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ABSTRACT

High-dimensional linear mappings, or linear layers, dominate both the
parameter count and the computational cost of most modern deep-learning
models. We introduce lookup multivariate Kolmogorov-Arnold Networks
(ImKANSs), which deliver a substantially better trade-off between capacity
and inference cost. Our construction expresses a general high-dimensional
mapping through trainable low-dimensional multivariate functions. These
functions can carry dozens or hundreds of trainable parameters each, and
yet it takes only a few multiplications to compute them because they are
implemented as spline lookup tables. Empirically, InKANs reduce inference
FLOPs by up to 6.0x while matching the flexibility of MLPs in general high-
dimensional function approximation. In another feedforward fully connected
benchmark, on the tabular-like dataset of randomly displaced methane
configurations, ImnKANs enable more than 10x higher H100 throughput at
equal accuracy. Within the framework of Convolutional Neural Networks,
ImKAN-based CNNs cut inference FLOPs at matched accuracy by 1.6-2.1x
and by 1.7x on the CIFAR-10 and ImageNet-1k datasets, respectively.
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Figure 1: Performance summary. See Sec. 4 for details.

1 INTRODUCTION

With a sufficient amount of training data, the capabilities of deep-learning models systemati-
cally improve with the number of trainable parameters (Zhai et al., 2022; Kaplan et al., 2020).
However, deploying very large models is challenging because of the associated inference cost.

In most models, high-dimensional linear mappings dominate both the parameter count and
the computational cost. Standard multilayer perceptrons (MLPs) alternate linear layers
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with activations, and sometimes with a few other layers (Ioffe & Szegedy, 2015; Hinton
et al., 2012). If N is the width of a layer, the parameter count and inference cost of these
linear mappings scale as O(N?), whereas most other layers scale only as O(N). The same
observation holds for many other architectures. Transformers (Vaswani et al., 2017), when
applied to very long sequences, are one of the few notable exceptions because the cost of
attention grows quadratically with the number of tokens. Even in that case, however, the
cost of the linear mappings remains substantial, not to mention the potential use of fast
approximations of attention (Choromanski et al., 2020).

The computational cost of a linear layer is proportional to the number of its parameters: at
inference, each parameter induces one multiplication per input, where the input is a whole
input object in the case of MLPs, a token in the case of Recurrent Neural Networks (Elman,
1990) and Transformers (Vaswani et al., 2017), a node or an edge in the case of Graph
Neural Networks (Zhou et al., 2020), a patch of an image in the case of Convolutional Neural
Networks (LeCun et al., 2002; Krizhevsky et al., 2012), and similarly for other architectures.

Spline lookup tables make it possible to do better than that. Consider, for example, a
one-dimensional piecewise-linear function f(x) on the interval from 0 to 1 with a uniform
grid. On each interval, it is given as f(x) = ali] * = 4 b[i], where 7 is the interval index.
With G intervals, the function has 2G parameters, out of which G + 1 are independent once
continuity at the internal grid points is enforced. Yet the computational cost of evaluating
such a function at any given point is O(1), not depending on G. The computational pipeline
involves first determining the current grid interval as i = | * G, and then evaluating only
one linear function as f(x) = a[i] * x + b[d].

Kolmogorov-Arnold Networks (KANs) (Liu et al., 2024), designed as a general alternative to
MLPs, are natural hosts for spline lookup tables as they construct a general high-dimensional
mapping through a collection of trainable univariate functions.

The main contributions of this work are the following:

o We propose lookup multivariate Kolmogorov-Arnold Networks (ImKANs) that are
built upon multivariate low-dimensional functions instead of the univariate ones
that standard KANs employ. We empirically compare the 2D version of ImnKANs
with 1D FastKAN (Li, 2024b) and find that ImKANs are more accurate and are
easier to train.

e We implement the inner functions as spline lookup tables. Ignoring a non-asymptotic
O(N) term, the required inference FLOPs are only 2x those of a linear layer of the
same shape, while the number of trainable parameters can be dozens or hundreds of
times higher.

e We provide custom CUDA kernels that enable efficient inference of ImKANs on
modern GPUs. When using the 8 x 8 tile size, on the H100 GPU, our implementation
enables up to ~ 88x faster inference compared to a linear layer with the same number
of trainable parameters.

e We empirically compare InKANs and MLPs across diverse datasets, scales, and
backbones, using varied experimental setups to obtain a comprehensive view of
performance. Across these conditions, InKANs are consistently Pareto-optimal with
respect to inference FLOPs. The performance of InKANs is summarized in Fig. 1.

2 RELATED WORK

Kolmogorov-Arnold Representation Theorem (KART) (Kolmogorov; Arnold, 2009) states
that a continuous function f : [0,1]" — R can be represented as:

2n+1 n
fl@r,.. zn) = Z (I)q< ¢q,p(xp)> ) (1)

where ¢4, : [0,1] = R, and @, : R — R are continuous univariate functions. There has been
a long debate (Girosi & Poggio, 1989; Schmidt-Hieber, 2021) on the usefulness of this theorem
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for machine learning because of the general non-smoothness and wild behavior of the inner
functions. Nevertheless, it inspired the construction of Kolmogorov-Arnold Networks (Hecht-
Nielsen, 1987; Igelnik & Parikh, 2003), whose layers are defined as y, = Zp fap(zp), where

fqp are trainable functions. Liu et al. (2024) introduced the modern version, which suggests
stacking an arbitrarily large number of KAN layers and using an arbitrarily large number of
neurons, similarly to MLPs. While Liu et al. (2024) illustrated strong performance of KANs,
many test cases involve ground-truth functions with known, reasonably smooth KART or
KART-like(matching KANs with more than one hidden layer and a larger number of neurons)
closed-form representations. Subsequent works such as Yang & Wang (2024), Kundu et al.
(2024), and Kashefi (2025) further reinforced the efficiency of KANs. On the contrary, Yu
et al. (2024) found that KANs can fall short compared to MLPs for some tasks.

The idea of lookup-based O(1) computations of KAN univariate functions is sometimes
briefly mentioned but rarely implemented in practice (Somvanshi et al., 2024; Ji et al., 2024),
likely because of challenges associated with an efficient GPU implementation. Surprisingly,
most of the research goes in the somewhat opposite direction. B-splines, piecewise polynomial
basis functions used in the original KAN paper, have compact support and thus are well
suited for O(1) inference. Subsequent works often replace them with dense basis functions,
such as Chebyshev polynomials (SS et al., 2024) or Fourier harmonics (Xu et al., 2024). The
case of FastKAN (Li, 2024b), which replaces sparse B-splines with similar-looking dense
Gaussian radial basis functions exclusively for the sake of optimization, is especially notable.

A few works, such as Moradzadeh et al. (2024) and Huang et al. (2025), implement the
lookup idea. Moradzadeh et al. (2024), however, predict B-spline coefficients using an MLP
for the given grid points, which, thus, are not fully independent of each other. Additionally,
it provides benchmarks against a naive implementation of KANs and not against MLPs,
which are still state-of-the-art for general tasks. Huang et al. (2025) achieve remarkable
efficiency on a small-scale problem from the original KAN paper by algorithm-hardware
co-design using the TSMC 22 nm RRAM-ACIM chip.

In this work, we provide CUDA kernels for efficient inference and benchmark the introduced
models against MLPs on general tasks where KART representations are not known in closed
form and where there is no reason to believe that they are smoother than in other cases.

3 LOOKUP MULTIVARIATE KOLMOGOROV-ARNOLD NETWORKS

At first glance, given that the inference cost of spline lookup tables does not depend on
the number of parameters, very expressive univariate functions with tens of thousands of
trainable parameters each are an ideal match for the Kolmogorov-Arnold Representation
Theorem. However, KANs rarely use more than a few dozen parameters per function in
practice. The difference between a univariate function parametrized by tens of thousands of
parameters and just a few dozen is the capability of the former to parametrize a very high
frequency band. On the one hand, this expressivity is necessary for closely approximating the
'wild behavior’ of KART inner functions, but on the other, it raises concerns about training
stability and generalization. On the contrary, multivariate functions can "accommodate" a
significantly larger number of parameters without spilling expressive power to exceedingly
high frequency bands. For instance, a four-dimensional function with just 10 grid points
along each dimension has roughly the same number of trainable parameters as a univariate
one with ~ 10 grid intervals.

A layer of a multivariate version of Kolmogorov-Arnold Networks with dimension d defines
the output as:
Nin/d—1

Yqg = Z fap(Tdp, Tapt1--s Tap+d—1), (2)
p=0

where f,, are trainable d-dimensional functions and Ny, is the input dimensionality (assumed
to be divisible by d). We implement CUDA kernels for the two-dimensional case. The
motivation behind this choice is detailed in Appendix D. An example of such a layer is
depicted in Fig. 2. Similar to KANs, these layers do not need additional activations in
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between and can be stacked arbitrarily, substituting linear mapping-activation pairs in
MLP-based backbones.

