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Abstract
A key component of transformers is the atten-
tion mechanism orchestrating how each token
influences the propagation of every other token
along the layers of a transformer. In this paper we
provide a rigorous, mathematical analysis of the
asymptotic properties of attention in transformers.
Although we present several results based on dif-
ferent assumptions, all of them point to the same
conclusion, all tokens asymptotically converge
to each other, a phenomenon that has been em-
pirically reported in the literature. Our findings
are carefully compared with existing theoretical
results and illustrated by simulations and experi-
mental studies using the GPT-2 and the GPT-Neo
models.

1. Introduction
The incorporation of attention (Chorowski et al., 2015) in
natural language processing was a significant breakthrough,
particularly in the context of sequence-to-sequence models,
enabling the creation of transformers (Vaswani et al., 2017)
which revolutionized the field. Even initial transformer
models such as GPT (Radford et al., 2018) or Bert (De-
vlin et al., 2018) showed drastic improvements over pre-
vious approaches such as the Long Short-Term Memory
model (Sainath et al., 2015).

As practical applications of deep neural networks, such
as image recognition (O’shea & Nash, 2015), natural lan-
guage processing (Torfi et al., 2020), and autonomous
driving (Grigorescu et al., 2020), continue to advance,
our understanding of these networks is struggling to keep
pace (Van Dijk et al., 2023). This underscores the criti-
cal importance of our study, which aims to delve deeper
into transformers and their dynamics. Our understanding
of transformers is currently limited by their inherent com-
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plexity, making it challenging to comprehensively explain
their behavior (Peng et al., 2024). However, recent studies
have shown the emergence of clusters of tokens empiri-
cally and theoretically (Dong et al., 2021; Feng et al., 2022;
Geshkovski et al., 2023b; 2024). These findings suggest
that without proper care, large transformers may collapse, a
phenomenon where the tokens cluster, limiting the model’s
ability to produce different outputs.

Our work was motivated by the paper (Geshkovski et al.,
2023a) where a mathematical model for attention was pro-
posed, based on prior work on similar models (Lu et al.,
2019; Dutta et al., 2021), and investigated. The authors
share the vision outlined in (Geshkovski et al., 2023a), a
better understanding of the role and importance of attention
mechanisms can be achieved through the study of math-
ematical models. Our contribution lies in bringing ideas
developed by the control community, where the study of
asymptotic properties of dynamical and control systems is
a central preoccupation, to bear on this problem. While
deferring to the next section a more detailed comparison
between our results and those available in the literature, we
emphasize here that, in contrast with (Geshkovski et al.,
2023a;b; 2024), we do not rely on stochastic and/or mean-
field techniques and rather adopt a geometric perspective
drawing from control theory, e.g., from consensus dynamics
on manifolds (Sarlette & Sepulchre, 2009) such as spheres
(Markdahl et al., 2017; Thunberg et al., 2018), and from
Input-to-State Stability (Sontag, 1989; 2001; 2008).

Contributions of the paper

The main contribution of this work is to provide a number
of results1, for a differential equation model of attention2

showing that all tokens converge to a single cluster thereby
leading to a collapse of the model. We use the term con-
sensus equilibria to refer to such clusters as is done in the
consensus literature (Ren et al., 2005; Cao et al., 2013).
These results hold under different assumptions on the pa-
rameters of the model —namely, the query (Q), key (K)
and value matrices (U ), as well as the number of heads (h)—

1A detailed proof for each theorem stated in this paper can be
found in (Rodrı́guez Abella et al., 2024).

2Since we focus on the attention mechanism, this model does
not describe the effect of feed-forward layers.
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Table 1. Summary of the results presented in this work for several particular cases of the continuous model (6), where Q(t), K(t), and
U(t) denote the query, key and value matrices, respectively.

FULL ATTENTION CAUSAL ATTENTION (AUTO-REGRESSIVE)

SECTION §3 §4.1 §4.2
# OF HEADS h ≥ 1 h ≥ 1 h = 1

P (t) = Q(t)⊤ K(t)
TIME VARYING,

UNIFORMLY CONTINUOUS,
BOUNDED

TIME VARYING,
BOUNDED

TIME VARYING,
BOUNDED

U(t) IDENTITY IDENTITY
TIME INVARIANT,

SYMMETRIC
RESULT THEOREM 3.2 THEOREM 4.2 THEOREM 4.5

STATEMENT
CONVERGENCE TO

CONSENSUS
ASYMPT. STABILITY

OF CONSENSUS
ASYMPT. STABILITY

OF CONSENSUS
DOMAIN OF

ATTRACTION
SOME HEMISPHERE

CONULL (COMPLEMENT
OF ZERO MEASURE) FIXED HEMISPHERE

that are summarized in Table 1.

