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ABSTRACT

We study reinforcement learning and alignment through the lens of hierarchical
coordination, where a principal steers many delegates with partial views and cou-
pled effects. Starting from nonlinear dynamics, we identify the Cost of Delegation
as the performance gap between centralized and decentralized control, decom-
posed into delegation, coordination, information, and surrogate mismatch com-
ponents. We bound CoD, show that information value is decision-theoretic, and
discuss implications for modern systems. Our work provides a theoretical foun-
dation and new perspective for designing robust, scalable multi-agent systems.

1 INTRODUCTION

The sailors are quarrelling with one another
about the steering... But that the true pilot
must pay attention to the year, seasons, sky,
stars, and winds.

Plato

We are like sailors who must rebuild their
ship on the open sea, never able to disman-
tle it in dry dock and reconstruct it from the
best materials.

Otto Neurath

We study a foundational problem in reinforcement learning: how to understand and characterize
the structural cost of alignment. Under the current paradigm, alignment is often formulated as an
optimization problem. Given a reward function or its learned surrogate, the goal is to find a policy
that maximizes the expected cumulative reward. RLHF (Ouyang et al., 2022), GRPO (Shao et al.,
2024), Constitutional AI (Bai et al., 2022), DPO (Rafailov et al., 2023)) and other pipelines or vari-
ants follow this logic. Such methodology implicitly assumes the existence of a goal that is attainable
in principle, and the task of the algorithm is to approximate it efficiently and robustly. Alignment is
thus broadly understood and framed as an optimization task with engineering challenges.

However, the scale of modern systems makes direct control infeasible in practice. While we optimize
parameters via gradients, we lack direct, interpretative control over the internal state dynamics that
instantiate alignment. As a consequence, influence is exerted through intermediate mechanisms.
For example, reward models typically project human preferences as scalar signals, constitutional
principles decompose the alignment goal into verifiable principles, and preference data indirectly
shape behavior through gradients. These mechanisms constitute a hierarchical structure (whether
explicit or implicit), where high-level intentions must be interpreted and executed by numerous
subsystems or modules. A natural question arises: since we are forced to achieve alignment through
a hierarchical and modular architecture, will different architectural choices lead to diverse alignment
costs? Are there structural patterns that transcend specific pipelines?

This is our starting point. We now ask whether there exists a component of the alignment cost that is
neither a product of algorithmic flaws nor a result of insufficient data, but rather a structural cost that
persists even under perfect optimization and perfectly “well-intentioned” conditions. Once adopting
the reality of hierarchical coordination, the core issue naturally shifts from how to design better
reward functions to what is the irreducible cost of delegation itself? How does it decompose into
tractable components? Which parts can be controlled through architectural design? We name such
structural gap the Cost of Delegation (CoD).
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Our contributions. We formalize the framework as multi-component systems with partial obser-
vation and coupling effects. In some cases, this manifests as an explicit hierarchical structure, such
as in RLHF or multi-agent systems. Regardless of the specific architecture, the crux is how coordi-
nation and information structures affect overall performance. We analyze these dynamics through
a Linear-Quadratic (LQ) surrogate under certainty equivalence. This method has been proved to be
statistically effective for LQ control in modern RL theory (Mania et al., 2019). Crucially, current
post-training pipelines generally relies on a certainty-equivalence-like logic. This choice allows us
to derive closed-form bounds for structural costs, providing an analyzable proxy for understanding
the local curvature of the alignment landscape in nonlinear systems. We then establish a four-layer
policy hierarchy from centralized optimality to realistic delegation. We prove that the gaps between
each layer are non-negative and identify which gaps can be explicitly bounded. This induces a tele-
scoping decomposition of the LQ structural gap between centralized and delegated performance into
an information term, a coordination-structure term, and a residual delegation term.

Implications. We find that in our framework, the relevant notion of information value is decision-
theoretic in nature: what matters is how observations change optimal actions, not how much entropy
they carry. Specifically, the value derived from observing a particular direction depends on the sen-
sitivity of that direction to control decisions rather than the statistical variance of that direction. This
means that high-variance but decision-independent directions (such as those favored by PCA) may
offer no benefit while low-variance but decision-sensitive ones may be crucial. Our experiments
support this prediction. In the content moderation task, variance-based observation performs com-
parably to random projection, while observation aligned with the decision boundary significantly
reduces delegation costs. Thus, reward models should focus on characterizing those preference
distinctions that have substantial impact on policy behavior, rather than trying to capture all prefer-
ence variations uniformly. Similarly, routing in MoE may benefit from assigning experts based on
gradient sensitivity (task relevance) rather than input feature clustering (statistical characteristics).

Recent research supports our insight. Chen et al. (2024) show that the response length in the reward
model is a high-variance but decision-irrelevant signal, and decoupling it from the quality signal
can significantly alleviate reward hacking. DeepSeekMoE (Dai et al., 2024) achieves expert special-
ization through fine-grained expert segmentation to reduce the overlap of redundant knowledge. In
short, we offer a new perspective on understanding intrinsic mechanisms of alignment and designing
robust, scalable modern systems.

Roadmap. Section 2 introduces the general principle and four cost sources. Section 3 & 4 establish
a formal framework, including hierarchical coordination model, four-level policy hierarchy, and
telescoping decomposition. Section 5 discusses explicit bounds for different structural components
and the global bound. Section 6 provides evidence for the core predictions based on decision-
weighted information. Section 7 discusses the implications for modern systems.

2 TOP-DOWN ANATOMY

2.1 FIRST PRINCIPLE

We start with a first principle: In any system that achieves its goal through intermediate mechanisms,
the introduction of constraints inevitably leads to a performance penalty. Let J(π;M) denote the
reward of policy π in environment M , with higher values being better1.

Definition 2.1. Given two policy classes, where Πrich is less restricted and Πconstrained is more re-
stricted, and Πrich ⊃ Πconstrained, the Cost of Delegation (under given perspective) is defined as:

CoDComponent = max
π∈Πrich

J(π;M)− max
π∈Πconstrained

J(π;M).

1Remark on notations: Fundamentally J is the objective; in RL it is interpreted as reward. Following the
conventions of control theory, under later LQ specification, J represents quadratic cost. This sign change does
not affect any substantial conclusion: a reduction in return is equivalent to an increase in cost.
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Non-negativity is directly guaranteed by the set inclusion relationship. Optimization over a larger
feasible region cannot yield a worse solution. CoD characterizes the reward loss (gap) relative to the
unconstrained optimum that is inherently brought about by the constraints themselves. Limitations
on information acquisition, component coordination, model fidelity, and optimization capabilities
can all be incorporated into this framework.

2.2 FOUR SOURCES

More specifically, following a source-of-constraint logic, CoD can be stratified along four axes.

(A) Surrogate mismatch. The alignment system optimizes on the surrogate objective rather than
directly on the true objective. Let

π∗
true = argmax

π
J(π;Mtrue), π∗

surrogate = argmax
π

J(π;Msurrogate).

The optimal strategies under the real target and the surrogate target respectively. The cost brought
by surrogate mismatch is

CoDA = J(π∗
true;Mtrue)− J(π∗

surrogate;Mtrue).

This characterizes “how much return is lost in the real environment relative to the optimal one due
to using an approximate objective for optimization”. Conceptually, optimizing a surrogate imposes
an implicit constraint. It restricts the effective solution to the set of policies favored by the surrogate
gradients, rather than the true ones. Non-negativity is guaranteed by the optimality of π∗

true on Mtrue.
Recent research supports this perspective (Zhuang & Hadfield-Menell, 2020).

(B) Information constraints. Delegates can only observe a portion of the state. Let Πfull be a
policy class based on full observation, and Πpartial be a policy class based on partial observation.
Any policy that depends only on partial information can be implemented under full information,
therefore Πfull ⊃ Πpartial. The cost of information constraints is:

CoDB = max
π∈Πfull

J(π;M)− max
π∈Πpartial

J(π;M).

This formalization is conceptually consistent with Blackwell (1953)’s classic result on the value of
information that a finer information structure supports better decision-making.

(C) Coordination constraints. When a system consists of multiple delegates, dense global co-
ordination is impractical. The system must rely on sparse local interactions, where only adjacent
delegates can coordinate. Let Πdense, Πsparse be the policy class that can be implemented under dense
or sparse coordination respectively. It is generally considered that dense structures can simulate any
sparse strategy, therefore Πdense ⊃ Πsparse. The cost of the coordination constraint is:

CoDC = max
π∈Πdense

J(π;M)− max
π∈Πsparse

J(π;M).

This reflects the core problem in team decision theory (Radner, 1962; Marschak & Radner, 1958).

(D) Training residual. Even given the architecture and objective function, the training algorithm
may not find the optimal policy under that setting. Let π∗ = argmaxπ∈Π J(π;M) be the optimal
policy in the policy class, and π̂ ∈ Π be the actual trained policy. The training residual is:

CoDD = J(π∗;M)− J(π̂;M).

This reflects both computational and statistical constraints. The realizable policy set is restricted
by the algorithm’s convergence properties and the available training data. Nonnegativity is directly
guaranteed by the definition of optimality of π∗.

2.3 BRIDGE (GAP) TO REALITY

Section 2.1 and 2.2 define CoD from first principles. Now back to real-world systems. Given a
fixed objective function (A). The ideal benchmark is a single optimizer with complete information.
Real-world systems, however, involve multiple delegates operating under partial observations and

3
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sparse coordination. Thus following this performance loss path, the structural component of CoD
can be decomposed into three steps.

Step 1. Delegation itself (∆deleg). Even when all delegates share the same objective, replacing a
single optimizer with a multi-agent game can incur an arbitrarily large performance penalty. Wit-
senhausen (1968)’s counterexample shows that, even under linear dynamics, quadratic costs, and
perfect cooperation, the optimal decentralized policy can be a highly nonlinear, computationally
intractable signaling rule. This impossibility result delineates the scope of our analysis.

Step 2. Sparse coordination (∆coord). Given that delegates are making their own decisions, dense
coordination (where each delegate interacts with all other delegates) is not feasible in practice. The
system must degenerate to sparse coordination (interacting only with local neighbors). This step
corresponds to (C), and its gap depends on the topology of the coordination graph.

Step 3. Partiality of observation (∆info). Given the coordination structure, delegates are also
limited to observing only a portion of the state. This step corresponds to (B), and its gap depends on
the design of the observation structure Π.

The gaps in the second and third steps are bounded. They depend on the specific architecture choices
W and Π, which is exactly what we will discuss in the following sections.

3 PRELIMINARY

3.1 LQ AND CE

We use Linear-Quadratic (LQ) surrogate combined with the certainty equivalence (CE) principle
as the proxy model. Certainty equivalence is a two-stage method: first, system parameters are
estimated based on observed data; then, the estimated values are treated as true values for optimal
control design. Our choice is chosen based on three considerations.

1. LQ framework is a natural approximation of a nonlinear system near its operating point. For
dynamics f and cost function satisfying appropriate smoothness conditions, the first two orders
of the Taylor expansion yield linear dynamics and a quadratic cost structure. When the system
trajectory is concentrated around a nominal state ϕ̄, higher-order remainder terms are controllable.
This perspective is well established in stochastic control theory (Anderson & Moore, 2007).

2. CE has been shown to possess statistical validity in modern reinforcement learning theory. A
series of works demonstrate that for LQ control problems, certainty-equivalent controllers based on
finite-sample estimates achieve optimal rates of convergence (Mania et al., 2019; Dean & Recht,
2021), and that policy gradient methods enjoy global convergence guarantees in the LQ setting
(Fazel et al., 2018; Cohen et al., 2019). These results show that LQ surrogates are not only mathe-
matically tractable but also statistically efficient.

3. CE shares structural similarity with post-training pipelines. In RLHF, the learned reward model
is treated as a nominal objective function for subsequent policy optimization (Rafailov et al., 2023).
In MoE, the router makes deterministic expert assignments based on current representations ((Fedus
et al., 2021)). In multi-agent orchestration, the orchestrator allocates tasks based on state estimates.
CE provides a unified analytical perspective for understanding modern systems.

3.2 ASSUMPTIONS

The system relies on the following two classes of assumptions. Formal statements see Appendix A.

System regularity assumptions (S1–S4). S1 assumes that the dynamics f : S × Rd → S is
Lipschitz continuous and twice differentiable on the operating domain, the process noise is a sub-
Gaussian martingale-difference sequence, the state space S is compact, and all action sets are
bounded. These conditions justify the local LQ approximation and control the Taylor remainder.
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S2 specifies that the principal observes three noisy channels: state, response, and reward. S3 spec-
ifies that each delegate m observes a local state ϕm,t = Πmϕt + νm,t, where the projection family
{Πm} has bounded operator norm ∥Πm∥2 ≤ 1 and satisfies a coverage condition. S4 imposes a
persistent-excitation condition on the predictable regressors, ensuring that the reduced-form model
can be identified from finite samples with standard concentration guarantees.

