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ABSTRACT

We present a dual-path inertial odometry framework that processes the IMU
stream through two parallel branches. One branch works directly on raw mea-
surements to preserve high-frequency transients, while the other applies a Sav-
itzky—Golay filter to enforce smoother, Newton-consistent motion and reduce
drift. The outputs are fused online by a compact temporal-attention mechanism
that adjusts their relative weights according to the motion dynamics. On the
RONIN dataset, our method reduces final position error by about 10% compared
with the previous state of the art, and this advantage persists across four smart-
phone models and three sampling rates. Integrating the dual-path block into other
backbones yields similar gains — for example, roughly a 10% error reduction
for a ResNet-based odometry network — and produces consistent improvements
for both TCN and LSTM baselines, suggesting the approach generalizes across
architectures.

1 INTRODUCTION

Inertial navigation plays a crucial role in autonomous systems, especially in environments where
external references like GPS are unavailable, such as indoors or in complex urban landscapes. By
leveraging inertial sensors (accelerometers and gyroscopes), IMU-based methods estimate the posi-
tion and orientation of a system in real time. This is particularly important in embodied intelligence,
where robots or wearable devices need to navigate and interact with the environment autonomously.
IMU-based navigation provides the necessary sensory feedback for these systems to perform tasks
with high precision and adaptability, enabling them to operate in dynamic and unstructured envi-
ronments without relying on external signals. However, challenges such as error accumulation and
drift remain, which continue to drive research into improving the robustness and accuracy of these
systems.

Existing IMU-based navigation methods can be broadly categorized into three types: Strap-
down Inertial Navigation System (SINS), Pedestrian Dead Reckoning (PDR), and Model-based
Methods (MBM). Each of these approaches has its unique advantages and limitations.

* Strapdown Inertial Navigation System (SINS) (Titterton & Weston, |2004) relies on ac-
celerometers and gyroscopes to estimate position and orientation through integration of
sensor data. While it offers high accuracy in short-term navigation, it suffers from cu-
mulative drift over time, requiring periodic corrections or external references to maintain
precision.

* Pedestrian Dead Reckoning (PDR) uses IMU data to estimate pedestrian movement by
detecting steps and estimating stride length. It is well suited for indoor environments and
situations where GPS signals are unavailable. However, PDR is highly susceptible to error
accumulation, particularly over long distances or when the user’s walking pattern changes.

* Model-based Methods (MBM), which integrate physical models(Herath et al., [2020) or
assumptions about the motion of the object, aim to improve the robustness and accuracy
of navigation. Despite their strengths, they may require complex modeling and tuning, and
can be sensitive to dynamic environmental changes.

As we have mentioned above, various frameworks designed for IMU-based navigation each come
with distinct challenges and limitations. Can we attempt to combine the two approaches, that is,
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integrate physical priors into model-based methods to achieve better performance? While ar-
chitectural considerations are important, focusing solely on model structure may not yield the most
effective solution. In this work, we revisit the role of lightweight physical priors in data-driven in-
ertial navigation. We show that applying Savitzky—Golay filtering with a cubic polynomial basis to
accelerometer signals provides a strong prior on motion smoothness, substantially improving neural
velocity regression compared to raw inputs. However, experimental results show that although the
model trained on SG-filtered data performs better overall during testing, in some specific paths, the
model trained on raw data outperforms it. To fully harness the potential of the model, we introduce
a dual-path architecture and an attention-based dynamic weight fusion mechanism, combining the
results from both paths to achieve optimal performance. Furthermore, to validate the effectiveness
of our approach across different architectures, we demonstrate that the proposed fusion mechanism
generalizes across different network backbones, including ResNet, TCN, and LSTM (Herath et al.,
2020).

Extensive experiments on the RONIN benchmark validate the effectiveness of our approach, show-
ing consistent improvements in both absolute and relative trajectory error, which has achieved state-
of-art results. Overall, our main contributions are as follows:

* Data Preprocessing with Physical Prior: We preprocess the IMU data using a Savitzky-
Golay (SG) filter, embedding a physical prior on acceleration smoothness into the model.
This enables the model to better learn the true motion patterns of the object, reducing noise
and ensuring more accurate predictions.

* Dual Network Architecture: To improve the robustness and performance across different
trajectories, we design a dual network architecture that processes raw and filtered data
separately, allowing each network to focus on different aspects of the motion data.

* Attention-based Dynamic Weight Fusion: We propose an attention-based dynamic
weight fusion mechanism to combine the outputs of the two networks. This mechanism
assigns optimal weights to the predictions from each network based on the motion context,
dynamically selecting the more reliable predictions at each time step.

