When Bigger is Better: Revisiting Large-Batch
Optimization in Language Model Pretraining
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Abstract

Large-batch training sizes promise near-linear speedups in language model pertain-
ing, yet existing studies highlight its poor optimization dynamics and degraded final
performance. In this paper, we seek to understand the failure of large-batch train-
ing, and show that it can in fact substantially outperform conventional small-batch
training. We first identify a critical oversight in the conventional view: large-batch
training can substantially surpass small-batch baselines when provided sufficient
tokens, but this advantage is often unrecognized due to its initial poor optimization
dynamics, manifested as larger gradient norms and even worse per-step loss during
early warm-up phases. To address this, we introduce a simple batch size scheduler
that stabilizes and improves training at remarkably large batch sizes. Our scheduler
scales pretraining up to batches of 32M tokens, using 3.3x fewer computes to
achieve the superior later-stage performance of large-batch training. Detailed analy-
ses on gradient dynamics reveal that batch size fundamentally changes optimization
geometry. Notably, we show that classic gradient noise scale metrics fail to predict
the optimal batch size. Our findings offer practical recipes for designing efficient
and effective pretraining pipelines, and deepen the theoretical understanding of
large-batch optimization dynamics in language model pre-training.
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Figure 1: Training loss curve with different constant batch sizes and a batch size scheduler. Left:
training loss curve up to 30B tokens; Right: training loss curve up to 100B tokens.
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1 Introduction

Training language models with extremely large batch sizes unlocks near-linear speedups through data
parallelism, slashing wall-clock communication time on multi-node clusters — an advantage that
is especially pronounced for Mixture-of-Experts models [31, 5]. Yet, today’s empirical evidence is
discouraging: large-batch training frequently results in worse optimization dynamics and substantially
degraded final model performance [15, 27, 20].

In this paper, we seek to understand the purported failure of large-batch training, and show that
large-batch training is in fact viable. Specifically, we find that with a simple batch size scheduler,
large-batch size training can substantially surpass the performance of small-batch baselines.

We first re-examine the traditional “large batch hurts training” results (Figure 1 left) and reveal its
blind spot: when training on a sufficient amount of data, even naive constant large-batch size training
shows clear advantages (Figure 1 right). Recent research on batch size scaling laws also supports this
observation with the finding that optimal batch size scales primarily with data size [17, 32].

Taking a closer look at the training dynamics, we find that large batch sizes indeed impede optimiza-
tion in the early training stage. It may be expected that large batch sizes will converge more slowly in
terms of token efficiency due to fewer total optimization steps. However, counterintuitively, we find
large-batch training is worse even in terms of optimization steps, despite consuming substantially
more tokens than the small-batch baseline. Further analysis shows that large-batch training exhibits
unstable gradient norms in the early stage.

To address this, we study a straightforward batch size scheduler: training with small batch sizes in the
beginning to exploit its superior early optimization dynamics, then gradually increasing to the target
large batch sizes to fully leverage its efficiency advantage. Specifically, we consistently improve
training with a batch size of 8M tokens from the early stages through to completion. For extremely
large batch sizes (e.g., 32M tokens), which initially fail within a given training budgets (e.g., 100B
tokens), our batch size scheduler successfully enables effective large batch training.

Through detailed analyses of optimization metrics such as gradient norms, gradient noise, and
optimizer update direction, we offer explanations for why different batch size schedules ultimately
converge to similar final losses via a stabilization statement. We observe that classic gradient noise
scale [20] metrics fail to predict optimal batch sizes accurately, highlighting the need for new metrics
or insights into large-batch optimization dynamics.

Overall, our findings provide practical guidelines for designing more efficient pretraining strategies
and deepen our theoretical understanding of how large-batch training dynamics influence language
model pretraining.

2 Background and Experiment Setup

Batch size is an important hyperparameter in deep learning, yet its optimal tuning remains unclear [24,
8]. Some early studies argue that large batch training can hinder model performance, particularly
in terms of generalization, suggesting that overly large batch sizes may be suboptimal. However,
recent studies propose that the critical batch size [20]—the maximum batch size that maintains
computational efficiency—scales with increasing data size. This implies that in contemporary large-
scale pretraining scenarios, larger batch sizes might be preferable. Despite this, determining the
optimal batch size remains an open question.

