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Abstract

Large-batch training sizes promise near-linear speedups in language model pertain-1

ing, yet existing studies highlight its poor optimization dynamics and degraded final2

performance. In this paper, we seek to understand the failure of large-batch train-3

ing, and show that it can in fact substantially outperform conventional small-batch4

training. We first identify a critical oversight in the conventional view: large-batch5

training can substantially surpass small-batch baselines when provided sufficient6

tokens, but this advantage is often unrecognized due to its initial poor optimization7

dynamics, manifested as larger gradient norms and even worse per-step loss during8

early warm-up phases. To address this, we introduce a simple batch size scheduler9

that stabilizes and improves training at remarkably large batch sizes. Our scheduler10

scales pretraining up to batches of 32M tokens, using 3.3× fewer computes to11

achieve the superior later-stage performance of large-batch training. Detailed analy-12

ses on gradient dynamics reveal that batch size fundamentally changes optimization13

geometry. Notably, we show that classic gradient noise scale metrics fail to predict14

the optimal batch size. Our findings offer practical recipes for designing efficient15

and effective pretraining pipelines, and deepen the theoretical understanding of16

large-batch optimization dynamics in language model pre-training.17
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“large batch hurts training” 
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3.3x speed up

Figure 1: Training loss curve with different constant batch sizes and a batch size scheduler. Left:
training loss curve up to 30B tokens; Right: training loss curve up to 100B tokens.
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1 Introduction18

Training language models with extremely large batch sizes unlocks near-linear speedups through data19

parallelism, slashing wall-clock communication time on multi-node clusters — an advantage that20

is especially pronounced for Mixture-of-Experts models [31, 5]. Yet, today’s empirical evidence is21

discouraging: large-batch training frequently results in worse optimization dynamics and substantially22

degraded final model performance [15, 27, 20].23

In this paper, we seek to understand the purported failure of large-batch training, and show that24

large-batch training is in fact viable. Specifically, we find that with a simple batch size scheduler,25

large-batch size training can substantially surpass the performance of small-batch baselines.26

We first re-examine the traditional “large batch hurts training” results (Figure 1 left) and reveal its27

blind spot: when training on a sufficient amount of data, even naive constant large-batch size training28

shows clear advantages (Figure 1 right). Recent research on batch size scaling laws also supports this29

observation with the finding that optimal batch size scales primarily with data size [17, 32].30

Taking a closer look at the training dynamics, we find that large batch sizes indeed impede optimiza-31

tion in the early training stage. It may be expected that large batch sizes will converge more slowly in32

terms of token efficiency due to fewer total optimization steps. However, counterintuitively, we find33

large-batch training is worse even in terms of optimization steps, despite consuming substantially34

more tokens than the small-batch baseline. Further analysis shows that large-batch training exhibits35

unstable gradient norms in the early stage.36

To address this, we study a straightforward batch size scheduler: training with small batch sizes in the37

beginning to exploit its superior early optimization dynamics, then gradually increasing to the target38

large batch sizes to fully leverage its efficiency advantage. Specifically, we consistently improve39

training with a batch size of 8M tokens from the early stages through to completion. For extremely40

large batch sizes (e.g., 32M tokens), which initially fail within a given training budgets (e.g., 100B41

tokens), our batch size scheduler successfully enables effective large batch training.42

Through detailed analyses of optimization metrics such as gradient norms, gradient noise, and43

optimizer update direction, we offer explanations for why different batch size schedules ultimately44

converge to similar final losses via a stabilization statement. We observe that classic gradient noise45

scale [20] metrics fail to predict optimal batch sizes accurately, highlighting the need for new metrics46

or insights into large-batch optimization dynamics.47

Overall, our findings provide practical guidelines for designing more efficient pretraining strategies48

and deepen our theoretical understanding of how large-batch training dynamics influence language49

model pretraining.50

2 Background and Experiment Setup51

Batch size is an important hyperparameter in deep learning, yet its optimal tuning remains unclear [24,52

8]. Some early studies argue that large batch training can hinder model performance, particularly53

in terms of generalization, suggesting that overly large batch sizes may be suboptimal. However,54

recent studies propose that the critical batch size [20]—the maximum batch size that maintains55

computational efficiency—scales with increasing data size. This implies that in contemporary large-56

scale pretraining scenarios, larger batch sizes might be preferable. Despite this, determining the57

optimal batch size remains an open question.58

Large batch training can hinder model generalization. Using excessively large batch sizes59

in training deep neural networks can negatively impact model generalization. Keskar et al.[15]60

observed that large-batch training tends to converge to sharp minima, which generally exhibit poorer61

generalization compared to the flatter minima associated with smaller batch sizes. Takase et al.[29]62

explained this by noting that reduced gradient noise in large-batch training restricts the model’s ability63

to escape narrow minima. Similarly, Oyedotun et al. [22] argued that large batch sizes might lead to64

near-rank deficiencies in activation tensors, thereby adversely affecting the optimization process and65

generalization capability.66

Optimal batch size scales with the data size. On the other hand, recent research has started to67

explore batch scaling laws, examining how batch size relates to model size, data size, and compute.68