In particular, Theorem 3.2 states that tokens converge to a
consensus equilibrium whenever their starting positions lie
in the interior of some hemisphere of the ellipsoid. This
result holds for any number of heads and time varying ma-
trix P = Q⊤ K provided that U is the identity and P is
bounded and uniformly continuous as a function of the time.
A similar result is reported in (Geshkovski et al., 2023a)
under Lemma 4.2. However, its conclusions hold under the
stronger assumptions that both U and P = Q⊤K are the
identity matrix and there is a single attention head. The-
orem 3.2 makes no assumptions on the attention matrix
other those induced by the assumptions on P . In contrast,
Theorems 4.2 and 4.5 focus on the auto-regressive case,
also known as causal attention, where the self-attention ma-
trix is lower triangular. Theorem 4.2 states that when U is
the identity, the first token is fixed and all the other tokens
converge to the position of the first one for almost every
initial position of the tokens. In fact, we have asymptotic
stability of this consensus equilibrium. This holds for any
number of heads and any time varying P matrix provided
it is bounded. Similar conclusions are reported under The-
orem 4.1 in (Karagodin et al., 2024) by imposing stronger
assumptions: time invariance of P = Q⊤K and existence
of a single attention head. Theorem 4.5 extends these result
to the case where U is a time invariant symmetric matrix
and the multiplicity of its largest eigenvalue is one. In this
case all the tokens will converge to a consensus equilibrium
(moreover, that equilibrium is asymptotically stable) if they
start in one of the two hemispheres defined by the eigenvec-
tor associated with the largest eigenvalue of U . We were
only able to establish this result for the single-head case
although we believe it holds in greater generality. To the
best of the author’s knowledge there is no result available in
the literature for the case where U is not the identity matrix
although this is conjectured, but not proved, in (Karagodin

et al., 2024).

Our theoretical findings are validated by simulations of the
mathematical model for attention. Moreover, experiments
with the GPT-2 and the GPT-Neo models provide empirical
evidence for convergence to consensus equilibria in more
general situations than those captured by our theoretical
results, thus providing additional confirmation for model
collapse.

Notations

We use the letters n, ℓ, r, and s to denote elements of
N = {1, 2, . . .}. The space of r × s real matrices is de-
noted by Mr×s(R). In particular, Ir ∈ Mr×r(R) denotes
the identity matrix. The Frobenius norm of a square ma-
trix A ∈ Mr×r(R) is denoted by ∥A∥. The elements of
Rn+1 are denoted by x, and tuples of ℓ elements are denoted
by x = (x1, . . . , xℓ) ∈ (Rn+1)ℓ (note the different font).
The tangent space of a smooth manifold M at p ∈ M and
its elements are denoted by TpM and Xp ∈ TpM , respec-
tively. Given another smooth manifold N and a smooth
map ϕ : M → N , i.e., ϕ ∈ C∞(M,N), its tangent map is
denoted by Tϕ : TM → TN .

2. Dynamics of transformers
2.1. Configuration space

Let ℓ, n ∈ N. A symmetric, positive-definite matrix
W ∈ M(n+1)×(n+1)(R) defines an inner product on Rn+1:

⟨Xx, Yx⟩W = X⊤
x W Yx,

for each Xx, Yx ∈ TxRn+1 and x ∈ Rn+1, where the super-
script ⊤ denotes the transpose. The corresponding norm is
denoted by |Xx|W = (X⊤

x W Xx)
1/2. The points of Rn+1

of unit norm define an n-dimensional ellipsoid, which is
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yi(k + 1) = πW

yi(k) +

h∑
η=1

ℓ∑
j=1

Wη(k)Vη(k)Dη(k)ii exp
(
yj(k)

⊤ Kη(k)
⊤ Qη(k) yi(k)

)
yj(k)

 . (1)

denoted by:

En
W = {x ∈ Rn+1 | x⊤ Wx = 1}.

In this work, we consider a transformer consisting of ℓ
tokens of dimension n + 1 constrained to evolve on an
ellipsoid. As we have ℓ tokens, the resulting state space is
the Cartesian product of ℓ copies of the ellipsoid, i.e.:

(En
W )ℓ = En

W × . . .× En
W︸ ︷︷ ︸

ℓ-times

.

Similarly, we consider the following projection:

πW : Rn+1
0 → En

W , x 7→ πW (x) = x |x|−1
W , (2)

where Rn+1
0 = Rn+1 − {0}, whose tangent map at each

x ∈ Rn+1
0 :

TxπW : TxRn+1
0 → TπW (x)En

W ,

is given by:

TxπW ·Xx = |x|−1
W

(
In+1 − x x⊤ W |x|−2

W

)
·Xx, (3)

for each Xx ∈ TxRn+1
0 . In particular, for y ∈ En

W , we have
TyπW ·Xy =

(
In+1 − y y⊤ W

)
·Xy.