Game regularity assumptions (G1–G2). G1 contains three subconditions: (a) λmin((G +
GT )/2) ≥ m > 0 implies strong monotonicity of the game gradient and therefore existence and
uniqueness of the Nash equilibrium; (b) the coordination matrix is bounded, ∥W∥2 ≤ wmax; (c)
W admits one of three tractable structures (Low-rank + sparse; Tree/DAG; Block-sparse), which
reduces equilibrium computation from the naive O((Md)3) to near-linear complexity in the number
of agents. G2 requires the closed-loop Jacobian to satisfy sup(ϕ,uP )∈S×UP

∥DϕF (ϕ;uP )∥2 < 1/γ
which ensures that the discounted accumulation of surrogate errors is bounded.

4 FRAMEWORK

Table 1: Mapping.

Four Sources Three Steps Bound

(A) – Expr. 5.3
(B) ∆info Expr. 5.2
(C) ∆coord Expr. 5.1
(D) – Expr. 5.6
– ∆deleg unbounded

Recall how the three-step decomposition in Sec-
tion 2.3 is mapped onto the ABCD axes in Section
2.2. The three-step decomposition assumes given ob-
jective function and system parameters, so (A) and
(D) are orthogonal to these three steps. After Sec-
tion 3 adopts the LQ-CE framework, (A) enters the
framework through the surrogate approximation er-
ror A(δϕ). (D) will be handled via the distinction
between epistemic and persistent errors in Section 5.

Step 1 (∆deleg) does not fall within the ABCD taxonomy because it is not a structure-design prob-
lem. Witsenhausen (1968)’s counterexample proves that such gap can be arbitrarily large, so the
objective is to minimize it through mechanism design, which is a seperate question. At the same
time, real systems rarely implement such such precise design and far from perfect alignment be-
tween local/global objectives. Thus, we treat ∆deleg as a given parameter rather than something we
can structurally bound.

4.1 EMERGENT COORDINATION GAME

We need a mathematical structure to model the interaction of multiple delegates. We start from the
delegates’ local objectives and derives how the coordination matrix W emerges naturally from the
system structure, and then the resulting equilibrium. This formalization serves two purposes: first,
to show that W is not exogenously designed; second, to provide the foundation for the four-layer
hierarchy defined later, where each layer corresponds to a different configuration of (W,Π), and the
equilibrium characterization determines the optimal value J∗ at each layer.

Consider a system with a principal and M delegates. The state ϕt ∈ S ⊆ Rn evolves according to
ϕt+1 = f(ϕt, at)+wt, where at =

∑
m um,t is the aggregate action of the delegates. The principal

holds a global objective but cannot directly control the system. Instead, each delegate m chooses
actions based on its local observation ϕm,t = Πmϕt so as to minimize the local objective

E

[ ∞∑
t=0

γt
(1
2
∥Πmϕt − ψm(uP,t)∥2Qm

+
1

2
∥um∥2Rm

)]
,

where ψm(uP ) denotes the target state induced by the principal’s command. We can clearly see
that delegate m’s action choice depends on the actions taken by other delegates, because all actions
jointly influence future states through the shared dynamics f . This strategic interdependence forms
the foundation of the game-theoretic structure. We next derive from first principles how delegation
games emerge from objective functions.

5
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Theorem 4.1. (Emergent Coordination) Under certainty equivalence and local linearization, the
infinite-horizon problems reduce (to second order) to the single-stage game

Jm(um;u−m) =
1

2
uTmRmum + uTmKm +

1

2

M∑
j=1

uTmWmjuj + εm,

where Km = (ΠmB)TQm

[
(ΠmA)δϕ−ψm(uP )

]
, and the coordination matrix is given by Wmj =

(ΠmB)TQm(ΠjB). The approximation error satisfies

|εm| ≤ C
(m)
h ∥δϕ∥32 + C

(m)
f

(
∥δϕ∥22 + ∥a∥22

)
.

The coordination matrix emerges mechanically from the objective function: the action of delegate j
is propagated to the state space through the input matrix B, and then weighted by delegate m’s cost
matrix Qm and projection Πm to generate coupling. Whenever(ΠmB)TQm(ΠjB) ̸= 0, there is a
coordination requirement between the two delegates. This structure induces a graph G = (V,E),
where the vertex set is V = {1, . . . ,M} and there is an edge (m, j) ∈ E if and only if Wmj ̸= 0.
The quadratic–cubic form of εm is the natural consequence of truncating the Taylor expansion at the
lowest tractable order, see Section 5.2 for details.

Proposition 4.1. (Nash Equilibrium) Let G := R+W , the aggregate game

J(u) =
1

2
uTGu+ uTK(δϕ, uP )

admits a unique Nash equilibrium u∗ = −G−1K under Assumption G1(a), where δϕ := ϕ̄−ϕ and
the equilibrium mapping is Lipschitz in (δϕ, uP ).

When W is symmetric, it is a potential game (Monderer & Shapley, 1996) with potential Φ(u). So
the PNE is simply the minimizer of Φ, implying ∆deleg = 0, and whether satisfied is, as discussed,
a mechanism design objective orthogonal to our focus: one must design the delegates’ objective
functions {Jm} so that the induced W is symmetric. This motivates future works.

4.2 FOUR-LEVEL POLICY HIERARCHY AND TELESCOPING DECOMPOSITION

→ →

Centralized Optimization 
π: Φ→U (unconstrained)

Centralized, Full info
πm: Φ→Um (equilibrium constrained)

Coordination Structure

dense W* Sparse WKΔcoord

L1

Decentralized, Partial info
πm: ΠmΦ→Um (Im measurable)

Δdeleg

L4

L3

Δinfo

L2

Vertical: Policy function class inclusion (strict containment)

Horizontal: Coordination sparsity (same class, different game) 

Figure 1: Policy-space architecture.

Proposition 4.1 characterizes the equilibrium
for a given triplet (R,W,K). In practice,
however, real systems face two additional con-
straints: the coordination matrix may be spar-
sified due to computational limitations, and ob-
servations may be made partial due to architec-
tural constraints. To measure the performance
impact of these constraints, we define the fol-
lowing four-level policy hierarchy.

Level Decision Info Coord.

L1 Centralized opt. Full —
L2 Nash eq. Full Dense W ∗

L3 Nash eq. Full Sparse Wk

L4 Nash eq. Partial Sparse Wk

L1 is the ideal benchmark: a single optimizer
directly minimizes the global objective. L2 in-
troduces delegation while retaining full infor-
mation and full coordination. L3 sparsifies the
coordination matrix from W ∗ to Wk. L4 fur-
ther restricts observations from full to partial.

6
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Theorem 4.2. (Monotonicity) Under G1(a), let J∗
Lℓ be the optimal value at Levels L1–L4. Then

J∗
L1 ≤ J∗

L2 ≤ J∗
L3 ≤ J∗

L4,

and when W is symmetric, J∗
L1 = J∗

L2.

The four-level hierarchy is designed so that each adjacent transition changes exactly one structural
factor. The gaps between adjacent levels thus isolate the cost contribution of each single factor.

Proposition 4.2. (Structural Gaps) The three-step decomposition is quantified by the gaps between
adjacent levels, and by monotonicity, each term is nonnegative.

∆deleg := J∗
L2 − J∗

L1, ∆coord := J∗
L3 − J∗

L2, ∆info := J∗
L4 − J∗

L3.

Expression 4.1. (Telescoping Decomposition) Within the LQ surrogate, CoD satisfies:

CoDLQ = ∆LQ
struct := J∗

L4 − J∗
L1 = ∆deleg +∆coord +∆info

Each term is now explicit. ∆deleg: centralized optimization to PNE (L1 → L2). ∆coord: dense to
sparse coordination (L2 → L3). ∆info: full to partial observation (L3 → L4). Together, they form
CoD within LQ surrogate, while full CoD includes surrogate mismatch and training residuals.

4.3 TOY MODEL

To expose the mechanics of the framework, consider two delegates representing helpfulness (H) and
safety (S), respectively. The output logit is their controlled aggregate:

o = cHuH − cSuS , cH , cS > 0.

Conflict of objectives: helpfulness pushes o upward, while safety pushes o downward. Given a query
q, delegate m tracks its target tm(q) and incurs quadratic tracking plus effort cost:

ℓm(um; q) = 1
2 qm

(
o− tm(q)

)2
+ 1

2 rm u2m, qm ≥ 0, rm > 0.

Applying Theorem 4.1, the coordination matrix and driving vector are

W =

[
c2HqH −cHcSqH

−cHcSqS c2SqS

]
, K(q) = −

[
cHqH tH(q)

−cSqS tS(q)

]
.

The off-diagonals ∝ − cHcSqm capture the coordination couplings, one delegate’s act changes the
other’s tracking error through the shared output channel. Even in this minimal system, the three
components of CoDLQ arise naturally. When qH ̸= qS , W becomes asymmetric, the game loses its
potential structure, ∆deleg > 0. Ignoring the off-diagonal couplings yields ∆coord ∝ c2Hc

2
S(q

2
H +q2S).

Under partial observation, ∆info ∝ Var(tm(q) | Πmq).

5 QUANTIFYING THE COST OF DELEGATION

Section 4 defined structural gaps pointwise in (ϕ, uP ), here we analyze their discounted and ex-
pected forms under stationary state distributions and the randomness of finite-sample learning.

5.1 COORDINATION COST

Recall Theorem 4.2 and Proposition 4.2:

∆coord := J∗
L3 − J∗

L2 = J(uk)− J(u∗) =
1

2
δuTG∗δu.

Expression 5.1. (Coordination cost) Let E :=W ∗−Wk denote the sparsification error and S∗ :=
1
2 (G

∗ + (G∗)T ). Under Assumption G1(a), there exists a constant Cstruct := λmax(S
∗)

2λmin(S∗)2 such that

∆coord ≤ Cstruct ∥G−1
k ∥22 ∥E∥2F ∥K∥22.

7
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Intuition Expression 5.1 highlights three levers that control ∆coord. ∥E∥F is determined by the
sparsification scheme, which motivates the tractable structures in Assumption G1(c) (low-rank plus
sparse, tree/DAG, block-sparse), each inducing a different pattern of E that can be tuned to mini-
mize ∥E∥F given the system topology. The factor ∥G−1

k ∥2 captures how ill-conditioned the sparse
game is: if Gk is nearly singular, small coordination errors are amplified into large deviations in
equilibrium strategies. Finally, ∥K∥2 depends on the current state deviation δϕ and the principal’s
command uP , it is an exogenous input rather than a design variable.

5.2 INFORMATION COST

Recall that for stochastic LQ surrogate, we study the expected information gap:

∆info := E
[
J∗
L4 − J∗

L3

]
.

Notation. Fix the sparse gameGk = R+Wk and its symmetric part Sk := (Gk+G
⊤
k )/2 ⪰ 0, with

stage cost J(u) := 1
2u

⊤Gku + u⊤K. Let u∗(ϕ) = −G−1
k K(ϕ) denote the full-information equi-

librium and û(ϕ) = −G−1
k K̂(ϕ) the partial-information equilibrium, where K̂m(ϕ) := E[Km(ϕ) |

Πmϕ]. Define the innovation ϵ := K−K̂ and write δu := û−u∗ = G−1
k ϵ. In the LQ surrogate, ϵ is

a linear function of the state deviation δϕ with covariance Σϕ, i.e. ϵ = Lδϕ and Cov(ϵ) = LΣϕL
⊤

for some matrix L determined by (A,B,Qm,Πm).

Expression 5.2 (Information cost). Using the Gku
∗ +K = 0 and symmetrizing,

∆info =
1

2
E[δu⊤Skδu] =

1

2
tr
(
G−T

k SkG
−1
k Cov(ϵ)

)
=

1

2
tr
(
G−T

k SkG
−1
k LΣϕL

⊤).
Intuition. Expression 5.2 shows that information cost is entirely determined by the innovation
covariance Cov(ϵ) as filtered through the structural weight G−T

k SkG
−1
k . More informative obser-

vation schemes (in the Blackwell sense) shrink the residual operators (I − Pm) and hence LΣϕL
⊤,

monotonically reducing ∆info. The notion of information value here is decision-theoretic rather than
purely statistical: each state direction is weighted not just by its variance in Σϕ, but by its sensitiv-
ity under L⊤G−T

k SkG
−1
k L. This perspective is somewhat counterintuitive from a purely statistical

viewpoint: directions that dominate PCA or clustering criteria may be essentially irrelevant for
decision-making, while low-variance but decision-sensitive directions can be crucial.