2



Notably, Li et al.[17] and Zhang et al.[32] concurrently found that the optimal or critical batch69

size primarily depends on the amount of data rather than model size. Consequently, as training70

configurations scale up, larger batch sizes tend to offer better optimization.71

Comparing training loss curves between small and large batches. Batch size comparisons72

typically focus on two metrics: per-token and per-step performance. The per-token axis measures73

loss against processed tokens, while the per-step axis measures loss against update steps. Commonly,74

large batch sizes perform better per-step due to more accurate gradient estimates but worse per-token75

due to fewer updates. However, the observed crossover in per-token performance highlights that76

early-stage results can be misleading. This finding prompts us to reconsider how to fairly evaluate77

small versus large batch sizes.78

2.1 Setup79

Experiment Setup. We train a series of auto-regressive causal language models in 164M. We set80

the number of Transformer layers to 12 and the hidden dimension to 768. We use a context length81

of 1024, SwiGLU MLP [25], Rotary positional embedding [28], RMSNorm, and untied embedding82

parameters. We train our model on the Pile dataset [6] with different token budgets, and we adopt the83

GPT-2 tokenizer. We use the AdamW optimizer [16, 19] with fixed hyperparameters β1=0.9, β2=0.95,84

a (coupled) weight decay of 0.1, and a gradient clipping of 1. We use batch size (BS) ranging from85

0.5M to 32M. We use a warm-up and stable learning rate schedule by default. We use the fixed data86

amount strategy in warm-up phase for different BS by default. We use 1B tokens in warm-up for87

100B budget, and 0.3B tokens for 30B budget. We train on 30B tokens in the grid search experiments88

and 100B for other experiments (majority). We use 4090, H200 GPUs for our experiments.89

Notation. Let D be the data distribution and L(w,x) be the loss function where w denotes the90

model parameters and x denotes one sequence sampled in D. Let g̃x = ∇L(w,x) be the (stochastic)91

gradient with one sequence in D 1. We remove the dependence on x where it does not matter92

in the context. Let g := Ex[∇L(w,x)] be the population gradient, and we have g := E[g̃].93

Then, the population gradient norm square is ∥g∥2. Let the gradient noise covariance matrix be94

Σ := Ex[(g̃ − g)(g̃ − g)⊤] and we mainly care about its trace tr (Σ), and call it gradient noise.95

The gradient noise scale [20] is defined as Bsimple := tr (Σ) /∥g∥2. Denote the first moment and96

second moment in Adam by m and v, respectively. The Adam update direction is defined by97

u := m/
√
v + ε, where the division is element-wise.98

3 Analyzing the Failure of Large Batch Optimization99

In this section, we seek to analyze and locate the failure of large-batch training. We first systematically100

verify that large batch size optimization has a significant performance degradation in the early stage101

(Sec. 3.1). Next, we focus on analyzing large-batch optimization dynamics in the warm-up phase,102

which is important for early-stage training (Sec. 3.2). Based on the experiments on different warm-up103

strategies, we identify that it is not suitable to do warm-up with a large batch size.104

3.1 Large-batch Optimization Fails in the Early Stage105

As illustrated in Figure 1, although large-batch training can eventually surpass the small-batch106

baseline once consuming sufficient training tokens, it lags far behind in the early stage before the two107

loss curves cross2.108

To confirm this is not due to our bad hyperparameter setup for the large-batch setting, we conduct109

a 2-D grid search over batch size and learning rate with 30B training tokens. We focus on tuning110

learning rates based on the hyperparameter scaling: the optimal learning rate often significantly111

changes with batch size [2]. Figure 2 left presents the results. Acorss the entire grid, every large-batch112

run is consistently and substantially worse than small-batch baselines.113

1In most of the time, we consider the token-level batch size. But, when we estimate the gradient noise and
gradient norm, we use the sequence-level batch size instead of token-level batch size There is basically a scale
difference between sequence-level and token-level estimators.

2The ‘early stage’ here can be understood as the time before a critical point when the loss curve of large BS
and small BS cross over. We will discuss more about the properties of ‘early stage’ in Section 4.4.
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Figure 2: Validation loss w.r.t. batch size and learning rate with 30B tokens. (a): constant batch size;
(b): using small batch (0.5M) in the warm-up and switch back to large batch size after warm-up.

nips25_all-in-warmup_v0_wandb

Figure 3: (a): Training loss curve w.r.t. batch size with the same warm-up tokens. (b): Training loss
curve w.r.t. batch size with the same warm-up steps. (a)(b) share the same legend. (c): Training loss
curve w.r.t. batch size in per-step axis. A 0.3B fixed-token warm-up is used. (d): Training loss curve
comparing fixed-step and fixed-token warm-up. Comapred to 0.5M BS with 1B warm-up tokens, 8M
BS + 1B warm-up is fixed-token strategy, 8M BS + 16B warm-up is fixed-step strategy.

A natural explanation is that, a fixed token budget gives far fewer updates to a large batch size: on114

30B tokens, a batch size of 0.5M yields roughly 57,000 optimization steps, while a batch size of 32M115

yields only 900 steps. One may therefore expect a large batch size to shine once the optimization step116

is equalized due to its more accurate gradients. However, empirical results are in fact counterintuitive:117

as shown in Figure 3(c), even when we match the number of optimization steps, large-batch training118

still does not necessarily perform better than small-batch baselines. For example, a batch size of 4M119

tokens yields the best per-step loss curves, even outperforming the counterparts of larger batch —120

despite consuming up to 8× more tokens.121

Taken together, these results indicate a clear degradation of large-batch optimization in the early stage122

of training.123

3.2 A Closer Look at the Warm-Up Phase124

Warm-up is widely recognized as critical for stabilizing early optimization dynamics [7]. We therefore125

take a closer look at this phase to further analyze the failure of large-batch training.126

