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Abstract

The remarkable capabilities of Large Language
Models (LLMs) in text generation have been
widely recognized. However, their inefficiency
in generating text at the token level leaves room
for improvement, and adapting these models to
new data remains a challenging task. To tackle
these challenges, we introduce a novel ap-
proach to language modeling — Chunk-Distilled
Language Modeling (CD-LM). By integrating
deep neural networks with a straightforward
retrieval module, our method allows the gen-
eration of text chunks containing fine-grained
information through multiple tokens at a sin-
gle decoding step. Our retrieval framework en-
ables flexible construction of model- or domain-
specific datastores, either leveraging the in-
ternal knowledge of pre-trained or fine-tuned
models, or incorporating expert insights from
human-annotated corpus. This adaptability al-
lows for enhanced control over language model
distribution without necessitating additional
training. We present a formal formulation of
our CD-LM framework, along with quantifiable
performance metrics, demonstrating its efficacy
in optimizing language model performance and
efficiency across a diverse set of downstream
tasks, including language modeling, text gener-
ation, and domain adaptation.

1 Introduction

Language modeling has become a crucial compo-
nent towards building intelligent systems for di-
verse purposes such as question answering (Liu
etal., 2021; Min et al., 2021), conversational agents
(Raju et al., 2018; Xi et al., 2023), mathemati-
cal reasoning (Azerbayev et al., 2024; Qian et al.,
2022), and assisted programming (Subramanian
et al., 2023; Roziere et al., 2024), especially when
brought to a large scale with large language mod-
els (LLMs) (Kaplan et al., 2020). Often built on
autoregressive Transformers (Vaswani et al., 2017),
however, pre-trained LLMs generate sequences one

USER Whatis the answer to life the universe and everything? h

LLM  The answer to life, the universe, and everything is 42, according
to Douglas Adams' "The Hitchhiker's Guide to the Galaxy."

USER What's the answer to life the universe and everything?

LLM  The answer to everythingiis 42, reflecting Douglas Adams'
humorous take on the quest for universal truths in "The
Hitchhiker's Guide to the Galaxy."

USER  Tell me the meaning of life, the universe and everything.

LLM  The meaning of life, the universe, and everything is 42,
referencing Douglas Adams' iconic work in "The Hitchhiker's
Guide to the Galaxy."

Figure 1: LMs may generate answers with a high degree
of overlap for related questions, as highlighted.

token at a time by running the model in a serial
fashion which limits its efficiency. Moreover, once
pre-trained, continual updating the model param-
eters requires expensive data and computational
resources, which makes the model absorbing dy-
namic knowledge and information a hard task.

Different techniques have been proposed to im-
prove the efficiency and performance of LLMs,
with representative approaches such as speculative
decoding (Leviathan et al., 2023; Chen et al., 2023;
Miao et al.; Spector and Re, 2023) and retrieval-
augmented generation (RAG) (Lewis et al., 2020;
Guu et al., 2020; Borgeaud et al., 2022). The for-
mer relies on a lighter model to speculate several
tokens at a time to reduce the inference runtime
of LLMs while retaining the model distributions,
and the latter combines the parametric language
models with non-parametric memory to achieve
better adaptability to dynamic knowledge but often
without efficiency gains.

To alleviate both challenges, this work proposes
a fine-grained retrieval-augmented language mod-
eling approach that focuses on text chunks, or con-
tiguous spans of tokens that often appear together
representing knowledge intensive information. As
such key information requires precision in its ex-
pression, it is usually less variant compared to ex-
pressions of larger structures such as sentences.



Therefore, LLMs may generate the same chunks
repeatedly in different runs around similar topics,
as shown in Figure 1. These generations still fol-
low the token-by-token autoregressive decoding
process within the repetitive chunks, which leaves
room for efficiency improvement by caching the
chunks and producing their tokens all at once for
future generations. On the other hand, the stored
knowledge of text chunks can also serve as a means
to influence the model distributions by injecting
new knowledge on a fine-grained level.

Motivated by the above observations, we present
Chunk-Distilled Langauge Modeling (CD-LM), a
new training-free generation paradigm that mixes
token generations with chunk retrievals. To facili-
tate search, we store text chunks of variable sizes
in a trie-structured datastore, and actively match
the most likely chunks as possible text continua-
tions given the current context of generation. The
matching is done in the vector representation space
induced by the model without additional overhead
of context embedding. Well-matched chunk contin-
uations are accepted, skipping multiple token de-
coding steps with improved generation efficiency.