In Sec. 4.4, we empirically compare the two-dimensional version of ImKANs with one-
dimensional FastKAN. The outcomes of these numerical experiments reinforce the intuitive
considerations given here and suggest that multidimensional building blocks can indeed be
more effective hosts for a large number of parameters in a practical setup.

Additionally, it is worth noting that, if necessary, multivariate functions f,, can always
fall back to sums of univariate ones, which would make the whole InKAN fall back to
standard KAN. Thus, the Kolmogorov-Arnold Representation Theorem is applicable also to
our construction.

Yo

Y1 pr—

Y2

Figure 2: Schematic representation of a 2D ImKAN layer with 4 inputs and 3 outputs. This

layer defines outputs as: yo = foo(wo, 1) + fo1(w2, x3), y1 = fio(wo, 1) + f11(w2,23), and
y2 = fao(xo,21) + fo1(x2,z3). The functions f..(-,-) are to be trained during fitting.

3.1 FUNCTION PARAMETRIZATION

During training, activations of neurons can evolve arbitrarily, making the use of grids defined
on bounded regions challenging. Therefore, we designed an unbounded grid which is still
regular enough to allow O(1) computations.

Sigma grid The one-dimensional sigma grid, which is illustrated in the left panel of Fig. 3,
is generated by any sigmoid-like function o(x). If the desired number of grid intervals is
G, then the grid points are given as the intersection of G — 1 equispaced percentile levels
with o(z). Such a construction spans the entire real axis. The grid has the finest resolution
near the origin, and becomes progressively coarser as |z| increases. For a given z, the
index of the corresponding grid interval can be computed as i = |o(x)G], which makes
such a grid suitable for O(1) computations. For multivariate functions, we apply the same
one-dimensional grid independently to each coordinate.

To balance occupancy across intervals, we precede each InKAN layer with batch normalization
without affine parameters to keep the activations in the controlled range. The choice of the
o(z) function was primarily motivated by computational efficiency. The exact definition and
other details are available in Appendix B.
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Figure 3: (Left) Construction of the sigma grid; (Right) Second-order B-spline.

Compact basis functions We use B-splines of second order built on top of the described
grid as basis functions to parametrize the InKAN inner functions. A one-dimensional
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second-order B-spline centered around grid point i is given in the right panel of Fig. 3.
It takes non-zero values on only two adjacent grid intervals around the center grid point.
If there are G intervals, then we use G + 1 basis functions: G — 1 such B-splines cen-
tered around each inner grid point, and two linear functions on the leftmost and right-
most infinite intervals. Appendix B provides the definition of B-splines on edge intervals
we use in this work, along with other details. A two-dimensional B-spline is defined
as By i,(z1,22) = By, (z1) Biy(z2). All the functions defining a 2D ImKAN layer are
parametrized as f(z1,x2) = Zihiz Diviy Biyio (T1,22), where p;,;, are trainable coefficients.

With such a construction, there are (G + 1)? independent parameters for each 2D function,
parametrized functions are bilinear on each 2D grid interval, all the functions are continuous
for arbitrary p;,i,, and all but the edge coefficients p;,;, have a simple interpretation of the
value of the function on the corresponding grid point.

For any given point (z1, x3), there are only four non-zero B-splines; thus, one needs to evaluate
only four terms to compute f(x1,z2), which forms the basis of O(1) computations. The full
algorithm to compute a standalone two-dimensional function is given in Appendix B.1.

3.2 COMPUTATIONAL COST

Overall, the functional form of ImKANs involves computations of many low-dimensional
functions with exactly the same arguments (those in the same column, see Fig. 2). When
doing so, it is possible to reuse many of the intermediate values, such as indices of the
grid intervals and B-splines. These intermediate values can be computed once for each
pair of inputs, and then utilized to compute the value of a given function with just four
multiply-add operations for the 2D case. Given that the total number of 2D functions in
an ImKAN layer is [Ny, /2] Nout, the total number of required multiply-add operations for
the dominant, O(N?), part is 4[Nin/2]Nout = 2Nin Nout, just 2x that of a linear layer of the
same shape. Algorithm 3, given in Appendix C, pinpoints this estimation. Following the
common practice (He et al., 2016), we estimate FLOPs as the number of fused multiply-adds
of the main asymptotic term for both MLPs and lmKANs.

3.3 CUDA KERNELS

We implement CUDA kernels for efficient inference of 2D ImKANs on modern GPUs. Our
kernels use the classic shared memory tiling used in GEMM (Volkov & Demmel, 2008). In
the following, all benchmarks run in full-precision float32.

With a 16 x 16 tile, our implementation is ~ 8x slower than a dense linear layer with the same
shape on an H100-SXM, irrespective of the grid resolution. The slowdown exceeds the ~ 2x
FLOPs-based estimate from Sec. 3.2, primarily because of the less coherent memory-access
pattern of algorithm 3. Additionally, dense matrix multiplication has been the cornerstone
of many computational pipelines and, thus, has enjoyed decades of thorough optimization.

Finite shared memory capacity limits the number of grid intervals to G < 20 on H100. At this
limit, an ImKAN layer holds (20 + 1)?/2 &~ 220x more parameters than the linear baseline
with the same shape. It means that an InKAN layer delivers [(20 +1)2/2]/8 ~ 27.5x
faster inference compared to a linear layer with the same number of trainable parameters.

Reducing the tile to 8 x 8 raises the slowdown to ~ 9.5x but lets us increase G to 40, yielding
~ 88.5x better per-parameter efficiency.

4 RESULTS

We have demonstrated so far that InKANs can have significantly better inference cost per
trainable parameter compared to linear layers in terms of both FLOPs and wall-clock time
on modern GPUs. The question is, however, whether this nominal efficiency translates to
real-life performance. Do ImKANs indeed represent a better tradeoff between performance
and inference cost?
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In this section, we empirically compare the efficiency of InKANs and MLPs across the
following settings: (i) approximating general high-dimensional functions, (ii) on a tabular-like
dataset of randomly displaced methane configurations, and (iii) within CNN frameworks
evaluated on CIFAR-10 and ImageNet. Across all experiments, we use identical macro-
architectural backbones for InKANs and MLPs. Overall, to obtain a comprehensive picture
of the performance, we prioritized the diversity of the setups over a very large scale or
architectural complexity of a particular backbone. We found that InKANs are consistently
inference FLOPs — accuracy Pareto-optimal, with the largest gains on the methane dataset.
Finally, we compare InKANs with FastKANs.

4.1 GENERAL FUNCTION APPROXIMATION

Our first experiment is set to measure crude flexibility of ImnKANs in approximating general
high-dimensional functions, which we model by large teacher MLPs with fixed random
weights. We define a ground-truth R32 — R! function as an MLP with 32 input neurons, 10
hidden layers, each with 1024 neurons, and hyperbolic tangent activations.

We fit both MLP and ImKAN students to approximate this ground-truth function and
compare their performance. We use the same fully connected backbone for both types
of models with two hidden layers and varying hidden dimensions, see more details in
Appendix H.2.

We fit all the models with the Adam optimizer (Kingma & Ba, 2014). For each step of
stochastic gradient descent, we generate random inputs from the normal distribution, and
compute the corresponding targets by evaluating the ground-truth teacher MLP. In such
an infinite data regime, the final Mean-Squared Error (MSE) depends on how flexible the
models are, and monotonically decreases with the hidden dimension for both MLPs and
ImKANS.

The increase of the hidden dimension inevitably entails a higher computational cost at
inference, and the question is which family of models represents a better tradeoff between
accuracy and computational efficiency. Our findings are summarized in Fig. 4. The left
column illustrates the final MSE of converged models depending on the hidden dimension,
the middle column represents the Pareto front between the final MSE and FLOPs required at
inference, and the last column contains the Pareto front between the final MSE and inference
H100 wall-clock time.

MSE vs Hidden dimension MSE vs Inference FLOPs MSE vs Inverse H100 SXM throughput
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Figure 4: ImKAN vs MLP for general function approximation. The "MLP 1/2" line
corresponds to the outcome of the fitting procedure with only half of the training steps
compared to the "MLP" one.

In order to justify the claims that InKANs are indeed more efficient, we converge baseline
MLP-based models very tightly here, and in all similar experiments in this manuscript. For
the MLP baseline, we have two lines - one with a full training budget and one with only half
of it. The close similarity between them demonstrates very tight convergence.

Fig. 4 clearly indicates that InKANs are significantly more FLOPs efficient at the same
accuracy level, up to 6 X, for the largest dimensions. Furthermore, InKANs also appeared
to be H100 wall-clock time optimal for all the scales, with the speedup factor of about 1.8x
for the largest hidden dimension.
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Appendix H.2 contains analogous experiment for an R3? — R3? function, ablation studies,
and other details.