Fixed-token Warm-Up We first experiment with 0.3B warm-up tokens across different batch sizes.127

Under this setting, the number of steps during warm-up scales inversely with the batch size. For128

example, while 0.3B warm-up tokens translate to 600 steps with a batch size of 0.5M, it is only about129

10 steps with a batch size of 32M. Results are shown in Figure 3. As we can see, large-batch training130

exits the warmup phase with a significantly higher loss than small-batch baselines. Besides loss, the131

drawback of fixed-token warm-up for large-batch training also exhibits in gradients. As shown in132

Figure 4 (a), the gradient of large-batch training has not stabilized yet after warm-up phase, and is133
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Figure 4: Population gradient norm square w.r.t. batch size with the same warm-up tokens (Left) and
the same warm-up steps (Right).

still about 10× bigger than the small-batch baseline. Thus, under a fixed-token setting, warm-up134

contributes far less to large batches than to small ones.135

Fixed-step Warm-Up What if we instead equalize the steps in warm-up across different batch sizes?136

As shown in Figure 4 (b), doing so aligns the per-step loss curves across batch sizes. Moreover,137

as shown in Figure 4 (b), gradient norm all converges in a similar speed and to the same order or138

magnitude, and stabilizes.139

However, this remedy is costly: the fixed step warm-up strategy will consume many more tokens for140

large batch sizes. For example, to match 600 warm-up steps, a batch size of 32M would consume141

64B tokens. This might be more than the total token budget, or leave us many few tokens for the142

remaining primary optimization stage.143

Furthermore, while fixed-step warm-up achieves better performance in the warm-up phase than fixed-144

token warm-up, we find that it leads to worse performance in the later training stage. Specifically, as145

shown in Figure 3 (d), when training with a large batch size of 8M tokens, the fixed-step warm-up146

setting (blue line) converges slower than the fixed-data warm-up setting (green line).147

3.3 Summary148

Based on our experiment results, we conclude that large-batch optimization fails at the early stage149

of training, and warm-up is one of the important factors that causes significant impacts on the150

performance of large-batch training.151

However, both fixed-token and fixed-step warm-up schedules show inherent limitations. In short, it is152

ill-advised to warm up with a large batch size.153

4 Batch Size Scheduler Unlocks Effective Large-Batch Training154

Large batch sizes significantly improve large-scale training efficiency and boost final performance155

given sufficient data. Yet they often lag behind smaller batch sizes in the early training stage, and156

it is hard to mitigate their inherent optimization problem simply via tweaking early-stage training157

hyperparameters.158

In this section, we show how a batch size scheduler delivers the best of both worlds: fast early159

progress reminiscent of small batches and the strong asymptotic performance of large batches.160

We firstly start with a preliminary example that replace only the warm-up phase with small batch size161

and show its effectiveness. Then, we introduce a linear batch size scheduler can be competitive with162

both small batch training in the early stage and large batch training in terms of final performance.163

Moreover, batch size scheduler can effectively enable an extremely large batch training where the164

straightforward constant batch size degrades. Finally, we give a possible explanation in the perspective165

of hyperparameter and training process.166
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Figure 5: (a): Batch size scheduler from 0.5M to 8M. (b): Training loss curve with constant batch size
and various batch size schedulers (8M). (c): Batch size scheduler from 0.5M to 32M. (d): Training
loss curve with constant batch size and various batch size schedulers (32M).

4.1 Preliminary Study: Warm-Up with Small Batch Size167

In Sec. 3, we find that large-batch training suffers in the initial warm-up phase, and merely tuning the168

warm-up length cannot fix this issue entirely. One straightforward idea is thus to do warm-up with a169

small batch size first, and then switch to the target large batch size.170

To verify this idea, we conduct a 2-D grid search over batch size (BS) and learning rate (LR) with171

a 30B token budget. We replace the warm-up batch size with 0.5M while keeping a constant large172

batch size thereafter. Results are shown in Figure 2 (b). Compared to the constant large batch size173

baseline, starting a small batch size during warm-up consistently and substantially improves the final174

performance when the large batch size exceeds 8M across almost all learning rates. For example,175

for the largest batch size of 32M, by doing warm-up with the small batch size, we improve the best176

validation loss from 2.54 to 2.20.177

4.2 Batch Size Scheduler178

Replacing warm-up phase with small BS has achieved a significant improvement. In this section,179

we show that introducing a simple batch size scheduler strategy can further improves the large batch180

training. A simple linear batch size scheduler make large batch both competitive with small batch in181

the early and keep the advantage of large batch at convergence.182

Similar to a learning rate scheduler, a batch size scheduler works by adjusting the batch size during183

the training process. In this work, we focus on linear batch size schedulers. Formally, given an initial184

batch size Binit, a target batch size Btarget, a start token count P , and a ramp length E, we lineary185

interpolate the batch size from Binit at P tokens to Btarget at P +E tokens. Figure 5 (a) and (c) shows186

all the batch size schedulers that we use in the experiments. As shown in Figure 5 (a), the scheduler187

divides E tokens into equal-sized segments and uses a single batch size at each segment.188

4.3 Results189

Staring with an initial batch size of 0.5M, we begin to increase the batch size at 15B tokens; the final190

target batch size is 8M. We test three different ramp lengths E ∈ {0B, 15B, 80B} (Figure 5 (a)).191

Finding 1: Linear batch size schedulers work consistently well. Figure 5 (b) presents the results.192

