric variation, indicative of potential anomalies

7: P
high_var

← SelectHighVariationPoints(Fvar, 𝛼) ⊲ Select

points with high variation in their local geometric features,

which are more likely to be near anomalies

8: CFPFH ← FPS(P
high_var

, 𝑁 × 𝛼) ⊲ Sample using FPS on

high variation points

9: CFPS ← FPS(P, 𝑁 × (1 − 𝛼)) ⊲ Sample remaining points

uniformly

10: Cpoints ← CFPFH ∪ CFPS

11: return Cpoints

12: end function

3.2.4 Overall Pipeline. In the Group3AD framework, the training
phase starts with a pre-trained encoder to extract features from 3D

point clouds initially. The Intercluster Uniformity Network (IUN)

subsequently enhances the encoder’s capabilities, which increases

the separation between different clusters to improve the distinctness
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of feature representations. Additionally, the Intracluster Alignment

Network (IAN) further refines these features by ensuring they are

tightly aligned within each cluster. The enhanced encoder then

populates a memory bank with these optimized features. During

the inference phase, the Adaptive Group-Center Selection (AGCS)

assists by selectively targeting potential anomaly regions, compar-

ing these regions against the memory bank to accurately compute

anomaly scores.

The training and inference implementation of Group3AD are de-

scribed in Algorithm 2.We denote P as a set of point clouds from the

training or testing dataloader, and use P
mod

for the modified point

clouds after generating fake anomalies, F for features extracted by

the encoder Φenc. 𝐶 and Ccenters are for clusters and their centers,

respectively. LIUN and LIAN are for the loss functions of the IUN

and IAN phases. Cpoints is for the center points selected by AGCS.

S is for the computed anomaly scores during inference.

Algorithm 2 Group3AD with Two-Phase Training

1: Input: Training dataloader Dtrain, Testing dataloader Dtest,

epochs 𝐸

2: Output: Trained Encoder Φenc, IUN ΦIUN, IAN ΦIAN, and

AGCS settings

3: Initialize Φenc, ΦIUN, and ΦIAN randomly

4: /*Phase 1: Training IUN*/

5: for 𝑖 = 1 to 𝐸/2 do
6: for Pointclouds P from Dtrain do
7: P

mod
← generate_fake_anomalies(P)

8: F← Φenc (Pmod
)

9: 𝐶,Ccenters ← cluster_features(F)
10: LIUN ← compute_IUN_loss(Ccenters)

11: Perform backpropagation on LIUN

12: end for
13: end for
14: /*Phase 2: Training IAN*/

15: for 𝑖 = 𝐸/2 + 1 to 𝐸 do
16: for Pointclouds P from Dtrain do
17: F← Φenc (P)
18: 𝐶 ← cluster_features(F) ⊲ Assuming the function also

returns clusters 𝐶

19: LIAN ← compute_IAN_loss(𝐶)

20: Perform backpropagation on LIAN

21: end for
22: end for
23: /*Inference Phase*/

24: for Pointclouds P from Dtest do
25: Cpoints ← AGCS.select_center_points(P)
26: F← Φenc (P)
27: S← compute_anomaly_scores(F, Cpoints) ⊲ Further

processing based on S
28: end for

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. In our experiments, we utilize the Real3D-AD [4]

dataset. Real3D-AD is the respresentive HR multi-view scanning

3D dataset derived from real-world scenarios. Real3D-AD, com-

prising 1,254 HR 3D items with each ranging from forty thou-

sand to millions of points, stands as the most extensive dataset

for high-precision 3D industrial anomaly detection. Real3D-AD

exceeds other available datasets for 3D anomaly detection in terms

of point clouds resolution (0.0010mm-0.0015mm), comprehensive

360-degree coverage, and flawless prototype quality.

4.1.2 Evaluation Metrics. Our study standardizes the evaluation

by employing metrics specifically designed for 3D-AD, which are

identical to those detailed in Real3D-AD.We assess the performance

of anomaly detection at both the object and point levels using the

Area Under the Receiver Operating Characteristic Curve (AUROC)

and theArea Under the Precision-Recall Curve (AUPR/AP). Superior

anomaly detection capabilities are indicated by higher values of

AUROC and AUPR. All tests are performed using a hardware setup

comprising a 13th Gen Intel(R) Core(TM) i7-13700K CPU, 32GB

DDR5 SDRAM, and a GeForce RTX 3090 graphics card.