4.2 RANDOMLY DISPLACED METHANE CONFIGURATIONS

Having demonstrated that InKANs are Pareto-optimal when ap-
proximating a general function, we proceed to benchmark their
efficiency on real data. We chose the tabular-like dataset of ran-
domly displaced methane configurations for the comparison, as it
is particularly suitable for this purpose (see Appendix H.3). The
dataset consists of multiple off-equilibrium methane configurations,
as illustrated in Fig. 5. The target is given by the corresponding
quantum-mechanical energy (Turney et al., 2012; Kohn & Sham,
1965). Hydrogen atoms are placed around the carbon atom ran-
domly, varying from instance to instance, which leads to different
target energies.

We encode the geometry of each methane molecule by the Cartesian
components of displacement vectors from the carbon atom to all

Figure 5: A methane

. . - configuration
the hydrogen atoms. Therefore, the input dimension of both the &
ImKAN and the MLP networks is 12. Otherwise, we use the same
backbone with two hidden layers as in the previous experiment.
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Figure 6: ImKAN vs MLP on the dataset of randomly displaced methane configurations.
On the vertical axis, we plot the relative Root Mean Squared Error, which is given as test
RMSE normalized by the standard deviation of the target in the dataset. The "MLP 1/2"
and "MLP 1/4" curves correspond to outcomes of fitting procedures with half and a quarter
of the training budget, respectively.

Our findings are given in Fig. 6. Similar to the previous experiment, InKANs were found to
be Pareto-optimal in terms of both formal FLOPs and H100 wall-clock time. Moreover, the
relative speedup is higher for this dataset: up to 78.0x reduced FLOPs, and 12.9x faster
H100 inference at matched accuracy.

In Appendix H.3 we provide ablation studies, analogous experiments using representations
other than the Cartesian components of the displacement vectors, and further details.

4.3 LMKAN-BASED CONVOLUTIONAL NEURAL NETWORKS

In the introduction, we briefly outlined that high-dimensional linear mappings are the
primary building blocks in most architectures, not only in feedforward fully connected neural
networks. Convolutional Neural Networks (CNNs) are no exception.

A standard two-dimensional convolution with kernel size k X k is parametrized by linear
mapping R¥’Cin — RCeut where Cj, and Cly; are numbers of input and output channels,
respectively. Since Kolmogorov-Arnold layers can be used as a general substitute for high-
dimensional linear mappings, one can construct a KAN-based convolutional neural network
well suited for image processing, as was done, e.g., in Bodner et al. (2024). In this section, we
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compare the performance of InKAN- and MLP-based CNNs on the CIFAR-10 (Krizhevsky
et al., 2009) and ImageNet (Deng et al., 2009) datasets.

For CIFAR-10, our backbone architecture consists of five 2 x 2 convolutions, each with stride
2, and two fully connected layers at the end. We use identical backbones for InKAN and
MLP CNNs, and exactly the same pool of augmentations, see more details in Appendix H.4.
Similarly to the previous experiments, we vary the width of the neural networks, which is
the number of filters in the case of convolutions, and the hidden dimension in the case of
fully connected layers.

For ImageNet, we downsample the images to a resolution of 81 x 81 pixels. Our backbone
consists of four convolutional layers with the 3 x 3 kernel size and stride 3 and two fully
connected layers. In contrast to the CIFAR-10 experiment, we progressively increase the
number of filters as the spatial resolution of the image decreases through the neural network.
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Figure 7: Comparison of the performance of standard MLP-based CNNs and ImKAN-based
CNNs on the CIFAR-10 and ImageNet datasets. The "MLP CNN 1/2" line corresponds to

the outcome of the fitting procedure with only half of the training steps compared to the
"MLP CNN" one.

Our findings are illustrated in Fig. 7. Similarly to previous experiments, ImKAN-based
CNNs were found to be more FLOPs efficient at the same accuracy level. The observed
reduction in FLOPs is 1.6-2.1x for CIFAR-10, and 1.7x for ImageNet. We have not yet
implemented dedicated CUDA kernels for efficient inference of ImKAN-based convolutions.
Any type of convolution can be cast to a fully connected layer by the corresponding memory
manipulations, which we employed during fitting.

4.4 COMPARISON WITH FASTKAN

We use the training script! for the CIFAR-10 dataset available in the FastKAN GitHub
repository (Li, 2024a), as the basis for the comparison of InKAN and FastKAN. This
script fits a fully connected FastKAN model with one hidden layer. We provide several
modifications to the pipeline, particularly enabling the same augmentation pipeline we used
in the previous section (Appendix H.5).

Contrary to our previous experiments, we fixed the hidden dimensionality of 256 as in the
original script for both models. Instead, we vary grid resolutions and analyze the accuracy
depending on the number of trainable parameters in each inner function. The result is given
in Fig. 8.

"https://github.com/Ziyaoli/fast-kan/blob/master/examples/train_cifar10.py
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Figure 8: Comparison of the InKAN and FastKAN models within the fully connected
framework on the CIFAR-10 dataset for fitting budgets of one and ten thousand epochs.

The first observation is that the performance of FastKAN models degrades for excessively
fine grid resolutions. For the training budget of one thousand epochs, the final model
becomes even less accurate than the MLP baseline. For ten thousand epochs, the effect is
less pronounced, but it still takes place. This degradation is much less severe, if present at
all, for the InKAN models - they are easier to fit even for a very rich parametrization of each
inner function. Another distinct feature of Fig. 8 is that InKANs achieve notably better
accuracy compared to FastKANs, even when the latter have a very rich parametrization of
inner functions.

To sum up, these findings reinforce the intuitive considerations given in Sec. 3 and suggest
that building blocks of multivariate trainable functions are indeed more effective.

5 SUMMARY

High-dimensional linear mappings are the cornerstone of modern deep learning, dominating
both the parameter count and the computational cost in most models. We introduce
lookup multivariate Kolmogorov-Arnold Networks (ImKANs) that offer a substantially better
capacity—inference cost ratio. Across all experiments, InKANs were found to be inference
FLOPs Pareto-optimal. The efficiency gains are task-dependent: for general high-dimensional
function approximation, modelled as a distillation from a large ground truth teacher MLP
with random weights, InKANs achieved up to 6x fewer FLOPs at matched accuracy. On
randomly displaced methane configurations, efficiency improved by up to 78x. Within
convolutional networks, the gains were smaller but still significant: 1.6-2.1x on CIFAR-10
and 1.7x on ImageNet.

Our CUDA kernels compete directly with highly optimized dense matrix multiplications—the
backbone of many numerical pipelines for decades. Even so, the gains were sufficient to
make ImKANs Pareto-optimal in H100 wall-clock time for both the general high-dimensional
function approximation and the methane dataset, achieving the speedup of more than an
order of magnitude in the latter case.



Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

The associated supplementary material contains not only the implementation of ImKANs,
but also training scripts for the experiments presented in this manuscript, along with the
corresponding settings as a collection of YAML files. These assets enable reproducibility of
the numerical experiments presented in this paper.

7 ETHICS STATEMENT

This work adheres to the ethical standards expected at ICLR 2026. To the best of our
knowledge, the proposed method is not expected to have adverse effects.
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A LLM USAGE STATEMENT

We used LLMs for (i) polishing the text of the manuscript; (ii) finding related work and
locating specific details in the corresponding papers; (iii) as a coding assistant during
implementation of our codebase.

B MORE DETAILS ON FUNCTION PARAMETRIZATION

The o(z) function Section 3.1 of the main text describes the construction of the sigma
grid used in the parametrization of all the functions ImKAN consists of. It involves any
sigmoid-like function o(z), and, as was mentioned in the main text, our choice, which is
given in Eq. 3 and is illustrated in Fig. 9, was motivated by computational efficiency.

1.0 A

0.8 1

0.6 1

oa(x)

{0.56“”, x <0, 04

1-0.5e™, x>0 021

0.0 1

Figure 9: The o(z) function defined in
Eq. 3.

This construction is cheap to compute because the computational pipeline consists of a single
exponential call and a few arithmetic operations, as elaborated in algorithm 1.

Algorithm 1 Evaluation of o(x) with a single exponential call

Input: z € R
Output: o(z)
HEARS exp(—|:v|) > compute expensive exponential only once
if £ > 0 then
o(x) +1-0.5t
else
o(x) + 0.5¢
end if
return o(z)
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Edge cases Section 3.1 of the main text introduced sigma grids and the corresponding
basis of second-order B-splines. For a grid with G intervals and G — 1 grid points, there
are G + 1 basis functions, out of which G — 1 are given by second-order B-splines centered
around all grid points, as illustrated in the right panel of Fig. 3 of the main text. The other
two are given as linear functions on the leftmost and rightmost infinite intervals.