We find all three linear batch size schedulers perform well in the early stage, addressing the failure in193

large-batch training. Then, they all converge to a similar final performance, slightly better than the194

constant BS baseline, keeping the advantage of large-batch optimization.195

Finding 2: Batch size schedulers enable extremely large batch training. Furthermore, for a196

extremely large BS like 32M, unlike 8M, a straightforward constant BS training with 1B warm-up197

tokens does not perform well at the 100B token budget. However, the BS scheduler can enable the198

large batch training with 32M also enables the use of 32M, making extremely large batch training199

possible (Figure 5 (d)).200

Finding 3: The 0B ramp length works well without instability. Surprisingly, we find a 0B horizon201

of increase, which means the BS is switched to 8M immediately from 0.5M, also performs well.202
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nips25_stabilization

Figure 6: (a): Gradient noise dynamics w.r.t. batch sizes (constant schedule) at the same learning
rate. (b): Gradient noise dynamics with baseline (8M) and various batch size schedulers. (c): Adam
update direction dynamics with baseline (8M) and various batch size schedulers. (d): Population
gradient norm dynamics w.r.t. batch sizes (constant schedule) at the same learning rate.

A suddenly drastic change of BS can make the gradient a big change, which could possibly cause203

instability problem in the training process. However, experiments show this aggressive strategy works204

well. Due to the ease of implementation, the 0B ramp length has more potential into practical use.205

In Sec. 4.4, we explain that the target batch size determines local optimization geometry, such as206

gradient norms and noise levels, whereas the specific schedule shape has minimal impact. This207

explains why even a schedule with sudden jump (0B ramp length) can perform well, motivating our208

choice of a simple batch size scheduler.209

4.4 A possible explanation210

In this section, we offer a possible explanation for why different batch size schedules ultimately211

converge to similar final losses via a stabilization statement. Generally speaking, The stabilization212

statement argues that the local optimization geometry is determined by current hyperparameters and213

enough training time.214

The optimization geometry can adapt to the hyperparameters. When we use fixed hyperparame-215

ters3 and train the model for a certain number of tokens, the local optimization geometry will adapt216

to this hyperparameter stabilize. More specifically, we suspect there is a pre-stabilized stage and a217

stabilized stage during the model training. In the stabilization stage, the gradient-related quantities –218

including stochastic gradient noise, population gradient norm, first moment, second moment, and the219

update direction in Adam – will stabilize to a value determined by hyperparameters. And finally, the220

loss plateau in stabilization phase.221

We provide evidence to our argument: In Figure 6 (a), we use the gradient noise tr (Σ) as an example222

to show that in each hyperparameter configuration, tr (Σ) does stabilize, and the stabilized value223

depends on hyperparameters (BS in this case).224

The stabilization is universal to training history. We observe that this stabilization property does225

not depend significantly on the training history. Specifically, regardless of previous hyperparameter226

choices or scheduling strategies, the stabilized optimization geometry becomes consistent after227

training for enough tokens using the same final hyperparameters.228

Empirically, we confirm this through two experiments comparing optimization metrics across batch229

size schedulers with the same final batch size. Figure 6 (b) shows the gradient noise tr (Σ). The230

constant batch size baseline maintains a stable gradient noise from 15B to 100B tokens. In contrast,231

schedulers initially exhibit increasing noise as the batch size ramps up, eventually stabilizing at the232

baseline level. Figure 6 (c) shows the norm of Adam update direction ∥u∥. Again, all schedulers233

eventually stabilize at the baseline value. However, the scheduler shape affects stabilization speed: a234

slower increase in batch size results in smoother stabilization.235

The length of pre-stabilization stage varies. Now, we focus on the pre-stabilization stage. The236

length of this stage can vary significantly between different batch sizes. We observe that introducing237

a large batch size too early prolongs this phase.238

3We mainly consider learning rate and batch size here since other hyperparameters like weight decay,
momentum coefficient in Adam are fixed by default during the training.

7



nips25_discussion

Figure 7: (a): Gradient noise scale (the predictor for critical batch size) dynamics w.r.t. batch sizes at
the same learning rate. (b): Adam update direction dynamics w.r.t. batch sizes at the same learning
rate. (c): Adam update direction dynamics w.r.t. learning rates at the same batch size.

Figure 6 (d) shows that the gradient norm stabilizes faster for smaller batch sizes than for larger239

ones, especially at a batch size of 32M. This indicates the poor early-stage performance with large240

batches may result from slower stabilization, and using smaller batch sizes initially can accelerate241

stabilization.242

Summary. In this section, we propose a stabilization perspective to explain training dynamics and243

optimization geometry under batch size scheduling. In the pre-stabilized stage, small batch size helps244

to stabilize faster, and make the early stage performance better. After transitioning to a large batch245

size and training further, the model adapts and benefits from the improved optimization efficiency of246

large-batch training. Additionally, our stabilization perspective implies that the exact speed of batch247

size scheduler is less important over a sufficiently long training period.248

5 Discussion249

In this section, we discuss more findings and insights from our experiments beyond the implications250

on batch size scheduler strategy.251

Gradient noise scale cannot predict critical batch size. McCandlish et al. [20] introduces the252

gradient noise scale (GNS), defined in Section 4.4, and argue that it can be used to predict the critical253

batch size (CBS). They also mentioned that GNS depends on the learning rate via a “temperature”254

mechanism, and claimed that GNS prescribes an optimal batch size at any given temperature. To255

verify this point, we use a linear warm-up and constant learning rate (LR), use various batch size (BS)256

ranging from 0.5M to 32M, train on 300B tokens, and compute the GNS for intermediate checkpoints.257