Large batch training can hinder model generalization. Using excessively large batch sizes
in training deep neural networks can negatively impact model generalization. Keskar et al.[15]
observed that large-batch training tends to converge to sharp minima, which generally exhibit poorer
generalization compared to the flatter minima associated with smaller batch sizes. Takase et al.[29]
explained this by noting that reduced gradient noise in large-batch training restricts the model’s ability
to escape narrow minima. Similarly, Oyedotun et al. [22] argued that large batch sizes might lead to
near-rank deficiencies in activation tensors, thereby adversely affecting the optimization process and
generalization capability.

Optimal batch size scales with the data size. On the other hand, recent research has started to
explore batch scaling laws, examining how batch size relates to model size, data size, and compute.
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Notably, Li et al.[17] and Zhang et al.[32] concurrently found that the optimal or critical batch
size primarily depends on the amount of data rather than model size. Consequently, as training
configurations scale up, larger batch sizes tend to offer better optimization.

Comparing training loss curves between small and large batches. Batch size comparisons
typically focus on two metrics: per-token and per-step performance. The per-token axis measures
loss against processed tokens, while the per-step axis measures loss against update steps. Commonly,
large batch sizes perform better per-step due to more accurate gradient estimates but worse per-token
due to fewer updates. However, the observed crossover in per-token performance highlights that
early-stage results can be misleading. This finding prompts us to reconsider how to fairly evaluate
small versus large batch sizes.

2.1 Setup

Experiment Setup. We train a series of auto-regressive causal language models in 164M. We set
the number of Transformer layers to 12 and the hidden dimension to 768. We use a context length
of 1024, SwiGLU MLP [25], Rotary positional embedding [28], RMSNorm, and untied embedding
parameters. We train our model on the Pile dataset [6] with different token budgets, and we adopt the
GPT-2 tokenizer. We use the AdamW optimizer [16, 19] with fixed hyperparameters 31=0.9, 52=0.95,
a (coupled) weight decay of 0.1, and a gradient clipping of 1. We use batch size (BS) ranging from
0.5M to 32M. We use a warm-up and stable learning rate schedule by default. We use the fixed data
amount strategy in warm-up phase for different BS by default. We use 1B tokens in warm-up for
100B budget, and 0.3B tokens for 30B budget. We train on 30B tokens in the grid search experiments
and 100B for other experiments (majority). We use 4090, H200 GPUs for our experiments.

Notation. Let D be the data distribution and L(w,x) be the loss function where w denotes the
model parameters and x denotes one sequence sampled in D. Let g, = V L(w, x) be the (stochastic)
gradient with one sequence in D !. We remove the dependence on x where it does not matter
in the context. Let g := Ex[VL(w,x)] be the population gradient, and we have g := E[g].
Then, the population gradient norm square is ||g||?. Let the gradient noise covariance matrix be
Y = Ex[(g& — g)(& — g) "] and we mainly care about its trace tr (3), and call it gradient noise.
The gradient noise scale [20] is defined as Bsimple := tr (X) /||g||?>. Denote the first moment and
second moment in Adam by m and v, respectively. The Adam update direction is defined by
u := m/+/v + ¢, where the division is element-wise.

3 Analyzing the Failure of Large Batch Optimization

In this section, we seek to analyze and locate the failure of large-batch training. We first systematically
verify that large batch size optimization has a significant performance degradation in the early stage
(Sec. 3.1). Next, we focus on analyzing large-batch optimization dynamics in the warm-up phase,
which is important for early-stage training (Sec. 3.2). Based on the experiments on different warm-up
strategies, we identify that it is not suitable to do warm-up with a large batch size.

3.1 Large-batch Optimization Fails in the Early Stage

As illustrated in Figure 1, although large-batch training can eventually surpass the small-batch
baseline once consuming sufficient training tokens, it lags far behind in the early stage before the two
loss curves cross?.

To confirm this is not due to our bad hyperparameter setup for the large-batch setting, we conduct
a 2-D grid search over batch size and learning rate with 30B training tokens. We focus on tuning
learning rates based on the hyperparameter scaling: the optimal learning rate often significantly
changes with batch size [2]. Figure 2 left presents the results. Acorss the entire grid, every large-batch
run is consistently and substantially worse than small-batch baselines.

'In most of the time, we consider the token-level batch size. But, when we estimate the gradient noise and
gradient norm, we use the sequence-level batch size instead of token-level batch size There is basically a scale
difference between sequence-level and token-level estimators.