Remark 2.1 (Evolution on the sphere). There are a number
of models in which the tokens evolve on the n-sphere, i.e.,
Sn = En

In+1
. For brevity, in that case we will drop the

subscripts standing for the matrix W = In+1. For instance,
we will write | · | = | · |In+1 , π = πIn+1 , etc.

2.2. Discrete-time attention model

In this section we present the mathematical model for a
transformer. Similarly to (Geshkovski et al., 2023a), the
model encompasses the self-attention mechanism, the skip
connection, and the normalization layer, but excludes the
feedforward layer.

Let w ∈ N be a design parameter. The weight matri-
ces at the k-th layer of the transformer, k ∈ N, are de-
noted by Q(k) ∈ Mw×(n+1)(R), K(k) ∈ Mw×(n+1)(R)
and V (k) ∈ Mw×(n+1)(R), and are typically known
as the Query, Key, and Value3 matrices, respec-
tively. The input to the k-th layer is denoted
by x = (x1, . . . , xℓ) ∈ M(n+1)×ℓ(R) and the output

3In the introduction we used U to refer to the value matrix; this
difference is resolved in this section.

z ∈ Mw×ℓ(R) of the self-attention mechanism is given
by:

z(k) = V (k)x(k)D(k) exp
(
x(k)⊤K(k)⊤Q(k)x(k)

)
,
(4)

where exp(·) denotes the entry-wise exponential (i.e.,
[exp(R)]ij = eRij ), and D(k) ∈ Mℓ×ℓ(R) is defined as:

D(k)ij =

(
√
n+ 1

ℓ∑
l=1

exp(xl(k)
⊤ K(k)⊤ Q(k) xi(k))

)−1

,

if i = j, and D(k)ij = 0 otherwise.

Practical transformer applications often distribute the com-
putations of the self-attention mechanism through several
parallel heads, leading to what is commonly known as multi-
headed self-attention. To make explicit the dependence on
the head, we write (4) as:

zη(k) = Vη(k)x(k)Dη(k) exp
(
x(k)⊤ Kη(k)

⊤ Qη(k)x(k)
)
,

for each 1 ≤ η ≤ h.

The outputs from all attention heads are added af-
ter being multiplied by certain weight matrices
Wη ∈ M(n+1)×w(R), 1 ≤ η ≤ ℓ. Then, the result-
ing sum is added to the input of the layer x(k), using
what is often called a skip connection. Lastly, a nor-
malization function is applied to ensure that the output
is bounded. In this work, we consider functions that
normalize each token of the transformer separately, which
is known as layer normalization and was first proposed
in (Ba et al., 2016). Hence, the normalization function
N : M(n+1)×ℓ(R) → M(n+1)×ℓ(R) is of the form:

x = (x1, . . . , xℓ) 7→ N(x) = (N(x1), . . . , N(xℓ)),

for some N : Rn+1 → Rn+1. Similarly to (Geshkovski
et al., 2023a), in the following we consider the normalization
function N = πW given in (2), which projects each token
to the ellipsoid En

W . In practice, this projection has been
explicitly used in some models such as (Jiang et al., 2023).
For clarity, we utilize the symbol y = (y1, . . . , yℓ) for the
tokens evolving on the ellipsoid (after this explicit choice
of normalization). The resulting discrete-time dynamical
system is shown in (1) where 1 ≤ i ≤ ℓ indexes each token.
Remark 2.2 (Standard layer normalization). The standard
layer normalization utilized in most transformers is given
by:

N(x) =
1

σ(x)
(x− µ(x)1) ⋆ γ + β,

3
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ẏi = TyiπW ·

 h∑
η=1

ℓ∑
j=1

Wη(t)V
′
η(t)Dη(t)ii exp

(
y⊤j Kη(t)

⊤ Qη(t) yi
)
yj

 . (5)

for each x = (x1, . . . , xn+1) ∈ Rn+1. In the previous ex-
pression, 1 denotes the vector (1, . . . , 1) ∈ Rn+1, ⋆ denotes
the element-wise product of vectors, and γ, β ∈ Rn+1 are
the learned scale and shift, respectively. Similarly, µ(x) and
σ(x) denote the mean and standard deviation of x, respec-
tively. Under this normalization, we have:

|N(x)− β|2 =
1

σ(x)2

n+1∑
µ=1

(xµ − µ(x))2 (γµ)2

=
n+ 1∑n+1

µ=1 (x
µ − µ(x))

2

n+1∑
µ=1

(xµ − µ(x))2 (γµ)2,

where we used the notation γ = (γ1, . . . , γn+1). It is clear
that, if γ = γ01 for some γ0 ̸= 0, then the tokens lie on
the n-sphere of center β and radius (n+ 1)γ2

0 . Therefore,
the results in this paper also apply to this type of normal-
ization. We conjecture that, for arbitrary scale parameters,
the tokens will also lie on a certain hypersurface of Rn+1

diffeomorphic to the n-sphere, but a more careful analysis
has to be carried out to understand the geometry of such
hypersurface.