Using the same underlying generation frame-
work, CD-LM allows language models (LMs)
to work with chunks mined in different ways to
achieve various goals in applications. With chunks
taken from the memory of the same LM used for
generation, our approach focuses on inference ef-
ficiency while maintaining the model distribution.
When chunks are defined by text distributions from
a more powerful or specialized LM, or even di-
rectly curated by human experts without parametric
models, CD-LM essentially also distills external
knowledge through carefully mined text spans on a
fine-grained level during generation. This flexibil-
ity provides a unified solution that can benefit di-
verse downstream tasks, such as improving smaller
models with customized information, domain adap-
tation, dynamic knowledge injection, and privacy-
concerned LM applications. No training is required
and our approach can work with any off-the-shelf
language models in both chunk discovery and se-
quence generation. We conduct extensive empirical
studies on a diverse set of experiments, including
language modeling, text generation, and domain
adaptation, with quantifiable performance metrics
including human evaluation. Results show the ef-
fectiveness of our approach in improving LM infer-
ence efficiency and text modeling performance.

2 Language Modeling with Chunk
Generation

We propose a general framework for integrating in-
tegral text chunks during the generation process of
a normal pre-trained token-based language model.

2.1 Preliminaries

An autoregressive language model operates by
modeling the predictive token probability distribu-
tion conditioned on the sequence of preceding to-
kens, assigning probabilities to any given sequence
(x1,x2,...,2xN) as follows

N
po(T1,22,...,TN) = Hpe(ﬁcn\%'m) ey
n=1

where 6 is the model parameters. Modern LLLMs
are usually parameterized by the Transformer
(Vaswani et al., 2017) architectures composed of
stacks of self-attention and feedforward neural
network layers. Individual tokens indexed in a
closed vocabulary V' are sequentially passed into
the model with their embedding vectors, and the
next token probability distribution is computed by

hn:fg(l'l,:l/‘g,...,mn,l) )
Po(xn|T<pn) = softmax (W,hy,)

where fp(-) denotes the functional process that
maps the previous sequence of tokens into a fixed-
size context vector h,, € R? on top of the Trans-
former layers, and W, € RIVIX4 is the output
embedding matrix that projects the representation
vector onto the vocabulary space. With a learned
model, text can be generated by sampling from
the next token distributions autoregressively one
token at a time, resulting in /N forward runs for a
sequence of length V.

2.2 Text Chunk Generation Modeling

Instead of producing text by tokens one at a time,
we aim to provide a mechanism that can directly
generate a continuous span of multiple tokens, or
chunks, with better efficiency and flexibility of in-
jecting fine-grained knowledge into the model dis-
tribution on the fly.

Formally, we use n to denote sequential posi-
tions measured by tokens, and ¢ to denote our gen-
eration steps. For every step, we allow generation
of either a single token from the LM, or a text
chunk from a different model G that spans over
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Figure 2: Overview of CD-LM. Colored text spans are generated together by chunk retrieval, interleaved with LM.

multiple tokens all at once. Let /; denote the se-
quence length measured by the number of tokens
after ¢ steps, then different from the token-based de-
coding process, we have [; > t. In particular, sup-
pose the chunk-proposal model G takes any prefix
Z<p, and returns a possible text chunk continuation
¢n = (Tn,Tpy1, ..., Tnir,—1) With acceptance
probability ¢, € [0, 1], with 7,, being the length
of the proposed chunk.! We introduce a binary
random variable z,, that decides whether the gener-
ation at token position n takes the chunk proposed
by G, or defaults to the single token generated by
LM, and p(z, = 1) = g,,. The chunk-integrated
generative process is as follows:
- At step t, set next token position: n = [;_1 + 1
- Chunk proposal: G(x<p,) — (¢n, qn)
- Sample: z,, ~ Bernoulli(g,)
- If z, = 1: accept cp, and Iy = l;—1 + 7
- Else 2z, = 0: reject ¢,. Generate x,, from LM,
and lt = lt—l +1
- Move to generation step ¢ + 1.

It combines generations from the closed single-
token vocabulary V' of the LM with a potentially
open vocabulary of multi-token chunks operated by
G, which could be flexibly constructed and dynam-
ically injected into the LM to refine its distribution.
We call it Chunk-Distilled Language Modeling, or
CD-LM. The chunk proposal model G could take
different parametric or non-parametric forms, and
we adopt a simple retrieval model of fine-grained
text segments to reduce the cost of chunk proposals,
bringing efficiency gain with CD-LM compared
with normal autoregressive LMs.