The ‘early stage’ here can be understood as the time before a critical point when the loss curve of large BS
and small BS cross over. We will discuss more about the properties of ‘early stage’ in Section 4.4.
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Figure 2: Validation loss w.r.t. batch size and learning rate with 30B tokens. (a): constant batch size;
(b): using small batch (0.5M) in the warm-up and switch back to large batch size after warm-up.
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Figure 3: (a): Training loss curve w.r.t. batch size with the same warm-up tokens. (b): Training loss
curve w.r.t. batch size with the same warm-up steps. (a)(b) share the same legend. (c): Training loss
curve w.r.t. batch size in per-step axis. A 0.3B fixed-token warm-up is used. (d): Training loss curve
comparing fixed-step and fixed-token warm-up. Comapred to 0.5M BS with 1B warm-up tokens, 8M
BS + 1B warm-up is fixed-token strategy, 8M BS + 16B warm-up is fixed-step strategy.

A natural explanation is that, a fixed token budget gives far fewer updates to a large batch size: on
30B tokens, a batch size of 0.5M yields roughly 57,000 optimization steps, while a batch size of 32M
yields only 900 steps. One may therefore expect a large batch size to shine once the optimization step
is equalized due to its more accurate gradients. However, empirical results are in fact counterintuitive:
as shown in Figure 3(c), even when we match the number of optimization steps, large-batch training
still does not necessarily perform better than small-batch baselines. For example, a batch size of 4M
tokens yields the best per-step loss curves, even outperforming the counterparts of larger batch —
despite consuming up to 8 x more tokens.

Taken together, these results indicate a clear degradation of large-batch optimization in the early stage
of training.

3.2 A Closer Look at the Warm-Up Phase

Warm-up is widely recognized as critical for stabilizing early optimization dynamics [7]. We therefore
take a closer look at this phase to further analyze the failure of large-batch training.

Fixed-token Warm-Up We first experiment with 0.3B warm-up tokens across different batch sizes.
Under this setting, the number of steps during warm-up scales inversely with the batch size. For
example, while 0.3B warm-up tokens translate to 600 steps with a batch size of 0.5M, it is only about
10 steps with a batch size of 32M. Results are shown in Figure 3. As we can see, large-batch training
exits the warmup phase with a significantly higher loss than small-batch baselines. Besides loss, the
drawback of fixed-token warm-up for large-batch training also exhibits in gradients. As shown in
Figure 4 (a), the gradient of large-batch training has not stabilized yet after warm-up phase, and is
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Figure 4: Population gradient norm square w.r.t. batch size with the same warm-up tokens (Left) and
the same warm-up steps (Right).

still about 10x bigger than the small-batch baseline. Thus, under a fixed-token setting, warm-up
contributes far less to large batches than to small ones.

Fixed-step Warm-Up What if we instead equalize the steps in warm-up across different batch sizes?
As shown in Figure 4 (b), doing so aligns the per-step loss curves across batch sizes. Moreover,
as shown in Figure 4 (b), gradient norm all converges in a similar speed and to the same order or
magnitude, and stabilizes.

However, this remedy is costly: the fixed step warm-up strategy will consume many more tokens for
large batch sizes. For example, to match 600 warm-up steps, a batch size of 32M would consume
64B tokens. This might be more than the total token budget, or leave us many few tokens for the
remaining primary optimization stage.

Furthermore, while fixed-step warm-up achieves better performance in the warm-up phase than fixed-
token warm-up, we find that it leads to worse performance in the later training stage. Specifically, as
shown in Figure 3 (d), when training with a large batch size of 8M tokens, the fixed-step warm-up
setting (blue line) converges slower than the fixed-data warm-up setting (green line).

3.3 Summary

Based on our experiment results, we conclude that large-batch optimization fails at the early stage
of training, and warm-up is one of the important factors that causes significant impacts on the
performance of large-batch training.

However, both fixed-token and fixed-step warm-up schedules show inherent limitations. In short, it is
ill-advised to warm up with a large batch size.

4 Batch Size Scheduler Unlocks Effective Large-Batch Training

Large batch sizes significantly improve large-scale training efficiency and boost final performance
given sufficient data. Yet they often lag behind smaller batch sizes in the early training stage, and
it is hard to mitigate their inherent optimization problem simply via tweaking early-stage training
hyperparameters.

In this section, we show how a batch size scheduler delivers the best of both worlds: fast early
progress reminiscent of small batches and the strong asymptotic performance of large batches.