4.2 Results and Analysis
4.2.1 Anomaly Detection on Real3D-AD. Tables 1-4 summarize

per-class comparisons between Group3AD and other state-of-the-

art methods, namely Reg3D-AD [24], CPMF [8], IMRNet [21], and

several benchmarking methods reported in Real3D-AD [24].

(1) O-AUROC. Regarding the O-AUROC metric, while Reg3D-

AD [24] sets the benchmark among current approaches with an

average O-AUROC of 0.704, this mark falls short of being entirely

effective. The introduced Group3AD method, however, markedly

surpasses these existing standards, registering an impressive O-

AUROC of 0.751, illustrating a significant advancement over prior

techniques, as shown in Table 1.

(2) O-AUPR. In the context of O-AUPR, Reg3D-AD leads among

contemporary strategies with an average performance of 0.723, in-

dicating a gap towards optimal precision-recall balance. The newly

developed Group3AD method exceeds these precedents, demon-

strating a notable O-AUPR of 0.74, showcasing a substantial im-

provement in accurately identifying anomalies, as shown in Table 2.

(3) P-AUROC. Our findings indicate that Group3AD exhibits a

marked improvement over Reg3D-AD in the context of P-AUROC

scores across various test scenarios. While Reg3D-AD achieved a

P-AUROC of 0.705, Group3AD advanced this benchmark to 0.735,

indicating a significant enhancement in detection capability, as

shown in Table 3. This improvement demonstrates the robustness of

Group3AD in navigating the complexities of 3D anomaly detection.

(4) P-AURR. Reflecting on the P-AURR metric, we focus on how

Group3AD compares to the established benchmark method, Reg3D-

AD. Reg3D-AD sets a solid foundation with a P-AURR score of

0.109. Our novel approach, Group3AD, significantly enhances this

benchmark by achieving a P-AURR of 0.137, indicating a marked

improvement in recall capabilities, as shown in Table 4.

In reviewing the performance across O-AUROC, O-AUPR, P-

AUROC, and P-AURR metrics, it is clear that while Reg3D-AD [24]

has set solid benchmarks, Group3AD significantly surpasses these,

demonstrating exceptional improvements (performance improve-

ments of 6.7%, 2.4%, 4.3%, and 25.7% respectively). This performance

solidifies Group3AD’s status as a powerful tool for precise and reli-

able anomaly detection in industrial settings.
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Table 1: O-AUROC score (↑) on Real3D-AD. The best and second-best results are marked in red and blue, respectively.

Method Airplane Car Candybar Chicken Diamond Duck Fish Gemstone Seahorse Shell Starfish Toffees Average
BTF(Raw) 0.520 0.560 0.462 0.432 0.545 0.784 0.549 0.648 0.779 0.754 0.575 0.630 0.603

BTF(FPFH) 0.730 0.647 0.703 0.789 0.707 0.691 0.602 0.686 0.596 0.396 0.530 0.539 0.635

M3DM(PointBERT) 0.407 0.506 0.442 0.673 0.627 0.466 0.556 0.617 0.494 0.577 0.528 0.562 0.538

M3DM(PointMAE) 0.434 0.541 0.450 0.683 0.602 0.433 0.540 0.644 0.495 0.694 0.551 0.552 0.552

PatchCore(FPFH) 0.882 0.590 0.565 0.837 0.574 0.546 0.675 0.370 0.505 0.589 0.441 0.541 0.593

PatchCore(FPFH+Raw) 0.848 0.777 0.626 0.853 0.784 0.628 0.837 0.359 0.767 0.663 0.471 0.570 0.682

PatchCore(PointMAE) 0.726 0.498 0.585 0.827 0.783 0.489 0.630 0.374 0.539 0.501 0.519 0.663 0.594