The second-order B-splines given in the right panel of Fig. 3 are defined to linearly increase
from 0 to 1 from the left grid point to the central one and then linearly decrease from 1 to 0
from the central grid point to the right grid point. This construction is well-defined for all
the inner grid points but requires additional definitions for the B-splines centered around
the leftmost and rightmost grid points, as these do not have left and right neighboring grid
points, respectively.

In order to define these edge B-splines, we introduce ’ghost’ left and right grid points. The
position of the left ghost point is given as G[0] — (G[1] — G[0]), where G[0] and G[1] are the
positions of leftmost and second leftmost grid points respectively. The right ghost point is
defined similarly. With such a notation of additional grid points, we can define edge B-splines
similarly to all the others.

Finally, there are two linear basis functions on the leftmost and rightmost infinite intervals.
We define them to be 0—s in the leftmost and rightmost grid points, linearly increasing to
1-s at the left and right ghost points and continuing to left and right infinities with the same
slope, respectively.

Direct o-grid vs. uniform grid after pre-normalization by o(z) A natural question
is how the proposed sigma grid construction differs from a simpler alternative that first maps
the input via 2’ = o(z) € (0,1) and then fits a piecewise-linear function g(x’) on a uniform
grid over [0, 1].

In general, the resulting functions in the original z-domain, f(z) and f'(z) = g(o(x)),
are not identical. Most importantly, f’(z) is no longer piecewise linear within each z-grid
interval. The most notable discrepancy appears in the tails: f’(x) has horizontal (constant)
asymptotes when x — 400, whereas f(z)—Dby construction on the o-grid—exhibits linear
asymptotes.

Horizontal asymptotes entail vanishing gradients in the tails, a behavior widely implicated
in training difficulties and one reason ReLU activations often outperform tanh (Glorot et al.,
2011). For these reasons, we adopt the direct o-grid parametrization in practice.

B.1 STANDALONE TWO-DIMENSIONAL FUNCTION COMPUTATION

Algorithm 2 provides a recipe to compute a standalone two-dimensional function given our
parametrization scheme. See discussion in Sec. 3.1 of the main text.

C COMPUTATIONAL COST

Algorithm 3 represents a computational pipeline to compute the forward pass of an entire
2D ImKAN layer.

As the algorithm shows, the preamble part contributes only to an asymptotically insignificant
O(N) term, where N is the input (Vi) or output (Noyut) dimension. Given that the total
number of 2D functions in an ImnKAN layer is [Niy /2] Nout, the total number of required
multiply-add operations for the dominant, O(N?), part is 4[Nin /2] Nouwt = 2Nin Nous, just 2x
that of a linear layer of the same shape.

D PERSPECTIVE ON DIMENSIONS AND SPLINE ORDERS

All the constructions introduced so far straightforwardly generalize to a higher-dimensional
case. Evaluation of a single d— dimensional function parametrized by d-dimensional second-
order B-splines would take 2¢ multiply-adds, which stem from the summation of B-spline
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Algorithm 2 O(1) evaluation of a standalone 2D ImKAN function. Red lines indicate
computations that can be reused when computing many 2D functions for the same arguments,
while green lines indicate computations that have to be repeated for each 2D function.

Input: scalars z1,z2 € R; grid points G; parameters P € RIG+1,G+]]
P[i1, i2] stores the function value on the (i1, i2)-th grid point
Output: output y € R

1: function Eval2D(x1, z2) > Handling of edge-interval cases described above is omitted
for brevity.

2 iy ¢+ |o(x1) G|
2 lotaz) 9] Gli1 +1] Gliz +1]
4: B, iy (21, 22) < Glir + 1] —gg[[i]ﬂ g[ing[r 1] - ]g[lﬂ
| | o 1 — Gliy i9 + 1| — 9
51 Bijgiiy(21,2) gg[l +1] ]f Gli1] Glia + 1]g*[ g}[iﬂ
i1+ 1] — 2 x2 — Gliz
o Bt GGl gu T o
7: Bi,t1i41(21,22) < Gli1 + 1] — G[i1] Gliz + 1] — Gia]
8: Y — 0

9: Y += Bil’iQ(w17I2) P[LhLQ}

10: Yy += Bi11iy(z1,72) Plir+1, d2]

11: Y += B, iy41(21, 22) Pliy, ia+1]

12: Y += Biit1i541(21, 22) Pli1 41, io+1]
13: return y

14: end function

contributions residing on all the corners of the corresponding d-dimensional hypercube.
Given that the number of such d-dimensional functions would be d times smaller compared
to the number of weights of a linear layer of the same shape, the inference FLOPs of the
d-dimensional ImKAN layer would be 2?/d of that of the linear layer with the same shape.

These slowdown factors are identical, 2x, for one- and two-dimensional ImKANs, and
start to grow for higher dimensions. Thus, we chose the two-dimensional version for the
implementation of CUDA kernels, as this extension of the standard univariate KAN comes
essentially for free.

If B-splines of order k are employed for parametrization instead of the second-order ones
described so far, the inference cost becomes k?/d of that of MLP. For more details, see the
B-spline definition at De Boor & De Boor (1978), and how they are used in KANs (Liu et al.,
2024). Increasing the B-spline order brings a few benefits, but they likely do not justify the
associated increase in the computational cost.

The classical theorem about B-splines (De Boor, 1968) indicates that while the order of B-
splines affects the convergence rate, any spline order is sufficient to approximate any function
arbitrarily close by increasing the resolution of the grid%. Given that the computational cost
of spline look-up tables does not depend on the number of grid points, the grid resolution
can be arbitrarily increased without any computational overhead at inference.

On top of that, increasing the B-spline order introduces additional smoothness of the model.
Functions parametrized by B-splines of order k belong to C*~2, but in general not to
C*~1. The smoothness of second-order B-splines employed in this work matches that of
ReLU (Glorot et al., 2011), one of the most popular and successful activation functions,
which is also continuous, but not continuously differentiable. Thus, it is questionable if the
additional smoothness available through higher orders k is necessary and would justify the
associated computational overhead.

2This is applicable, though, to functions on a bounded domain.
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Algorithm 3 Forward pass of a 2D ImKAN Ilayer.

Input: input vector x € RV parameter tensor P € R[GH’ GH1, Nin/2, N°“°] .

P[i1, i2, input_index, output index] is the value of finpus indes, output_indes at the
11—, io—th grid point.

Output: output vector y € RNout
1: y«< 0
2: for input_inder =0 to Nin/2 —1 do
3: i1, 92, Biyiy (21, 72), Biy 114, (1, 22), Biy ip11(T1, 22), Biy414p41(21, T2)

Preamble (x[2-input_indea], x[2-input_index + 1])
4 for output inder =0 to Nyy — 1 do
5 y{output_index] += By, i,(x1,x2) P[i1, ia, input_index, output_index]
6: y{output_index] += By, 11, (21, 22) P[i1+1, io, input_index, output_index]
7 y]output_index] += By, iy+1(x1,x2) Pi1, io+1, input_indez, output index)
8 y|output_index] += B;, 1iy+1(21,x2) Pli1+]l, iotl, input_index, output_index]
9 end for
10: end for

11: function Preamble(z;,25) > Handling of edge-interval cases is omitted for brevity.
See Appendix B for more details.
Input: z1, xo; precomputed grid points G;
precomputed inverse areas Ainy[i1,i2] = [(G[i1 + 1] — G[i1])(Gliz2 + 1] — G[i2])]
Output: indices i1,i2 and
B-splines B, i, (21, %2), Biy 414, (21, 22), Biy iy+1(21, 22), Biy414541(21, 22)
12: 11— Lo(ml) GJ

-1

13: 19 L 1‘2 J

14: Bi, i, (x1,22) < (Gli1 + 1] —x1) (Glia + 1] — x2) Ainy[i1, 9]

15: B,1+1 in (Il,SCQ) < ( [ ]) (9[712 + 1] - 12) Ainv[ilaiQ]

16: le 12+1($1,$2) < (g[zl + 1] xl) (xQ - [ ]) Ainv[ilviQ]

17: Bijt1iy41(21,72) < (21 — G[i1]) (22 — Gli2]) Ainylit, i2]

18: return iy,is, B;, 4, (¢ 1,962) Bi,y1i,(x1,22), By, ig41(21,22), Biy 414041 (21, 22)

19: end function

E  HESSIAN REGULARIZATION

Direct fitting of splined functions with a fine grid imposes additional challenges related
to generalization. The problem is illustrated in Fig. 10a for the simple case of fitting a
standalone one-dimensional function parametrized by second-order B-splines on a uniform
grid on [0, 1] with G' = 40 intervals, f(z) = >, piBi(x).

