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ABSTRACT

Agglomerative models aim to unify the strengths of various vision foundation
models through multi-teacher distillation for enhanced performance across diverse
tasks. However, current feature-aligned distillation approaches for agglomerative
models frequently encounter a compromised trap: student models learn compro-
mised features that overlook the unique contributions and inherent differences of
individual teachers, limiting the overall performance of models. To mitigate this
limitation, we propose a novel Sparse Mixture-of-Experts (SMoE) based frame-
work for Multi-Teacher distillation (M2oT). Within M2oT, we introduce a teacher-
aware loss as a regularization term to actively increase expert diversity, enabling
the SMoE to capture specialized features tailored to each teacher’s unique con-
tributions. Extensive experiments have demonstrated the superior performance of
our method across various large-scale vision tasks, validating its effectiveness in
resolving the compromised trap and enhancing overall model performance.

1 INTRODUCTION

Recent studies focus on agglomerative foundation models (Heinrich et al., 2025), combining
strengths from multiple Vision Foundation Models (VFMs). Popular VFMs like DINOv2 (Oquab
et al., 2024), CLIP (Radford et al., 2021), and SAM2 (Ravi et al., 2024) show strong performance
on various downstream tasks. To transfer this knowledge, AM-RADIO (Ranzinger et al., 2024)
distilled knowledge from pre-trained models without ground truth. This multi-teacher framework
proved highly effective, enabling smaller student networks to internalize collective teacher expertise,
fostering robust vision systems.

However, current methods aim for comprehensive knowledge transfer by aligning student features
with each teacher. However, they face a significant inherent limitation we term the compromised
trap. Even with techniques like teacher-specific projection heads (Sarıyıldız et al., 2024; 2025),
the student’s shared feature extractor learns a generalized representation, resulting in compromised
features. This occurs because the extractor must simultaneously encode sufficient information for all
teachers, frequently obscuring unique, fine-grained, specialized knowledge from individual teachers
and limiting the student’s full potential.

To address this and boost specialized knowledge integration, Sparse Mixture-of-Experts (SMoE)
architectures offer a compelling solution. MoE models excel at processing diverse inputs by routing
them to specialized sub-networks (experts). This massively increases model capacity and enables
specialized learning without proportional computational cost. Despite their advantages, SMoE’s full
potential in multi-teacher agglomerative VFM distillation remains largely unexplored. Effectively
leveraging MoE’s modularity to genuinely integrate heterogeneous teacher knowledge, rather than
merely averaging it, is a critical unmet need.

In this paper, we propose a novel framework. It combines SMoE with an innovative distillation
strategy to overcome the compromised trap and achieve superior agglomerative models. Our frame-
work introduces the SMoE architecture into multi-teacher agglomerative VFMs, providing needed
capacity and modularity for specialized learning. We design a novel teacher-aware loss function. It
actively guides SMoE experts to learn context-aware, teacher-specific specializations. This loss en-
sures each expert prioritizes alignment with relevant teacher knowledge, directly combating dilution
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and fostering experts capable of capturing truly unique and valuable specialized features. Figure 1
shows our method’s framework.

In summary, our contributions are threefold:

• We pioneer the use of Sparse Mixture-of-Experts architectures in multi-teacher agglomer-
ative vision foundation models, providing a scalable, modular backbone for consolidating
diverse teacher knowledge.

• We propose a novel teacher-aware loss function. It significantly increases the expert diver-
sity of SMoE and guides experts toward teacher-specific specialization. This loss approx-
imates a Bayesian Maximum A Posteriori inference objective for expert-specific teacher
targets.

• We empirically show our framework solves the compromised trap. The student model
moves beyond learning compromised features to capture more discriminative and task-
relevant specialized features. This is evidenced by an increase in conventional distillation
loss but significant performance gains across various vision tasks.

2 RELATED WORKS

2.1 AGGLOMERATIVE VISION FOUNDATION MODELS

Unified models. Combining and unifying the capabilities of multiple models from various vision
tasks and heterogeneous domains is the central goal of agglomerative models in computer vision.
To build such agglomerative models, related strategies such as model merging (Zhang et al., 2024),
assuming that models have the same architecture and size, multi-task learning (Lu et al., 2025),
which requires expensive labels and introduces task-specific bias, and continual learning (Chen et al.,
2023), which faces the challenge of catastrophic forgetting for previous tasks.

Multi-teacher distillation. Applying multi-teacher knowledge distillation is another way to build
agglomerative models. It constructs a single student vision encoder distilled from multiple vision
teachers. AM-RADIO (Ranzinger et al., 2024) proposed to match the features of teachers without
using labels to cover the heterogeneous domains, which is a dominant multi-teacher distillation
framework for agglomerative models. Theia (Shang et al., 2024) applied this paradigm to establish
a unified model for robotic applications with a selected set of teachers. UNIC (Sarıyıldız et al., 2024)
proposed to join feature standardization to balance teachers and teacher-dropping regularization to
preserve the accuracy of top teachers, especially for classification tasks. RADIOv2.5 (Heinrich et al.,
2025) extended their focus on the robustness to various image resolutions through multi-resolution
training. DUNE (Sarıyıldız et al., 2025) studied special 3D teachers for heterogeneous domains
while employing attention-based projectors for teacher-specific datasets.