2.3. Continuous-time attention model

In this section we introduce additional notation that is only
used to derive the continuous time model. Readers not
interested in the model’s derivation can skip the next two
paragraphs and start reading the paragraph commencing
with “To simplify notation”.

Let Y ∈ X((En
W )ℓ) be a vector field and denote its flow by

Y τ : (En
W )ℓ → (En

W )ℓ. Note that Y is complete, i.e., its
flow is defined for each τ ∈ R, since (En

W )ℓ is compact.
Given a map g : (En

W )ℓ × R → R+
0 , we use the notation

g(y, τ) = Oy(τ
2) to denote the existence of a constant

T ∈ R+ and a function σ : (En
W )ℓ → R+

0 such that, for each
τ ∈ [0, T ] and y ∈ (En

W )ℓ, we have g(y, τ) ≤ σ(y)τ2. A
map ϕ : (En

W )ℓ×R → (En
W )ℓ is a first order approximation

to the flow Y τ if d(Y τ (y), ϕ(y, τ)) = Oy(τ
2) where d

denotes the distance on (En
W )ℓ induced by the Euclidean

distance on (Rn+1
0 )ℓ.

Using the concepts introduced in the previous paragraph,
our objective is to construct a vector field Y such that the
map defined by the right-hand side of (1) is the best first
order approximation of Y τ . To that end, we write Vη(k)
as Vη(k) = τV ′

η(k) for each 1 ≤ η ≤ h, with 0 < τ ≪ 1
being a small parameter. Hence, (1) may be rewritten as:

yi(k + 1) = πW (yi(k) + τ fk(y(k)), 1 ≤ i ≤ ℓ,

where fk : (En
W )ℓ → Rn+1 is defined as:

fk(y) =

h∑
η=1

ℓ∑
j=1

Wη(k)Vη(k)
′ Dη(k)ii

exp
(
y⊤j Kη(k)

⊤ Qη(k) yi
)
yj ,

for each y ∈ (En
W )ℓ. For each 1 ≤ i ≤ ℓ, the best linear

approximation in τ is given by:

ẏi =
d

dτ

∣∣∣∣
τ=0

πW (yi + τ fk(y)) = Tyi
πW · fk(yi).

Therefore, the continuous-time model is given by (5), with
1 ≤ i ≤ ℓ, y = (y1, . . . , yℓ) ∈ (En

W )ℓ, and t ≥ 0, as the
differential equation whose solution provides the best first
order approximation of (1).

To simplify notation we introduce the following (time-
dependent) auxiliary matrices:

Uη(t) = Wη(t)V
′
η(t) ∈ M(n+1)×(n+1)(R),

Pη(t) = Qη(t)
⊤ Kη(t) ∈ M(n+1)×(n+1)(R),

for each 1 ≤ η ≤ h and t ≥ 0. We still refer to the matrix
Uη(t) as the value matrix since it plays a similar role. Simi-
larly, we define the functions αη

ij , Z
η
i : R+

0 × (En
W )ℓ → R

by:

αη
ij(t,y) =

1

Zη
i (t,y)

exp(y⊤i Pη(t) yj),

Zη
i (t,y) = Dη(t)

−1
ii =

√
n+ 1

ℓ∑
j=1

exp(y⊤i Pη(t) yj),

respectively, for each 1 ≤ i, j ≤ ℓ, 1 ≤ η ≤ h, t ≥ 0 and
y = (y1, . . . , yℓ) ∈ (En

W )ℓ. The matrix having αη
ij as its

i-th row and j-th column entry is usually called the attention
matrix of head η.

With the notation just introduced, the dynamical system that
describes the evolution of a transformer with h heads and ℓ
tokens evolving on the ellipsoid En

W is given by:

ẏi = Tyi
πW ·

 h∑
η=1

ℓ∑
j=1

αη
ij(t,y)Uη(t) yj

 (6)

for each 1 ≤ i ≤ ℓ, t ≥ 0 and y = (y1, . . . , yℓ) ∈ (En
W )ℓ.
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3. Full self-attention matrix
In this section we consider a particular case of the model
(6) described by the following assumptions.