Ground truth is an exact parabola, and the training set consists of 5 points, which are
illustrated on the plot. Since the number of grid points is large, the model has enough
flexibility to reproduce the training set exactly, but generalization is quite off. With such a
fine grid, only a few B-splines, marked as bold on the bottom panel of Fig. 10a, take non-zero
values for the training points. Thus, only the coefficients p; associated with these active
B-splines receive non-zero gradient during training, while all the others have no incentive to
evolve from the random values assigned at initialization. Standard L2 regularization is not
much better, as it simply pushes all non-active coefficients p; to zero, which also results in a
non-meaningful approximation after training.

When dealing with a similar problem, Xie et al. (2023) employed off-diagonal regularization
based on a finite-difference scheme for the second derivative. One can put regularization
terms as A, (p; — pit1)? for first derivative, A > (pi—2piga + pis2)? for second, and so on.
Such regularization schemes result in meaningful approximations after training, as illustrated
in Fig. 10b.

We implemented CUDA kernels for 2D ImKANs, which express general high-dimensional
mapping in terms of building blocks of two-dimensional functions. For 2D functions, we
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Problem Solution
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Figure 10: Generalization pitfall.

use off-diagonal regularization based on the squared Frobenius norm of the Hessian, a
rotationally invariant measure of curvature in any direction, which is not to be confused
with the Laplacian. Furthermore, our finite-difference schemes take into account that the
grids, introduced in Sec. 3.1, are not uniform. The exact formulas are given below.

The Hessian of a function is zero if and only if the function is linear. Therefore, the use of
a very strong Hessian-based regularization leads to linearization of the trained functions,
enforcing them to converge to f(x1,22) = axy + bxs + ¢. This makes the whole InKAN
equivalent to an MLP of the same shape, modulo training dynamics. In other words, the
Hessian regularization coefficient A can be used to smoothly adjust the InKAN behavior
between fully unconstrained InKAN and MLP extremes. This observation that ImKANs
with heavy Hessian regularization match non-regularized MLPs suggests that one should
use a combination of the proposed regularization scheme with standard ones, such as L2 or
dropout (Srivastava et al., 2014), for the best results.

E.1 DETAILED FORMULATION OF THE HESSIAN REGULARIZATION

We use the following finite-differences approximation for the second derivative with respect
to xy:

ﬁ N 2(he f(z1 + hy, 22) — (he + hy) f (21, 22) + by f(21 = hey 22)) ()
81’% - hé hr (hé + hr) 7

(:El 712)

where h; is the spacing between left and central grid points, while h, is the spacing between
central and right grid points. The corresponding expression in terms of the coefficients p; ;
is given as:

2<hipi+1,j — (hi+hip1)piy + h”lpi_l’j)
Doy oriinj =
x1,T1;3%,] hi hi+1 (hz + h’i+1)

For the second derivative with respect to x5 we use an analogous expression:

Q(hb f(w1, w2+ hy) — (hy + ho) f(21, 2) + hy 21, 72 — hb))
hb hu (hb+hu) ’

o0 f

2
Oxs

(6)

~

(z1,22)
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where h, and h; are upper and bottom spacings, respectively.

Q(hjpi,j-H = (hj +hjt1)pij + hj+1p¢,j—1)
hjhjia (hj +hji1)

Dy, wpiij =

For the mixed derivative our finite-differences scheme is the following:
0 f

8],‘1 8332 (z1,22)
(8)
f(lj + hy, o + hp) — f(a:l + hyy 20 — hb) — f(ml — hy, T + hp) + f(a:l — hy, zo — hb)

(hr + hi) (hp + hs)

_Pit1j41 — Pit1,j-1 ~ Pi-1,+1 T Pi-1,5-1 )
T1,T2i1,] (hz + hi+1) (h] + hj+1)

D
The final regularization term is the following:

Hi’j = Dghwl;iJ + 2Dih$2§l}j + D9202,12§i,j' (10)
In order to compute the total regularization term for the whole model, we 1) average H; ;
across all the grid points and 2) sum these values across all the 2D functions within all the
ImKAN layers in the model.

' CUDA KERNELS

The performance of our CUDA kernels with 16x16 tile size in the limit of large dimensions
is summarized in Fig. 11. All the InKAN curves are computed with the largest number of
grid intervals G = 20 available for the 16x16 tile size. We compare the inference efficiency of
ImKAN and linear layers. On the left panel, we normalize time by the shape of the layers.
Fig. 11 illustrates a clear convergence of these normalized times to the same value for all the
dimensions. In the limit of large batch sizes, the forward pass of an ImnKAN layer is ~8x
slower compared to a linear layer with the same shape. At the same time, an InKAN layer
contains a significantly larger number of parameters than a linear layer of the same shape.
Thus, inference time per parameter is significantly better for InKAN layers, about 27 times,
as illustrated on the right panel of Fig. 11.

—o— Nin = Nout = 256 _@— N;, = Noy; = 2048
—— Nin = Ngye = 512 —g— IMKAN
—e— Nip = Noye = 1024 --@-- Linear

L3 —o— Nin = Nout = 256 _@— N, = Noue = 2048
§ —@— Nip=Noye =512 —g— IMKAN

-
5}
i

10713 4 o— Nin = Noye = 1024 --@-- Linear

Nin * Noye), seconds

3 10712 4

10-14 4

10713 f:oggeoe-io:

time / (batch_size *
[}

time / (batch_size * #parameters), seconds

ohn 213 515 By 1o B 513 Sls By 1o
Batch size Batch size

Figure 11: The performance of our CUDA kernels on the H100 SXM GPU in comparison
with the linear layer in the limit of large dimensions. Left panel - time normalized by shape.
Right panel - time normalized by the number of parameters.

Fig. 12 is an analogous illustration but for small dimensions - 16 and 32. Our CUDA kernels
are better adjusted for such small dimensions, and thus, relative performance compared to
linear layers is even higher in this case.
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Figure 12: The performance of our CUDA kernels on the H100 SXM GPU in comparison
with the linear layer for small dimensions. Left panel - time normalized by shape. Right
panel - time normalized by the number of parameters.

Finally, Fig. 13 illustrates the inference efficiency depending on the number of grid intervals
G, which control the number of parameters. The time indeed does not depend on G in the
large batch size limit.
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Figure 13: Inference efficiency of an ImKAN layer depending on the number of grid intervals

G.

G PRECONDITIONING AND FITTING SCHEME

The first thing we attempted upon implementing the CUDA kernels was to fit a model with
the highest grid resolution, G = 40, supported for the 8 x 8 tile on the H100 GPU. In this
setup, each 2D function had as many as 412 = 1681 trainable parameters. We found that
the training was unstable, so we designed a preconditioning and multi-stage fitting pipeline
to stabilize it. We employed this pipeline consistently for all our experiments.

The subsequent evidence revealed that InKANs (similarly to KANs, as Sec. 4.4 illustrates)
are progressively harder to fit as grid resolution increases. In other words, our very first
experiment was the most challenging one. At more moderate grid resolutions, preconditioning
measures can likely be simplified, if not omitted altogether. Specifically, we think that a fitting
scheme omitting additional preconditioning terms, but preserving the Hessian regularization
decay phase, which is described in the following, could be effective. With that, below is the
description of the current pipeline.

G.1 PRECONDITIONING

We precondition ImKAN layers by adding linear terms into the overall functional form. We
use one of the following:
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y = v ImKAN(z) + ReLU(Linear(z)) y = v ImKAN(z) + Linear(ReLU(z))
(11a) (11b)

where the InKAN weight, -, is first set to 0 and then is gradually increased in our multistaged
fitting procedure described later. In the case of ReLU-last preconditioning of Eq. 11a, we
insert ReLLU into all the layers except the last one; for ReLU-first preconditioning of Eq. 11b,
we insert ReLLU into all the layers except the first one. Therefore, at the beginning, when
the InKAN weight is zero, the model is equivalent to a pure MLP-based one for both types
of preconditioning.

A merit of ReLLU-first preconditioning is that during inference the whole Eq. 11b can be
absorbed into a single InKAN layer whenever the number of grid intervals G is even, that is,
when the origin is one of the grid points, see more details in Appendix H.1. Thus, this type
of preconditioning does not increase inference cost in any way. This is an advantage over
the original KAN preconditioning scheme (Liu et al., 2024), which requires the additional
computation of the computationally expensive transcendental function SiLU for each edge at
inference.

Because of the possibility of such an absorption, the total inference FLOPs of a ReL.U-first
preconditioned ImKAN layer are 2x those of a linear layer of the same shape, while for the
ReLU-last preconditioning, the slowdown factor is 3%, taking into account the linear branch.

G.2 FITTING PROCEDURE

Our fitting scheme consists of several phases:

Phase I - pure MLP: ~ is set to 0, so the whole architecture is operating in pure MLP
mode. This part is typically very short.