We firstly start with a preliminary example that replace only the warm-up phase with small batch size
and show its effectiveness. Then, we introduce a linear batch size scheduler can be competitive with
both small batch training in the early stage and large batch training in terms of final performance.
Moreover, batch size scheduler can effectively enable an extremely large batch training where the
straightforward constant batch size degrades. Finally, we give a possible explanation in the perspective
of hyperparameter and training process.
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Figure 5: (a): Batch size scheduler from 0.5M to 8M. (b): Training loss curve with constant batch size
and various batch size schedulers (8M). (¢): Batch size scheduler from 0.5M to 32M. (d): Training
loss curve with constant batch size and various batch size schedulers (32M).

4.1 Preliminary Study: Warm-Up with Small Batch Size

In Sec. 3, we find that large-batch training suffers in the initial warm-up phase, and merely tuning the
warm-up length cannot fix this issue entirely. One straightforward idea is thus to do warm-up with a
small batch size first, and then switch to the target large batch size.

To verify this idea, we conduct a 2-D grid search over batch size (BS) and learning rate (LR) with
a 30B token budget. We replace the warm-up batch size with 0.5M while keeping a constant large
batch size thereafter. Results are shown in Figure 2 (b). Compared to the constant large batch size
baseline, starting a small batch size during warm-up consistently and substantially improves the final
performance when the large batch size exceeds 8M across almost all learning rates. For example,
for the largest batch size of 32M, by doing warm-up with the small batch size, we improve the best
validation loss from 2.54 to 2.20.

4.2 Batch Size Scheduler

Replacing warm-up phase with small BS has achieved a significant improvement. In this section,
we show that introducing a simple batch size scheduler strategy can further improves the large batch
training. A simple linear batch size scheduler make large batch both competitive with small batch in
the early and keep the advantage of large batch at convergence.

Similar to a learning rate scheduler, a batch size scheduler works by adjusting the batch size during
the training process. In this work, we focus on linear batch size schedulers. Formally, given an initial
batch size Bipj, a target batch size By, a start token count P, and a ramp length £, we lineary
interpolate the batch size from Bjy; at P tokens t0 Bieer at P 4 E tokens. Figure 5 (a) and (c) shows
all the batch size schedulers that we use in the experiments. As shown in Figure 5 (a), the scheduler
divides E tokens into equal-sized segments and uses a single batch size at each segment.

4.3 Results

Staring with an initial batch size of 0.5M, we begin to increase the batch size at 15B tokens; the final
target batch size is 8M. We test three different ramp lengths E' € {0B, 15B, 80B} (Figure 5 (a)).

Finding 1: Linear batch size schedulers work consistently well. Figure 5 (b) presents the results.
We find all three linear batch size schedulers perform well in the early stage, addressing the failure in
large-batch training. Then, they all converge to a similar final performance, slightly better than the
constant BS baseline, keeping the advantage of large-batch optimization.

Finding 2: Batch size schedulers enable extremely large batch training. Furthermore, for a
extremely large BS like 32M, unlike 8M, a straightforward constant BS training with 1B warm-up
tokens does not perform well at the 100B token budget. However, the BS scheduler can enable the
large batch training with 32M also enables the use of 32M, making extremely large batch training
possible (Figure 5 (d)).

Finding 3: The 0B ramp length works well without instability. Surprisingly, we find a 0B horizon
of increase, which means the BS is switched to 8M immediately from 0.5M, also performs well.
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Figure 6: (a): Gradient noise dynamics w.r.t. batch sizes (constant schedule) at the same learning
rate. (b): Gradient noise dynamics with baseline (§M) and various batch size schedulers. (¢): Adam
update direction dynamics with baseline (8M) and various batch size schedulers. (d): Population
gradient norm dynamics w.r.t. batch sizes (constant schedule) at the same learning rate.

A suddenly drastic change of BS can make the gradient a big change, which could possibly cause
instability problem in the training process. However, experiments show this aggressive strategy works
well. Due to the ease of implementation, the 0B ramp length has more potential into practical use.

In Sec. 4.4, we explain that the target batch size determines local optimization geometry, such as
gradient norms and noise levels, whereas the specific schedule shape has minimal impact. This
explains why even a schedule with sudden jump (OB ramp length) can perform well, motivating our
choice of a simple batch size scheduler.

4.4 A possible explanation

In this section, we offer a possible explanation for why different batch size schedules ultimately
converge to similar final losses via a stabilization statement. Generally speaking, The stabilization
statement argues that the local optimization geometry is determined by current hyperparameters and
enough training time.