Assumption 3.1. For each head 1 ≤ η ≤ h, we have:

1. Uη(t) = In+1,

2. Pη(t) is bounded, i.e., supt≥0 ∥Pη(t)∥ < ∞, and

3. Pη(t) is uniformly continuous on [0,∞[.

Recall that a set C ⊂ (En
W )ℓ is said to be attractive for

(6) with domain of attraction H ⊂ (En
W )ℓ if the following

conditions hold:

1. C is forward-invariant, i.e., each solution of (6) starting
in C remains in C for all positive times.

2. limt→∞ dist(y(t), C) = 0 for each solution
y : R+

0 → (En
W )ℓ of (6) with y(0) ∈ H, where

dist(y(t), C) = infz∈C d(y(t), z) and d denotes the
distance on (En

W )ℓ induced by the Euclidean distance
on (Rn+1

0 )ℓ.

The next result claims attractivity of the consensus set pro-
vided that the initial position of the tokens is in some open
hemisphere of the ellipsoid.

Theorem 3.2. Let v ∈ En
W and consider the open hemi-

sphere:
H+(v) = {y ∈ En

W | v⊤ y > 0}.

If Assumption 3.1 holds, then the consensus set C+
ℓ (v) in

the product of hemispheres H+(v)ℓ, given by:

C+
ℓ (v) = {y = (y, . . . , y) ∈ (En

W )ℓ | y ∈ H+(v)},

is attractive for (6) with domain of attraction H+(v)ℓ.

The idea of the proof is to first check that H+(v)ℓ is forward-
invariant and then define a Lyapunov function as follows:

V : H+(v)ℓ → R, y 7→ V (y) = max
1≤i≤ℓ

Vi(y), (7)

where Vi(y) = 1− v⊤ yi. In other words, V describes how
far is each token yi from being aligned with v by represent-
ing the largest misalignment, i.e., the worst case over all
tokens. We show that V is strictly decreasing along solu-
tions of (6) that start in H+(v)ℓ, except when the solution
lies in C+

ℓ (v), i.e., when the tokens reach consensus. It fol-
lows from the Lyapunov stability theory that, under these
conditions, C+

ℓ (v) is attractive. We only obtain attractiv-
ity instead of asymptotic stability due to the system being
time-varying. It should be pointed out that V is defined
by a maximum and, thus, it may not be differentiable. To

overcome this, we compute the upper Dini derivative instead
of the standard one (which is not defined at the discontinu-
ities) using Danskin’s theorem. This gives an upper bound
on the change of V along the solution that allows for a
Lyapunov-like theorem.
Remark 3.3 (Closest result available in the literature). Sim-
ilar conclusions appear in (Geshkovski et al., 2023a) (see
Lemma 4.2) under the stronger assumptions of a single at-
tention head and that both U and P = Q⊤K are the identity
matrix.
Remark 3.4 (Higher dimensions). Let us restrict ourselves
to the case where we have normalization to the sphere, i.e.,
W = In+1. Wendel’s theorem (cf. Eq. (1) of (Wendel,
1962)) gives the probability that ℓ tokens lie on the same
hemisphere when distributed uniformly at random; namely:

Pℓ,n =
1

2ℓ−1

n−1∑
µ=0

(
ℓ− 1

µ

)
.

In particular, Pℓ,n = 1 whenever n ≥ ℓ. As a result, if the
starting position of the tokens is chosen from a uniformly
random distribution and n ≥ ℓ, then they will lie on the
same hemisphere almost surely. The previous result thus
deals with the most general situation for higher dimensions.

4. Auto-regressive self-attention matrix
This section addresses the auto-regressive (also known as
causal) case, that is, the case where the dynamics of each to-
ken only depends on itself and the previous tokens. This cor-
responds to the model (6) with the so-called auto-regressive
self-attention matrix, i.e.:

αη
ij(t,y) =


1

Zη
i (t,y)

exp(y⊤i Pη(t) yj), i ≥ j,

0, i < j,

Zη
i (t,y) =

√
n+ 1

i∑
j=1

exp(y⊤i Pη(t) yj).

4.1. Identity value matrix

Let us consider the case where W = In+1, i.e., the tokens
evolve on the sphere.