Phase II - turning on ImKAN: + is linearly (over time) increased from 0 to 0.3. After
that, there is some part with the constant v = 0.3. At this phase, we use very strong (=
with very high coefficient \) Hessian regularization introduced in Appendix E. For all the
subsequent phases, InNKAN weight - is fixed at 0.3. The pipeline is also stable if increasing
v to 1.0, but in a few, though non-systematic, experiments, we found that using 0.3 value
leads to slightly better final accuracy.

Phase III - Hessian regularization decay: At this phase, we gradually decay the
strength of the Hessian regularization A from the initial very high value to the target value
if this regularization is intended to be utilized in this fitting procedure and to nearly zero
otherwise.

Phase IV - Main ImKAN fitting part: In this final phase, we keep Hessian regularization
constant at the value reached in the previous phase. The model is fit with the given learning
rate schedule. In the experiments in this work, we use a constant learning rate for the most
part of this phase, and step or exponential learning rate decay at the end.

An example of the described fitting procedure for one of the training runs we did for numerical
experiments described in Sec. 4.1 of the main text and in the Appendix H.2 is given in
Fig. 14.

G.3 COMPARISON OF THE PRECONDITIONING SCHEMES

We fitted ImKAN models with both types of preconditioning for the CIFAR-10 dataset and
for general function approximation. The results are given in Fig. 15 and Fig. 16. Overall,
the ReLU-last type of preconditioning appeared to lead to slightly more accurate models,
but this small gain in accuracy does not justify additional computational cost.

When designing some of our experiments we did not know this yet. Therefore, some of them
use the ReLU-last type of preconditioning.

We use the ReLLU-last type of preconditioning for Figures 19, 20, 21, and 22. We use the
ReLU-first type of preconditioning for Figures 4, 7, 8, 24, and 25.
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Figure 14: The multi-stage fitting procedure we use. Total loss indicates the full loss,
including the Hessian regularization term. Pure loss is only the MSE part. For clarity, we
plot exponential moving averages of losses. Note that the horizontal scale is logarithmic. If
it is linear, the first couple of phases are hard to discern as they are very short. The fourth
phase takes most of the training budget. This training run corresponds to the unregularized
ImKAN, where Hessian regularization is turned on only at the beginning of the fitting to
ens%f)e stability. At the end of phase III, it reaches a nearly zero value, which, in this case, is
10—=°.

In other words, the performance of InKANs on the methane datasets can likely be further
improved by switching from the ReLU-last type of preconditioning to the ReLU-first one.
However, since the observed gains in efficiency are already more than an order of magnitude
in terms of the H100 wall-clock time, we left this for future work.

H EXPERIMENTS

H.1 GENERAL DETAILS ABOUT THE BENCHMARKING PROTOCOLS
Within the scope of this work, we primarily focus on the saturated throughput in the limit

of large batch sizes. Thus, we benchmark all the models for progressively large batch sizes
until reaching saturation. All the models are benchmarked with 10 warm-up dry runs, and
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Figure 16: Comparison of the preconditioning schemes when fitting InKANs within general
function approximation setup.

20 timed runs. Overall, we tried to optimize each model as much as possible while staying
within the limits of full precision float32 data type.

MLPs employed in this work consist of three types of layers - linear ones, ReLU activations,
and batch normalizations. At inference, batch normalizations simply perform elementwise
linear transformation and thus can be absorbed into the weights of linear layers. We perform
this operation manually and, on top of that, compile the model with the torch_tensorrt
backend (with t£32 disabled to ensure full precision float32). We use the same compilation
strategy for FastKANs.

For ImKANSs, when using ReLU-first preconditioning (see more details in Appendix G), we
absorb the entire expression in Eq. 11b into the weights of the InKKAN layer. This modification
requires updating the ImnKAN 2D functions as f(x1,z2) + vf(z1,22) + wiReLU(z1) +
waReLU(x2). Our construction allows for doing this absorption exactly whenever the origin
is one of the grid points, which, in turn, is the case when the number of grid intervals G
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is even. On top of that, batch normalizations are absorbed similarly to MLPs. We do not
compile ImKAN models.

For ImKAN models with the ReLU-last preconditioning we absorb only the InKAN weight
.

H.2 GENERAL FUNCTION APPROXIMATION

Both MLPs and ImKANs use batch normalizations. We set affine=True for MLPs as it is the
standard choice, and affine=False for InKANs in accordance with sigma grids introduced in
Sec. 3.1. MLPs use ReLU activations, while InKKANs do not require any additional activation
functions. We use G = 12 for all the InKAN models, as this was the optimal value found
in the ablation study described below. Pseudocode for both models is available in Fig. 17.
Both students have two hidden layers, which is one more than both Cybenko (Cybenko,
1989) (the one for MLPs) and Kolmogorov-Arnold universal approximation theorems require.
This setup, however, is more realistic, as MLPs with exactly one hidden layer are rarely used
in practice.

MLP student ImKAN student

Linear (input_dim — hidden_dim) ImKANLayer (input_dim — hidden_dim)
BatchNormid(hidden_dim, affine=True) BatchNormid(hidden_dim, affine=False)
ReLU()

Linear (hidden_dim — hidden_dim) 1mKANLayer (hidden_dim — hidden_dim)
BatchNormid(hidden_dim, affine=True) BatchNormid(hidden_dim, affine=False)
ReLU()

Linear (hidden_dim — output_dim) ImKANLayer (hidden_dim — output_dim)

Figure 17: Pseudo code for MLP and ImKAN students.

The performance of InKANs when approximating a R32 — R32 function generated similarly
as the R3?2 — R! described in the main text is given in Fig. 18.
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Figure 18: ImKAN vs MLP for general, R3? — R32, function approximation. The "MLP
1/2" line corresponds to the outcome of the fitting procedure with only half of the training
steps compared to the "MLP" one.

There is a trend that the relative performance of InKANs improves with the scale. It is
clearly seen on the MSE vs FLOPs panel. On the MSE vs H100 wall-clock time panel, it is
first masked by the non-homogeneous efficiency of the code, but next still reveals itself for
the largest hidden dimensions.

We investigate the effect of the chosen number of grid intervals G on the resulting InKAN
accuracy when approximating the R32 — R! function with hidden dim = 256. The result is
given in Fig. 19.
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Figure 19: Final MSE vs G for the hidden_dim=256 ImKAN model.

H.3 METHANE

Tabular datasets are the natural choice for feedforward fully connected neural networks.
Popular tabular datasets, such as the Titanic (Kaggle) or housing prices (Harrison Jr &
Rubinfeld, 1978), however, are not particularly convenient for this purpose. First, they are
typically stochastic in nature - for instance, while it is possible to improve a guess on the
survival based on the data available for the Titanic dataset, it is impossible to say for sure.
Thus, even an arbitrarily large model fitted on arbitrarily many data points would have a
non-zero limitation on the accuracy. In other words, the performance of a model translates
into an error metric not so directly, making the comparisons between different models less
illustrative. Second, these datasets are typically relatively small, making it challenging to
sweep across a wide range of model scales to obtain a comprehensive picture of performance.

Machine learning models fit on such datasets belong to the class of so-called machine learning
interatomic potentials (Behler & Parrinello, 2007; Bartdk et al., 2010). This dataset is
sufficiently large for the comparisons, containing more than seven million configurations.
Additionally, this dataset is deterministic - the geometry of the corresponding methane
configuration completely determines the target (formally, there can be a stochastic term due
to the lack of complete convergence of ab initio computations for the quantum-mechanical
energy, but it is negligible in practice).

The target, the potential energy of the system, is invariant with respect to rotations and
permutations of identical atoms®. Therefore, there are several viable representations of the
methane molecules depending on how these symmetries are addressed:

Cartesian Components: The simplest representation is just a collection of all the Cartesian
components of all displacement vectors from the carbon atom to all the hydrogen atoms.
Since each methane molecule contains 4 hydrogen atoms, the total number of displacement
vectors is 4, and the total number of components is 12. When using this representation, we
simply concatenate all these components together and feed them to a fully connected MLP
or ImnKAN whose input dimension is 12. This representation is not invariant with respect
to both rotations and permutations; thus, we use the corresponding augmentations during
training. We randomly permute hydrogen atoms and rotate each molecule whenever we
sample a minibatch from the training subset for each step of stochastic gradient descent.

Distances: Another possible representation is a collection of all the interatomic distances
between all the atoms. Since the total number of atoms is 5, the number of all the interatomic
distances is 5 * 4/2 = 10. Therefore, the input dimension of fully connected networks applied
to this representation is 10. This representation is invariant with respect to rotations but not
with respect to permutations. During training, we use only permutational augmentations.