In this paper, we argue that previous multi-teacher studies for agglomerative VFMs have suffered
from seeking compromised features among teachers, limiting to obtain the unique features of each
teacher.

2.2 MIXTURE-OF-EXPERTS

Sparse Mixture-of-Experts. Current transformer architecture (Vaswani, 2017) is commonly
adopted in large models such as large language models (Achiam et al., 2023) and diffusion mod-
els (Peebles & Xie, 2023). Sparse Mixture-of-experts (SMoE) models are proposed to address
the scaling computing demand, which sends different tokens of an input sequence to different ex-
perts (Riquelme et al., 2021; Zhu et al., 2024a; Dai et al., 2024). Ongoing efforts in SMoE research
largely emphasize load balancing (Fedus et al., 2022) to prevent experts from becoming underuti-
lized or overloaded.

Expert Specialization and Diversity. A key challenge in SMoE models is to ensure that experts
truly learn distinct representations and that their collective capacity is effectively utilized. Previous
studies (Riquelme et al., 2021; Chen et al., 2022) have verified the existence of expert specialization
for SMoE in various domains. Recent works (Qiu et al., 2025; Yuan et al., 2025) analyze that
promoting expert specialization is a trade-off to load balancing. To promote expert specialization and
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Figure 1: Overview of the M2oT framework. (a) (Left.) illustrates the multi-teacher distillation
setup, highlighting the distillation loss, and (Right.) details the SMoE student architecture and ex-
plains how Ltas is computed to enhance expert diversity. (b) depicts the advantage of our method’s
solution over a compromised solution from a Pareto Frontier perspective (Top.) and in terms of
downstream performance (Bottom.) for a two-teacher scenario, denoting the individual teacher
losses as Ld1

and Ld2
.

diversity, Upcycling-based method (Zhu et al., 2024b; Nakamura et al., 2025) employs diverse dense
checkpoints to initialize different experts, yet questions arise if the initialization of experts affects
expert diversity as a result of training processes. In this paper, we introduce a regularization loss with
the prior of teacher features to increase expert diversity and aim to improve expert specialization for
SMoE models.

3 PRELIMINARIES AND ANALYSIS

3.1 MULTI-TEACHER DISTILLATION FRAMEWORK

In this paper, our multi-teacher distillation framework for agglomerative models mainly follows
(Ranzinger et al., 2024). Specifically, we build a student visual encoder as a foundation model based
on the Transformer architecture like ViT (Dosovitskiy et al., 2021). Let image x ∈ I be the input
and z = f(x), z ∈ Z be the feature vector produced by the visual encoder, where Z ∈ R(S+1)×d

and f(·) denotes the student encoder network. Each feature vector produced in a certain network
layer has a dimension of d. The feature set consists of two kinds of tokens: 1) S patch tokens and 2)
an optional CLS token, which represents the global information about an image.

We distill our student model by aligning the features between teachers and the student model. The
teacher set T = {T1, ..., TN} denotes N teacher encoders. The student model shares the same
backbone for all teachers. For better alignment of the features, adapted heads are applied to project
the shared student features to the specific teacher feature space, named projectors (Sarıyıldız et al.,
2025). In other words, for a teacher Ti indexed by i, the projectors transform shared student features
z to teacher-specific features ẑi, as defined in Eq. 1.

ẑi = gi(z), gi(z) : Rd → Rdi (1)

where g(·) is commonly implemented as multi-layer perceptrons (MLPs) and di is the dimension of
feature vectors produced by the teacher Ti. As two kinds of features are employed, we define two
corresponding projectors for both patch tokens and CLS tokens in each network layer.

For the distillation loss under the setting of feature distillation, we combine both cosine-similarity
and smooth-l1 losses to measure the distance for features between multiple teachers and the student,
and minimize them as our distillation loss function among all teachers, formulated as Eq. 2.

3
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Ldist =

N∑
i=1

Lcos(hi(x), Ti(x)) + Lsl1(hi(x), Ti(x)) (2)

where hi := f · gi. Both distance metrics are defined in (Sarıyıldız et al., 2024).

3.2 COMPROMISED TRAP OF DISTILLATION LOSS

Agglomerative multi-teacher distillation often leverages a distillation loss to align student features
with individual teachers. We refine the loss function in Eq. 2 into a general form, formulated as
Eq. 3.

Ldist = Ex∼D

[
N∑
i=1

Dist(hi(x), Ti(x))

]
(3)

where D represents the datasets and Dist(·, ·) is a chosen distance metric (e.g., smooth-l1, cosine-
similarity, mean-square error).

Proposition 1 (Compromised Trap) Let f∗
i = argminf Ex∼D [Dist(f, Ti;x)] be the optimal en-

coder on a single teacher. With f̂ = argminf Ldist(f ;x) as the encoder under multiple teachers,
there exists teacher Ti that Ldist(f̂ , Ti) > Ldist(f

∗
i , Ti) leading to limited performance in a certain

task, i.e., U(f̂(x)) < U(f∗
i (x)), where U is a target utility function.