Assumption 4.1. The model (6) is auto-regressive,
W = In+1 and, for each head 1 ≤ η ≤ h, we have:

1. Uη(t) = In+1, and

2. Pη(t) is bounded, i.e., supt≥0 ∥Pη(t)∥ < ∞.

It is straightforward that, under the previous conditions,
ẏ1 = 0 and, thus, the first token remains fixed: y1(t) = y01
for each t ≥ 0. For each other token yi, 2 ≤ i ≤ ℓ, the inner
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product between y01 and yi, i.e., the (cosine of the) angle
between them, provides a projection of the dynamics onto
the real line. In other words, using this angle we construct a
scalar differential equation governing the evolution of the
projection of the token on the real line. It them becomes
simple to construct a Lyapunov function for the second
token, ensuring convergence to y01 for every initial condition
except for y2(0) = −y01. For the remaining tokens, an
input-to-state stability argument coupled with the triangular
nature of the dynamics leads to the asymptotic stability of
the consensus set for almost all initial conditions.

Theorem 4.2. If Assumption 4.1 holds, then the consensus
set:

Cℓ = {y = (y, . . . , y) ∈ (Sn)ℓ},

is asymptotically stable for the system (6) and the domain
of attraction contains the following set:

D1
ℓ = {(y1, . . . , yℓ) ∈ (Sn)ℓ | yj ̸= −y1, 2 ≤ j ≤ ℓ}.

Remark 4.3 (Closest result available in the literature).
Similar conclusions are reported under Theorem 4.1
in (Karagodin et al., 2024) by imposing stronger assump-
tions, time invariance of P = Q⊤K and existence of a
single attention head, although the authors state that time-
invariance is not explicitly used.

4.2. Symmetric value matrix

Now we extend the results of the previous section to more
general value matrices. As above, the tokens evolve on the
sphere, i.e., W = In+1.

Assumption 4.4. The model (6) is auto-regressive,
W = In+1, and we have:

• There is only one head, i.e., h = 1,

• U1(t) = U with U⊤ = U , and

• P1(t) = P (t) is bounded, i.e., supt≥0 ∥P (t)∥ < ∞.

We denote the spectrum of U by λ(U). Note that λ(U) ⊂ R
as U is symmetric. Given λ ∈ λ(U), the corresponding
eigenspace is denoted by Lλ(U) ⊂ Rn+1.

Unlike the case U = In+1 considered in the previous sec-
tion, the first token is no longer fixed. However, it can be
shown that it converges to a fixed position provided the
multiplicity of the largest eigenvalue is one. This allows for
establishing the asymptotic stability of two specific consen-
sus points induced by the matrix U using the same technique
as in Theorem 4.2. Namely, the dynamics of each other to-
ken yi, 2 ≤ i ≤ ℓ, is projected to the real line using its
inner product with the corresponding asymptotically stable
equilibrium of y1. By following an induction argument and

treating the distance of the previous tokens to the equilib-
rium as an error (as it converges to zero within time), an
input-to-state-stability-Lyapunov function for the projected
dynamics of yi can be found, yielding the result.

Theorem 4.5. Suppose that Assumption 4.4 holds and
dimLλ(U) = 1, where λ = maxλ(U). The elements
of Lλ(U) ∩ Sn are denoted by {−v, v}. If λ > 0, then
y∗ = (v, . . . , v) (resp. y∗ = −(v, . . . , v)) is an asymptoti-
cally stable equilibrium of (6) and its domain of attraction
contains the set:

Dℓ(v) = {(y1, . . . , yℓ) ∈ (Sn)ℓ | v⊤ yi > 0, 1 ≤ i ≤ ℓ},
(resp. Dℓ(−v)).

Remark 4.6 (Closest results available in the literature). The
authors were not able to find results in the literature address-
ing the case where U is not the identity matrix although
two conjectures are proposed, but not proved, in (Karagodin
et al., 2024).
Remark 4.7 (Time-varying value matrix). In this remark
we discuss a possible relaxation of Assumption 4.4 to
a time-varying matrix U(t). Once U(t) becomes time-
varying, so will λ(t), v(t), and the consensus equilibrium
y∗(t) = (v(t), . . . , v(t)). If v(t) varies slowly, we expect
convergence to a ball centered at y∗(t). The scalar differen-
tial equation, upon which the proof of Theorem 4.5 is built,
becomes:

ḃ = α̃(t) (λ(t)− y⊤ U(t) y) b+ v̇⊤ y, t ≥ 0. (8)

Let us denote the extra term as e = v̇⊤ y. When e = 0,
b∗ = 1 is an asymptotically stable equilibrium with domain
of attraction ]0, 1] (resp. b∗ = −1 with domain [−1, 0[).
Hence, an input-to-state stability argument would show con-
vergence to a ball centered at b∗ = 1 (resp. b∗ = −1) whose
radius is an increasing function of supt≥0 |e(t)|.