3Formally, there is an additional symmetry, inversion, but the corresponding group contains only
two elements, thus it does not make much sense to treat it separately. We unite it with the group of
rotations, and in the following, by rotation we mean proper or improper rotation.
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Table 1: Summary of methane representations

Rotational Permutational
Label symmetry symmetry #Features
Cartesian Components Augmentations Augmentations 12
Distances Features Augmentations 10
Cartesian Components Polynomials Augmentations Features 34
Distances Polynomials Features Features 31
Relative RMSE vs Hidden dimension Relative RMSE vs FLOPs Relative RMSE vs inverse H100 SXM throughput
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Figure 20: InKAN vs MLP on the dataset of randomly displaced methane configurations.
"ImKAN Reg." curve corresponds to ImKAN fitted with Hessian regularization introduced in
Appendix E. On the vertical axis, we plot the relative Root Mean Squared Error, which is
given as test RMSE normalized by the standard deviation of the target in the dataset. The
"MLP 1/2" and "MLP 1/4" curves correspond to outcomes of fitting procedures with half
and a quarter of the training budget, respectively.
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Cartesian Components Polynomials: We compute power sum symmetric polynomials on

top of the Cartesian components of the displacement vectors: P, o, 0. = ST eyt 0
for non-negative integer a; + vy +a, < 4. The total number of such symmetric polynomials is
34 (excluding trivial Py ,0). This representation is invariant with respect to permutations but

not with respect to rotations. Thus, during training we use only rotational augmentations.

Distances Polynomials: The final representation is a collection of non-trivial symmetric
polynomials on top of the interatomic distances, constructed similarly to Allen et al. (2021).
The total number of such polynomials is 31, and their exact formulas are given in Ap-
pendix H.3. This representation is invariant with respect to both rotations and permutations.
Thus, we do not use any augmentations during training for this representation.

The described representations are summarized in Table 1. We systematically evaluate all
four possible combinations of how the rotational and permutational symmetries can be
incorporated into the fitting pipeline. Within the Distances Polynomials representation,
the methane dataset is tabular in the classical sense — it is a table with about 7.7 million
rows and 31 columns. For other representations, the dataset is tabular-like given the available
augmentation strategies. We randomly split the data into 7000000, 300000, and 432488
train, validation, and test molecules, respectively.

For each representation, we fit the same families of MLP and ImKAN models as in the
previous section. The result is given in Fig. 20. For this dataset, we use G = 28, the optimal
value we found in ablation studies. Similarly to the previous experiment, we demonstrate
tight convergence of the baseline MLP models by providing three lines corresponding
to full, half, and quarter of the training budget, respectively. Overall, when compared
to domain-specific architectures, typically given by GNNs (Zhang et al., 2021) and/or
transformers (Pozdnyakov & Ceriotti, 2023), the introduced feedforward fully connected
models occupy a non-overlapping part of the Pareto frontier — they are less accurate, but
also orders of magnitude faster.

The figure illustrates that ImKANs consistently outperform MLPs across all modalities.
Furthermore, the performance improvement is much larger compared to our previous ex-
periment. At the same accuracy level, InNKANs require up to many dozen times (or even
more for the Distances modality) less inference FLOPs, which results in more than a 10X
improvement of the inference H100 wall-clock time.

Furthermore, Fig. 20 provides early indications that ImKANs sometimes can be more accurate
in the limit of large scale, that is, to have better generalizability. The second row of the
figure, corresponding to the Distances modality, illustrates that the rate of improvement of
MLP models becomes very slow, and it is questionable if this family of models would ever
surpass the accuracy achieved by ImKAN models at any scale.

On the other hand, depending on the nature of the data, raw ImKANs, without the Hessian
regularization we proposed in Appendix E, can be more prone to overfitting. This happens for
the Distances Polynomials modality as the last row of Fig. 20 illustrates. This modality
incorporates all the symmetries into the representation and does not involve any sort
of augmentations. Therefore, it is likely that the generalization problem we outlined in
Appendix E takes place for this fitting setup. As the green line of the fourth row of Fig. 20
illustrates, the Hessian regularization is sufficient to overcome the overfitting. Properly
regularized ImKANs were found to outperform the MLPs and be Pareto-optimal from the
point of view of both inference FLOPs and inference H100 wall-clock time.

H.3.1 ABLATIONS

The ablation study on the effect of Hessian regularization is given in Fig. 21, and the effect
of the number of grid intervals G in Fig. 22.
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Figure 21: Effect of the strength of Hessian regularization on the validation error when fitting

ImKAN with hidden_ dim = 256 on the methane dataset using the Distances Polynomials
representation.
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Figure 22: Effect of the number of grid intervals G on the validation error when fitting

ImKAN with hidden_ dim = 128 on the methane dataset using the Cartesian Components
representation.

27



Under review as a conference paper at ICLR 2026

H.3.2 THE Distances Polynomials REPRESENTATION

It was mentioned that the Distances Polynomials representation is given by non-trivial
invariant polynomials computed on top of interatomic distances. These polynomials are
constant with respect to changing the order of identical hydrogen atoms.

Py = x5+ 26 + 27 + 23 + 29 + T10
Py=x1+x+ 23+ 14
Py =+ xg +aF + a3 + 25 +ay
Py = x526 + x507 + 627 + T5x8 + Texg + TsxXg + T7xg + TgxTo+
T6T10 + T7T10 + TeT10 + T9T10
Ps = 125 + xox5 + 126 + X3%g + T1T7 + T4T7 + Toxs + T3x+
ToTg + T4Tg + T3T10 + T4T10
Ps = 22 + 23 + 22 + 23
Py = a3+ + a7 + a3 + x5 +ady
Py = :cgzﬁ + a:5:c(23 + :c?):w + z§x7 + x5x$ + :vga:% + Ig.’tg + :cgszr
x5:z:§ + xﬁxg + $§1‘9 + 17%1‘9 + x§x9 + 1:5x3 + 1‘7583 + iEgZZ?g—F
xéxlo + J;?mlo + xéxlo + x%xlo + 3361‘%0 + xm%o + .13833‘%0 + .139&3%0
Py = xlxg + ngg + xla?g + ach% + xlx? + mx% + .’172.%'% + xgxg—i—
xgxg + x4x§ + 1‘3%%0 + mac%o
Pro = x57678 + T5T7T9 + TeT7T10 + T8T9T10
P11 = 212576 + 217527 + X1%6T7 + T2T5T8 + T3TeT + T2T5T9 + T4T7Tg + T2TgTo+
T3T6T10 + TaZ7T10 + T3L8T10 + T4T9T10
Py = xfm5 + x§x5 + xfzﬁ + a:%xg + x%:w + mix7 + x%xg + x%ms—k
x%xg + xixg + x%xlo + 334211‘10
P13 = 217275 + 173%6 + T1T4T7 + T2X3T8 + TaT4T9 + T3T4T10
Py =23 4+ a3 + o3 + 23
Pi5 = a5 + x5 + a7 + a5 + 25 + 2o
Pig = :cgzﬁ + x5x2 + acg’:w + zgm + x5x§ + 16:1:‘; + xgscg + :cgszr
xg,:z:g + 2136582 + xg’mg + z?a:g + asgxg + x5x3 + x7x8 + xga:S—F
xgl‘u) + .13%33‘10 + Jﬁgl‘lo + .13333‘10 + 37633?0 + .137&3?0 + .13833?0 + .139&3%0
P = xlxg + ng‘;’ + xlmg + achg + xlx:; + mx? + xgxg + xgxg—i—
xg:tg + x4x8 + xgacfo + x4m§’0
Pig = xlxgmﬁ + mlxsxg + x1x§x7 + xlmgaw + x1m5m$ + xlxgxg + mgxgxg + $3$g$8+
x2z5x§ + xgzcﬁ:r% + $2IE§$9 + x4x$x9 + xgxgscg + :cgmg,xg + x4x7zg + zgxngJr
xgarga:lo + ux%xlo + 3:3x§1310 + x4z§$1o + 1:33:6;2%0 + x4x7zfo + $31781'%0 + 1:4xgxfo
P = nggx(; + x3x5x§ + x2x§x7 + x3x§w7 + x4x5x$ + x4x6x$ + xlx?)xg + xlxgxg—l—
x3$5x§ + xgxﬁwg + xlxgxg + 331.’17%.%9 + x3x§x9 + x4x5m§ + xgxﬂcg + x4x8x3—|—
xlxgmlo + CEl.Z%LL'lo + xgxgxm + xgxgxm + mxmc%o + x3x7x%0 + x4x8x%0 + (E3£B9£L’?O
Py = x%x? + x%mg + x%x% + x%x% + m?x% + xix% + w%x% + x%x%—i—
ajxh + aiwy + ety + ajady
(12)

The exact form of these polynomials is given in Eq. 12 and Eq. 13, where x1, =2, ... Z1g
correspond to interatomic distances CH,, CHy, CHs, CHy, HiHy, HiHs, HiH,, HyH3,
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HyH,, and HsH, respectively. The presented polynomials form invariant generators (Derksen
& Kemper, 2015) of the group corresponding to arbitrary permutations of the hydrogen
atoms. Therefore, the Distances Polynomials representation preserves all the information
about the initial C H4 molecule.