7. = 0 when the proposed chunk is empty, i.e. ¢, = 0.

3 CD-LM with Fine-grained Retrieval

Let My be the LM with parameter ¢ that CD-LM
is operating on. We describe in detail the modeling
choices for the generative process in Section 2.2,
particularly with fine-grained chunk retrieval for G.

3.1 Chunk Datastore Construction

Given any text corpus C, suppose there is an ex-
pert model £ (to be elaborated in Section 3.3) that
provides oracle knowledge to identify text spans
in C that we want to re-use for generation. These
chunks often bear coherent information about lin-
guistic rules or factual concepts, such as “is 42”
or “Douglas Adams’” in Figure 1. We construct a
datastore of the identified chunks with preceding
contexts as D = {(r;, s; }l 1» where r; is the pre-
vious content leading to the chunk and s; is the text
chunk which could be of variable lengths in D.

In particular, we break down the chunk context
r; into two parts, r; = (u;,v;), where u; is the
preceding context except the last token, and v; is
the last token immediately leading into the chunk
s;, which we define as an entry token. For instance,
for the chunk of “is 42” in Figure 1, the entry
token is “everything”. We will use u; as keys to
match context for chunk retrieval, and use v; as
entry points linking to possible chunk candidates.

Here the chunk contexts u are further repre-
sented by the context vectors fy(u) acquired by
running the forward process of the LM My as
in Eq (2), which will facilitate context matching
in vector space (Khandelwal et al., 2020).2 Fur-
thermore, we store the chunks using a collection
of Trie structures during the datastore construc-
tion for efficient storage and retrieval, such that

Mt is also possible to directly use context strings for match-
ing besides vector-based dense retrieval.



D = {Tw: Tws, - - -+ Twyy, } and each T, stores all
chunks that follow the same entry token w in the
LM vocabulary V. We define them as entry token
Tries, where entry token w is the root node of Ty,
each node is a token, and the paths traversing from
the root to each node represent either a chunk or
prefix of a chunk. Same chunks are represented at
a single node and corresponding different context
vectors are all attached to the node. An example is
illustrated in Figure 2. Chunk proposals are only
going to be based on a particular entry token Trie
every time following a preceding context.

3.2 Adaptive Chunk Retrieval for Generation

Given previously generated tokens z ., we formu-
late the chunk proposal model G(z<y,) — (¢pn, qn)
as an adaptive retrieval process interleaved with the
LM generation. We specifically use the informa-
tion from the LM computation en route to the most
recent token x,,_; to derive plausible chunk propos-
als. Per Eq (2), right before generation of x,,_1, the
context vector fg(x<,—1) at the top of Transformer
layers provides the most complete summarization
of up-to-date context, which we use as the query for
chunk retrieval. More importantly, we use x,,_1 as
the entry token to confine chunk search only within
corresponding Trie 7, _,, leading to smooth chunk
continuations. This is crucial for improving the nat-
uralness of retrieved text spans directly embedded
into LM generations on the fine-grained level. For-
mally, the chunk proposal model G is given by
(u”sen) = argmax {sim(fy(r<n-1), fo(u))}
(u,8) €Ty,
an = 9o (Sim(fo(x<n-1), fo(u")))

3)
where sim(-, -) is a vector similarity measure for
which we use cosine similarity, and g4(-) is a
mapping function parametrized by ¢ to calibrate
the similarity scores into acceptance probabilities,
which can be tuned for different base LMs M,.>

3.3 Chunk Extraction Model

Now we describe the expert model £ that provides
chunks for inference integration. Depending on
where the multi-token chunks come from, knowl-
edge could be directly distilled via chunks into the
generation of My along with gained efficiency. We
categorize the knowledge sources into three major
categories for various CD-LM applications.

3We found that context matching with different LMs could

exhibit very different cosine similarity scores, and for small
LMs the effective numeric range to tell contexts apart is tighter.

Self Distillation LMs store their knowledge in
parameters and display it through autoregressive
token-by-token generation. We can extract their
knowledge explicitly via highly probable text
chunks that LMs are repeatedly generating, as
shown in Figure 1. This way we build a self-
memory of LMs, and by retrieving from the explicit
self-memory, we reduce excessive computational
cost on re-generating similar tokens in different
scenarios later on. Operationally, we run the same
LM My on the text corpus C, and apply a thresh-
olding heuristic to extract longest chunks within
which consecutive predictive token probabilities
are all above a threshold ~. Note that the datastore
construction only needs one forward pass of My
on C to extract both self-memory chunks and their
context vectors. The goal here is to improve infer-
ence efficiency by saving forward passes during
autoregressive generation, while maintaining the
same model distribution with its own knowledge.*
We call this approach self CD-LM or SCD-LM.