In Figure 7 (a), we firstly see that GNS gradually stabilizes with some variance, which verifies our258

stabilization statement in Section 4.4 again. Surprisingly, we find the when using a BS greater than or259

equal to 2M, the stabilized value is far less than the BS used, indicating that predicted CBS is around260

0.3M-0.5M and a BS larger than 2M should exhibit a significant performance degradation. However,261

the large BS will eventually surpass the small BS in performance as tokens processed increase even262

in the per-token axis (recall Figure 1). Additionally, the stabilized GNS decreases as the BS increase.263

This means the GNS cannot predict CBS in a straightforward manner and the relationship between264

GNS and CBS needs rethinking.265

The implicit bias of Adam: update direction primarily adapts to batch size. As we show in266

Section 4.4, when we train the model with fixed LR and BS for at least a certain amount of data, the267

gradient-related metric will adapt to this LR and BS, and stabilize. We further explore the functional268

relationship of the stabilized value to LR and BS. In Figure 7 (b)(c), we find the stabilized norm of269

Adam update direction ∥u∥, i.e., magnitude of update before multiplying the LR, primarily depends270

on BS and is almost independent of LR. This is unexpected since the stabilized gradient, both in terms271

of signal (∥g∥2) and noise (tr (Σ)), does depend on LR at a fixed BS, while the gradient induced272

Adam update are not. We attribute this phenomenon to a new form BS-related implicit bias of Adam.273
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Understanding this phenomenon will probably help us figure out the algorithmic impact on optimal274

BS of different optimizers.275

6 Related Work276

Batch size ramp-up. Early literature propose to increase the batch size during the training process277

in order to reduce the number of parameter updates [4] or replace the learning rate decay [27], to278

improve training efficiency. In these works, batch size ramping up to 524288 images per batch [4]279

can achieve similar accuracies to small batch sizes. However, they operate in a relatively outdated280

experiment setting. The most significant difference in settings is that they do multi-epoch training281

while currently people use one-pass training particularly in the language models pretraining.282

Recently, many technical reports on language model pretraining utilize the batch size ramp-up283

technique. Specifically, Llama 3 [9] increases batch size from a initial 4M tokens to 8M at 252M284

tokens, and then to 16M at 2.87T tokens. DeepSeek-V3 [3] gradually increases batch size from285

12.6M to 63M in the training of the first 469B tokens, and keeps 63M afterwards. MiniMax-01 [21]286

fits a batch size scaling law w.r.t. loss and doubles the batch size whenever loss reaches this fitted287

line. In the specific pre-training process, they increases batch size from a initial 16M to 32M at 69B288

tokens, then to 64M at 790B tokens, and finally to 128M at 4.7T tokens. MiniCPM [13] doubles289

the batch size from 2M to 4M at about 500B tokens. Compared to the original batch ramp-up, these290

works tend to do batch size ramp-up mainly in the early stage of training, and up to a mild global291

batch size. However, They do not offer a principled guideline about using this technique.292

Hyperparameter scaling laws. Beyond the scaling laws of loss w.r.t. model size and data293

amount [14], and compute-optimal scaling laws [12], researchers start to study hyperparameter294

scaling laws [1, 2, 13, 17, 23, 26, 30]: the relationship between optimal hyperparameters – typi-295

cally learning rate and batch size – and interested independent metric, including model size, data296

amount, compute, or even loss value. Serval works study the batch size scaling with expected loss297

value [14, 13, 30, 26], thus they cannot predict the optimal batch size a priori. Other work study298

optimal batch size as a function of model, data, or compute [1, 2, 17, 23]. Their results are typically299

like optimal learning rate becomes smaller and optimal batch size becomes larger when the compute300

budget increases.301

Critical batch size. It was argued that there exists a critical batch size (CBS): increasing the batch302

size up to the CBS results in minimal degradation, while further increasing it beyond the CBS yields303

unneglectable performance degradation. Previous studies suggest that when the batch size is lower304

than this critical value, the learning rate needs to be proportionally adjusted according to batch305

size [8, 11]. McCandlish et al. [20] introduces the gradient noise scale, and argue that it can be used306

to predict the CBS. Follow-up works talk about the efficient computation for gradient noise scale [10]307

and the extension to Adam [18].308

7 Limitations and Conclusion309

Limitations. One limitation of our work is that we do not verify all of our findings on larger-scale310

language models such as 1B or 8B, due to our limited computational resources. However, we observe311

similar phenomenon based on our preliminary experiment results on 1B models, such as 1) poor312

early-stage optimization of large-batch training and 2) effectiveness of batch size scheduler. In313

addition, as shown in prior work about critical batch size, the optimal batch size is often independent314

of model parameters. We leave more analysis about our findings on larger models to future work.315

Another limitation of work is that we only focus on linear batch size schedule. Future work can study316

more sophisticated batch size scheduler following prior work on learning rate scheduler.317

Conclusion. Enabling extremely large batch size pre-training is a fundamental problem for efficient318

modern language model pre-training. Existing empirical evidence highlights the poor optimization319

dynamics and the degraded final performance of large-batch training. However, through detailed320

analysis of the optimization dynamics of large-batch training over a long horizon, we show that 1)321

large-batch training mainly suffers from poor its early-stage optimization, but has superior perfor-322

mance in the later stage. The empirical success of our batch size scheduler, alongside our theoretical323

understanding of large-batch optimization dynamics, suggests that it is promising to enable more324

efficient and effective language model pre-training at extremely large batch size scales.325
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NeurIPS Paper Checklist426