As formalized in Proposition 1 (proof in Appendix A.5.2) and seen in Figure 2, the compromised trap
arises in multi-teacher distillation. Figure 2 shows this: distillation loss against individual teachers
is consistently higher in the multi-teacher setting than in the single-teacher setting. This happens be-
cause the shared student encoder f(x) must simultaneously represent diverse or conflicting teacher
information. Thus, f(x) becomes a generalized, averaged representation, resulting in compromised
features. This compromise, while minimizing overall Ldist, sacrifices unique, fine-grained teacher
details. This limits the student’s ability to specialize or capture nuanced distinctions, leading to
reduced downstream performance.

4 METHOD

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

DeiT-III DINOv2 iBOT dBOT-ft

Compromised Trap: Individual Teacher Losses

Single-teacher distillation loss Multi-teacher distillation loss Ours

Figure 2: Comparison of distillation losses under
single-teacher, multi-teacher distillation settings
and our method, illustrating the compromised trap
our mitigation on it.

We introduce M2oT, a novel framework for
solving the compromised trap via Sparse
Mixture-of-Experts. Our framework consists
of two main components: 1) Sparse Upcy-
cling Architecture of Dense Student: We design
a sparse student network with MoE, enhanc-
ing the ability to acquire specialized teacher
knowledge while maintaining training and in-
ference efficiency. 2) Specialization-Oriented
Knowledge Distillation Mechanism: We design
a novel Teacher-Aware Specialization Loss,
based on Maximum A Posteriori estimation,
designed to mitigate this trap by guiding expert
specialization and diversity.

4.1 SPARSE UPCYCLING ARCHITECTURE OF DENSE STUDENT

A Sparse Mixture-of-Experts (SMoE) layer replaces a standard Feed-Forward Network (FFN) in a
transformer (denoted as a dense model) with a collection of expert FFNs. For an SMoE layer with
M experts, given an input of n tokens t ∈ Rn×d from the Multi-Head Attention (MHA) module,
the output is a weighted sum of each expert’s computation ej(t). This is determined by a routing
function R(t) ∈ [0, 1], as defined in Eq. 4.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

fSMoE(t) =

M∑
j=1

R(t)j · ej(t) (4)

where the routing function R(t) employs TOPk operation to active a subset of k experts, as formu-
lated in Eq. 5.

R(t) = TOPk(softmax(r(t))) (5)

where r(t) : Rn×d → Rn×M is a router network, often adopted as an MLP. To reduce the overhead
for training SMoE, we apply the sparse upcycling technique (Komatsuzaki et al., 2022) to replicate
M FFNs as expert modules from the dense student.

4.2 SPECIALIZATION-ORIENTED KNOWLEDGE DISTILLATION

Teacher-Aware Specialization Loss. To overcome the compromised trap, we introduce a novel
Teacher-Aware Specialization (TAS) loss based on Sparse Mixture-of-Experts architectures. Our
approach shifts from generic alignment to adaptive, expert-specific knowledge integration, grounded
in Maximum A Posteriori (MAP) estimation. MAP estimation offers a principled framework for
inferring ideal latent teacher targets from multiple observations.

We frame the problem as inferring an ideal, latent teacher target for each activated SMoE expert.
Let K denote the set of top k experts. For an activated expert e ∈ K, we hypothesize its output
ϕ(x, e) should align with an ideal target T̂ ∗(x, e). We consider the features from the N teachers
{Ti(x)}Ni=1 as observations of this latent target. Assuming Laplace noise (l1 distance) and a flat
prior on T̂ ∗(x, e), the MAP estimate for T̂ ∗(x, e) minimizes the negative log-likelihood, as in Eq. 6.

T̂ ∗(x, e) = argmin
T̂

N∑
i=1

wi

∥∥∥Ti(x)− T̂
∥∥∥
1

(6)

This expression defines T̂ ∗(x, e) as the weighted geometric median of teacher features Ti(x), based
on their relevance wi. An ideal teacher-aware loss would guide expert T̂ ∗(x, e) towards this in-
tractable target in Eq. 7.

Lideal = Ex∼D

[∑
e∈K

softmax(r(x)) ·
∥∥∥ϕ(x, e)− T̂ ∗(x, e)

∥∥∥
1

]
(7)

However, computing the geometric median is prohibitive during training, and true relevance weights
wi are unknown. To make this objective tractable, we use two approximations: 1) We approxi-
mate the weighted geometric median with the more efficient weighted arithmetic mean: T̂ ∗(x, e) ≈∑N

i=1 wi · Ti(x), and 2) we replace unknown wi with outputs from our learnable teacher-aware
router, π(x, e, Ti), which dynamically estimates each teacher’s relevance to expert e for input x.

Applying these approximations, we derive our practical Teacher-Aware Specialization loss. It softly
guides SMoE experts towards teacher-aware specialization and encourages activated experts to pri-
oritize alignment with relevant teachers identified by the teacher selection module, as formulated in
Eq. 8.

Ltas = Ex∼D

[∑
e∈K

softmax(r(x)) ·
∥∥ϕ(x, e)− T (x, e)

∥∥
1

]
(8)

where T (x, e) =
∑N

i=1 π(x, e, Ti)·Ti(x). This formulation enables each SMoE expert to adaptively
learn and align with a dynamically weighted combination of teacher features, effectively guiding
them towards specialized features without falling into the compromised trap. The learnable teacher-
aware router π(·) allows the model to infer and prioritize the most relevant teacher knowledge for
each expert and input.