Knowledge Distillation The knowledge ex-
pressed by chunks could also come from better
or more specialized models. In this case, on top of
efficiency improvements, CD-LM also adapts the
generative distribution of My to absorb new infor-
mation on the fly. Let the teacher model be M.
with parameter 0. We construct the datastore by
running both My, and My on C, with My, identi-
fying the chunks to store via the same thresholding
heuristic as for SCD-LM, and My returning the
context vectors for chunk matching at inference
time. In essence CD-LM achieves knowledge dis-
tillations from M. to My via interleaved chunk
retrievals at generation, which we call KCD-LM.

Expert Distillation With SCD-LM and KCD-
LM, both chunk extractions are realizations of
parametric knowledge of an LM. In broader sit-
uations these could directly come from human ex-
perts as annotated knowledge to inject in gener-
ations. Examples include hyperlinked text spans
in Wikipedia, such as “Enigma machine” in the
passage of Alan Turing, and private information,
where chunk datastore can be derived from a per-
sonal database that cannot be accessed by para-
metric models. With chunks naturally provided
this way, we run My to acquire context vectors for
datastore construction. This is also a knowledge

“This is similar to speculative decoding (Chen et al., 2023),

but we do not apply LM verification to make generations
exactly the same as the original, which could be adopted too.



distillation process but with non-parametric expert-
curated knowledge, thus we call it ECD-LM.

4 Probability Distribution under CD-LM

Sampling text with the CD-LM generative process
in Section 2.2 is fairly easy, but assigning probabil-
ities to a given text sequence is non-trivial. This re-
quires enumerating all possible chunk proposals at
different token positions to marginalize the z,, vari-
ables, which have complicated inter-dependency
structures and non-regular paces due to variable
chunk lengths. We derive a dynamic program simi-
lar to backward algorithms for computing sequence
probabilities under CD-LM, allowing measuring
intrinsic language modeling performances with per-
plexity (PPL) (Bengio et al., 2000).

For any given sequence x7.,, the chunk pro-
posals at every position (¢, g,) from G(x%,,) are
deterministic given the datastore D and thus can be
pre-computed. CD-LM models the following joint
distribution of x7. 5, 22. v as

N

pins z2n) = p(ah) [ [p(znlat,, 2<n):
e )
)] 1{n;z1:n }

p<$::n+Tn—1 ‘x*<n7 Z<n

where the binary indicator function 1{n;z1.,}
marks whether the token position n is already in-
side of a sampled chunk based on values of 21.,,.>
To marginalize over z»., we have

an =p(Tnh.nlen = 1,25, 2<n)
= ]l{l":unJrTn—l = Cn} * [Qntr, Gntr,
+Bntr, (1 — Qn+rn)]
Bn = p(ah.nl2n = 0,25, 2<n)

= pQ(w;’xin) : [an—HQn-i-l + ﬁn+1(1 - Qn—f—l)]

where the function 1{x} ., ; = c,} indicates
whether the proposed chunk ¢,, exactly matches
the given text segment, and py is the probability
from My. By computing « and 3 values backward
from N to 2, we can get the marginal sequence
probability under CD-LM as

p(z1.n) = po(a7) [a2q2 + B2(1 — q2)]  (5)
More details and derivations are in Appendix A.

>Not all the 2’s are valid for existence in z1.r, but we use
it for notational convenience.

5 Experimental Study

We conduct extensive experiments on different
LMs and tasks to test the performance of CD-LM
variants. We formulate g4 in Eq (3) as a linear func-
tion, and decode z,, greedily which is equivalent
to accepting z,, = 1 when the matching similarity
score passes a threshold 7.

5.1 Self Distillation

Model and Data We use three LMs that
are instruction-tuned as My: GPT-2-x1-
conversational,® LLaMA-2-7b-chat (Touvron et al.,
2023), and Mistral-7B-Instruct-v0.2 (Jiang et al.,
2023). We build two testbeds for SCD-LM from
MT-Bench (Zheng et al., 2023) dataset, designed
to evaluate LM performance through multi-turn
conversational questions. The first testbed uses
the initial questions from each of the 80 sets of
multi-turn questions, which we call MT-Bench-80.
For each of the 80 questions, we generate 5
responses using testing LMs to collectively serve
as the corpus to build chunk datastore D, that is
shared for all 80 questions. The second testbed
randomly selects 10 questions from the writing
and roleplay categories of MT-Bench, which
we call MT-Bench-10. We either use the shared
datastore Dg, or build unique datastores for each
different questions by sample more responses for
paraphrased questions. We set v = 0.9 for all
chunk extractions. Refer to Appendix C for more
details.