The checklist is designed to encourage best practices for responsible machine learning research,427

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove428

the checklist: The papers not including the checklist will be desk rejected. The checklist should429

follow the references and follow the (optional) supplemental material. The checklist does NOT count430

towards the page limit.431

Please read the checklist guidelines carefully for information on how to answer these questions. For432

each question in the checklist:433

• You should answer [Yes] , [No] , or [NA] .434

• [NA] means either that the question is Not Applicable for that particular paper or the435

relevant information is Not Available.436

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).437

The checklist answers are an integral part of your paper submission. They are visible to the438

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it439

(after eventual revisions) with the final version of your paper, and its final version will be published440

with the paper.441

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.442

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a443

proper justification is given (e.g., "error bars are not reported because it would be too computationally444

expensive" or "we were unable to find the license for the dataset we used"). In general, answering445

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we446

acknowledge that the true answer is often more nuanced, so please just use your best judgment and447

write a justification to elaborate. All supporting evidence can appear either in the main paper or the448

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification449

please point to the section(s) where related material for the question can be found.450

IMPORTANT, please:451

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",452

• Keep the checklist subsection headings, questions/answers and guidelines below.453

• Do not modify the questions and only use the provided macros for your answers.454

1. Claims455

Question: Do the main claims made in the abstract and introduction accurately reflect the456

paper’s contributions and scope?457

Answer: [Yes]458

Justification: See Sec3, Sec4, and Sec5.459

Guidelines:460

• The answer NA means that the abstract and introduction do not include the claims461

made in the paper.462

• The abstract and/or introduction should clearly state the claims made, including the463

contributions made in the paper and important assumptions and limitations. A No or464

NA answer to this question will not be perceived well by the reviewers.465
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• The claims made should match theoretical and experimental results, and reflect how466

much the results can be expected to generalize to other settings.467

• It is fine to include aspirational goals as motivation as long as it is clear that these goals468

are not attained by the paper.469

2. Limitations470

Question: Does the paper discuss the limitations of the work performed by the authors?471

Answer: [Yes]472

Justification: see Sec7.473

Guidelines:474

• The answer NA means that the paper has no limitation while the answer No means that475

the paper has limitations, but those are not discussed in the paper.476

• The authors are encouraged to create a separate "Limitations" section in their paper.477

• The paper should point out any strong assumptions and how robust the results are to478

violations of these assumptions (e.g., independence assumptions, noiseless settings,479

model well-specification, asymptotic approximations only holding locally). The authors480

should reflect on how these assumptions might be violated in practice and what the481

implications would be.482

• The authors should reflect on the scope of the claims made, e.g., if the approach was483

only tested on a few datasets or with a few runs. In general, empirical results often484

depend on implicit assumptions, which should be articulated.485

• The authors should reflect on the factors that influence the performance of the approach.486

For example, a facial recognition algorithm may perform poorly when image resolution487

is low or images are taken in low lighting. Or a speech-to-text system might not be488

used reliably to provide closed captions for online lectures because it fails to handle489

technical jargon.490

• The authors should discuss the computational efficiency of the proposed algorithms491

and how they scale with dataset size.492

• If applicable, the authors should discuss possible limitations of their approach to493

address problems of privacy and fairness.494

• While the authors might fear that complete honesty about limitations might be used by495

reviewers as grounds for rejection, a worse outcome might be that reviewers discover496

limitations that aren’t acknowledged in the paper. The authors should use their best497

judgment and recognize that individual actions in favor of transparency play an impor-498

tant role in developing norms that preserve the integrity of the community. Reviewers499

will be specifically instructed to not penalize honesty concerning limitations.500

3. Theory assumptions and proofs501

Question: For each theoretical result, does the paper provide the full set of assumptions and502

a complete (and correct) proof?503

Answer: [NA]504

Justification: the paper does not include theoretical results.505

Guidelines:506

• The answer NA means that the paper does not include theoretical results.507

• All the theorems, formulas, and proofs in the paper should be numbered and cross-508

referenced.509

• All assumptions should be clearly stated or referenced in the statement of any theorems.510

• The proofs can either appear in the main paper or the supplemental material, but if511

they appear in the supplemental material, the authors are encouraged to provide a short512

proof sketch to provide intuition.513

• Inversely, any informal proof provided in the core of the paper should be complemented514

by formal proofs provided in appendix or supplemental material.515

• Theorems and Lemmas that the proof relies upon should be properly referenced.516

4. Experimental result reproducibility517
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-518

perimental results of the paper to the extent that it affects the main claims and/or conclusions519

of the paper (regardless of whether the code and data are provided or not)?520

Answer: [Yes]521

Justification: see Sec2.522

Guidelines:523

• The answer NA means that the paper does not include experiments.524

• If the paper includes experiments, a No answer to this question will not be perceived525

well by the reviewers: Making the paper reproducible is important, regardless of526

whether the code and data are provided or not.527

• If the contribution is a dataset and/or model, the authors should describe the steps taken528

to make their results reproducible or verifiable.529

• Depending on the contribution, reproducibility can be accomplished in various ways.530