5
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Table 1: Comparison of different distillation methods evaluated on ImageNet100 (IN100) and
ADE20K datasets. We report the average values of the distillation loss (Ldist) and our proposed
TAS loss (Ltas) during training.

Ldist Ltas IN100 ADE20K

Dense 0.187 - 92.50±0.06 35.18±0.14
Sparse MoE 0.145 3.27 93.40±0.07 37.46±0.31
M2oT(Ours) 0.156 1.45 93.84±0.04 37.91±0.19

From a computational view, a learnable teacher-aware router avoids computing all experts’ outputs
to infer the latent teacher target. This saves memory and computation for teacher-specific represen-
tations.

Our TAS Loss serves as a regularizer for the main distillation objective Ldist. Proposition 2 proves a
distinct tradeoff between the TAS loss and the main distillation loss (proof in Appendix A.5.3).

Proposition 2 (Expert Diversity as Regularizer) Let f∗
1 be the optimal student encoder obtained

solely by minimizing Ldist, and f∗
2 be the student encoder optimized with Ltas as a regularizer. There

exists a scenario where, even if Ldist(f
∗
2 ) > Ldist(f

∗
1 ), this leads to improved downstream task

performance, i.e., U(f∗
2 (x)) > U(f∗

1 (x)), where U is a target utility function.

Low agglomerative distillation loss Ldist does not correlate with high downstream performance.
Table 1 compares distillation methods on ImageNet100 (Tian et al., 2020). Sparse MoE, with in-
creased capacity, shows lower Ldist and better downstream performance than Dense. Our M2oT
method significantly reduces Ltas, indicating successful expert specialization. This specialization
slightly increases Ldist. Despite this, M2oT delivers the highest performance on both ImageNet100
and ADE20K. This validates Proposition 2: strategically increasing distillation loss, driven by spe-
cialized feature integration, yields superior overall utility.

Load-Balancing Loss. SMoE models often suffer from the issue of imbalanced expert load. The
router frequently tends to route tokens to a subset of experts within an SMoE layer, leading to the
underutilization of other experts during training. This results in inefficient parameter and compu-
tation utilization. A load-balancing loss (Fedus et al., 2022) serves as an auxiliary loss function to
ensure that each expert receives a comparable number of tokens within a batch, as defined in Eq. 9.

Llb = M

M∑
j=1

Fj · Pj (9)

where Fj denotes the fraction of tokens routed to each expert ej and Pj denotes the total routing
probability allocated to the expert ej .

Overall Loss. In conclusion, the total loss function for feature-aligned distillation to update the
student model parameter is defined as Eq. 10.

Ltotal = Ldist + λ1Ltas + λ2Llb (10)

The overall loss function combines three parts: 1) a multi-teacher distillation term, which aims to
capture a comprehensive feature representation but can lead to compromised features within the
student agglomerative model, 2) an expert specialization term, acting as a regularizer to promote
the extraction of teacher-specific specialized features by increasing expert diversity, and 3) a load
balancing term for SMoE, encouraging the utilization of experts.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Evaluation Benchmarks. We evaluate our models across various vision tasks. For Image Classifi-
cation, we report ImageNet1K (Russakovsky et al., 2015) k-NN classification using shared backbone

6
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Table 2: State-of-the-art comparison of multi-teacher distillation agglomeration models. Perfor-
mance is evaluated across ImageNet1K (IN1K) classification accuracy (↑), ADE20K semantic seg-
mentation mIoU (↑), and NYU depth estimation RMSE (↓). Best results are in bold, second-best are
underlined.

Model Active Params. Encoder Arch. Training Data IN1K(↑) ADE20K(↑) NYUd(↓)
Teacher Models
DINOv2 86M ViT-Base LVD-142M 82.01 41.10 0.481
SAM2 224M Hiera-Large SA-V - 29.17 -

Multi-teacher Distillation
SAM-CLIP 86M ViT-Base ImageNet1K - 38.4 -
Theia 86M ViT-Base ImageNet1K 81.19 35.55 0.637
UNIC-B 86M ViT-Base ImageNet1K 83.21 39.60 0.547
RADIOv2.5-B 98M ViT-Base DataComp-1B 81.96 48.94 0.498
M2oT-B(Ours) 86M ViT-Base ImageNet1K 84.28 42.50 0.479
UNIC-L 307M ViT-Large ImageNet1K 85.60 48.30 0.491
RADIOv2.5-L 320M ViT-Large DataComp-1B 84.68 51.47 0.457
M2oT-L(Ours) 213M Hiera-Large ImageNet21K 86.53 52.14 0.442

embeddings. For Semantic Segmentation, we assess models on ADE20K (Zhou et al., 2019) (mIoU)
with an MMSeg (Contributors, 2020) framework, training a decoder on top of frozen features. For
depth estimation, we evaluate on NYUdv2 (Silberman et al., 2012) (RMSE). We use a linear probe
for ViT and UPerNet (Xiao et al., 2018) for multi-stage encoders like Swin Transformer (Liu et al.,
2021). For Depth Estimation, we follow DINOv2 (Oquab et al., 2024) settings, building DPT (Ranftl
et al., 2021) over the features.