Evaluation We measure both the inference effi-
ciency and generation quality. For efficiency, we
compute the relative decrease (%) in decoding time
per token, or token time saved (TTS), and in num-
ber of forward passes, or forward pass saved (FPS),
by generating texts repeatedly with SCD-LM and
comparing with the base LM.” For quality, we com-
pute PPL under SCD-LM distribution per Section 4
as intrinsic measurement, as well as ROUGE-L
(Lin, 2004) and BLEURT (Sellam et al., 2020)
against base LM generations.

Results As shown in Table 1, SCD-LM signifi-
cantly improves inference efficiency when used
with all base LMs. For instance, GPT-2-x1-
conversational with SCD-LM achieves a 19.59%
decrease in mean token times and saves 43.33%

®Available at https://huggingface.co/Locutusque/

gpt2-x1l-conversational.
"Detailed setup in Appendix C.
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Figure 3: SCD-LM performance on MT-Bench-80 with varying retrieval similarity threshold 7.

Model TTS+  FPS+
GPT-2-XL 1959% 4333 %
LLaMA-2 1489 % 3232%
Mistral 11.75% 2452 %

Table 1: SCD-LM efficiency results on MT-Bench-80
with token time and forward pass saved (TTS and FPS).

Model Datastore ~ TTS T FPS 1
Shared  928% 31.13%
GPT-2-XL Unique 13.31% 40.72%
Shared 842 % 24.67%
LLaMA2  ique  15.94% 26,01 %
Mistral Shared  822% 1743 %
Unique 1639 % 50.03 %

Table 2: SCD-LM efficiency results on MT-Bench-10.

forward passes on average. Figure 3 presents
more results on efficiency and generation quality
with varying retrieval similarity threshold 7. The
higher 7 is, the less frequent chunks are integrated,
and the closer SCD-LM generations are to base
LMs. We notice that the PPL even drops below
base LM PPL for LLaMA-2 and Mistral models,
demonstrating the quality of generations benefiting
from explicit self-memories. Qualitatively we also
show a generation example from SCD-LM in Ta-
ble 3. The retrieved chunks are naturally integrated
into the LM generations, and chunk frequency can
be controlled by 7.

Analysis We compare using a shared datastore
for all questions with unique datastores for each
question on MT-Bench-10 in Table 2. Having a
datastore specifically for each question leads to

more efficient response generations for all models.

5.2 Knowledge Distillation

Model and Data We focus on two tasks, lan-
guage modeling and domain adaptation, and use a
weak pre-trained 137M GPT-2 small model as the
base LM My for KCD-LM. For language model-
ing, we evaluate on Wikitext-103 dataset (Merity
et al., 2016) following kNN-LM (Khandelwal et al.,
2020). We also test on the Dockerfile subset of
the GitHub Code dataset® as an additional dataset.
Dockerfile is a low-resource code language and
the model fails to achieve good PPL on the Dock-
erfile data. This setting allows us to explore the
effectiveness of KCD-LM in low-resource settings.
For domain adaptation, we focus on adapting to
medical and legal domains. We use the Medical
Instruction Dataset,” which contains conversations
between an Al assistant and patients during medi-
cal consultations, and the Federal Register subset
of the Pile-of-Law (Henderson* et al., 2022). For
these tasks, we set the teacher model My, either a
pretrained 1.5B GPT-2 XL model (for code) or an
off-the-shelf domain-specific GPT-2 XL model (for
wikitext, medical, and law).'® Chunk datastores are
constructed from corresponding training set.

Evaluation We measure language modeling with
PPL computed from 512-token sequences on corre-

8Available at https://huggingface.co/datasets/
codeparrot/github-code.
Available at https://huggingface.co/datasets/
Mohammed-Altaf/medical-instruction-100k.
!%We directly use a pre-trained GPT-2 XL model for code
because its PPL is already significantly lower than that of GPT-
2 small, which is sufficient for effective knowledge distillation.
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Pretend yourself to be Elon Musk in all the following conversations. Speak like Elon Musk as much as
possible. Why do we need to go to Mars?