CPMF 0.632 0.518 0.718 0.640 0.640 0.554 0.840 0.349 0.843 0.393 0.526 0.845 0.625

IMRNet 0.762 0.711 0.755 0.780 0.905 0.517 0.880 0.674 0.604 0.665 0.674 0.774 0.725

Reg3D-AD 0.716 0.697 0.827 0.852 0.900 0.584 0.915 0.417 0.762 0.583 0.506 0.685 0.704

Group3AD(Ours) 0.744 0.728 0.847 0.786 0.932 0.679 0.976 0.539 0.841 0.585 0.562 0.796 0.751

Table 2: O-AUPR score (↑) on Real3D-AD. The best and second-best results are marked in red and blue, respectively.

Method Airplane Car Candybar Chicken Diamond Duck Fish Gemstone Seahorse Shell Starfish Toffees Average
BTF(Raw) 0.506 0.523 0.490 0.464 0.535 0.760 0.633 0.598 0.793 0.751 0.579 0.700 0.611

BTF(FPFH) 0.659 0.653 0.638 0.814 0.677 0.620 0.638 0.603 0.567 0.434 0.557 0.505 0.614

M3DM(PointBERT) 0.497 0.517 0.480 0.716 0.661 0.569 0.628 0.628 0.491 0.638 0.573 0.569 0.581

M3DM(PointMAE) 0.479 0.508 0.498 0.739 0.620 0.533 0.525 0.663 0.518 0.616 0.573 0.593 0.572

PatchCore(FPFH) 0.852 0.611 0.553 0.872 0.569 0.506 0.642 0.411 0.508 0.573 0.491 0.506 0.591

PatchCore(FPFH+Raw) 0.807 0.766 0.611 0.885 0.767 0.560 0.844 0.411 0.763 0.553 0.473 0.559 0.667

PatchCore(PointMAE) 0.747 0.555 0.576 0.864 0.801 0.488 0.720 0.444 0.546 0.590 0.561 0.708 0.633

Reg3D-AD 0.703 0.753 0.824 0.884 0.884 0.588 0.939 0.454 0.787 0.646 0.491 0.721 0.723

Group3AD(Ours) 0.757 0.706 0.837 0.674 0.932 0.612 0.981 0.533 0.842 0.648 0.567 0.785 0.740

Table 3: P-AUROC score (↑) on Real3D-AD. The best and second-best results are marked in red and blue, respectively.

Method Airplane Car Candybar Chicken Diamond Duck Fish Gemstone Seahorse Shell Starfish Toffees Average
BTF(Raw) 0.564 0.647 0.735 0.608 0.563 0.601 0.514 0.597 0.520 0.489 0.392 0.623 0.571

BTF(FPFH) 0.738 0.708 0.864 0.693 0.882 0.875 0.709 0.891 0.512 0.571 0.501 0.815 0.730

M3DM(PointBERT) 0.523 0.593 0.682 0.790 0.594 0.668 0.589 0.646 0.574 0.732 0.563 0.677 0.636

M3DM(PointMAE) 0.530 0.607 0.683 0.735 0.618 0.678 0.600 0.654 0.561 0.748 0.555 0.679 0.637

PatchCore(FPFH) 0.471 0.643 0.637 0.618 0.760 0.430 0.464 0.830 0.544 0.596 0.522 0.411 0.577

PatchCore(FPFH+Raw) 0.556 0.740 0.749 0.558 0.854 0.658 0.781 0.539 0.808 0.753 0.613 0.549 0.680

PatchCore(PointMAE) 0.579 0.610 0.635 0.683 0.776 0.439 0.714 0.514 0.660 0.725 0.641 0.727 0.642

CPMF 0.618 0.836 0.734 0.559 0.753 0.719 0.988 0.449 0.962 0.725 0.800 0.959 0.758

Reg3D-AD 0.631 0.718 0.724 0.676 0.835 0.503 0.826 0.545 0.817 0.811 0.617 0.759 0.705

Group3AD(Ours) 0.636 0.745 0.738 0.759 0.862 0.631 0.836 0.564 0.827 0.798 0.625 0.803 0.735

Table 4: P-AUPR score (↑) on Real3D-AD. The best and second-best results are marked in red and blue, respectively.