Implementation Details. We use ImageNet1K and ImageNet21K (Ridnik et al., 2021) as distilla-
tion datasets, using only images for feature alignment. Our encoder architectures include ViT and a
modified Hiera (Ryali et al., 2023), detailed in Appendix A.3.2.

Our Sparse MoE architecture is implemented via the Tutel (Hwang et al., 2023) framework. We use
TOP2 (k = 2) for most experiments, activating 2 experts per token out of 8 total experts. Every odd
layer (e.g., 1, 3, ..., 11) is an MoE layer, and we incorporate our TAS loss in these layers as a sum.
Load-balancing loss is applied with λ2 = 0.01. Inspired by Fine-grained MoE (Ludziejewski et al.,
2024), we reduce FFN hidden dimensions as k increases, maintaining active parameters and FLOPs
for fair comparison. In ablation studies, we omit sparse upcycling to isolate TAS loss performance.

Teacher Models. To distill sufficient unique features for multiple teachers as much as possible,
we select a list of VFMs, including DeiT-III (Touvron et al., 2022), DINOv2 (Oquab et al., 2024),
iBOT (Zhou et al., 2022), dBOT-ft (xingbin liu et al., 2024), SigLIP (Zhai et al., 2023), SAM2 (Ravi
et al., 2025) and AIMv2 (Fini et al., 2025). These teachers contain heterogeneous knowledge in
various training schemes and datasets.

5.2 COMPARATIVE RESULTS

Table 2 compares our method with other agglomerative VFMs: SAM-CLIP (Wang et al., 2024),
Theia (Shang et al., 2024), UNIC (Sarıyıldız et al., 2024), and RADIOv2.5 (Heinrich et al., 2025).
We evaluate base (B) and large (L) student models across various vision tasks, including two typical
teacher models for comparison.

At the base scale, our M2oT-B model, using a standard ViT-Base encoder and trained only on Ima-
geNet1K, achieves highly competitive results. It outperforms all baselines on ImageNet1K accuracy
and sets a new state-of-the-art on NYU depth estimation. While RADIOv2.5-B shows higher mIoU
on ADE20K, it uses a much larger DataComp-1B dataset and slightly more active parameters. Our
method still achieves a strong performance on ADE20K, showing robust performance with less
training data.

For large-scale models, our M2oT-L model, using a Hiera-Large encoder and trained on Ima-
geNet21K, significantly advances performance. It decisively outperforms all large-scale baselines,
achieving top scores across all three challenging tasks. Notably, M2oT outperforms models like
RADIOv2.5-L, which also use the massive DataComp-1B (Gadre et al., 2023) dataset. This high-
lights our specialized knowledge aggregation framework’s effectiveness, scalability, and generaliz-
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Figure 3: (a) ImageNet100 accuracy across varying teacher numbers. (b) Load-balancing loss curve
during training.
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Figure 4: Visualization of expert specialization and diversity. (a) t-SNE plots of expert features in
SMoE layer without (Left.) and with (Right.) the TAS loss. (b) Expert-Teacher preference heatmap
showing expert scores across different teachers.

ability, even against models trained on vast datasets and different encoders. Our method supports
arbitrary multi-teacher distillation across various encoder architectures between teacher and student
models, showing superior performance in both accuracy and computational efficiency.

5.3 ABLATION STUDIES

Scaling the Number of Teachers. Figure 3a illustrates the impact of scaling teacher number on Im-
ageNet100 accuracy. All methods exhibit performance gains with more teachers, underscoring the
potential of diverse knowledge. Despite inherent teacher heterogeneity, scaling the number of teach-
ers is crucial to validate a method’s ability to leverage this diversity and overcome the compromised
trap. SMoE consistently outperforms Dense, confirming the effectiveness of SMoE, and our M2oT
method consistently achieves the highest accuracy across all teacher numbers. This demonstrates
that TAS loss captures unique teacher features and the efficacy in exploiting rich, diverse teacher
ensembles.

Expert Specialization and Diversity. Our analysis reveals how the TAS loss effectively addresses
the compromise trap. We draw t-SNE (Cai & Ma, 2022) visualizations of expert features by 12608
patch features in the final (11th) MoE layer with 32 samples of ImageNet100 validation datasets,
as shown in Figure 4a. Without the TAS loss, expert features are broadly scattered, reflecting com-
promised features that result from averaging diverse teacher knowledge. In contrast, with TAS loss,
expert features become tightly clustered. This illustrates experts focusing on specialized features.

Further, the Expert-Teacher preference heatmap, as shown in Figure 4b, demonstrates that our M2oT,
unlike vanilla SMoE, promotes experts gaining significantly higher routing scores for specific teach-
ers. This directly indicates the successful development of specialized features, where individual
experts learn to prioritize and process unique information from particular teachers.
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Table 3: Impact of the loss coefficient λ1 for ImageNet100, ADE20K and NYUd datasets.

λ1 IN100(↑) ADE20K(↑) NYUd(↓)
0.01 93.38 37.10 0.601
0.10 93.67 37.47 0.592
0.50 93.84 37.91 0.585
1.00 93.42 37.41 0.597
5.00 92.12 35.25 0.623

Table 4: Comparison of memory usage and computation budget in training time.