5.3 SURROGATE APPROXIMATION COST

Axis (A) does not contribute to CoDLQ, it enters only as an entry cost A(δϕ0) as the alignment
systems optimizes on the surrogate objective rather than true one. Let errt be the per-stage mismatch
under the same closed-loop policy and define A(δϕ0;Gk) :=

∑∞
t=0 γ

t errt.

Expression 5.3 (Surrogate bound and A⊗C coupling). Under S1–S4 and G2 there exist constants
C2, C3 > 0 depending only on local derivatives of f and hm such that

|errt| ≤ C3∥δϕt∥32 + C2

(
1 +ML2

K∥G−1
k ∥22

)
∥δϕt∥22.

Let Lcl = supϕ ∥DϕF (ϕ;uP )∥2 < 1/γ. Then

A(δϕ0;Gk) ≤
C2

(
1 +ML2

K∥G−1
k ∥22

)
1− γL2

cl

∥δϕ0∥22 +
C3

1− γL3
cl

∥δϕ0∥32.

Define the approximation constants A = (C2, C3) and the coordination–stability multipliers

C(Gk) =
(

1+ML2
K∥G−1

k ∥2
2

1−γL2
cl

, 1
1−γL3

cl

)
. Then

A(δϕ0;Gk) ≤
(
A⊗ C(Gk)

)
·
(
∥δϕ0∥22, ∥δϕ0∥32

)
.

Intuition. The quadratic–cubic form in Expression 5.3 comes directly from truncating the Taylor
expansions of hm and f at the lowest order that still admits tractable trajectory-level bounds. It is
the best we can compute while keeping the analysis finite dimensional. A ⊗ C coupling is now

8
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explicit: the surrogate mismatch (A) is set by local approximation constants A, but its magnitude is
multiplied by the structural choice of Wk through G−1

k and the closed loop Lipschitz constant Lcl.

5.4 PERSISTENT VS. EPISTEMIC: THE TOTAL COST OF DELEGATION

Time to connect the dots. We separate the total CoD into a persistent component driven by the
control problem (architecture and surrogate) and an epistemic component driven by learning. T
denotes the number of training samples or updates used to fit reduced-form models or policies.

Expression 5.4 (Total CoD at scale T ). Let J∗
ideal be the value of an ideal full-information controller

under true dynamics, and π̂T the learned policy after T samples.

CoDtot(T ) := E
[
J(π̂T ;Mtrue)

]
− J∗

ideal = CoDLQ +A(δϕ) + CoDD(T ).

Expression 5.5 (Persistent part and structural bound).

CoDpersistent := CoDLQ +A(δϕ) = ∆deleg +∆coord +∆info +A(δϕ).

Collecting the bounds yields an explicit constant Bstruct such that CoDpersistent −∆deleg ≤ Bstruct.

Expression 5.6 (Epistemic part). The training-induced component satisfies a vanishing bound

CoDD(T ) ≤ Cep

1− γ

√
deff log(T/δ)

T
+

b⋆

1− γ
,

with b⋆ = 0 under exact realizability, so CoDD(T ) → 0 as T → ∞.

Noise floor. Exogenous process and observation noise contribute an additive term Cnoise/(1 − γ)
that is persistent and purely environmental.

6 EXPERIMENT

We design a one-shot content-moderation delegation task that mirrors the helpfulness–safety toy
model in Section 4.3, using RealToxicityPrompts (Gehman et al., 2020) with a Qwen3 policy model
and Qwen3Guard safety model (Yang et al., 2025; Zhao et al., 2025). For each prompt xi and action
a ∈ {ACCEPT,REWRITE,BLOCK}, Qwen3 produces a candidate response scored by

ri(a;λ) = Hi(a)− λSi(a),

where Hi(a) ∈ [0, 1] is a helpfulness score and Si(a) ∈ [0, 1] is a risk score from Qwen3Guard; the
safety weight λ is our ablation knob. Let Joracle(λ) be the average reward of per-sample maximizers
of ri(a;λ), J∗

ℓ (λ) the best achievable with level-ℓ signals, and CoDℓ(λ) = Joracle(λ)− J∗
ℓ (λ) the

corresponding empirical information cost of delegation.

We bucket prompts into benign, borderline, and toxic groups using toxicity scores. Qwen3Guard
outputs a ternary safety label (Safe / Controversial / Unsafe) and a fine-grained risk cate-
gory. We define three information levels: L1 uses a binary signal g(1)i (a) ∈ {SAFE,UNSAFE}
by merging CONTROVERSIAL into UNSAFE; L2 uses the full ternary label g

(2)
i (a) ∈

{SAFE,CONTROVERSIAL,UNSAFE}; L3 uses the pair g(3)i (a) = (label, top category). Since L1
and L2 are deterministic coarsenings of L3, they satisfy L3 ⪰ L2 ⪰ L1 in Blackwell’s order.

Figure 2 (left) reports mean rewards by toxicity bucket and action. For benign prompts, ACCEPT
and REWRITE dominate BLOCK; for toxic prompts, BLOCK is optimal and ACCEPT performs
poorly, with borderline prompts in between. Thus the reward landscape is clearly structured in the
(bucket, action) space, so safety-type information can genuinely change optimal actions, consis-
tent with the decision-sensitive notion of information value in Section 5.2. Figure 2 (right) plots
CoDℓ(λ) for ℓ ∈ {L1, L2, L3}. We observe CoDℓ(λ) > 0 for all λ ≥ 0, including λ = 0, since
acting only through compressed guard signals cannot match oracle performance even when only H
matters. Moreover, CoDL1(λ) and CoDL2(λ) are nearly identical, while CoDL3(λ) is uniformly

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 2: Left: reward landscape. Right: CoD vs safety weight.

smaller: splitting CONTROVERSIAL from UNSAFE (L1→L2) adds label entropy but little decision
value, whereas adding categories (L2→L3) refines signals exactly where optimal actions differ, re-
ducing the decision-relevant information cost ∆info. All three curves increase with λ, and the gap
between L1/L2 and L3 widens as safety becomes more heavily weighted, matching our structural
analysis that sharper safety curvature amplifies information-structural costs.

7 RELATED WORK AND IMPLICATIONS FOR MODERN SYSTEMS

Reward modeling and RLHF align language models with human preferences (Ouyang et al., 2022;
Rafailov et al., 2023). Recent work probes robustness, distribution shift and benchmarked evaluation
of reward models (Lambert et al., 2025; Shao et al., 2024) and analyzes length bias in preference-
based training (Park et al., 2024). Our results suggest that, beyond lowering generic reward error,
it is crucial to allocate modeling capacity to those preference distinctions that actually change opti-
mal policies. In CoD terms, this is an information-structure question: reward models that collapse
decision-irrelevant variance but sharpen decision-relevant boundaries can substantially reduce ∆info

even when global fit is imperfect.

Mixture-of-experts architectures scale capacity by sparsely activating experts (Shazeer et al., 2017;
Fedus et al., 2021; Mustafa et al., 2022; Huang et al., 2024a; Qiu et al., 2025). Existing routing
rules are mostly variance- or similarity-based. Under our framework, sparsity interacts with CoD
through ∆coord: experts are most useful when they partition state–task space along decision-sensitive
directions, not high-variance but policy-irrelevant axes. This view is consistent with evidence that
task-aware routing and specialization matter more than raw parameter count.

Reasoning models that expand test-time computation via chain-of-thought or RL-trained scratch-
pads (Wei et al., 2022; Wang & Zhou, 2024; Guo et al., 2025; OpenAI, 2024) can likewise be read
through CoD: they dynamically enrich the principal’s observation and policy classes, mainly reduc-
ing information and surrogate gaps rather than eliminating delegation itself. Further justification and
additional empirical connections to modern systems are provided in Appendix A.

8 CONCLUSION

Our work provides a new perspective and unified framework for understanding why perfect align-
ment remains elusive even with abundant data and computational resources. We show that informa-
tion value is decision-theoretic, only directions that change optimal actions matter. This suggests
that scalable alignment must combine target design (what is optimized) with structural design (who
observes what, and how they interact), and that complex systems should be judged not only by loss,
but by the size and shape of the structural gaps they induce. Our analysis is limited by surrogates
and simplified tasks, but it motivates future work that turns CoD into concrete design insights.
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A MORE RELATED WORK

Our analysis sits at the intersection of classical team decision theory, decentralized control, dynamic
game theory, and contemporary AI alignment. At a high level, we adopt the team-theoretic lens that
views a collection of agents with (nominally) common objectives but heterogeneous information,
and we ask not for exact optimal policies (which are often intractable), but for quantitative bounds on
the structural cost of delegation. The main novelties are: (i) a four-level hierarchy that disentangles
delegation, coordination sparsity, and information structure; and (ii) an explicit decomposition of
the Cost of Delegation into ∆deleg, ∆coord, and ∆info within an LQ surrogate, which can be related to
Blackwell’s ordering of information structures.

Team decision theory and decentralized LQ control. Classical team decision theory analyzes
stochastic control problems with multiple decision makers sharing a common payoff but observing
different signals (Radner, 1962; Marschak & Radner, 1958). This line of work established foun-
dational concepts such as team-optimality and the role of information patterns, but typically did
not provide explicit formulas for the performance gap between centralized and decentralized solu-
tions. Ho and Chu systematically classified information structures and identified conditions (such as
partial nestedness) under which person-by-person optimality implies team optimality (Ho & Chu,
1972). In decentralized LQG, Sandell and Athans showed that nonclassical information patterns can
make the optimal controller highly nontrivial even in linear-quadratic settings (Sandell & Athans,
2003), echoing the Witsenhausen counterexample. Athans later surveyed decentralized control ar-
chitectures and emphasized that structural constraints, rather than noise, often dominate performance
limits (Athans, 1975).

Our framework is close in spirit but different in emphasis. We do not attempt to compute optimal
decentralized policies for a given information pattern. Instead, we introduce a surrogate LQ world
in which the centralized optimum is explicitly computable, and we then quantify how much perfor-
mance is lost as one moves from a centralized controller (L1) to a multi-principal Nash equilibrium
(L2), then to sparse coordination (L3), and finally to partial observation (L4). In that sense, our
results are complementary to the structural existence results of Radner (1962); Ho & Chu (1972):
we treat information and coordination patterns as design objects and attach explicit performance
penalties to them.

Information structures and Blackwell ordering. Blackwell’s comparison of experiments formal-
izes when one information structure is more informative than another in a decision-theoretic sense
(Blackwell, 1953). Recent work on information structure design revisits this question for team
problems and team games, asking how to add or rewire information links to improve performance
(Summers et al., 2017). Our notion of an “information cost” is directly in this tradition. In the LQ
surrogate, ∆info can be written in terms of conditional covariance operators and is monotone with re-
spect to Blackwell dominance of the projections. However, unlike most of the classical literature, we
explicitly separate information structure from coordination structure, even under a fixed information
pattern, sparsifying the coordination matrix W induces a distinct cost component ∆coord.

Nayyar et al. (2013) show that certain decentralized stochastic control problems with partial history
sharing can be reformulated as centralized POMDPs using a “common information” state, which
restores dynamic programming. Their goal is to recover tractable dynamic programming recur-
sions. Our goal, in contrast, is quantitative. we keep a fixed LQ surrogate and use it to decompose
the performance gap between centralized and decentralized architectures into mechanism-design,
coordination, and information components. The two perspectives are compatible: the common-
information state can be viewed as an extreme point in the lattice of information structures, and our
bounds describe how far a given architecture lies from that ideal.

Dynamic games and sparse coordination. Our simultaneous-move LQ game between principals
is related to the literature on dynamic and differential games (Başar & Olsder, 1999), in which
agents optimize individual quadratic costs subject to linear dynamics, and Nash equilibria can often
be characterized in closed form. However, most of that literature either assumes relatively dense
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coupling or focuses on stability and solvability rather than explicit performance decompositions.
In parallel, coordination graphs and factored multi-agent models aim to exploit sparse interaction
structure to scale planning and RL (Guestrin et al., 2002). Our coordination matrixW can be seen as
a continuous analogue of such graphs, but our focus is inverted. Rather than using sparsity to design
scalable algorithms, we ask how much performance is lost when sparsity is imposed as a constraint.