* Model Validation and Deployability: Finally, we demonstrate the deployability of our
approach by validating it on multiple models with different architectures. All tested mod-
els showed improvements in accuracy and robustness, confirming the effectiveness and
versatility of our method.

2 RELATED WORK

2.1 STRAPDOWN INERTIAL NAVIGATION SYSTEM (SINS)

The Strapdown Inertial Navigation System (SINS) (Titterton & Weston, [2004) is a traditional
method that estimates position and orientation by integrating accelerometer and gyroscope data.
SINS works by directly integrating accelerations and angular velocities, providing real-time navi-
gation without the need for external references. However, SINS faces the limitation of drift accu-
mulation over time due to sensor noise, making it unsuitable for long-term autonomous navigation.
The error accumulation is typically corrected by periodic external references, such as GPS.

2.2 PEDESTRIAN DEAD RECKONING (PDR)

Pedestrian Dead Reckoning (PDR) (Falagas et al.l |2000) is another well-known approach for in-
door positioning and navigation, where the system estimates a person’s position using step detection,
stride length estimation, and orientation tracking. PDR is widely used in environments where GPS
signals are not available. Recent works like Walkie-Markie and Sextant have integrated PDR with
other sensor modalities to improve accuracy. However, PDR still suffers from cumulative errors in
step count and orientation tracking, leading to drift, especially in dynamic environments.

2.3 DATA-DRIVEN INERTIAL NAVIGATION

Recent advancements have led to the development of data-driven inertial navigation methods
(Chen et al., [2018)), which leverage deep learning to directly predict velocities and trajectories
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from raw IMU data. Notable approaches include RIDI (Yan et al., |2017), which applies data-
driven regression techniques to estimate velocity vectors from accelerations and angular velocities,
and RoNIN (Herath et al.l |2020), which enhances position and heading estimation using a neural
network-based architecture with LSTM, ResNet, or TCN networks. CTIN (Rao et al., [2022) further
enhances velocity prediction by utilizing Transformer-based attention mechanisms to capture long-
range dependencies in IMU data. DiffusionIMU (Teng et al.) is the first to introduce diffusion-based
methods into IMU navigation and ahieved state of art result. These methods improve the adaptability
and robustness of navigation systems, particularly in noisy environments.

2.4 PHYSICAL PRIORS IN DEEP LEARNING

Incorporating domain knowledge into neural models has been studied in areas such as physics-
informed neural networks and differentiable physics simulators. For inertial sensing, some works
use handcrafted filters or constraints to stabilize neural predictions. Our use of Savitzky—Golay
filtering (Luo et al.l [2005) (Beauregard et al.l [2008)follows this line by embedding a simple, fixed
prior that enforces local smoothness in accelerations.

2.5 ATTENTION-BASED FUSION

Attention mechanisms (Vaswani et al.,[2017) are widely used for adaptively weighting information
across modalities or time. In sensor fusion, attention has been applied to LIDAR-camera integration
and vision-inertial odometry. Our design is conceptually similar, but specialized for IMU signals:
the network dynamically selects between raw and filtered branches based on motion context inferred
from local statistics. Unlike prior fusion strategies, our method explicitly balances physical priors
with raw sensor fidelity.

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

The IMU reconstruction task (Ahmad et al., 2013) is defined as estimating the navigation-frame
velocity at time ¢ from a window of raw inertial measurements. Formally, given accelerometer
and gyroscope readings (ap, wp)'™ " in the body frame, a function f(-) predicts the corresponding
velocity V" € R? in the navigation frame:

Vi = f((ap,wp) ™™, (1)

where a;, and wy, denote the measured acceleration and angular rate, respectively, and f(-) exploits
temporal dependencies to map noisy body-frame IMU signals to velocities expressed in the naviga-
tion frame.