Params. Memory GFLOPs Time
Dense MoE (Oracle) 170M 74.2 81.19 3.47

Dense 86M 37.9 35.15 1.49
Sparse MoE 170M 39.1 35.34 1.51
M2oT(Ours) 171M 39.6 35.44 1.59

Choice of Loss Coefficient. Table 3 presents the impact of varying the coefficient λ1 for our TAS
loss on downstream task performance. We observe that setting λ1 = 0.5 yields the optimal results,
achieving the highest model performance. This indicates that λ1 plays a crucial role in balancing
the emphasis on expert specialization against the distillation objective.

Load-Balancing Analysis. In general, it is a trade-off between expert specialization and load bal-
ance for sparse MoE. To further identify the mechanism of Teacher-Aware Specialization Loss, we
show the load-balanced loss in training. Figure 3b illustrates that our M2oT method, incorporat-
ing the TAS loss, consistently exhibits a higher load balancing loss compared to the vanilla SMoE
baseline. The elevated load-balancing loss for M2oT is not a drawback, but rather a sign that the
model effectively leverages its MoE structure to assign inputs to the most competent and specialized
experts, avoiding overbalancing for SMoE layers (Qiu et al., 2025).

System Resource Analysis. As we add an extra router for computing the TAS term during train-
ing time, we collect total model parameters, memory footprints (GB), computational footprints
(GFLOPs), and training time (min/step) of different student model configurations shown in Ta-
ble 4. The Dense MoE, while representing a theoretical upper bound for expert diversity, incurs
significantly higher costs. While Sparse MoE doubles the parameters of the dense model, its actual
training memory is similar due to expert parallelism (Hwang et al., 2023). Our proposed method
M2oT, which incorporates loss and its associated router, introduces only a marginal overhead com-
pared to Sparse MoE.

6 CONCLUSION

In this paper, we mitigated the compromised trap in agglomerative multi-teacher distillation where
student models learn compromised features. Our framework introduces a sparse upcycling Architec-
ture and a specialization-oriented knowledge distillation mechanism. The former designs an efficient
sparse student network, while the latter uses a Teacher-Aware Specialization (TAS) Loss to guide
Sparse Mixture-of-Experts towards specialized feature learning, grounded in Maximum A Posteri-
ori (MAP) estimation. This enhances expert diversity and improves downstream performance. This
beneficial trade-off, coupled with the computational efficiency of our sparse architecture, establishes
our method as a state-of-the-art approach.

Limitations and Future Work. Despite its efficacy, our framework has limits. The learnable
teacher-aware router adds architectural complexity, and the current MAP objective approximation
can be improved. Future work will explore more advanced, tractable approximations for the MAP-
derived loss. We aim to extend our framework to larger VFM teachers and multimodal distillation
settings.
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A APPENDIX

We provide our code, more implementation details, additional experiments, and proofs in this sec-
tion.

A.1 SOURCE CODE

The anonymous repository for our code is available on https://anonymous.4open.
science/r/M2oT-1CD1/, which contains the code for training the agglomerative vision foun-
dation models under multiple teachers.

A.2 THE USE OF LARGE LANGUAGE MODELS

We employ Gemini-2.5 Flash to polish our writing, mainly for the correction of typos and clarity
of sentences. Our prompt is as follows: “Please help me polish the sentences in my paper. The
sentences are as follows: {TEXT}.”

A.3 IMPLEMENTATION DETAILS

A.3.1 DATASETS

We use the popular ImageNet1K and ImageNet21K (Ridnik et al., 2021) as the distillation datasets.
We only use the images for feature alignment and discard the labels. The ImageNet100 (Tian et al.,
2020) dataset is extracted from ImageNet1K with 100 classes.

A.3.2 MODIFIED HIERA ARCHITECTURE

To reduce the latency in both training and inference time, we modified the standard Hiera (Ryali
et al., 2023) architecture with: 1) adding window position embeddings, and 2) replacing the window
attentions in the first 2 stages with MLP and ReLU attentions.

A.3.3 TRAINING HYPERPARAMETERS

We train M2oT-B from scratch and M2oT-L with upcycling Hiera masked autoencoders, the settings
of which are shown in both Table 5 and 6. Both models are distilled from 7 teacher models. We
train models from scratch in our ablation studies, with the same training settings for all baselines,
including epoch, learning rate, batch size and etc. We use A800 GPUs for running our experiments.

A.3.4 TEACHER MODELS

To distill sufficient unique features for multiple teachers as much as possible, we select a list of
VFMs, including DeiT-III (Touvron et al., 2022), DINOv2 (Oquab et al., 2024), iBOT (Zhou et al.,
2022), dBOT-ft (xingbin liu et al., 2024), SigLIP (Zhai et al., 2023), SAM2 (Ravi et al., 2025), and
AIMv2 (Fini et al., 2025). We use the base version of DeiT-III, iBOT, dBOT-ft, DINOv2 and the
large version of SigLIP, SAM2, AIMv2 as teacher models.
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Table 5: Settings of M2oT-B for pretraining on ImageNet1K.

config value

epoch 200
learning rate (max.) 2e-4
learning rate sch. cosine decay
clip gradient 1.0
warmup epochs 10
macro batch size 1024
micro batch size 128
GPU number 8
expert parallel 8