Method Airplane Car Candybar Chicken Diamond Duck Fish Gemstone Seahorse Shell Starfish Toffees Average
BTF(Raw) 0.012 0.014 0.025 0.049 0.032 0.020 0.017 0.014 0.031 0.011 0.017 0.016 0.022

BTF(FPFH) 0.027 0.028 0.118 0.044 0.239 0.068 0.036 0.075 0.027 0.018 0.034 0.055 0.064

M3DM(PointBERT) 0.007 0.017 0.016 0.377 0.038 0.011 0.039 0.017 0.028 0.021 0.040 0.018 0.052

M3DM(PointMAE) 0.007 0.018 0.016 0.310 0.033 0.011 0.025 0.018 0.030 0.022 0.040 0.021 0.046

PatchCore(FPFH) 0.027 0.034 0.142 0.040 0.273 0.055 0.052 0.093 0.031 0.031 0.037 0.040 0.071

PatchCore(FPFH+Raw) 0.016 0.160 0.092 0.045 0.363 0.034 0.266 0.066 0.291 0.049 0.035 0.055 0.123

PatchCore(PointMAE) 0.016 0.069 0.020 0.052 0.107 0.008 0.201 0.008 0.071 0.043 0.046 0.055 0.058

CPMF 0.010 0.064 0.050 0.031 0.074 0.018 0.559 0.007 0.636 0.025 0.128 0.391 0.166

Reg3D-AD 0.017 0.135 0.109 0.044 0.191 0.010 0.437 0.016 0.182 0.065 0.039 0.067 0.109

Group3AD(Ours) 0.018 0.174 0.122 0.068 0.287 0.016 0.448 0.009 0.24 0.067 0.056 0.134 0.137

4.2.2 Evaluating Intercluster Uniformity & Intracluster Alignment
Method for Anomaly Detection. Our experimental analysis promi-

nently features the evaluation of the Intercluster Uniformity Net-

work (IUN) and Intracluster Alignment Network (IAN) through

a series of ablation studies. By comparing the performance met-

rics of models with the IUN&IAN component both enabled and

disabled, From Table 5, we observed a significant enhancement in

the model’s ability to discriminate between normal and anoma-

lous features when the IUN&IAN was active. This enhancement

directly correlates with IUN&IAN’s primary function: to optimize

the separation and uniform distribution of feature clusters in the
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Table 5: Ablation studies on the INU & IAN Methods. The best and second-best results are marked in red and blue, respectively.

Metric Method Airplane Car Candybar Chicken Diamond Duck Fish Gemstone Seahorse Shell Starfish Toffees Average
O-AUROC (↑) PatchCore(PointMAE) 0.726 0.498 0.585 0.827 0.783 0.489 0.630 0.374 0.539 0.501 0.519 0.663 0.594

PatchCore(PointMAE) with IUN&IAN 0.748 0.558 0.656 0.655 0.845 0.579 0.741 0.478 0.556 0.522 0.53 0.662 0.628

Group3AD without IUN&IAN 0.721 0.712 0.842 0.773 0.897 0.656 0.965 0.511 0.838 0.536 0.553 0.775 0.732

Group3AD 0.744 0.728 0.847 0.786 0.932 0.679 0.976 0.539 0.841 0.585 0.562 0.796 0.751

P-AUPR (↑) PatchCore(PointMAE) 0.016 0.069 0.020 0.052 0.107 0.008 0.201 0.008 0.071 0.043 0.046 0.055 0.058

PatchCore(PointMAE) with IUN&IAN 0.013 0.066 0.021 0.047 0.118 0.010 0.210 0.009 0.081 0.037 0.063 0.12 0.066

Group3AD without IUN&IAN 0.011 0.158 0.100 0.051 0.210 0.014 0.420 0.010 0.240 0.037 0.033 0.101 0.115

Group3AD 0.018 0.174 0.122 0.068 0.287 0.016 0.448 0.009 0.240 0.067 0.056 0.134 0.137

Table 6: Ablation studies on the AGCS scheme. The best and second-best results are marked in red and blue, respectively.