The optimization geometry can adapt to the hyperparameters. When we use fixed hyperparame-
ters® and train the model for a certain number of tokens, the local optimization geometry will adapt
to this hyperparameter stabilize. More specifically, we suspect there is a pre-stabilized stage and a
stabilized stage during the model training. In the stabilization stage, the gradient-related quantities —
including stochastic gradient noise, population gradient norm, first moment, second moment, and the
update direction in Adam — will stabilize to a value determined by hyperparameters. And finally, the
loss plateau in stabilization phase.

We provide evidence to our argument: In Figure 6 (a), we use the gradient noise tr (X) as an example
to show that in each hyperparameter configuration, tr (¥) does stabilize, and the stabilized value
depends on hyperparameters (BS in this case).

The stabilization is universal to training history. We observe that this stabilization property does
not depend significantly on the training history. Specifically, regardless of previous hyperparameter
choices or scheduling strategies, the stabilized optimization geometry becomes consistent after
training for enough tokens using the same final hyperparameters.

Empirically, we confirm this through two experiments comparing optimization metrics across batch
size schedulers with the same final batch size. Figure 6 (b) shows the gradient noise tr (X). The
constant batch size baseline maintains a stable gradient noise from 15B to 100B tokens. In contrast,
schedulers initially exhibit increasing noise as the batch size ramps up, eventually stabilizing at the
baseline level. Figure 6 (c) shows the norm of Adam update direction ||u||. Again, all schedulers
eventually stabilize at the baseline value. However, the scheduler shape affects stabilization speed: a
slower increase in batch size results in smoother stabilization.

The length of pre-stabilization stage varies. Now, we focus on the pre-stabilization stage. The
length of this stage can vary significantly between different batch sizes. We observe that introducing
a large batch size too early prolongs this phase.

3We mainly consider learning rate and batch size here since other hyperparameters like weight decay,
momentum coefficient in Adam are fixed by default during the training.
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Figure 6 (d) shows that the gradient norm stabilizes faster for smaller batch sizes than for larger
ones, especially at a batch size of 32M. This indicates the poor early-stage performance with large
batches may result from slower stabilization, and using smaller batch sizes initially can accelerate
stabilization.

Summary. In this section, we propose a stabilization perspective to explain training dynamics and
optimization geometry under batch size scheduling. In the pre-stabilized stage, small batch size helps
to stabilize faster, and make the early stage performance better. After transitioning to a large batch
size and training further, the model adapts and benefits from the improved optimization efficiency of
large-batch training. Additionally, our stabilization perspective implies that the exact speed of batch
size scheduler is less important over a sufficiently long training period.

5 Discussion

In this section, we discuss more findings and insights from our experiments beyond the implications
on batch size scheduler strategy.

Gradient noise scale cannot predict critical batch size. McCandlish et al. [20] introduces the
gradient noise scale (GNS), defined in Section 4.4, and argue that it can be used to predict the critical
batch size (CBS). They also mentioned that GNS depends on the learning rate via a “temperature”
mechanism, and claimed that GNS prescribes an optimal batch size at any given temperature. To
verify this point, we use a linear warm-up and constant learning rate (LR), use various batch size (BS)
ranging from 0.5M to 32M, train on 300B tokens, and compute the GNS for intermediate checkpoints.
In Figure 7 (a), we firstly see that GNS gradually stabilizes with some variance, which verifies our
stabilization statement in Section 4.4 again. Surprisingly, we find the when using a BS greater than or
equal to 2M, the stabilized value is far less than the BS used, indicating that predicted CBS is around
0.3M-0.5M and a BS larger than 2M should exhibit a significant performance degradation. However,
the large BS will eventually surpass the small BS in performance as tokens processed increase even
in the per-token axis (recall Figure 1). Additionally, the stabilized GNS decreases as the BS increase.
This means the GNS cannot predict CBS in a straightforward manner and the relationship between
GNS and CBS needs rethinking.

The implicit bias of Adam: update direction primarily adapts to batch size. As we show in
Section 4.4, when we train the model with fixed LR and BS for at least a certain amount of data, the
gradient-related metric will adapt to this LR and BS, and stabilize. We further explore the functional
relationship of the stabilized value to LR and BS. In Figure 7 (b)(c), we find the stabilized norm of
Adam update direction ||u]l, i.e., magnitude of update before multiplying the LR, primarily depends
on BS and is almost independent of LR. This is unexpected since the stabilized gradient, both in terms
of signal (||g||?) and noise (tr (3)), does depend on LR at a fixed BS, while the gradient induced
Adam update are not. We attribute this phenomenon to a new form BS-related implicit bias of Adam.
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Understanding this phenomenon will probably help us figure out the algorithmic impact on optimal
BS of different optimizers.