For example, if the contribution is a novel architecture, describing the architecture fully531

might suffice, or if the contribution is a specific model and empirical evaluation, it may532

be necessary to either make it possible for others to replicate the model with the same533

dataset, or provide access to the model. In general. releasing code and data is often534

one good way to accomplish this, but reproducibility can also be provided via detailed535

instructions for how to replicate the results, access to a hosted model (e.g., in the case536

of a large language model), releasing of a model checkpoint, or other means that are537

appropriate to the research performed.538

• While NeurIPS does not require releasing code, the conference does require all submis-539

sions to provide some reasonable avenue for reproducibility, which may depend on the540

nature of the contribution. For example541

(a) If the contribution is primarily a new algorithm, the paper should make it clear how542

to reproduce that algorithm.543

(b) If the contribution is primarily a new model architecture, the paper should describe544

the architecture clearly and fully.545

(c) If the contribution is a new model (e.g., a large language model), then there should546

either be a way to access this model for reproducing the results or a way to reproduce547

the model (e.g., with an open-source dataset or instructions for how to construct548

the dataset).549

(d) We recognize that reproducibility may be tricky in some cases, in which case550

authors are welcome to describe the particular way they provide for reproducibility.551

In the case of closed-source models, it may be that access to the model is limited in552

some way (e.g., to registered users), but it should be possible for other researchers553

to have some path to reproducing or verifying the results.554

5. Open access to data and code555

Question: Does the paper provide open access to the data and code, with sufficient instruc-556

tions to faithfully reproduce the main experimental results, as described in supplemental557

material?558

Answer: [Yes]559

Justification: We will open source data and code.560

Guidelines:561

• The answer NA means that paper does not include experiments requiring code.562

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/563

public/guides/CodeSubmissionPolicy) for more details.564

• While we encourage the release of code and data, we understand that this might not be565

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not566

including code, unless this is central to the contribution (e.g., for a new open-source567

benchmark).568

• The instructions should contain the exact command and environment needed to run to569

reproduce the results. See the NeurIPS code and data submission guidelines (https:570

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.571
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• The authors should provide instructions on data access and preparation, including how572

to access the raw data, preprocessed data, intermediate data, and generated data, etc.573

• The authors should provide scripts to reproduce all experimental results for the new574

proposed method and baselines. If only a subset of experiments are reproducible, they575

should state which ones are omitted from the script and why.576

• At submission time, to preserve anonymity, the authors should release anonymized577

versions (if applicable).578

• Providing as much information as possible in supplemental material (appended to the579

paper) is recommended, but including URLs to data and code is permitted.580

6. Experimental setting/details581

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-582

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the583

results?584

Answer: [Yes]585

Justification: See Sec2.586

Guidelines:587

• The answer NA means that the paper does not include experiments.588

• The experimental setting should be presented in the core of the paper to a level of detail589

that is necessary to appreciate the results and make sense of them.590

• The full details can be provided either with the code, in appendix, or as supplemental591

material.592

7. Experiment statistical significance593

Question: Does the paper report error bars suitably and correctly defined or other appropriate594

information about the statistical significance of the experiments?595

Answer: [Yes]596

Justification: See Sec3, Sec4, and Sec5.597

Guidelines:598

• The answer NA means that the paper does not include experiments.599

• The authors should answer "Yes" if the results are accompanied by error bars, confi-600

dence intervals, or statistical significance tests, at least for the experiments that support601

the main claims of the paper.602

• The factors of variability that the error bars are capturing should be clearly stated (for603

example, train/test split, initialization, random drawing of some parameter, or overall604

run with given experimental conditions).605

• The method for calculating the error bars should be explained (closed form formula,606

call to a library function, bootstrap, etc.)607

• The assumptions made should be given (e.g., Normally distributed errors).608

• It should be clear whether the error bar is the standard deviation or the standard error609

of the mean.610

• It is OK to report 1-sigma error bars, but one should state it. The authors should611

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis612

of Normality of errors is not verified.613

• For asymmetric distributions, the authors should be careful not to show in tables or614

figures symmetric error bars that would yield results that are out of range (e.g. negative615

error rates).616

• If error bars are reported in tables or plots, The authors should explain in the text how617

they were calculated and reference the corresponding figures or tables in the text.618

8. Experiments compute resources619

Question: For each experiment, does the paper provide sufficient information on the com-620

puter resources (type of compute workers, memory, time of execution) needed to reproduce621

the experiments?622

Answer: [Yes]623
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Justification: see Sec2.624

Guidelines:625

• The answer NA means that the paper does not include experiments.626

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,627

or cloud provider, including relevant memory and storage.628

• The paper should provide the amount of compute required for each of the individual629

experimental runs as well as estimate the total compute.630

• The paper should disclose whether the full research project required more compute631

than the experiments reported in the paper (e.g., preliminary or failed experiments that632

didn’t make it into the paper).633

9. Code of ethics634

Question: Does the research conducted in the paper conform, in every respect, with the635

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?636

Answer: [Yes]637

Justification: this paper conforms it.638

Guidelines:639

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.640

• If the authors answer No, they should explain the special circumstances that require a641

deviation from the Code of Ethics.642

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-643

eration due to laws or regulations in their jurisdiction).644

10. Broader impacts645

Question: Does the paper discuss both potential positive societal impacts and negative646

societal impacts of the work performed?647

Answer: [Yes]648

Justification: see Sec7.649

Guidelines:650

• The answer NA means that there is no societal impact of the work performed.651

• If the authors answer NA or No, they should explain why their work has no societal652

impact or why the paper does not address societal impact.653

• Examples of negative societal impacts include potential malicious or unintended uses654