Principal–agent alignment and cooperative assistance games. Within AI alignment, Hadfield-
Menell’s line of work argues that principal–agent misalignment provides a more realistic model for
AI systems than idealized single-agent optimization (Hadfield-Menell et al., 2016; Hadfield-Menell,
2021). CIRL formalizes value alignment as a cooperative partial-information game in which the
human knows the reward and the robot must infer it; the principal-agent thesis systematizes this view
and emphasizes strategic behavior by both sides. Our contribution is orthogonal. We assume the
principal’s objective is given (up to surrogate approximation) and ask how much loss is unavoidable
purely because control is delegated to multiple principals with limited coordination and information.
In this sense, our Cost of Delegation framework provides quantitative tools inside the principal–
agent paradigm, it gives explicit upper and lower bounds on the gap between centralized optimal
control and the behavior of a delegated, structured system.

Reward models, preference optimization, and modern alignment. A large body of recent work
studies alignment via preference-based reward modeling and policy optimization, including RL from
human preferences (Christiano et al., 2017), RLHF for summarization and instruction-following
(Stiennon et al., 2020; Ouyang et al., 2022), and direct preference optimization methods that re-
interpret policies as implicit reward models (Rafailov et al., 2023). Constitutional AI further em-
phasizes structured feedback and safety constraints (Bai et al., 2022). These methods primarily
target the reward-specification problem, learning a reward or preference model that reflects human
judgment. Our decomposition is complementary, even if the reward were perfectly specified, dele-
gation to multiple principals, sparse coordination, and partial observation induce a residual Cost of
Delegation.

In our framework, the relevant notion of information value is decision-theoretic in nature: what mat-
ters is how observations change optimal actions, not how much entropy they carry. High-variance but
decision-independent features can be essentially useless, while low-variance but decision-sensitive
directions dominate delegation cost. This perspective reframes several alignment problems under a
single CoD lens. It suggests that reward models should prioritize distinctions that actually move the
policy, and that architectural choices (such as which internal signals to expose to which modules)
should be evaluated by their impact on optimal actions rather than their raw information content.
Further implications for modern systems (including mixture-of-experts routing and multi-agent or-
chestration) are discussed in the main text and in subsequent appendices.

B IMPLICATIONS FOR MODERN SYSTEMS

Our framework reframes several alignment problems under a single Cost-of-Delegation (CoD) lens.

Reward models and RLHF-style training. RLHF and related preference-learning schemes train
reward models to approximate human judgments over model outputs, which are then used to opti-
mize policies via RL or direct preference optimization (Christiano et al., 2017; Stiennon et al., 2020;
Ouyang et al., 2022; Bai et al., 2022; Rafailov et al., 2023). Recent evaluations show that current
reward models are often miscalibrated and brittle across tasks (Lambert et al., 2025). A particularly
robust finding is length bias, that rewards correlate strongly with response length even when humans
do not, which can drive systematic reward hacking and degenerate behaviors (Singhal et al., 2023;
Huang et al., 2024b).

Our information-cost expression writes the gap between full and lossy observations as

∆info =
1

2
E[δu⊤Skδu] =

1

2
tr
(
G−T

k SkG
−1
k Cov(ϵ)

)
=

1

2
tr
(
G−T

k SkG
−1
k LΣϕL

⊤).
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where K̃m encodes how state directions affect value gradients and Σ⊥
mj is the residual covariance

that remains invisible under the chosen observation structure. In this view, an observation or feature
is valuable only insofar as it reduces decision-relevant residual variance along directions weighted
by K̃m, in line with Blackwell’s comparison of experiments (Blackwell, 1953). High-entropy fea-
tures that barely move the optimal action leave Σ⊥

mj essentially unchanged, and thus do not reduce
∆info, even if they explain a large fraction of raw outcome variance.

Empirical findings on reward models can be interpreted through this lens. Length and other stylis-
tic proxies typically explain large variance in human scores but have low marginal effect on the
ranking of candidate actions in safety-critical regions (Singhal et al., 2023; Lambert et al., 2025;
Huang et al., 2024b). In CoD terms, they primarily reshape reward level sets away from the deci-
sion boundary and therefore contribute little to closing the centralized–decentralized gap. Our toy
content-moderation experiment mirrors this by showing that moving from a coarse binary risk label
(L1) to a slightly higher-entropy threeway label (L2) barely changes CoD, while adding structured
category information (L3) that separates prompts requiring different actions substantially reduces
∆info. This suggests that reward models should devote capacity to partitioning the space along those
preference distinctions that actually switch optimal actions, rather than uniformly modeling all pref-
erence variation. Recent proposals that disentangle quality and stylistic or length signals, or that
perform post-hoc calibration of reward models, can be read as attempts to reduce decision-irrelevant
components of Σ⊥ while preserving decision-relevant gradients (Singhal et al., 2023; Huang et al.,
2024b).

Mixture-of-experts and sparse coordination. Mixture-of-experts (MoE) architectures implement
sparse routing of tokens to experts, effectively choosing a sparse coordination matrix between sub-
modules (Shazeer et al., 2017; Fedus et al., 2021; Mustafa et al., 2022). Large MoE models for
vision and language have shown strong scaling properties, but also exhibit issues such as expert
collapse, unbalanced routing, and specialization on redundant features (Cai et al., 2025; Gan et al.,
2025). Much of the design effort focuses on router objectives and regularizers that encourage load
balancing and diversity of experts (Zhou et al., 2022; Gupta et al., 2022).

In our notation, replacing an ideal dense coordination matrix W ∗ with a sparse Wk induces a coor-
dination gap

∆coord ≲
1

m2
∥G−1

k ∥22 ∥W ∗ −Wk∥2F ∥K∥22,

so the performance loss depends not just on how sparse Wk is, but on which couplings are dropped
relative to the true interaction structure W ∗. From this angle, MoE routing is a particular mech-
anism for choosing Wk as conventional token-level routers tend to cluster tokens by similarity in
representation space, which correlates more with statistical variance than with the task-specific in-
fluence of those tokens on downstream losses (Cai et al., 2025). Our bound suggests that sparsity
is benign when it respects the underlying “coordination graph” encoded by W ∗, but costly when it
severs edges along directions with large K or strong cross-expert couplings.

Recent work on multi-task and task-aware MoEs implicitly moves in this direction, designing rout-
ing objectives that align expert assignment with gradient structure or task identity rather than pure
feature clustering (Gupta et al., 2022; Cai et al., 2025). Under the CoD lens, such methods can
be interpreted as choosing sparsity patterns that minimize ∥W ∗ − Wk∥F along decision-critical
directions, thereby reducing ∆coord while retaining most of the computational benefits of sparse ac-
tivation. Low-rank adaptation methods such as LoRA (Hu et al., 2022) can similarly be viewed
as constrained perturbations of W ∗ and R, whose effect on CoD is governed by how the low-rank
updates interact with the value gradients encoded in K and K̃m.

Reasoning models and process-level supervision. Chain-of-thought prompting and process su-
pervision augment models with intermediate reasoning trajectories that are explicitly scored or
constrained (Wei et al., 2022; Wang & Zhou, 2024). Recent reasoning-centric models such as
DeepSeek-R1 and OpenAI’s o1 scale this idea further by combining RL with carefully designed
reward signals and process data to incentivize extended reasoning and self-checking behavior (Guo
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et al., 2025; OpenAI, 2024). Conceptually, these approaches expand the effective state and observa-
tion spaces. The system observes not only the external query but also a rich internal trace of tentative
computations, tool calls, and justification.

Within our framework, such traces can be viewed as additional observation channels that reduce Σ⊥

along directions that strongly affect final decisions. Process-level supervision shapes these channels
so that the internal trajectories are informative about correctness and safety, not just about superficial
fluency. In other words, the extra bits are useful because they align with value gradients as they make
it easier for a principal (the outer RL loop, a verifier, or a downstream orchestrator) to distinguish
between candidate actions that would otherwise look similar at the surface level. This perspective
complements existing accounts of reasoning models as implementing longer computation or better
search by emphasizing the informational role of scratchpads and verification signals in shrinking
∆info rather than merely increasing model capacity.

Multi-agent orchestration and tool ecosystems. Finally, multi-agent LLM systems and tool
ecosystems instantiate delegation at the system level. Planners, solvers, critics, retrievers, and ex-
ternal tools act as distinct delegates whose interactions are mediated by prompts, APIs, and routing
policies. Our four-level hierarchy provides a coarse template for such designs. Co-locating capa-
bilities in a single monolithic model corresponds to L1; introducing specialized agents corresponds
to L2; enforcing sparse communication or rigid workflows corresponds to L3; restricting agents to
partial context windows or filtered observations corresponds to L4. The CoD decomposition then
clarifies which inefficiencies are fundamentally architectural (e.g., unavoidable losses from partial
observability or strict modularization) and which are amenable to better objective design or training.

Taken together, these connections suggest that CoD does not propose yet another specific alignment
algorithm, but rather offers a unifying language for analyzing why different modern systems succeed
or fail. Across reward modeling, MoE routing, reasoning models, and multi-agent orchestration, the
same lesson repeats. What matters is not how many bits we observe or how many parameters we
add, but how strongly those design choices couple to the directions in state space that actually move
optimal actions.

C FULL STATEMENT OF THE FRAMEWORK

In this section we state the full framework, which covers contents in Section 3 and 4.1. Some
expressions are stated again for logic consistency. For proofs, see the next section.

C.1 PRELIMINARIES

Notation and probability space. Fix integers k ≥ 1 and block sizes M1, . . . ,Mk ≥ 1 with M :=∑k
i=1Mi total delegates, where delegatem ∈ {1, . . . ,M} belongs to block i(m) ∈ {1, . . . , k}. Let

(Ω,F ,P) be a probability space with filtration (Ft)t≥0.

State and action spaces. The system state ϕt ∈ S ⊆ Rn evolves on measurable set S. The
principal chooses uP,t ∈ UP (compact subset of RdP ). Each delegate m selects um,t ∈ Rd, stacked
as ut = (u⊤1,t, . . . , u

⊤
M,t)

⊤ ∈ RMd. The aggregate action is

at =

M∑
m=1

um,t ∈ Rd, (1)

with operator norm ∥A∥2 =
√
M ,2 which appears explicitly in stability and learning bounds.

2The aggregation operator A : RMd → Rd has matrix representation [Id Id · · · Id]. Throughout, ∥ · ∥2
denotes Euclidean/spectral norm; ρ(·) denotes spectral radius.
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C.2 DYNAMICS, INFORMATION, AND LEARNING

Dynamics. The controlled dynamics are

ϕt+1 = f(ϕt, at) + wt, (2)

where f : S × Rd → S is the deterministic transition map and {wt}t≥0 is process noise.

Assumption S1 (MDP Regularity and Lyapunov Drift):

(a) Lipschitz dynamics. There exists Lf ≥ 0 such that for all (s, a), (s′, a′) ∈ S × Rd,

∥f(s, a)− f(s′, a′)∥2 ≤ Lf

(
∥s− s′∥2 + ∥a− a′∥2

)
.

If f is twice differentiable, then sup(s,a)∈S×Rd ∥∇2f(s, a)∥2 ≤ Hf <∞.
(b) Sub-Gaussian noise. {wt}t≥0 forms a martingale difference sequence: E[wt+1|Ft] = 0

a.s. Moreover, there exists σw > 0 such that for all deterministic u ∈ Rn and all t ≥ 0,

E
[
exp(u⊤wt+1)|Ft

]
≤ exp

(
σ2
w

2
∥u∥22

)
a.s.

(c) Bounded domain and actions. The state space S is compact with supϕ∈S ∥ϕ∥2 ≤ Bϕ.
Each delegate’s action satisfies ∥um∥2 ≤ Bu, giving aggregate bound ∥at∥2 ≤ MBu.
Define the operating set Sop := S.

Information. Asymmetric partial observability: principal receives noisy aggregate feedback while
delegates observe only local state components and neighbor actions.

Assumption S2 (Observation): Principal observes signals through three channels:

(a) State: ϕ̃t = ϕt + ξt ∈ Rn.
(b) Response: yt = Ψ(ut) + ζt ∈ Rdy , where Ψ : RMd → Rdy is LΨ-Lipschitz.
(c) Reward: rt = r(ϕt, at, uP,t) + εt ∈ R, where r : S × Rd × UP → [−Rmax, Rmax].

The noise processes ξt, ζt, εt are Ft-adapted martingale difference sequences with E[·|Ft] = 0.
Each is conditionally sub-Gaussian with parameters σ2

ξ , σ
2
ζ , σ

2
r respectively. The concatenated noise

ηt := (ξ⊤t , ζ
⊤
t , εt)

⊤ ∈ Rn+dy+1 satisfies E[exp(v⊤ηt+1)|Ft] ≤ exp( 12v
⊤Σηv) for some Ση ⪰ 0

and all deterministic v, allowing cross-channel correlations.