Table 6: Settings of M2oT-L for pretraining on ImageNet21K.

config value

epoch 20
learning rate (max.) 1e-4
learning rate sch. cosine decay
warmup epochs 1
macro batch size 1024
micro batch size 64
GPU number 16
expert parallel 8

A.4 ADDITIONAL EXPERIMENTS

A.4.1 COMPARISON OF DIFFERENT TYPES OF MOE

To verify SMoE’s effectiveness on agglomeration models, we evaluate various MoE types in Ta-
ble 7. Soft MoE (Puigcerver et al., 2024) and Sparse MoE with TOP1 active experts show lower
accuracies. Sparse MoE with TOP2 experts significantly improves performance, highlighting the
benefit of activating more experts. Our method consistently outperforms all other MoE variants.
This demonstrates our teacher-aware specialization guidance’s superior effectiveness in leveraging
sparse MoE for effective multi-teacher knowledge aggregation.

A.4.2 SPARSE UPCYCLING

To verify the mechanics of sparse upcycling in our framework, we show our results in Table 8.
Sparse Upcycling and training from scratch yield similar final performance. However, Sparse Upcy-
cling offers significantly faster convergence by leveraging a pre-trained dense model’s parameters as
expert initializations. While this provides a strong starting point, a key limitation is that the method
is constrained by the dense student model’s training hyperparameters.

Table 7: Performance comparison of various MoE configurations on ImageNet100, ADE20K and
NYUd datasets.

IN100(↑) ADE20K(↑) NYUd(↓)
Soft MoE 92.10 35.28 0.611
SMoE (TOP1) 91.68 35.02 0.636
SMoE (TOP2) 93.38 37.44 0.599
M2oT(Ours) 93.80 37.78 0.586
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Table 8: Comparison of initialization scheme of SMoE on model performance.

IN100 ADE20K
From Scratch 93.82 37.90
Sparse Upcycling 93.85 37.84
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Figure 5: Load-balancing loss curve during training.

A.4.3 LOAD-BALANCING ANALYSIS

We provide our comparison without adding load-balancing loss, demonstrating that our method
achieves load balance despite the tradeoff between load balance and expert diversity, as shown in
Figure 5.

A.5 PROOFS

We provide our proofs for the propositions in our main text. Meanwhile, we also prove the conver-
gence of our proposed loss function.

A.5.1 NOTATIONS

Let image x ∈ I be the input. f(·) denotes the student encoder network. The teacher set T =
{T1, ..., TN} denotes N teacher encoders. The set of SMoE expert e = {e1, ..., ej} denotes M
experts in a network layer.

A.5.2 COMPROMISED TRAP

To simplify the proof of Proposition 1, we make the following practical assumptions:

• The distance metric is Mean Squared Error (MSE), i.e., Dist(f, Ti;x) = ∥f(x)− Ti(x)∥2.

• Teacher outputs Ti(x) are fixed feature vectors.

• The student encoder f is a single, shared function for all teachers.

• There exist at least two teachers Tj ,Tk such that Tj(x) ̸= Tk(x) for some input x, implying
conflicting knowledge.

proof. The objective is to find the optimal encoder f∗
i that minimizes the loss for a single teacher Ti:

f∗
i = argmin

f
Ex∼D

[
∥f(x)− Ti(x)∥2

]
(11)

Taking the derivative with respect to f(x) and setting it to zero:

∇f(x)Ex∼D

[
∥f(x)− Ti(x)∥2

]
= (12)

Ex∼D [2(f(x)− Ti(x))] = 0 (13)
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Solving for f∗
i (x) yields:

f∗
i (x) = Ti(x) (14)

The corresponding distillation loss for this optimal encoder is:

Ldist(f
∗
i , Ti;x) = ∥f∗

i (x)− Ti(x)∥2 (15)

= ∥Ti(x)− Ti(x)∥2 = 0 (16)

The multi-teacher objective is to find the optimal encoder f̂ that minimizes the aggregated loss:

f̂ = argmin
f

Ex∼D

 N∑
j=1

∥f(x)− Tj(x)∥2
 (17)

Taking the derivative with respect to f(x) and setting it to zero:

∇f(x)Ex∼D

 N∑
j=1

∥f(x)− Tj(x)∥2
 = (18)

Ex∼D

2 N∑
j=1

(f(x)− Tj(x))

 = 0 (19)

Solving for f̂(x) yields:

f̂(x) =
1

N

N∑
i=1

Ti(x) (20)

Eq. 20 demonstrates that the optimal student output f̂(x) under multi-teacher distillation is the
arithmetic mean of all teacher feature outputs. This directly supports our idea of compromised
features.

Now we prove that Ldist(f̂ , Ti) > Ldist(f
∗
i , Ti) for some teacher Ti.

From the single-teacher derivation, we know:

Ldist(f
∗
i , Ti) = 0 (21)

From the multi-teacher derivation, the loss with respect to teacher Ti is:

Ldist(f̂ , Ti) = ∥f̂(x)− Ti(x)∥2 (22)

=

∥∥∥∥∥∥
 1

N

N∑
j=1

Ti(x)

− Ti(x)

∥∥∥∥∥∥
2

(23)

=
1

N2

∥∥∥∥∥∥
∑
j ̸=i

(Tj(x)− Ti(x))

∥∥∥∥∥∥
2

(24)

By our assumption of diverse teacher knowledge (Tj(x) ̸= Tk(x)), the sum
∑

j ̸=i(Tj(x) − Ti(x))
is a non-zero vector. Therefore:
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Ldist(f̂ , Ti;x) > 0 (25)

This proves that Ldist(f̂ , Ti) > Ldist(f
∗
i , Ti).