3.2 INCORPORATING PHYSICAL PRIORS VIA SAVITZKY-GOLAY FILTERING

To introduce physical prior into IMU processing, we adopt Savitzky—Golay (SG) filtering. Given
a sequence of IMU samples {x:_x, ..., %+ }, the SG filter fits a polynomial of degree d by least
squares:

k
2
= 1 A ) 2
p(r) = arg min P (w4 — (i) (2)
and outputs the smoothed value
&, = p(0). 3)

This operation enforces local polynomial smoothness, attenuating high-frequency noise while pre-
serving low-order signal structure that is consistent with Newtonian dynamics. In our implemen-
tation we instantiate the filter with d = 3 (cubic fitting), which we found empirically to offer the
best trade-off between denoising and fidelity. A detailed comparison of different d is provided in the
ablation studies.
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Figure 1: Figure(a) illustrates the Dual-Path Network architecture. The network consists of two
branches: one trained on raw IMU data and the other trained on Savitzky-Golay filtered IMU data.
The features from both branches are fused using a Cross-Attention Module, which dynamically
selects relevant features based on the motion context. Finally, the fused output is passed through
an MLP to produce the final fused velocity prediction.Figure(b) is the Sturcture of Cross-Attention
Mudule, which is capable of analyzing correlations from temporal features and then using Cross
Attention to fuse the predictions from the two preceding modules.

3.3 DUAL-PATH ARCHITECTURE WITH TEMPORAL ATTENTION FUSION

Our model follows a dual-path design that explicitly maintains two predictive branches: (i) a raw-
input branch, where IMU sequences x1.7 are fed to a pretrained RoNIN network M,.,,,, and (ii) a
filtered-input branch, where the same sequence is first smoothed by a Savitzky—Golay filter (order
d = 3) before being processed by another pretrained RoNIN network M. This yields two velocity
predictions:

VI = Moyqw(x11), V1% = Myg(SG(x1.7)). (4)

Here, x;.7 represents the raw IMU sequence, which includes accelerometer and gyroscope measure-
ments from time step ¢ = 1 to ¢t = T'. The two paths use different input sequences—one with the
raw IMU data and the other with Savitzky—Golay filtered IMU data—allowing the model to leverage
both sensor fidelity (raw data) and physical consistency (filtered data). The outputs, vi%¥ and V%,
are the predicted velocity sequences from each branch.

Temporal attention fusion. To adaptively combine the two branches, we introduce a temporal
attention module that estimates per-timestep fusion weights based on both IMU dynamics and the
disagreement between the two branches. The process unfolds in three stages:
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Temporal encoding. First, we project the raw IMU sequences into a higher-dimensional space using
a linear transformation, followed by positional encoding to account for temporal dependencies:

Zy — PE(WinXt)a Z1.T € RTXd7 (5)

where x; represents the IMU measurements at time ¢, W ,, is a learned transformation matrix, and
z; is the encoded feature at time step ¢. The entire sequence of encoded features, z;.p, forms the
input for the next stage, where temporal dependencies are captured.

Multi-scale self-attention. Long-range motion patterns are captured through a stack of multi-head
self-attention layers:
u.r = MSA(hy.7), (6)

where hy.7 represents the local features from the previous stage. Each attention layer computes
attention weights for each timestep based on the temporal context, allowing the model to focus on
important information across the sequence. The result is a sequence uy.r that captures the long-
range dependencies in the IMU data.

Cross-model reasoning. To model when the raw and SG branches diverge, we introduce cross-
model attention. This mechanism allows the model to compare the outputs of both branches and
explicitly model the areas where they disagree:

ci.r = CrossAttn(uy.r, {Vi%, V% 1), (7)
Here, u;.7 is the output of the self-attention mechanism, and v{%¥ and v{?%. are the predicted
velocity sequences from the raw and filtered branches, respectively. The cross-attention mechanism
computes features ci.7 that highlight the disagreements between the two branches and refine the
model’s understanding of the motion context.

Adaptive fusion. The final step is to fuse the predictions from the raw and SG-filtered branches.
A lightweight MLP maps the cross-attended features to per-timestep confidence weights «;:

o = softmax(W.c)[sg], (8)

where c, represents the features at timestep ¢ from the cross-model attention, and W, is a learned
weight matrix. The output oy is a weight between 0 and 1 that indicates the relative importance of
the SG-filtered prediction. The final fused velocity prediction is computed as:

{;t = Oy vfg + (1 — Olt) G:aw. (9)

Here, v, represents the fused prediction at timestep ¢, with «; controlling the contribution of each
branch (SG-filtered or raw).

Discussion. This dual-path design allows the model to preserve the complementary strengths of
raw and filtered signals, while the temporal attention fusion module dynamically determines which
branch should dominate at each moment. In practice, «; approaches 1 during smooth motion (favor-
ing SG outputs), and decreases during sharp turns or abrupt accelerations (favoring raw outputs).

3.4 ARCHITECTURE-AGNOSTIC EXTENSION

The dual-path fusion mechanism is not tied to a specific encoder. To demonstrate its generality,
we implement variants where the raw and SG-filtered IMU sequences are processed by different
backbone architectures, including ResNet, Temporal Convolutional Networks (TCNs), and LSTMs.