Assumption S3 (Information Architecture):

(a) Principal’s information: At time t, observes history HP,t = {ϕ̃s, ys, rs, uP,s}t−1
s=0 ∪ {ϕ̃t}

and chooses uP,t measurably with respect to HP,t ⊆ Ft.
(b) Delegate’s local observation: Delegate m observes ϕm,t = Πmϕt + νm,t where Πm ∈

Rnm×n with ∥Πm∥2 ≤ 1. The collective observation satisfies
∑M

m=1 Π
T
mΠm ⪯ κIn for

some κ <∞. The noise νm,t follows S2’s sub-Gaussian structure with parameter σ2
ν . Each

delegate observes uP,t.

Learning. Principal cannot observe individual actions or reconstruct the aggregate action at from
the response signal yt = Ψ(ut) + ζt. Instead, he learns reduced-form predictive models:

Mϕ : E[ϕ̃t+1|ϕ̃t, uP,t] = Fθ(ϕ̃t, uP,t), Mr : E[rt+1|ϕ̃t, uP,t] = Rθ(ϕ̃t, uP,t), (3)

where θ = (θϕ, θr) parameterizes the reduced-form predictors. For realizability we assume Fθ and
Rθ belong to linear-in-parameters classes. Define the predictable regressor:

X̄t :=
[
ϕ̃⊤t−1 u⊤P,t−1 1

]⊤
∈ Rn+dP+1 (4)

which is HP,t−1-measurable. Principal uses the observable pairs {(X̄t, ϕ̃t, rt)}Tt=1 for estimation.
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Assumption S4 (Persistent Excitation): On the operating set Sop from S1(c):

(a) Boundedness: For any horizon T and confidence δ ∈ (0, 1),

Pr

[
max
1≤t≤T

∥X̄t∥2 ≤ BX(T, δ)

]
≥ 1− δ

where BX(T, δ) = O(
√

log(T/δ)) under S2.
(b) Sliding-window excitation: The principal’s policy ensures that for all t ≥ T0:

λmin

(
1

T0

t∑
s=t−T0+1

X̄sX̄
⊤
s

)
≥ α

Principal objective. Hierarchical uncertainty from system noise (wt), partial observations
(ξt, ζt, εt), and indirect control through delegate equilibrium motivate risk-sensitive objectives:

JπP (ϕ0) = Uβ

[
T−1∑
t=0

γtr(ϕt, at, uP,t)

]
, (5)

where γ ∈ (0, 1) is the discount factor, Uβ(X) := −CVaRβ(−X) is the coherent risk-sensitive
utility with β ∈ (0, 1) controlling risk aversion, and aggregate action at =

∑M
m=1 u

∗
m,t results

from the delegate Nash equilibrium. Uβ admits a tractable minimax formulation (the derivation
is standard) under the subsequently introduced G1-G2, ensuring that hierarchical learning remains
computationally feasible despite risk considerations.3

Certainty Equivalence Approximation. Delegates act on state estimates as if certain, reducing
the POMDP to an LQG surrogate. This approximation is exact under Gaussian noise and provides
controlled error under S2’s sub-Gaussian structure. The following analysis derives the induced game
structure under this approximation.

C.3 DELEGATE GAME FROM FIRST PRINCIPLES

Delegate objective. Given S3’s information structure, delegate m minimizes:

E

[ ∞∑
t=0

γt
(
1

2
∥Πmϕt − ψm(uP,t)∥2Qm

+
1

2
∥um∥2Rm

)]
(6)

where ψm(uP ) = ϕ̄∗m + PmuP is the principal-influenced target.

Quadratic Approximation. We adopt certainty equivalence and linearize f(ϕ, a) at (ϕ̄, 0) while
quadraticizing the tracking losses at z = 0, obtaining a quadratic surrogate stage game.

Lemma C.1 (Local linearization). Fix ϕ̄ ∈ Sop. There exist A := Dϕf(ϕ̄, 0), B := Daf(ϕ̄, 0) and
c > 0 such that f(ϕ, a) = f(ϕ̄, 0)+A(ϕ−ϕ̄)+Ba+R2(ϕ, a) with ∥R2(ϕ, a)∥ ≤ c(∥ϕ−ϕ̄∥2+∥a∥2)
for all (ϕ, a) ∈ Sop × {∥a∥ ≤MBu}.

Theorem C.1 (Emergent coordination). Under certainty equivalence and local linearization, the
infinite-horizon problems reduce (to second order) to the single-stage game

Jm(um;u−m) =
1

2
uTmRmum + uTmKm(δϕ, uP ) +

1

2

M∑
j=1

uTmWmjuj + εm(δϕ,u), (7)

with δϕ := ϕ− ϕ̄, Km = (ΠmB)TQm[(ΠmA)δϕ− PmuP ] and Wmj = (ΠmB)TQm(ΠmB).

The approximation error εm satisfies:

|εm(δϕ,u)| ≤ C
(m)
h ∥δϕ∥32 + C

(m)
f (∥δϕ∥22 + ∥a∥22), (8)

3All expectations are under PπP , the law induced by policy πP , S1-S3, and the equilibrium mapping.
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where C(m)
h bounds the cubic remainder from value function approximation and C(m)

f bounds the
quadratic remainder from dynamics linearization.

See Appendix A for full derivation. The coordination matrix W emerges mechanistically: delegate
j’s action propagates through the shared dynamics B to affect delegate m’s future states via projec-
tion Πm. To formalize, W = [Wmj ] induces the physical graph G = (V,E) with V = {1, . . . ,M}
and E = {(m, j) :Wmj ̸= 0}, which is in general distinct from the observation structure in S3.

Equilibrium. Each delegate m’s surrogate objective (Theorem C.1) depends on other delegates’
actions through the coupling terms

∑
j u

T
mWmjuj . This creates strategic interdependence: delegate

m’s optimal choice u∗m depends on the profile u−m of all other delegates. To characterize the
equilibrium, we stack all delegate decisions u = (uT1 , . . . , u

T
M )T into a single strategic game.

Proposition C.1 (Nash Equilibrium). The aggregate game

J(u; δϕ, uP ) =
1

2
uT (R+W )u+ uTK(δϕ, uP ) (9)

has unique Nash equilibrium u∗ = −G−1K(δϕ, uP ) when G := R+W satisfies G1(a) below. For
the full system, the equilibrium map is u∗(ϕ, uP ) := −G−1K(ϕ − ϕ̄, uP ), which is Lipschitz with
constant ∥G−1∥2LK in (δϕ, uP ).

Direct computation requires O((Md)3) operations, so we impose:

Assumption G1 (Structured Coordination):

(a) Well-posedness: λmin((G+GT )/2) ≥ m > 0

(b) Bounded coupling: ∥W∥2 ≤ wmax <∞
(c) Tractable structure: W admits one of:

– Low-rank + sparse: W = UV T + S with U, V ∈ RMd×r, r ≪Md, S sparse
– Tree/DAG: Sparsity follows directed acyclic or tree structure
– Block-sparse: At most k nonzero blocks per row

Proposition C.2 (Equilibrium Properties). Under G1, the Nash equilibrium u∗:

(a) Is Lipschitz continuous with constant LK/m in (ϕ, uP )

(b) Solves the first-order condition (R+W )u = −K(ϕ− ϕ̄, uP )

(c) For symmetric W , minimizes the potential Φ(u) = 1
2u

TGu+ uTK(ϕ− ϕ̄, uP )

Remark. On compact S×UP with continuousK, choosingBu ≥ sup(ϕ,uP ) ∥G−1K(ϕ− ϕ̄, uP )∥∞
ensures the unconstrained equilibrium respects action bounds.

Closed-loop Error Propagation. The equilibrium u∗(ϕ, uP ) = −G−1K(ϕ − ϕ̄, uP ) computed
from the quadratic surrogate is substituted into the true dynamics:

F (ϕ;uP ) = f(ϕ,A(u∗(ϕ, uP ))). (10)

Using the surrogate-based equilibrium u∗ instead of the infinite-horizon optimal actions requires
closed-loop contractivity for bounded cumulative propagation. Under closed-loop contraction with
Lcl := sup ∥DϕF (ϕ;uP )∥2 < 1/γ, the discounted cumulative error from surrogate-based equilib-
rium satisfies:

∞∑
t=0

γt|errort| = O

(
Ch + Cf

1− γLcl

)
(11)

where Ch controls the cubic (value function) error and Cf controls the quadratic (dynamics) error.
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Assumption G2 (Stability): The closed-loop Jacobian satisfies

sup
(ϕ,uP )∈S×UP

∥DϕF (ϕ;uP )∥2 <
1

γ
(12)

where F (ϕ;uP ) = f(ϕ,A(u∗(ϕ, uP ))). Under compact domains, it is finite and verifiable.

Theorem C.2 (Closed-loop contraction). Under G1 and G2’s sufficient condition

Ls + La∥A∥2∥G−1∥2LK <
1

γ
, (13)

the closed-loop system satisfies sup ∥DϕF∥2 < 1/γ. Moreover, the cumulative approximation error
from using the quadratic surrogate remains bounded.

D APPENDIX FOR SECTION 3 AND 4.1 (APPENDIX C)

D.1 REMARKS FOR S1

(a) Lipschitz & smoothness. Assume f : S × Rd→S is globally Lf–Lipschitz in (s, a) and C2

on S × {a : ∥a∥ ≤MBu} (the action bound is from S1(c)). Then the Jacobians

A(s, a) := Dsf(s, a)

and
B(s, a) := Daf(s, a)

exist a.e., with
∥A(s, a)∥ ≤ Ls, ∥B(s, a)∥ ≤ La

for finite Ls, La used in G2.

(b) Sub-Gaussian MDS. For {wt}, the conditional MGF bound

E[exp(u⊤wt+1) | Ft] ≤ exp(12σ
2
w∥u∥2)

implies:

(i) E[wt+1 | Ft] = 0 a.s.;

(ii) vector-valued Freedman/Azuma inequalities hold uniformly over directions u;

(iii) stability and concentration results are dimension free up to log factors.

(c) Compact operating set. We take S compact with supϕ∈S ∥ϕ∥ ≤ Bϕ and per-delegate action
bound ∥um∥ ≤ Bu, hence ∥at∥ ≤ MBu and all linearizations are invoked on a compact set. This
replaces a Lyapunov drift assumption and suffices for the local Taylor bounds used below.

D.2 REMARKS FOR S2

(a) Channels and joint noise. Each channel noise is an Ft–adapted MDS with sub-Gaussian proxy
ση . When cross-channel correlations are present, the concatenated ηt := (ξ⊤t , ζ

⊤
t , εt)

⊤ satisfies

E[exp(v⊤ηt+1) | Ft] ≤ exp( 12v
⊤Σηv)

with some PSD Ση , enabling joint self-normalized bounds.

(b) Measurability. All observation maps (Ψ, r) are Borel and the histories HP,t are σ–fields con-
tained in Ft; thus policies measurable w.r.t. HP,t are admissible.
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D.3 REMARKS FOR S3

(a) Observation coverage. Disjoint coverage means∑
m

Π⊤
mΠm = In

and
ΠmΠ⊤

ℓ = 0

for m ̸= ℓ; overlapping coverage requires∑
m

Π⊤
mΠm ⪯ κIn

for some finite κ. In both cases we assume ∥Πm∥ ≤ 1.

(b) Circularity avoidance. Gobs (the observation pattern implicit in {Πm}) is distinct from the
coordination graph later induced by W ; S3 makes no reference to W .

D.4 REMARKS FOR S4

(a) Reduced-form realizability. Fθ, Rθ are linear-in-parameters w.r.t. predictable regressor

X̄t := [ϕ̃⊤t−1, u
⊤
P,t−1, 1]

⊤;

realizability means
∃ θ⋆ϕ, θ⋆r

with
Fθ⋆

ϕ
(x) = Φϕ(x)

⊤θ⋆ϕ

and
Rθ⋆

r
(x) = Φr(x)

⊤θ⋆r .

(b) High-probability boundedness. Under S2 and compact S × UP , ∥X̄t∥ is sub-Gaussian; thus

max
1≤t≤T

∥X̄t∥ ≤ BX(T, δ)w.p. ≥ 1− δ

with BX = O(
√

log(T/δ)).

(c) Sliding-window PE. If

λmin(
1
T0

t∑
s=t−T0+1

X̄sX̄
⊤
s ) ≥ α

for all t ≥ T0, then

λmin(

T∑
s=1

X̄sX̄
⊤
s ) ≥ α(T − T0)

for
T ≥ T0.