Finally, we connect this to the utility function U . Let’s consider a downstream task U whose optimal
performance is highly dependent on the unique features provided by teacher Ti. The single-teacher
optimal encoder f∗

i perfectly aligns with Ti, capturing these essential features and maximizing the
utility U(f∗

i (x)). In contrast, the multi-teacher solution f̂(x) is an average of all teachers’ features
and deviates from Ti’s unique representation, i.e., f̂(x) ̸= Ti(x). This deviation prevents f̂ from
fully capturing the critical information required by the task U , leading to a performance degradation:

U(f̂(x)) < U(f∗
i (x)) (26)

Thus, the multi-teacher distillation process inevitably results in a compromised trap for tasks that
rely on the specialized knowledge of a single teacher.

A.5.3 TEACHER-AWARE SPECIALIZATION LOSS AS REGULARIZER

As previously shown, under assumptions of MSE loss and a shared encoder, the optimal solution
f∗
1 is the mean of all teacher features, which represents a compromised solution that sits on a

non-optimal point on the Pareto Frontier. The solution f∗
1 minimizes the distillation loss, but not

necessarily the individual losses or downstream utility. The point on the Pareto front corresponding
to f∗

1 is often characterized by a high utility trade-off for some specific tasks, meaning its perfor-
mance is limited on tasks requiring specialized knowledge.

proof. The gradient update for f∗
1 is the sum of gradients from all individual teachers:

∇fLdist =

N∑
i=1

∇fLi(f) (27)

When teachers possess diverse or conflicting knowledge, their individual gradients ∇fLi(f) point
in different directions. The resulting aggregate gradient ∇fLdist represents an average direction.

Our proposed Ltas mitigates this conflict. By guiding individual MoE experts towards a dynamically
weighted combination of relevant teachers’ features, i.e., T (x, e) =

∑N
i=1 π(x, e, Ti) · Ti(x), Ltas

provides a specialized gradient for each expert e:

∇ϕ(x,e)Ltas ∝ ∇ϕ(x,e)∥ϕ(x, e)− T (x, e)∥2 (28)

This specialization-oriented gradient, when combined with the main distillation loss, allows the
SMoE experts to move beyond the simple averaging of features and instead learn representations
that are tailored to specific teachers.

The term Ltas encourages expert diversity by pushing each expert to align with a specialized target
T (x, e), which deviates from the global average target that minimizes Ldist. Thus, there exists:

Ldist(f
∗
2 ) > Ldist(f

∗
1 ) (29)

The regularization from Ltas enables the model to learn truly specialized features that are highly
discriminative for specific downstream tasks. While the averaged solution f∗

1 might be mathemati-
cally optimal for the aggregate distillation loss, the specialized features of f∗

2 provide a much higher
utility for downstream applications, proving that:
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U(f∗
2 (x)) > U(f∗

1 (x)) (30)

Thus, the Ltas loss within SMoE acts as a regularizer, pushing the model away from a compro-
mised solution toward a more diverse and specialized one that achieves superior performance on
downstream tasks.

A.5.4 CONVERGENCE OF TEACHER-AWARE SPECIALIZATION LOSS FUNCTION

The Teacher-Aware Specialization (TAS) loss for active experts e is formulated as:

Ltas(f ;x) =
∑
e

Dist(ϕ(x, e), T (x, e)) (31)

We assume the following standard conditions for the neural network functions and training process:

• The SMoE experts ϕ(·, e) and the router network, are differentiable.
• The gradients of the loss functions with respect to the model parameters are well-defined

and Lipschitz continuous.
• The distance metric Dist(·, ·) is a differentiable and non-negative function.

proof. Let w be be the vector of all trainable parameters of the student model f . The total loss
Ltotal = Ldist + λ1Ltas. The optimization process updates these parameters iteratively via gradient
descent:

wt+1 = wt − αt∇wLtotal (32)

where αt is the learning rate in the step t.

The gradient of the total loss is given by the sum of the gradients of its components:

∇wLtotal = ∇wLdist + λ1∇wLtas (33)

where ∇wLdist is well-defined and can be computed via backpropagation.

For the differentiability of Ltas, it is a sum of differentiable MSE losses over differentiable expert
outputs and a differentiable dynamic target. The target T (x, e) is a weighted sum of fixed teacher
outputs, where the weights π come from a differentiable router. Thus, its gradient Ltas is also well-
defined and computable via backpropagation.

Under the assumption of Lipschitz continuous gradients, a gradient descent-based algorithm is guar-
anteed to converge to a stationary point. Formally, this means:

lim
t→∞

∥∇wLtotal(wt)∥2 = 0 (34)

This guarantees that the optimization process will eventually reach a state where the gradient is zero,
which corresponds to a local minimum. Thus, the TAS loss function ensures the convergence of the
training process.
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