Formally, let £y denote a generic sequential encoder parameterized by 6. At time ¢, the two branches
produce ‘ o

B = g, (anwn)' ™), BE = &g, (0} wi) ™), (10)
where (ap,wp) are raw IMU inputs and (a;%,w,®) are SG-filtered inputs. The temporal attention
fusion defined in Eqgs. (3)—(4) is applied identically regardless of the encoder choice.

This formulation shows that the attention-based combination of physical priors and raw signals
is architecture-agnostic: the backbone & may be instantiated as a ResNet, a TCN, or an LSTM,
while the fusion mechanism remains unchanged. Empirically, we find that the proposed design
consistently improves performance across these backbones, supporting its broad applicability.
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3.5 Loss FUNCTION

Given an input IMU sequence x7.,, of length m, the model predicts the corresponding velocity
sequence V1.,,, where ¥, € R? denotes the planar velocity at time t. The ground-truth velocity
sequence is denoted by vy.p,.

We adopt a standard regression objective based on the mean squared error (MSE) between predicted
and reference velocities:

1
Lyise = EZHVt—VtHg- (an
=1

For models with dual-path fusion, the loss is applied on the fused trajectory predictions. To further
stabilize training, we also regularize the confidence weights a; predicted by the fusion module,
encouraging them to remain close to a uniform distribution when the two branches produce similar
outputs. Formally, we define:

1 m
Leont = — Y (az1logar + arzlogar ), (12)

m
t=1

which acts as an entropy regularizer.

The overall training objective is:
L = Lysk + A Leont, (13)

where )\ is a weighting hyperparameter.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We evaluate on the RONIN dataset, a large-scale inertial odometry benchmark collected
using smartphones carried by human participants in natural indoor and outdoor environments. The
dataset contains recordings from more than 300 hours of walking by 100 subjects, covering diverse
motion patterns such as straight walking, turning, stopping, and free-form trajectories across offices,
shopping malls, and open spaces. Each sequence provides synchronized 3-axis accelerometer and
gyroscope signals at a sampling rate of 200 Hz, along with high-accuracy ground-truth trajectories
obtained from a motion capture system or Google Tango AR tracking.

Following the official protocol, we adopt the standard train, validation and test split: the training set
covers a subset of subjects, labeled as seen, while the test set is divided into seen subjects (identities
present during training) and unseen subjects (entirely new identities not included in training). This
setting evaluates both model fitting and cross-subject generalization, which is critical for real-world
deployment.

Evaluation Metrics. We report Absolute Trajectory Error (ATE) and Relative Trajectory Error
(RTE), two widely adopted metrics in inertial odometry. ATE measures the global trajectory devi-
ation from ground truth, while RTE evaluates local drift over fixed-length segments. Lower values
are better for both.

Implementation Details. Raw accelerometer and gyroscope streams are segmented into sliding
windows of length m=200 (i.e., 1 s at 200 Hz). We set the batch size to 128. The proposed dual-path
models instantiate ResNet, TCN, or LSTM backbones, with raw and SG-filtered branches sharing
identical architectures. Savitzky—Golay filtering with cubic fitting (d=3) is applied per IMU chan-
nel.

4.2 BASELINE COMPARISON

We compare our method against both classical and learning-based baselines, including pedestrian
dead reckoning (PDR), RIDI, and RoNIN variants (LSTM/TCN/ResNet), as well as the recent CTIN
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approach. For fairness, we adopt the same dataset split and report performance on both seen and
unseen subjects. Table [l|summarizes the results.

Our method consistently achieves the best results across both metrics. On seen subjects, it lever-
ages physical priors to enhance predictive stability. On the more challenging unseen subjects, it
significantly outperforms all baselines, demonstrating stronger generalization.

Table 1: Results on RONIN dataset. Metrics are ATE/RTE (lower is better). Bold indicates the best
performance.

Test Subject Metric PDR RIDI LSTM TCN ResNet CTIN DiffusionIMU OQOurs

Seen ATE  28.10 1690 4.83 578 386 4.62 3.64 3.35
RTE 20.60 17.80 2.81 3.68 275 281 2.72 243
Unseen ATE  26.17 1588 7.46 6.73 576 5.61 5.27 543
RTE  20.70 18.13 446 433 445 448 4.31 4.27

4.3 ABLATION STUDY

To better understand the contribution of each design component, we conduct a detailed ablation
study. We progressively remove or replace key modules and report results in Table [2]

Effect of physical prior. Replacing the SG-filtered branch with another raw branch leads to a
notable drop in accuracy, confirming the importance of the smoothness prior. From Table 2, we
can see that removing SG-filter increased ATE from 3.35 (seen) to 3.86 (seen) and 5.43 (unseen) to
5.76 (unseen), RTE from 2.43 (seen) to 2.75 (seen) and from 4.27 (unseen) to 4.45 (unseen). Which
shows physical prior can make the module learn motion pattern much more easier.