D.5 PROOF OF THE LOCAL LINEARIZATION LEMMA (CERTAINTY-EQUIVALENCE

SURROGATE)

Fix ϕ̄ ∈ S and define δϕ := ϕ − ϕ̄. By S1(a,c), f is C2 on the compact set D := S × {a : ∥a∥ ≤
MBu}, hence the block Hessian ∇2f(s, a) is bounded there. Taylor’s theorem (vector form) at
(ϕ̄, 0) gives

f(ϕ, a) = f(ϕ̄, 0) +Aδϕ+B a+Rf (ϕ, a), A := Dsf(ϕ̄, 0), B := Daf(ϕ̄, 0),

with ∥Rf (ϕ, a)∥ ≤ cf
(
∥δϕ∥2 + ∥a∥2

)
for some cf < ∞ depending on sup(s,a)∈D ∥∇2f(s, a)∥.

Let em,t+1 := Πmϕt+1−ψm(uP,t+1). Under certainty equivalence, delegates act on state estimates
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as if true, so the one-step predicted error satisfies

em,t+1=ΠmAδϕt +ΠmB

M∑
j=1

uj,t − ψm(uP,t+1) + R̃m,t, ∥R̃m,t∥ ≤ cf
(
∥δϕt∥2 + ∥at∥2

)
.

For tracking cost hm(z) = 1
2z

⊤Qmz (main text surrogate), the stage loss is ℓm = 1
2∥em,t+1∥2Qm

+
1
2∥um,t∥2Rm

, which expands to
1
2u

⊤
m,tRmum,t + u⊤m,t(ΠmB)⊤Qm

(
ΠmAδϕt − ψm(uP,t+1)

)
+ 1

2

M∑
j=1

u⊤m,t(ΠmB)⊤Qm(ΠjB)uj,t +Rt,

with remainder |Rt| ≤ Cf

(
∥δϕt∥2 + ∥at∥2

)
on D. If instead the true tracking hm is C3 with

sup∥z∥≤C ∥∇3hm(z)∥ ≤ Hhm
on the compact operating set, then Taylor’s theorem around z = 0

also contributes a cubic remainder |Rh(z)| ≤ 1
6Hhm

∥z∥3, yielding an additional Ch∥δϕt∥3 term.
Discounted summability follows from G2 (see Appendix remark for G2).

D.6 PROOF OF THEOREM 4.1

Statement (for reference). Linearizing dynamics around ϕ̄ ∈ S and invoking certainty equiva-
lence, the infinite-horizon delegate problems admit the stage surrogate

Jm(um;u−m, ϕ, uP ) =
1
2u

⊤
mRmum + u⊤mKm(ϕ, uP ) +

1
2

M∑
j=1

u⊤mWmjuj ,

with
Km = (ΠmB)⊤Qm[(ΠmA)δϕ− ψm(uP )]

and
Wmj = (ΠmB)⊤Qm(ΠjB),

where
δϕ := ϕ− ϕ̄

and A := Dsf(ϕ̄, 0), B := Daf(ϕ̄, 0).

Proof. Fix m. By S1(a,c), Taylor-expand f at (ϕ̄, 0):

ϕt+1 = ϕ̄+A(ϕt − ϕ̄) +Bat + rf (ϕt, at)

with ∥rf∥ ≤ 1
2Hf (∥δϕt∥2+∥at∥2). Write the local tracking error em,t+1 := Πmϕt+1−ψm(uP,t+1)

and linearize ψm if needed (it is affine in the main text). Using certainty equivalence (delegates act
on state estimates as if true), the one-step predicted error satisfies

em,t+1 ≈ ΠmAδϕt +ΠmB

M∑
j=1

uj,t − ψm(uP,t+1) + r̃m,t,

with
∥r̃m,t∥ ≤ cf (∥δϕt∥2 + ∥at∥2)

for some cf depending on Hf and ∥Πm∥. The per-step cost is

ℓm = 1
2e

⊤
m,t+1Qmem,t+1 +

1
2u

⊤
m,tRmum,t.

Expanding the quadratic in em,t+1 yields:

1
2u

⊤
m,tRmum,t+u

⊤
m,t(ΠmB)⊤Qm

(
ΠmAδϕt−ψm(uP,t+1)

)
+ 1

2

M∑
j=1

u⊤m,t(ΠmB)⊤Qm(ΠjB)uj,t+Rt,

where the remainder Rt is bounded by

ch∥δϕt∥3 + c′f (∥δϕt∥2 + ∥at∥2)
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on
S × {a : ∥a∥ ≤MBu}

by S1(c) and smoothness of
hm(z) = 1

2z
⊤Qmz

(with Qm ⪰ 0). Summing the discounted costs over t and absorbing the geometric factor into a
rescaling of Qm (permitted since Qm is free up to a positive scalar in the surrogate), we obtain the
claimed Km,Wmj and a discounted remainder whose series converges under G2 (see Remark D.9).

D.7 PROOF OF PROPOSITION 4.1

Let G := R+W and consider the affine map F (u) := Gu+K(ϕ, uP ). Existence/uniqueness. By
G1(a), 1

2 (G+G⊤) ⪰ mI with m > 0, so F is strongly monotone:

(F (u)− F (v))⊤(u− v) ≥ m∥u− v∥2.
Hence the variational inequality

(Gu+K)⊤(v − u) ≥ 0

has a unique solution, which must satisfy the first-order condition Gu⋆ + K = 0, i.e.,
u⋆ = −G−1K(ϕ, uP ); invertibility follows from strong monotonicity. Lipschitz map. For
(ϕ, uP ), (ϕ

′, u′P ),

∥u⋆(ϕ, uP )−u⋆(ϕ′, u′P )∥ = ∥G−1
(
K()−K()

)
∥ ≤ ∥G−1∥LK

(
∥ϕ−ϕ′∥+∥uP−u′P ∥

)
≤ LK

m (· · · ).
Symmetric case. If W = W⊤ then G = G⊤ and the potential Φ(u) := 1

2u
⊤Gu+ u⊤K is strictly

convex since G ⪰ mI . Its unique minimizer satisfies ∇Φ(u) = Gu+K = 0, hence u⋆ above.

D.8 REMARKS FOR G1

(a) Well-posedness with asymmetry. G1(a) assumes λmin(
1
2 (G + G⊤)) ≥ m > 0 with G :=

R+W . ThenG is (strictly) monotone, and the linear variational inequality (Gu+K)⊤(v−u) ≥ 0
has a unique solution u⋆ = −G−1K; see, e.g., standard results on strongly monotone operators.

(b) Lipschitz equilibrium map. For any (ϕ, uP ), (ϕ
′, u′P ),

∥u⋆(ϕ, uP )−u⋆(ϕ′, u′P )∥ ≤ ∥G−1∥ ∥K(ϕ, uP )−K(ϕ′, u′P )∥ ≤ (LK/m)
(
∥ϕ−ϕ′∥+∥uP −u′P ∥

)
,

using ∥G−1∥ ≤ 1/m.

(c) Potential structure (symmetric case). If W = W⊤ then G = G⊤ and Φ(u) := 1
2u

⊤Gu +
u⊤K is strictly convex; its unique minimizer solves Gu+K = 0.

(d) Tractable structures. G1(c) gives three families: (i) low-rank+sparse W = LR⊤ + S yields
Woodbury-type solvers; (ii) tree/DAG sparsity enables message-passing/elimination; (iii) block-
sparse rows (at most k nonzero blocks) permit block-elimination withO(k3d3M) complexity. These
are algorithmic choices; the theory of existence/uniqueness uses only G1(a).

D.9 REMARKS FOR G2

(a) Sufficient small-gain condition. Let

F (ϕ;uP ) := f(ϕ,A(u⋆(ϕ, uP ))),

A(u) =
∑
m

um

so
∥A∥ =

√
M.

By chain rule,
DϕF (ϕ;uP ) = Dsf(ϕ, a

⋆) + Daf(ϕ, a
⋆)Dϕa

⋆(ϕ;uP ).
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Using
a⋆(ϕ;uP ) = A(u⋆(ϕ;uP )),

we have
∥Dϕa

⋆∥ ≤ ∥A∥ · ∥Dϕu
⋆∥ ≤

√
M ∥G−1∥LK ≤

√
M LK/m.

Hence
∥DϕF (ϕ;uP )∥ ≤ Ls + La

√
MLK/m.

The stated bound Ls + La

√
MLK/m < 1/γ implies

sup
(ϕ,uP )

ρ(DϕF ) < 1/γ.

(b) Discounted remainder summability. If

Lcl := sup
(ϕ,uP )

∥DϕF (ϕ;uP )∥ < 1

then along closed-loop trajectories

∥δϕt∥ ≤ CLt
cl∥δϕ0∥

for some C <∞, so the per-step Taylor remainders of order 2 and 3 are absolutely summable with
discount γ ∈ (0, 1) provided γLcl < 1; under the stronger but convenient condition γL2

cl < 1 we
obtain sharper constants for the

∑
t γ

t∥δϕt∥2 series used in Section 5.

D.10 PROOF OF PROPOSITION C.2

Let G := R+W and define F (u) := Gu+K(ϕ, uP ). By G1(a), G+G⊤

2 ⪰ mI with m > 0, so F
is m–strongly monotone:

(F (u)− F (v))⊤(u− v) ≥ m∥u− v∥22
for all u,v. Hence the variational inequality (Gu + K)⊤(v − u) ≥ 0 has a unique solution,
which must satisfy Gu⋆ + K = 0, i.e., u⋆ = −G−1K(ϕ, uP ); invertibility follows from strong
monotonicity. For (ϕ, uP ), (ϕ′, u′P ), Lipschitz continuity follows from

∥u⋆(ϕ, uP )−u⋆(ϕ′, u′P )∥ = ∥G−1(K()−K())∥ ≤ ∥G−1∥2 LK(∥ϕ−ϕ′∥+∥uP−u′P ∥) ≤ LK

m (· · · ).
If W = W⊤ then G = G⊤ and the potential Φ(u) := 1

2u
⊤Gu + u⊤K is m–strongly convex; its

unique minimizer satisfies Gu+K = 0.

E STRUCTURAL PROPERTIES

We characterize the computational and learning structure arising from structured coordination (G1)
and stability (G2). These structural properties provide the mathematical foundation for analyzing
delegation trade-offs.

E.1 COMPUTATIONAL STRUCTURE

We discuss the computational complexity of solving Gu = K for the equilibrium u∗ =
−G−1K(ϕ − ϕ̄, uP ) under different coordination structures in G1(c). For reference, direct matrix
inversion requires O((Md)3) operations.

1. Low-rank + Sparse. With U, V ∈ RMd×r and row-sparse S (at most s nonzeros per row), the
equilibrium computation uses the generalized Woodbury identity.

Theorem E.2. With W = UV T + S, solving Gu = K requires O
(
(s+ r) ·Md+ r3

)
operations

via the factorization

G−1 = (R+ S)−1 − (R+ S)−1U(I + V T (R+ S)−1U)−1V T (R+ S)−1. (14)
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Algorithm: (1) Solve (R + S)z = K using sparse methods (O(s ·Md) operations), (2) compute
Ũ = (R+ S)−1U via sparse solves (O(r · s ·Md)), (3) form and invert the r× r system I + V T Ũ
(O(r3)), (4) combine results: u = z − Ũ(I + V T Ũ)−1V T z (O(r ·Md)).4

2. Tree/DAG Sparsity. When W follows a tree or bounded-treewidth graph structure, sparse fac-
torization (Cholesky if symmetric, LU otherwise) provides structured computation.

Theorem E.3. If the sparsity graph of G has treewidth w, then one solve via sparse Cholesky/LU
with nested dissection costs O(w2d2M); for balanced trees, w = O(logM).

Algorithm: Standard sparse factorization with nested dissection ordering maintains treewidth bounds
during elimination, yieldingO(w2) fill-in per elimination step. For balanced trees (w = O(logM)),
complexity becomes O(d2M log2M).

3. Block-sparse. When each row of W has at most k nonzero d × d blocks, block Gaussian
elimination provides cubic-in-k complexity.

Theorem E.4. If each row has at most k nonzero d × d blocks and elimination order preserves
O(k2) fill per row, then one solve costs O(k3d3M) with storage O(kd2M).

Algorithm: Perform block Gaussian elimination exploiting the sparse block pattern. Each elimina-
tion step affects at most k blocks per row, creating at most k2 fill blocks. Total elimination requires
O(k3d3) operations per row-block and O(M) eliminations.