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations655

(e.g., deployment of technologies that could make decisions that unfairly impact specific656

groups), privacy considerations, and security considerations.657

• The conference expects that many papers will be foundational research and not tied658

to particular applications, let alone deployments. However, if there is a direct path to659

any negative applications, the authors should point it out. For example, it is legitimate660

to point out that an improvement in the quality of generative models could be used to661

generate deepfakes for disinformation. On the other hand, it is not needed to point out662

that a generic algorithm for optimizing neural networks could enable people to train663

models that generate Deepfakes faster.664

• The authors should consider possible harms that could arise when the technology is665

being used as intended and functioning correctly, harms that could arise when the666

technology is being used as intended but gives incorrect results, and harms following667

from (intentional or unintentional) misuse of the technology.668

• If there are negative societal impacts, the authors could also discuss possible mitigation669

strategies (e.g., gated release of models, providing defenses in addition to attacks,670

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from671

feedback over time, improving the efficiency and accessibility of ML).672

11. Safeguards673

Question: Does the paper describe safeguards that have been put in place for responsible674

release of data or models that have a high risk for misuse (e.g., pretrained language models,675

image generators, or scraped datasets)?676
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Answer: [NA]677

Justification: the paper poses no such risks.678

Guidelines:679

• The answer NA means that the paper poses no such risks.680

• Released models that have a high risk for misuse or dual-use should be released with681

necessary safeguards to allow for controlled use of the model, for example by requiring682

that users adhere to usage guidelines or restrictions to access the model or implementing683

safety filters.684

• Datasets that have been scraped from the Internet could pose safety risks. The authors685

should describe how they avoided releasing unsafe images.686

• We recognize that providing effective safeguards is challenging, and many papers do687

not require this, but we encourage authors to take this into account and make a best688

faith effort.689

12. Licenses for existing assets690

Question: Are the creators or original owners of assets (e.g., code, data, models), used in691

the paper, properly credited and are the license and terms of use explicitly mentioned and692

properly respected?693

Answer: [Yes]694

Justification: see references.695

Guidelines:696

• The answer NA means that the paper does not use existing assets.697

• The authors should cite the original paper that produced the code package or dataset.698

• The authors should state which version of the asset is used and, if possible, include a699

URL.700

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.701

• For scraped data from a particular source (e.g., website), the copyright and terms of702

service of that source should be provided.703

• If assets are released, the license, copyright information, and terms of use in the704

package should be provided. For popular datasets, paperswithcode.com/datasets705

has curated licenses for some datasets. Their licensing guide can help determine the706

license of a dataset.707

• For existing datasets that are re-packaged, both the original license and the license of708

the derived asset (if it has changed) should be provided.709

• If this information is not available online, the authors are encouraged to reach out to710

the asset’s creators.711

13. New assets712

Question: Are new assets introduced in the paper well documented and is the documentation713

provided alongside the assets?714

Answer: [NA]715

Justification: the paper does not release new assets.716

Guidelines:717

• The answer NA means that the paper does not release new assets.718

• Researchers should communicate the details of the dataset/code/model as part of their719

submissions via structured templates. This includes details about training, license,720

limitations, etc.721

• The paper should discuss whether and how consent was obtained from people whose722

asset is used.723

• At submission time, remember to anonymize your assets (if applicable). You can either724

create an anonymized URL or include an anonymized zip file.725

14. Crowdsourcing and research with human subjects726
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Question: For crowdsourcing experiments and research with human subjects, does the paper727

include the full text of instructions given to participants and screenshots, if applicable, as728

well as details about compensation (if any)?729

Answer: [NA]730

Justification: the paper does not involve crowdsourcing nor research with human subjects.731

Guidelines:732

• The answer NA means that the paper does not involve crowdsourcing nor research with733

human subjects.734

• Including this information in the supplemental material is fine, but if the main contribu-735

tion of the paper involves human subjects, then as much detail as possible should be736

included in the main paper.737

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,738

or other labor should be paid at least the minimum wage in the country of the data739

collector.740

15. Institutional review board (IRB) approvals or equivalent for research with human741

subjects742

Question: Does the paper describe potential risks incurred by study participants, whether743

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)744

approvals (or an equivalent approval/review based on the requirements of your country or745

institution) were obtained?746

Answer: [NA]747

Justification: the paper does not involve crowdsourcing nor research with human subjects748

Guidelines:749

• The answer NA means that the paper does not involve crowdsourcing nor research with750

human subjects.751

• Depending on the country in which research is conducted, IRB approval (or equivalent)752

may be required for any human subjects research. If you obtained IRB approval, you753

should clearly state this in the paper.754

• We recognize that the procedures for this may vary significantly between institutions755

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the756

guidelines for their institution.757

• For initial submissions, do not include any information that would break anonymity (if758

applicable), such as the institution conducting the review.759

16. Declaration of LLM usage760

Question: Does the paper describe the usage of LLMs if it is an important, original, or761

non-standard component of the core methods in this research? Note that if the LLM is used762

only for writing, editing, or formatting purposes and does not impact the core methodology,763

scientific rigorousness, or originality of the research, declaration is not required.764

Answer: [NA]765

Justification: the core method development in this research does not involve LLMs as any766

important ways.767

Guidelines:768

• The answer NA means that the core method development in this research does not769

involve LLMs as any important, original, or non-standard components.770

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)771

for what should or should not be described.772
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