Metric Method Airplane Car Candybar Chicken Diamond Duck Fish Gemstone Seahorse Shell Starfish Toffees Average
O-AUROC (↑) PatchCore(PointMAE) 0.726 0.498 0.585 0.827 0.783 0.489 0.630 0.374 0.539 0.501 0.519 0.663 0.594

PatchCore(PointMAE) with AGCS 0.713 0.544 0.614 0.676 0.820 0.544 0.752 0.452 0.590 0.507 0.524 0.778 0.626

Group3AD without AGCS 0.723 0.708 0.833 0.726 0.906 0.661 0.941 0.523 0.818 0.544 0.531 0.787 0.725

Group3AD 0.744 0.728 0.847 0.786 0.932 0.679 0.976 0.539 0.841 0.585 0.562 0.796 0.751

P-AUPR (↑) PatchCore(PointMAE) 0.016 0.069 0.020 0.052 0.107 0.008 0.201 0.008 0.071 0.043 0.046 0.055 0.058

PatchCore(PointMAE) with AGCS 0.010 0.057 0.022 0.055 0.145 0.013 0.261 0.009 0.092 0.040 0.039 0.137 0.073

Group3AD without AGCS 0.019 0.176 0.067 0.058 0.253 0.015 0.437 0.008 0.237 0.048 0.042 0.124 0.124

Group3AD 0.018 0.174 0.122 0.068 0.287 0.016 0.448 0.009 0.240 0.067 0.056 0.134 0.137

feature space. While the IUN&IAN establishes a foundational sepa-

ration and distribution of feature clusters, the IAN gently fine-tunes

this landscape, promoting tighter and more cohesive clusters. Such

optimization evidently aids in reducing ambiguity and overlap be-

tween clusters, thereby sharpening the model’s anomaly detection

capabilities. The empirical evidence from our ablation studies thus

underscores the essential role of IUN&IAN in fortifying the model’s

performance, highlighting its value in the context of HR 3D-AD.

4.2.3 Evaluating Adaptive Group-Center Selection for Anomaly De-
tection. In our comprehensive analysis, we further examined the

role of the Adaptive Group-Center Selection (AGCS) within our

proposed Group3AD. The AGCS enhances the detection process by

strategically directing the model’s focus towards regions potentially

harboring anomalies, thus adjusting the sampling density in critical

areas. Experimental results shown in Table 6 indicate that AGCS

substantially improves the model’s effectiveness in detecting anom-

alies. By concentrating on areas with potential irregularities, AGCS

allows the model to identify subtle yet critical anomalies that might

be missed under uniform sampling conditions. This prioritization

leads to a more efficient detection process, enabling the model to

perform more accurately and swiftly, especially in complex point

cloud datasets.

4.3 Visualization
Figure 5 provides a visual representation of the clustering results

achieved with the Group3AD framework on the Real3D-AD dataset,

focusing on the effectiveness of the Intercluster Uniformity Net-

work (IUN) and Intracluster Alignment Network (IAN). Each dot

signifies a group center, pinpointed through the refined feature

space sculpted by the IUN and IAN. This visualization underscores

the success of these networks in creating distinct, well-separated

clusters while maintaining tight intra-cluster relationships, which

are instrumental for the precise localization of anomalies. The clear

separation of clusters showcases the IUN’s impact in enhancing

feature discrimination across groups, while the density of points

within each cluster attests to the IAN’s role in fostering coherence

among features, resulting in improved anomaly detection perfor-

mance in high-resolution 3D contexts.

Figure 5: Visualization results obtained by Group3AD. Differ-
ent colors indicate different groups selected by AGCS. The
red circle represents anomaly area.

5 CONCLUSIONS
In this work, we introduced Group3AD, a robust framework tailored

for high-resolution 3D-AD in industry, which can effectively en-

hance anomaly detection and localization accuracy. Demonstrating

significant improvements over existing methodologies, especially

in terms of reducing false positives and leveraging depth infor-

mation for clearer anomaly identification, Group3AD emerges as

a practical solution for real-world applications. Future endeavors

may extend its applicability and efficiency, further solidifying its

utility in industrial anomaly detection tasks.
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