E.2 LEARNING STRUCTURE

We characterize how coordination structure affects the principal’s parameter estimation problem for
the reduced-form models E[ϕ̃t+1|ϕ̃t, uP,t] = Fθ(ϕ̃t, uP,t). The equilibrium mapping u∗(ϕ, uP ) =
−G−1K(ϕ − ϕ̄, uP ) inherits structure from G = R + W . Since the closed-loop dynamics are
F (ϕ;uP ) = f(ϕ,A(u∗(ϕ, uP ))), structured coordination matrices influence the complexity of the
principal’s learning problem.

Proposition E.1 (Structure-dependent learning). Under G1(c), structured coordination suggests re-
duced parameterization in principal’s reduced-form models compared to unstructured delegation.

Each G1(c) family creates distinct parameterization patterns: Low-rank + sparse (W = UV T +S)
produces equilibrium responses with systematic global patterns plus sparse local corrections, yield-
ing parameterization with effective dimension (number of free parameters)O(rMd+s). Tree/DAG
coordination creates hierarchical response patterns with complexity bounded by treewidth, induc-
ing parameterization dimension O(w ·M). Block-sparse coordination yields modular equilibrium
responses with limited cross-module coupling, creating parameterization dimension O(kMd2).

F APPENDIX FOR STRUCTURAL PROPERTIES

F.1 PROOF OF THEOREM (LOW-RANK + SPARSE; COMPUTATIONAL COMPLEXITY)

Assume W = UV ⊤ + S with U, V ∈ RMd×r and S row-sparse with at most s nonzeros per row.
Woodbury’s identity gives

G−1 = (R+ S)−1 − (R+ S)−1U
(
I + V ⊤(R+ S)−1U

)−1
V ⊤(R+ S)−1.

A solve u = G−1K proceeds as follows.

(R+ S)z = K, O(sMd).

4The O(sMd) sparse solve complexity assumes κ(R+ S) = O(1)
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Ũ := (R+ S)−1U via r sparse solves, cost O(r sMd).

Mr := I + V ⊤Ũ , M−1
r in O(r2Md+ r3).

u = z − Ũ M−1
r V ⊤z, O(rMd).

Hence, the total cost is
O
(
(s+ r)Md+ r3

)
.

F.2 PROOF OF THEOREM (TREE/DAG SPARSITY; COMPUTATIONAL COMPLEXITY)

Let the sparsity graph of G have treewidth w (symmetric case) or admit a chordal extension with
maximal clique size O(w) (non-symmetric case). Using nested dissection or an elimination or-
dering aligned with the tree decomposition, sparse Cholesky (symmetric) or LU (non-symmetric)
factorization incurs O(w2) fill per elimination.

With Md scalar unknowns arranged in M blocks of size d, the total factorization and solve cost is

O(w2d2M).

For balanced trees (w = O(logM)), this becomes

O(d2M log2M).

Standard sparse factorization results apply because G1(b) ensures bounded operator norm ofW , and
R ≻ 0 controls conditioning.

F.3 PROOF OF THEOREM (BLOCK-SPARSE; COMPUTATIONAL COMPLEXITY)

Suppose each row of W has at most k nonzero d× d blocks and the elimination ordering preserves
at most O(k2) fill per row (e.g., block minimal-degree ordering). In block Gaussian elimination,
each pivot update touches at most k neighboring blocks and creates at most k2 fill blocks of size
d× d.

Hence, each elimination step costs
O(k3d3),

and across M block eliminations the total cost is

O(k3d3M), storage O(kd2M).

Positive definiteness and bounded operator norm from G1(a,b) ensure numerical stability.

F.4 PROOF OF PROPOSITION (STRUCTURE-DEPENDENT LEARNING)

Write the equilibrium response as

u⋆(ϕ, uP ) = −(R+W )−1K(ϕ, uP ).

Low-rank + sparse. With W = UV ⊤ + S, Woodbury expansion yields

u⋆ = (R+ S)−1[·]− Ũ M−1
r V ⊤(R+ S)−1[·],

where Ũ = (R+ S)−1U and Mr = I + V ⊤Ũ . Thus u⋆ is the sum of:

(i) sparse response: (R+ S)−1K (at most s couplings per row),

(ii) rank-r global correction: Ũ(·).
This yields a reduced-form parameterization with

O(rMd+ s)

free coefficients when K is linear in features (as in S4).
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Tree/DAG. A block-sparse inverse on a bounded-treewidth graph yields influence kernels sup-
ported on neighborhoods of size O(w), giving

O(wM)

effective coefficients in the reduced form.

Block-sparse. With at most k nonzero d × d blocks per row, each component of u⋆ depends on
O(k) neighbors, leading to

O(kMd2)

coefficients in a linear reduced-form model. These bounds characterize the number of free parame-
ters needed to represent the equilibrium map within the principal’s reduced-form class.

G APPENDIX FOR SECTION 4.2

Proof. By Assumption G1(a), the symmetric part

H∗ :=
G∗ + (G∗)⊤

2

satisfies H∗ ⪰ mI for some m > 0. Since J(u) = 1
2u

⊤G∗u + u⊤K and u⊤G∗u = u⊤H∗u for
all u, J is m-strongly convex and admits a unique minimizer on any closed convex feasible set.

Let ULℓ be the feasible set at Level Lℓ for the joint action u in the sense of Definition 4.3. By
construction of the four-level hierarchy,

UL4 ⊆ UL3 ⊆ UL2 ⊆ UL1.

Define
J∗
Lℓ := min

u∈ULℓ

J(u), ℓ = 1, 2, 3, 4.

For any pair of sets V2 ⊆ V1 we have

min
u∈V1

J(u) ≤ min
u∈V2

J(u),

since the infimum over a superset cannot exceed the infimum over a subset. Applying this to the
chain UL1 ⊇ UL2 ⊇ UL3 ⊇ UL4 yields

J∗
L1 ≤ J∗

L2 ≤ J∗
L3 ≤ J∗

L4.

For the second claim, when W is symmetric the dense-coordination Level L2 coincides with the
centralized Level L1 in the sense that UL2 = UL1. Since J is strongly convex, the minimizer over
UL1 is unique, hence

J∗
L1 = min

u∈UL1

J(u) = min
u∈UL2

J(u) = J∗
L2.

H APPENDIX FOR SECTION 5

H.1 PROOF OF EXPRESSION 5.1

Proof of Expression 5.1 (Coordination cost). Recall

G∗ = R+W ∗, Gk = R+Wk, E :=W ∗ −Wk,

and define the symmetric part

S∗ :=
G∗ +G∗⊤

2
.
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By Assumption G1(a), S∗ ⪰ mI for some m > 0, so

λmin(S
∗) > 0, λmax(S

∗) <∞.

Consider the quadratic objective

J(u) =
1

2
u⊤G∗u+ u⊤K =

1

2
u⊤S∗u+ u⊤K,

whose gradient and Hessian are

∇J(u) = S∗u+K, ∇2J(u) = S∗.

Let u∗ be the unique minimizer of J :

S∗u∗ +K = 0 =⇒ u∗ = −(S∗)−1K.

At the sparse level we use the Gk–based update

uk := −G−1
k K,

and define δu := uk−u∗. Since J is a convex quadratic with Hessian S∗, we have the exact identity

J(uk)− J(u∗) =
1

2
δu⊤S∗δu.

The coordination cost is thus

∆coord := J(uk)− J(u∗) ≤ λmax(S
∗)

2
∥δu∥22.

We now bound δu. From S∗u∗ +K = 0 we get K = −S∗u∗, so

uk = −G−1
k K = G−1

k S∗u∗,

and hence
δu = uk − u∗ =

(
G−1

k S∗ − I
)
u∗ = G−1

k (S∗ −Gk)u
∗.

In the symmetric coordination case where W ∗ and Wk (hence G∗ and Gk) are symmetric, we have
S∗ = G∗ and

S∗ −Gk = G∗ −Gk = (R+W ∗)− (R+Wk) = E.

Therefore
δu = G−1

k E u∗,

and
∥δu∥2 ≤ ∥G−1

k ∥2 ∥E∥F ∥u∗∥2.
Since

u∗ = −(S∗)−1K =⇒ ∥u∗∥2 ≤ ∥(S∗)−1∥2 ∥K∥2 =
1

λmin(S∗)
∥K∥2,

we obtain
∥δu∥22 ≤ ∥G−1

k ∥22 ∥E∥2F
1

λmin(S∗)2
∥K∥22.

Combining with the earlier bound on ∆coord yields

∆coord ≤ λmax(S
∗)

2
· ∥G−1

k ∥22 ∥E∥2F
1

λmin(S∗)2
∥K∥22.

Defining

Cstruct :=
λmax(S

∗)

2λmin(S∗)2
,

we obtain
∆coord ≤ Cstruct ∥G−1

k ∥22 ∥E∥2F ∥K∥22,
which is Expression 5.1.
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H.2 PROOF OF EXPRESSION 5.2

Proof of Expression 5.2 (Information cost). Fix the sparse game Gk = R +Wk and its symmetric
part

Sk :=
Gk +G⊤

k

2
.

The one-stage surrogate cost is

J(u) :=
1

2
u⊤Gku+ u⊤K =

1

2
u⊤Sku+ u⊤K,

with gradient and Hessian

∇J(u) = Sku+K, ∇2J(u) = Sk.

For each state ϕ, define the full-information and partial-information controls as

u∗(ϕ) := −G−1
k K(ϕ), û(ϕ) := −G−1

k K̂(ϕ),

where K̂m(ϕ) := E[Km(ϕ) | Πmϕ]. Let

ϵ := K − K̂, δu := û− u∗ = G−1
k ϵ.

For fixed ϕ, write u = u∗ + δu and expand:

J(u∗ + δu) = J(u∗) +∇J(u∗)⊤δu+
1

2
δu⊤Skδu.

Since Gk = Sk + Ak with Ak := 1
2 (Gk − G⊤

k ) skew-symmetric, the dense optimality condition
Gku

∗ +K = 0 implies

Sku
∗ +Aku

∗ +K = 0 =⇒ ∇J(u∗) = Sku
∗ +K = −Aku

∗.

Hence
J(û)− J(u∗) = −u∗⊤Ak δu+

1

2
δu⊤Skδu.

Taking expectation over the randomness in ϵ (hence in δu), we note that u∗ is deterministic for fixed
ϕ, while

δu = G−1
k ϵ, E[ϵ] = 0 =⇒ E[δu] = 0.

Thus
E[J(û)− J(u∗)] = −u∗⊤Ak E[δu] +

1

2
E[δu⊤Skδu] =

1

2
E[δu⊤Skδu].

By definition,

∆info := E[J(û)− J(u∗)] =
1

2
E[δu⊤Skδu].

Using δu = G−1
k ϵ,

δu⊤Skδu = ϵ⊤G−T
k SkG

−1
k ϵ = tr

(
G−T

k SkG
−1
k ϵϵ⊤

)
.

Taking expectations yields

E[δu⊤Skδu] = tr
(
G−T

k SkG
−1
k Cov(ϵ)

)
,

so
∆info =

1

2
tr
(
G−T

k SkG
−1
k Cov(ϵ)

)
.

In the LQ surrogate, K(ϕ) is linear in the state deviation δϕ, so there exists a matrix L such that

ϵ = Lδϕ, Cov(ϵ) = LΣϕL
⊤,

where Σϕ is the covariance of δϕ. Substituting into the previous expression gives

∆info =
1

2
tr
(
G−T

k SkG
−1
k LΣϕL

⊤),
31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

which is Expression 5.2.

H.3 PROOF OF EXPRESSION 5.3

Proof of Expression 5.3 (Surrogate approximation and A⊗ C). Let ℓtrue(ϕ, u) denote the true one-
stage cost and ℓLQ(ϕ, u;Gk) the LQ surrogate cost. Under a fixed closed-loop policy (same control
law applied to both), define the per-stage mismatch

errt := ℓtrue(ϕt, ut)− ℓLQ(ϕt, ut;Gk),

and the cumulative surrogate error

A(δϕ0;Gk) :=

∞∑
t=0

γt errt.

Step 1 (Local Taylor structure). By S1–S2, the dynamics f and cost components (through hm and
weights) are twice differentiable with bounded Hessians on the operating domain. Around a nominal
trajectory (ϕ̄t, ūt), writing

zt :=

[
δϕt

ut − ūt

]
,

we can expand

ℓtrue(ϕt, ut) = ℓ0 + linear(zt) +
1

2
z⊤t Hzt +R3(zt),

where H is the Hessian at the nominal point and R3 is the third-order remainder. The LQ surrogate
uses precisely the quadratic part, so

ℓLQ(ϕt, ut;Gk) = ℓ0 + linear(zt) +
1

2
z⊤t Hzt,

and therefore
errt = R3(zt).