5. Simulations and empirical validation
In this section we illustrate the theoretical results and show
that their conclusions appear to hold even when our assump-
tions are violated. We start by simulating the continuous
transformer model and illustrating our theoretical results.
In addition to simulations, we provide empirical evidence
using the GPT-2 XL and the GPT-Neo 2.7B to show how
token consensus seems to occur even if the assumptions in
our theoretical results are not satisfied.

5.1. Numerical simulations

5.1.1. ILLUSTRATION OF THEOREM 3.2.

We simulate the motion of 10 tokens, each of them randomly
placed on the sphere S2 ⊂ R3, according to the dynam-
ics (6) with h = 2. All matrices, except for P1(t) and P2(t),
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Figure 1. Frobenius norm of the matrices P1(t) and P2(t).

were randomly chosen, and each element was drawn from
a uniform distribution in the interval [−0.5, 0.5]. The ma-
trices P1(t) and P2(t) were computed as P1(t) = D1(t)P

′
1,

P2(t) = D2(t)P
′
2 with P ′

1 and P ′
2 randomly generated:

P ′
1 =

 0.08 −0.19 0.20
−0.23 0.31 −0.23
0.18 −0.17 −0.16

 ,

P ′
2 =

−0.31 0.03 0.11
0.06 −0.06 0.13
0.14 0.11 0.10

 .

The matrices D1(t) and D2(t) were given by
D1(t) = 2 diag

(
cos(10πt), sin(10πt), cos(6πt)

)
and D2(t) = 2 diag

(
cos(6πt), sin(6πt), cos(4πt)

)
,

where diag : R3 → M3×3(R) denotes the function that
maps a vector to the diagonal matrix with its components
on the diagonal.

To better appreciate the time-varying nature of the matrices
P1 and P2, in Figure 1 we shown their Frobenius norm.

In Figure 2 we show the motion of the tokens in blue with
their initial position represented by a white circle and fi-
nal position by a gray circle. We can appreciate that all

Figure 2. Convergence to a consensus equilibrium on the sphere
S2. All the tokens start and remain in an hemisphere.
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Figure 3. Evolution of the Lyapunov function (7) used in the proof
of Theorem 3.2.

the tokens start and remain in an hemisphere and that they
converge to a consensus equilibrium.

The proof of Theorem 3.2 is based on the Lyapunov func-
tion (7), whose time-evolution is displayed in Figure 3 for
the case where v = (1, 0, 0).

5.1.2. ILLUSTRATION OF THEOREM 4.2

We now consider the auto-regressive model with 50 tokens
on S499 ⊂ R500. The number and dimension of the to-
kens were chosen to make them comparable to the GPT-
2 model. We use two heads (h = 2) with the matrices
P1 = D1(t)P

′
1 and P2 = D2(t)P

′
2 obtained by randomly

generating P ′
1 and P ′

2, and taking D1(t) and D2(t) to be
diagonal with entries (Dη)jj = |2 sin(wt+ϕ)| for η = 1, 2,
j = 1, . . . , 500, w drawn from the uniform distribution on
]0, 1[ and ϕ drawn from the uniform distribution on ]0, 2π[.
To measure the error between tokens we use the cosine
similarity, E : (En

W )ℓ → R+, defined as:

E = 1− 1

ℓ

ℓ∑
i=1

y⊤1 yi
|y1| |yi|

, (9)

which becomes zero when all the tokens belong to the con-
sensus set.

In Figure 4 we display the evolution of the function E along
100 trajectories of (6) for random initial conditions drawn
from an element-wise uniform distribution on ]− 0.5, 0.5[,
and then projected to the sphere. We can appreciate in
Figure 4 how the function E converges to zero along all the
trajectories.

5.1.3. ILLUSTRATION OF THEOREM 4.5

In the final case we use the auto-regressive model with 10
tokens on S2 with randomly assigned initial positions. As
for the previous cases, we choose P (t) = D(t)P ′, with

7
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Figure 4. Illustration of Theorem 4.2; evolution of the function
E defined in (9) along 100 solutions of (6) with random initial
conditions drawn from an element-wise uniform distribution on
]− 0.5, 0.5[ and then projected to the sphere.

randomly generated P ′ and U given by:

P ′ =

0.36 0.42 0.13
0.10 −0.07 −0.20
0.15 −0.21 0.12

, U =

−0.26 0.50 0.56
0.50 −0.72 −0.50
0.56 −0.50 −0.02

,
and D(t) = 2 diag

(
cos(10πt), sin(10πt), cos(6πt)

)
.

In Figure 5 we can observe convergence of the tokens to a
consensus equilibrium point whereas in Figure 6 we have
the time evolution of V1 = 1−y⊤1 v and V2 = 1−y⊤2 v where
v ∈ R3 is the eigenvector of U corresponding to its largest
eigenvalue. Note that V2 is not a Lyapunov function, and
therefore it may increase, although the proof of Theorem 4.5,
establishes that it will eventually converge to zero.