2 2 2 2 2 2
Py = T1ToT5 + T1X3%5 + T1X4T7 + TaX3Xg + XoXaTg + T3T4X 7
2 2 2 2 2 2 2 2
Py = T1T5Te + T]T507 + X]TeT7 + T5T508 + T3X6x8 + T3T5T9 + TyX7X9 + X3X8T9+
2 2 2 2
T3TeT10 + TT7T10 + X3L8L10 + TYT9L10
3 3 3 3 3 3 3 3
Py = T1T5 + Toxs5 + T7x6 + X3%6 + X{T7 + TyT7 + Toxg + T3x8+
x%a:g + ZL‘ZJUg + x§z10 + 3:21:10
4 4 4 4
P24 =Ty +-’E2+x3+$4
5 5 5 5 5 5
Pos = x5 + x5 + 27 + 23 + 29 + 23
4 4 4 4 4 4 4 4
Pyg = T1Ts + ToXs + 126 + X3%g + X1X7 + T4Ty + ToXg + T3xg+
4 4 4 4
ToZTg + T4y + T3XT1g + T4T1
P — 3 3 3 3 3 3 3 3
27 = X1T5T6 + T1T5X5 + L1X5T7 + T1TgT7 + T1X5X7 + L1TeT7 + TaT5xs + T3Lglg+
x2z5x§ + JU3I61‘:§ + xgx“;’zg + 13433%9 + xgxgxg + x2z5xg + x4$7a:g + xgxgzg—F
3 3 3 3 3 3 3 3
TITEL10 + T4X7210 T T3TL10 + T4TT10 + T3T6XLY T T4XL7X]y + TITYTTg + T4T9XT
2,3 2.3 2,3 2,3 2.3 2,3 2.3 2,3
Pog = xixs + z575 + 2125 + v375 + 2777 + ThTh + 1575 + w305+
2,3 2.3 2,3 2.3
TTy + TyTy + T3T7g + Ty
Poo — 3 3 3 3 3 3
29 = L1T2T5 + T1X3%g + X1X4T7 + T2T3TZg + TaX4Xy + T3L4TT
3,2 3.2 3,.2 3,.2 3,.2 3,.2 3,.2 3,.2
Py = xix5 + 2525 + xxg + 2325 + xiv7 + Ty + vhag + vharg+
2 2 2 2
xgxg + xixg + x§x10 + 3:21:10
Pay — 23 3 3 3 3 3 3 3
31 = TIT2x5 + T1XT5T5 + TIT3T6 + T1X3%6 + T1T4T7 + T1T4 X7 + T5X3T8 + T2T3T8+

3 3 3 3
ToT4T9 + ToX X9 + X3X4T10 + T3TLT10
(13)

H.4 1LMKAN-BASED CONVOLUTIONAL NEURAL NETWORKS

For CIFAR-10, our backbone architecture consists of five 2 x 2 convolutions, each with stride
2, and two fully connected layers at the end. Since the resolution of CIFAR-10 images is
32 x 32, where 32 = 2°, five 2 x 2 convolutions with stride 2 transform the spatial dimensions
of an image exactly to 1 x 1. All the layers use the same width (= number of filters in case
of convolutions, and hidden dimension in case of fully connected layers), which we vary for
both families of the models. In other aspects, the models are similar to those we employed
in previous sections - we use batch normalizations with affine transforms for MLP-CNNs,
and without for InKAN-CNNs; MLP-CNNs use ReLLU activations, while InKAN-CNNs do
not require additional activation layers.

The dataset comes with pre-defined full training and test subsets. We split the full training
subset into training and validation parts in a 90%/10% ratio. Our augmentation pipeline
consists of established techniques, such as RandAugment Cubuk et al. (2020), MixUp Zhang
et al. (2017), CutMix Yun et al. (2019), and a few others.

29



Under review as a conference paper at ICLR 2026

CIFAR-10 CNN backbone ImageNet CNN backbone

# Only convolutional and fully # Only convolutional and fully
connected layers are shown connected layers are shown

# [32, 32, 3] — [16, 16, width] # [81, 81, 3] — [27, 27, base_width]

Conv2D(3 — width, kernel_size = 2, Conv2D(3 — base_width, kernel_size =
stride = 2) 3, stride = 3)

# [16, 16, width] — [8, 8, width] # [27, 27, base_width] — [9, 9, 3%

Conv2D(width — width, kernel_size = base_width]
2, stride = 2) Conv2D(base_width — 3*base_width,

kernel_size = 3, stride = 3)
# [8, 8, width] — [4, 4, width]

Conv2D(width — width, kernel_size = # [9, 9, 3*base_width] — [3, 3, 9%
2, stride = 2) base_widthl]
Conv2D(3*base_width — 9*base_width,
# [4, 4, width] — [2, 2, width] kernel_size = 3, stride = 3)
Conv2D(width — width, kernel_size =
2, stride = 2) # [3, 3, 9*base_width] — [1, 1, 27*
base_width]
# [2, 2, width] — [1, 1, width] Conv2D(9*base_width — 27*base_width,
Conv2D(width — width, kernel_size = kernel_size = 3, stride = 3)

2, stride = 2)
FullyConnected(27*base_width — 27%*
FullyConnected(width — width) base_width)
FullyConnected(width — 10) FullyConnected(27*base_width — 1000)

Figure 23: CIFAR-10 and ImageNet CNN backbones. MLP-based CNNs additionally have
ReLU activations and batch normalizations with enabled affine transforms. ImKAN-based
CNNs do not require additional activations and use batch normalizations without affine
transforms as suggested by our sigma grids described in Sec. 3.1.

We use the following pool of augmentations for the CIFAR-10 dataset:

CIFAR-10 augmentation pipeline

MEAN = (0.4914, 0.4822, 0.4465)
STD = (0.2470, 0.2435, 0.2616)

nn.Sequential(
T.RandomCrop(32, padding=4),
.RandomHorizontalFlip(),
.ColorJitter(0.3, 0.3, 0.3, 0.05),
.RandAugment (2, 7),
.RandomErasing(p=0.25, scale=(0.05, 0.2), ratio=(0.3, 3.3)),
.Normalize (MEAN, STD),

A

On top of these, we use MixUp (Zhang et al., 2017) (a = 0.2) and CutMix (Yun et al., 2019)
(8 = 1.0) augmentations, both with 50% probability.

When fitting the families of convolutional neural networks described in the main text, we
use the above pool of augmentations consistently for MLP-based and ImKAN-based CNNs.

For ImageNet, the standard data preparation pipeline introduced by AlexNet(Krizhevsky
et al., 2012) involves first resizing an image to 256 pixels along the smallest dimension, then
performing a random crop of 224 x 224 pixels during training, and a center crop of 224 x 224
pixels during validation.

We mimic this procedure by first resizing the image to 81 - 256,/224 =~ 93 pixels across the
smallest dimension, and then performing random or center crops of 81 x 81 pixels.
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Figure 24: Accuracy of the InKAN-based CNNs on the CIFAR-10 dataset depending on the
grid resolution G.
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Figure 25: Accuracy of the ImKAN-based CNNs on the CIFAR-10 dataset depending on the
strength of Hessian regularization.

Next, we use the following augmentation pipeline:

ImageNet augmentation pipeline

nn.Sequential(
T.RandomHorizontalFlip(),

T.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
T.RandAugment (),

T.RandomErasing(p=0.25, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),

On top of these, we use MixUp and CutMix.

H.5 CoOMPARISON WITH FASTKAN

As was already mentioned in the main text, we use the training script for the CIFAR-
10 dataset available in the FastKAN GitHub repository (Li, 2024a) as the basis for the
comparison of InKAN and FastKAN. However, we provide several modifications to the
pipeline.

The original script implements the fitting procedure of a fully connected FastKAN model
on the CIFAR-10 dataset without augmentations. The model has only one hidden layer
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with 256 neurons. Without augmentations, it overfits the data quickly. Thus, the very short
fitting procedure in the original script is sufficient.

We extend the script by the same augmentation pipeline as we used in Sec. 4.3 for the
CIFAR-10 dataset. We observed that because of augmentations, one has to fit the model
for a longer time, so the training budget was substantially increased. The data was split
properly into train, validation, and test subsets, while the original script employed only a
train-validation split. We use the cosine (without restarts) learning rate scheduler (Loshchilov
& Hutter, 2016) instead of the exponential decay one in the original script. Finally, the
normalization was performed with real values of the mean and standard deviation for the
CIFAR-10 dataset, instead of the dummy 0.5 values of the original script.

These modifications significantly improve the performance of FastKAN models (= 54 — 55%
validation accuracy in the original script), see Fig. 8. Furthermore, even the MLP baseline of
the same shape yields better accuracy compared to the performance of the FastKAN model
in the original script.
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