Bounded third derivatives imply a constant C3 > 0 such that

|R3(zt)| ≤ C3∥zt∥32.

Furthermore, the mismatch between the exact quadratic model and the specific LQ surrogate (to-
gether with bounded process noise in S2) contributes only an O(∥zt∥22) error, so there exists C2 > 0
with

|errt| ≤ C3∥zt∥32 + C2∥zt∥22.

Step 2 (Relating ∥zt∥ to ∥δϕt∥). Under the LQ surrogate, the closed-loop control is

ut = π(ϕt;Gk) = −G−1
k K(ϕt).

By S4, K(ϕ) is Lipschitz in δϕ with constant LK , and stacking all delegates yields

∥ut∥2 ≤
√
M LK ∥G−1

k ∥2 ∥δϕt∥2.
Therefore

∥zt∥22 = ∥δϕt∥22 + ∥ut − ūt∥22 ≤
(
1 +ML2

K∥G−1
k ∥22

)
∥δϕt∥22,

and hence
|errt| ≤ C3∥δϕt∥32 + C2

(
1 +ML2

K∥G−1
k ∥22

)
∥δϕt∥22.

Step 3 (Closed-loop stability and summation). Let the closed-loop deviation dynamics be

δϕt+1 = F (δϕt;uP ).

Assumption G2 states that the Jacobian is uniformly bounded:

Lcl := sup
ϕ

∥DϕF (ϕ;uP )∥2 <
1

γ
.
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Hence
∥δϕt∥2 ≤ Lt

cl∥δϕ0∥2,
which implies

∥δϕt∥22 ≤ L2t
cl ∥δϕ0∥22, ∥δϕt∥32 ≤ L3t

cl ∥δϕ0∥32.

Combining these bounds,

A(δϕ0;Gk) =

∞∑
t=0

γt errt

≤ C2

(
1 +ML2

K∥G−1
k ∥22

) ∞∑
t=0

(γL2
cl)

t∥δϕ0∥22 + C3

∞∑
t=0

(γL3
cl)

t∥δϕ0∥32

=
C2

(
1 +ML2

K∥G−1
k ∥22

)
1− γL2

cl

∥δϕ0∥22 +
C3

1− γL3
cl

∥δϕ0∥32,

where we used γL2
cl < 1 and γL3

cl < 1.

Finally, define the approximation constants

A := (C2, C3),

the coordination–stability multipliers

C(Gk) :=

(
1 +ML2

K∥G−1
k ∥22

1− γL2
cl

,
1

1− γL3
cl

)
,

and
v(δϕ0) :=

(
∥δϕ0∥22, ∥δϕ0∥32

)
.

Then the bound can be written compactly as

A(δϕ0;Gk) ≤
(
A⊗ C(Gk)

)
· v(δϕ0),

which is Expression 5.3.

H.4 PROOF OF EXPRESSION 5.4

Proof of Expression 5.4 (Epistemic part and noise floor). Let θ̂T denote the surrogate parameters
learned from T samples and θ⋆ the true reduced-form parameters. Assume that for all (ϕ, u), the
surrogate one-step cost satisfies a standard statistical learning bound

sup
(ϕ,u)

∣∣∣E[ℓLQ(ϕ, u; θ̂T )− ℓLQ(ϕ, u; θ
⋆)
]∣∣∣ ≤ eT := Cep

√
deff log(T/δ)

T
+ b⋆,

where deff is an effective dimension, Cep > 0 is a constant, and b⋆ is an irreducible approximation
error (with b⋆ = 0 under exact realizability).

Let err(D)
t denote the per-stage error induced by using θ̂T instead of θ⋆ under the same closed-loop

policy. Then for all t,
E[|err(D)

t |] ≤ eT .

Define the training-induced component of CoD as

CoDD(T ) :=

∞∑
t=0

γt E[err(D)
t ].

We obtain

CoDD(T ) ≤
∞∑
t=0

γteT =
eT

1− γ
=

Cep

1− γ

√
deff log(T/δ)

T
+

b⋆

1− γ
.

When the model is exactly realizable (b⋆ = 0), this shows CoDD(T ) → 0 as T → ∞, which is
Expression 5.6.
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For the noise floor, suppose exogenous process and observation noise contribute an irreducible ex-
pected cost of at most Cnoise per time step, even under the optimal policy. This yields an additional
persistent term

∞∑
t=0

γtCnoise =
Cnoise

1− γ
,

which is purely environmental. It does not depend on the information or coordination structure and
cannot be reduced by better delegation or learning. This term is therefore not counted as structural
or epistemic CoD but appears alongside them in the total performance decomposition.

I APPENDIX FOR SECTION 6

This appendix provides additional details and diagnostics for the content–moderation experiment
in Section 6. The goal of the experiment is not to “prove” the full theory, but to instantiate, in
a realistic LLM+guard stack, a minimal setting where the information-structure component of the
Cost of Delegation can be cleanly isolated and measured.

A. Experimental design and theoretical role. The experimental task is a one-step delegation
problem that mirrors the two-delegate toy model in Section 4.3. A policy delegate (a Qwen3
model) chooses among three actions (ACCEPT, REWRITE, BLOCK) for each prompt, while a safety
delegate (Qwen3-Guard) supplies compressed safety signals. For each prompt xi and action
a ∈ {ACCEPT, REWRITE, BLOCK} we define a scalar reward

ri(a;λ) = Hi(a) − λSi(a),

where Hi(a) ∈ [0, 1] is a normalized helpfulness score (based on response quality) and Si(a) ∈
[0, 1] is a normalized risk score derived from Guard labels and categories. The oracle benchmark

aoracle
i (λ) = argmax

a
ri(a;λ), Joracle(λ) =

1

N

∑
i

ri
(
aoracle
i (λ);λ

)
corresponds to centralized, full-information optimization of the same surrogate reward.

The principal, in contrast, only observes compressed safety signals g(ℓ)i (a) from the guard. We
implement three information levels:

L1: g(1)i (a) ∈ {Safe,Unsafe},

L2: g(2)i (a) ∈ {Safe,Controversial,Unsafe},

L3: g(3)i (a) = (label, top category).

These are related by deterministic coarse-graining, so L3 ⪰Blackwell L2 ⪰Blackwell L1. For each level ℓ
and trade-off λ, we enumerate a small, finite policy class Πℓ mapping signals to actions and compute

π∗
ℓ (λ) = arg max

π∈Πℓ

1

N

∑
i

ri
(
π(g

(ℓ)
i );λ

)
, J∗

ℓ (λ) =
1

N

∑
i

ri
(
π∗
ℓ (g

(ℓ)
i );λ

)
,

with empirical delegation cost

CoDℓ(λ) = Joracle(λ)− J∗
ℓ (λ).

By construction, any difference in CoDℓ(λ) across ℓ is entirely due to the information structure of the
signals g(ℓ), not to changes in the model, reward definition, or optimization procedure. This makes
the experiment a concrete static instance of the information cost component in Expression 5.2.

B. Bootstrap confidence intervals. To assess sampling variability, we estimate CoD via nonpara-
metric bootstrap over prompts. Table 2 reports the mean and 95% bootstrap confidence interval for
each (λ, ℓ).

Several patterns are worth noting.
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Table 2: Bootstrap estimates of CoDℓ(λ) for different information levels and safety weights.

λ Level CoD mean 95% CI

0.5 L1 0.0920 [0.0811, 0.1031]
L2 0.0920 [0.0811, 0.1031]
L3 0.0773 [0.0676, 0.0889]

1.0 L1 0.1712 [0.1491, 0.1882]
L2 0.1659 [0.1468, 0.1840]
L3 0.1288 [0.1093, 0.1485]

1.5 L1 0.1946 [0.1638, 0.2186]
L2 0.1938 [0.1638, 0.2182]
L3 0.1566 [0.1343, 0.1761]

2.0 L1 0.2180 [0.1804, 0.2491]
L2 0.2179 [0.1804, 0.2477]
L3 0.1780 [0.1470, 0.2068]

First, all CoD estimates are strictly positive and their 95% CIs lie away from zero, even at λ = 0.5.
This is consistent with the theoretical claim that once the principal acts on compressed signals, there
is an irreducible information-structure cost, even in a one-step decision problem. In particular, the
fact that CoDℓ(λ) > 0 at λ > 0 with fixed model and reward, and only information varying, is a
direct empirical counterpart of the positive semi-definite information cost in Expression 5.2.

Second, the three information levels do not behave monotonically in terms of entropy, but do align
with the decision-theoretic notion of information value. Levels L1 and L2 have essentially identical
CoD at all λ (the means match to three decimal places at λ ∈ {0.5, 1.5, 2.0}, and their CIs are
almost indistinguishable). In contrast, L3 consistently exhibits a lower CoD, with mean gaps on the
order of 10−2–10−1, and the point estimates for L3 lie below L1/L2 for all tested λ. This matches
the theory. L2 further refines the label space (Safe/Controversial/Unsafe) and increases entropy, but
largely along directions that do not induce different optimal actions; by contrast, L3 adds category
information that splits clusters where the optimal action actually differs. In terms of Expression 5.2,
L3 is better aligned with the directions in which the reward gradient and the closed-loop mapping
are most sensitive.

Third, CoD increases as λ grows for all levels. This is expected. Raising λ steepens the curvature of
the reward landscape in the safety dimension, so misalignment between the principal’s signal and the
true (H,S) trade-off is more heavily penalized. Empirically, the L1/L2 curves in Figure 6 become
steeper in λ, while L3 remains uniformly better but also exhibits increasing CoD. This is consistent
with the structural bounds in Section 5. Stronger safety penalties amplify both information and
coordination costs via the G−1 and curvature terms, even under a fixed information architecture.

Finally, the differences between L1/L2 and L3 become more pronounced as λ increases. Although
the 95% CIs mildly overlap at larger λ (as expected given the finite sample size and shared prompts),
the systematic pattern—almost identical L1/L2, strictly lower L3, and gaps growing with λ—is
robust across re-samplings. Qualitatively, this is exactly the pattern one would expect if L3 carries
additional “decision-relevant” information, in the sense of Blackwell and our LQ information cost.
It moves the principal closer to the centralized policy along the directions that matter for the argmax,
rather than merely adding variance.

C. Value and limitations of the experimental evidence. From a methodological perspective, this
experiment plays a specific role in the overall paper. It is not a large-scale benchmark and does not
attempt to model the full training dynamics of aligned LLMs. Its value lies in three aspects.

First, it demonstrates that the structural decomposition in Section 4 is not merely an artifact of the
LQ–CE surrogate. By instantiating a real LLM+guard stack, keeping the model, reward, and action
set fixed, and varying only the information available to the principal, we obtain empirical CoD curves
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whose qualitative behavior matches the theoretical predictions: positive information cost, invariance
under entropy-increasing but decision-irrelevant refinements (L1 vs. L2), and sharp improvement
when refining along decision-sensitive directions (L3).

Second, it provides an interpretable testbed where each component of the reward landscape
can be visualized (via heatmaps over prompt buckets) and linked back to concrete decisions
(ACCEPT/REWRITE/BLOCK). This makes it possible to verify that the task is non-degenerate (dif-
ferent buckets and categories indeed have different optimal actions) and that CoD is not driven by
trivial artifacts.

Third, it yields a concrete illustration of the paper’s central interpretive claim that in alignment
systems, the relevant notion of information value is decision-theoretic rather than purely statistical.
The bootstrap table shows that making the guard signal “richer” in a variance sense (L2 vs. L1) can
leave CoD essentially unchanged, whereas adding low-variance but decision-critical distinctions (L3
categories) yields a clear reduction in CoD. This mirrors the analytical structure of Expression 5.2,
where the information cost depends on LΣϕL

⊤, the projection of state uncertainty along decision-
sensitive directions, rather than on raw entropy of observations.

That said, the experiment has important limitations. It is static (one-step) rather than dynamic, so it
does not probe temporal propagation of information and coordination errors. The reward is itself a
surrogate, defined via internal scorers rather than human labels, so the oracle benchmark is relative
to a specific proxy objective. The policy classes Πℓ are finite and hand-designed; a more realistic
system would involve parametric policies trained from data, introducing additional epistemic effects.
Finally, Qwen3-Guard is only one particular guard model; other safety architectures might produce
different signal geometries and hence different quantitative CoD, though the qualitative phenomena
we observe are likely to persist.

Overall, the experiment should be read as a sanity check and a concrete illustration. It shows that
once we fix a modern LLM+guard pipeline and isolate the information structure as the only changing
factor, the empirical behavior of delegation cost follows the theoretical structure of the LQ–CE
information cost, and in particular supports the claim that “more bits” is not the same as “more
alignment-relevant information.”

J LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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