5.2. GPT-2 and GPT-Neo Experiments

In this section we report on experiments conducted on the
GPT-2 XL model and the GPT-Neo 2.7B model suggest-
ing that our theoretical findings hold under more general

Figure 5. Convergence to a consensus equilibrium on the sphere
S2. All the tokens start and remain in the hemisphere defined by v.

assumptions. Since our results are asymptotic, we need to
increase the depth of both models. We do so by running
the same set of tokens through the model multiple times. In
other words, we extract the tokens at the end of the model,
after the final normalization, and feed them to the model for
another pass thereby simulating a model of increased length,
the code used for our experiments is available at (Silvestre,
2025).

For all our experiments, we used the same set of 100 random
prompts, each generated by uniformly sampling 200 tokens
from the GPT-2 tokenizer’s vocabulary. In each experiment,
we plot the average of E across all the prompts. As an
example, the first 10 tokens of the first sampled prompt are:

divest anxYou coasts Oz

Vi Happy appreciate tcp .

In the first experiments, we removed the feedfoward layers
of each model, to make them closer to the structure we
assume in our theoretical work. The experiments were then
repeated without removing the feedforward layers, showing
that in both cases convergence to consensus occurs.

The experiments were conducted on the standard configura-
tion of the GPT-2 XL model and the GPT-Neo 2.7B model,
using the pre-trained weights provided by the Hugging Face
library (Wolf et al., 2020). The multiple passes through the
model results in matrices P and U that are time-varying
but periodic with period corresponding to the depth each
model: 48 layers for the GPT-2 XL and 32 for the GPT-Neo
2.7B. To measure how far the tokens are from each other
we used the function (9) whose evaluation after each layer
is depicted in Figures 7 and 8.

We can observe that in both models the average of the func-
tion E over all the prompts converge asymptotically to 0,
thus implying the tokens converge to a consensus equilib-
rium. We recall that our theoretical results predict this
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0.6

0.8

V
1

0 5 10 15 20 25

t

0

0.1

0.2

0.3

V
2

Figure 6. Evolution of the functions V1 and V2 used in the proof
of Theorem 4.5.
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observation only when feedforward layers are absent, i.e.,
the case depicted in Figure 7. However, as can be seen
in Figure 8, even when the feedfoward layers are present,
convergence still occurs. The rate of convergence appears
to be dependent on the weights of the feedfoward layers as
their presence increases the convergence rate in the GPT-2
model, but decreases it in the GPT-Neo model. In both
cases, these findings suggest that feedfoward layers may not
be sufficient to preclude consensus.

Although the previous experimental results suggest that con-
sensus occurs even in the presence of feedfoward layers, it
does not address the question of consensus being a structural
property of the the transformer architecture or of the choice
of weight matrices. To address this question we repeated
the experiments by using random matrices in GPT-2 and
GPT-Neo. Since this results in time-varying matrices, we
further repeated the experiments by randomly selecting new
weight matrices before each model pass. Moreover, we
conducted these experiments with the full model and also

Layer
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E
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GPT-2
GPT-Neo

Figure 7. Comparison between the GPT-2 XL and GPT-Neo 2.7B
architectures with feedforward layers removed; evaluation of the
average of (9) across all the random prompts.
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1.5

GPT-2
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Figure 8. Comparison between the GPT-2 XL and GPT-Neo 2.7B
architectures with the full model; evaluation of the average of (9)
across all the random prompts.

by removing the feedforward layers (including the associ-
ated normalization function and skip connection) to better
understand the impact of these on token consensus. The
results are reported in Figures 9 and 10, where we can see
that convergence towards consensus still occurs across all
experiments. Furthermore, Figures 9 and 10 suggest that
the feedfoward layer may decrease the convergence rate.

Our experiments suggest that the convergence phenomenon
is a product of the structure of the transformers and not
of the choice of weights. We observe convergence with
trained, random periodic, and random aperiodic matrices P
and U . In terms of rate of convergence, the choice of weight
matrices appears to have an impact with faster convergence
being observed when pretrained matrices were used.
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Figure 9. Comparison between the GPT-2 XL and GPT-Neo 2.7B
architectures with fixed and randomly chosen weight matrices.
Each model was evaluated with and without feedfoward layers
using the average of (9) across all the random prompts.
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Figure 10. Comparison between the GPT-2 XL and GPT-Neo 2.7B
architectures with random weight matrices chosen before each
model pass. Each model was evaluated with and without feed-
foward layers using the average of (9) across all the random
prompts.
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