6 Related Work

Batch size ramp-up. Early literature propose to increase the batch size during the training process
in order to reduce the number of parameter updates [4] or replace the learning rate decay [27], to
improve training efficiency. In these works, batch size ramping up to 524288 images per batch [4]
can achieve similar accuracies to small batch sizes. However, they operate in a relatively outdated
experiment setting. The most significant difference in settings is that they do multi-epoch training
while currently people use one-pass training particularly in the language models pretraining.

Recently, many technical reports on language model pretraining utilize the batch size ramp-up
technique. Specifically, Llama 3 [9] increases batch size from a initial 4M tokens to 8M at 252M
tokens, and then to 16M at 2.87T tokens. DeepSeek-V3 [3] gradually increases batch size from
12.6M to 63M in the training of the first 469B tokens, and keeps 63M afterwards. MiniMax-01 [21]
fits a batch size scaling law w.r.t. loss and doubles the batch size whenever loss reaches this fitted
line. In the specific pre-training process, they increases batch size from a initial 16M to 32M at 69B
tokens, then to 64M at 790B tokens, and finally to 128M at 4.7T tokens. MiniCPM [13] doubles
the batch size from 2M to 4M at about 500B tokens. Compared to the original batch ramp-up, these
works tend to do batch size ramp-up mainly in the early stage of training, and up to a mild global
batch size. However, They do not offer a principled guideline about using this technique.

Hyperparameter scaling laws. Beyond the scaling laws of loss w.r.t. model size and data
amount [14], and compute-optimal scaling laws [12], researchers start to study hyperparameter
scaling laws [1, 2, 13, 17, 23, 26, 30]: the relationship between optimal hyperparameters — typi-
cally learning rate and batch size — and interested independent metric, including model size, data
amount, compute, or even loss value. Serval works study the batch size scaling with expected loss
value [14, 13, 30, 26], thus they cannot predict the optimal batch size a priori. Other work study
optimal batch size as a function of model, data, or compute [1, 2, 17, 23]. Their results are typically
like optimal learning rate becomes smaller and optimal batch size becomes larger when the compute
budget increases.

Critical batch size. It was argued that there exists a critical batch size (CBS): increasing the batch
size up to the CBS results in minimal degradation, while further increasing it beyond the CBS yields
unneglectable performance degradation. Previous studies suggest that when the batch size is lower
than this critical value, the learning rate needs to be proportionally adjusted according to batch
size [8, 11]. McCandlish et al. [20] introduces the gradient noise scale, and argue that it can be used
to predict the CBS. Follow-up works talk about the efficient computation for gradient noise scale [10]
and the extension to Adam [18].

7 Limitations and Conclusion

Limitations. One limitation of our work is that we do not verify all of our findings on larger-scale
language models such as 1B or 8B, due to our limited computational resources. However, we observe
similar phenomenon based on our preliminary experiment results on 1B models, such as 1) poor
early-stage optimization of large-batch training and 2) effectiveness of batch size scheduler. In
addition, as shown in prior work about critical batch size, the optimal batch size is often independent
of model parameters. We leave more analysis about our findings on larger models to future work.
Another limitation of work is that we only focus on linear batch size schedule. Future work can study
more sophisticated batch size scheduler following prior work on learning rate scheduler.

Conclusion. Enabling extremely large batch size pre-training is a fundamental problem for efficient
modern language model pre-training. Existing empirical evidence highlights the poor optimization
dynamics and the degraded final performance of large-batch training. However, through detailed
analysis of the optimization dynamics of large-batch training over a long horizon, we show that 1)
large-batch training mainly suffers from poor its early-stage optimization, but has superior perfor-
mance in the later stage. The empirical success of our batch size scheduler, alongside our theoretical
understanding of large-batch optimization dynamics, suggests that it is promising to enable more
efficient and effective language model pre-training at extremely large batch size scales.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Sec3, Sec4, and SecS5.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: see Sec7.

Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: the paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: see Sec2.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will open source data and code.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Sec2.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Sec3, Sec4, and SecS5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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9.

10.

11.

Justification: see Sec2.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: this paper conforms it.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: see Sec7.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

16


https://neurips.cc/public/EthicsGuidelines

677

678

679

680

681
682
683
684

685
686

687
688
689

690

691
692
693

694

695

696

697
698
699

701

702
703

704
705
706
707

709
710
71

712

713
714

715

716

717

718

719
720
721
722
723
724
725

726

Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: see references.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any
important ways.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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