Effect of attention-based fusion. Substituting the temporal attention fusion with a simple average
results in higher errors. From Table 2, we can see that removing attention fusion increased ATE from
3.35 (seen) to 3.40 (seen) and 5.43 (unseen) to 5.58 (unseen), RTE from 2.43 (seen) to 2.56 (seen)
and from 4.27 (unseen) to 4.42 (unseen), indicating that the adaptive weighting mechanism is crucial
for balancing raw and filtered signals. And the ablation study also showed that attention fusion
had achieved result better than other fusion module like confidence net. Attention fusion gives the
model the flexibility to selectively assign weights and features, enhancing the overall generalization
performance.

Table 2: Ablation study on RONIN (ATE/RTE). Lower is better.

Model Variant Seen ATE Seen RTE Unseen ATE Unseen RTE
Raw-only (single path) 3.86 2.75 5.76 4.45
SG-only (single path) 3.40 2.56 5.58 4.42
Dual-path + confidence net 3.58 2.64 5.62 4.37
Dual-path + attention fusion (ours) 3.35 2.43 543 4.27

4.4 IMPACT OF FILTERING STRATEGIES

To quantify the effect of different filtering strategies on IMU-based trajectory reconstruction, we
compare models trained with: (i) raw IMU inputs, (ii) low-pass filtering, and (iii) Savitzky—Golay
(SQG) filtering with varying polynomial orders. All variants share the same backbone architecture to
ensure a fair comparison.

Table [3| reports the results on the RONIN dataset. We observe that simple low-pass filtering yields
marginal improvements over raw inputs, suggesting that noise attenuation alone is insufficient. In
contrast, SG filtering with cubic fitting (d=3) achieves the best trade-off, significantly reducing
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both ATE and RTE. Higher-order fittings (d=5) lead to degraded performance, likely due to over-
smoothing and amplification of high-frequency artifacts. This validates our design choice of adopt-
ing SG(d=3) as a fixed physical prior.

Table 3: Comparison of filtering strategies on RONIN. Metrics are ATE/RTE (lower is better). All
models use the same backbone for fairness.

Filtering Method Seen ATE Seen RTE Unseen ATE Unseen RTE

Raw (no filtering) 3.86 2.75 5.76 4.45
Low-pass filter 3.58 2.69 5.68 4.51
SG filter (d=2) 4.01 3.23 7.03 6.32
SG filter (d=3) 3.40 2.56 5.58 4.42
SG filter (d=5) 391 2.93 5.80 4.58

4.5 EVALUATION ON OTHER ARCHITECTURES

We also tested our physical prior + attention fusion approach on many methods based on other
architectures. Through experiments, we verified that our method is applicable to TCN and LSTM
structures as well, achieving improvements to varying extents. Results are shown in Table 4.

Table 4: Performance on different architectures (ATE/RTE).
Architecture Seen ATE Seen RTE Unseen ATE Unseen RTE

RONIN-TCN 5.78 3.68 6.73 4.33
RONIN-LSTM 4.83 2.81 7.46 4.46
Dual-TCN 5.30 3.42 6.51 4.27
Dual-LSTM 4.52 279 7.21 4.24

5 CONCLUSION

We introduced a simple yet effective framework for IMU-based velocity reconstruction. Our study
revealed that Savitzky—Golay filtering, though fixed and non-trainable, provides a strong physical
prior that substantially improves performance over raw IMU inputs. Building on this observation, we
proposed a dual-path architecture with temporal attention fusion, allowing the model to dynamically
balance physically consistent signals with high-frequency raw information. Finally, we showed that
this design generalizes across multiple backbone architectures, confirming its robustness and broad
applicability.

Overall, our results highlight the value of combining lightweight physical priors with data-driven
learning. Rather than relying solely on end-to-end training, hybrid designs can achieve more re-
liable performance under noisy real-world conditions. We believe this principle extends beyond
IMU-based navigation and may inspire future work on integrating classical signal processing and
attention-based fusion in other sensing domains.
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reproduction of the results.
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retrieval** and **language enhancement**. The LLM was used to assist in the search for relevant
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