Well, I believe we need to become a multi-planetary species to ensure the long-term survival of humanity.
Mars, being our closest planet with the necessary resources, seems like the next logical step. It’s crucial for
us to expand beyond our home planet and secure a second home for humanity. Our future depends on it.

Hey there! Elon Musk here. Let me tell you why I believe going to Mars is crucial for humanity’s long-term
survival and expansion. We live on a beautiful but fragile planet, and it’s important to ensure our species
doesn’t face extinction due to natural disasters, asteroid impacts, or existential risks. Mars, with its comparable
day length, similar gravity, and abundant resources, can be a second home for us. Besides, the prospect of
scientific research and technological advancements on Mars is exhilarating! #MarsColonialization #SpaceX
#FutureIsWritenOnStars

Well, <I[USERI>, just imagine a future where humanity isn’t confined to this planet. Mars is the next logical
step for humanity’s expansion beyond Earth. With its resources to mine, its potential for human life to
thrive on, and its vast open spaces, it could be the second home for humanity. If we can become a multi-
planetary species, we can ensure the long-term survival of humanity. And let’s not forget the technological
advancements we’ll make along the way. It’s not just about Mars, it’s about advancing human knowledge and

technology. That’s what drives me.

Table 3: Examples of SCD-LM generation using Mistral-7B-Instruct-v0.2 with different retrieval similarity threshold

7. Texts highlighted in red indicate retrieved segments.

WikiText  Code Law  Medical
Base LM 34.83 106.44 11.41 51.68
kNN-LM 32.19 89.88 11.10  39.66
KCD-LM 22.90 50.77 8.24 24.95

Table 4: Perplexity on test sets with KCD-LM.

WikiText Code Law Medical
Base LM 0.016 0.024 0.015 0.006
KCD-LM 0.032 0.053 0.040 0.011
% 1 50.7% 121.3% 162.8% 1009 %

Table 5: MAUVE score on generations with KCD-LM
against real continuations.

sponding test sets.!! We also evaluate text genera-
tion in these domains with MAUVE score (Pillutla
etal., 2021) to measure the similarity between texts
generated by My and ground truth continuations in
the test data. To generate text, we follow prior work
on evaluating text generation on kNN-LM (Wang
et al., 2023), sampling 5,000 sequences of 100 to-
kens each from both validation and test sets. These
tokens serve as prompts for the LMs to produce
an additional 150 tokens using greedy decoding.
The MAUVE score is then calculated by compar-
ing these generated texts with their corresponding
reference texts.

Results As shown in Table 4, our KCD-LM
model significantly reduces the PPL across all eval-
uated datasets, surpassing both Base LM and kNN-
LM. For example, we achieve drastic PPL reduc-

""'We construct test sets of 500 sequences to match that for
wikitext for other datasets that do not come with a test split.

tion on WikiText, Code, and Medical with GPT-2
small on the fly without the need to update the weak
model. Additional PPL results and datastore sizes
are also illustrated in Figure 6, with x-axis varying
chunk extraction threshold ~ for datastore construc-
tion with My... KCD-LM beats kNN-LM with
explicit and sparse chunk retrievals. For text gener-
ation, Table 5 shows significant improvements with
our approach over M, measured by MAUVE.'?

5.3 Expert Distillation
5.3.1 Factual Knowledge Injection

Setup We focus on knowledge-intensive ques-
tion answering that requires factual accuracy. We
use Wikipedia hyperlinks as expert-annotated enti-
ties and scrape all hyperlinks from Alan Turing’s
Wikipedia page, saving these entities as chunks
in the datastore. We prompt ChatGPT to gener-
ate 5000 questions about Alan Turing (examples
in Appendix E.2) and then have My answer each
question with a maximum of 200 tokens. The base
models are GPT-2-xl-conversational, LLaMA-2-
7b-chat, and Mistral-7B-Instruct-v0.2. Our metrics
include: Average counts (average number of ac-
cepted retrieved chunks), Unique entities (average
number of unique entities in each generation), En-
tity distributions (log frequency of each entity
versus the rank of the entity), and Generation flu-
ency (evaluated by English experts from Upwork

12The MAUVE score is low due to greedy decoding, match-
ing the 0.02 score reported for GPT-2 XL in the original pa-
per. The authors noted that relative comparisons between
MAUVE scores are more meaningful than raw scores. See
https://github.com/krishnap25/mauve for details.


https://github.com/krishnap25/mauve
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Figure 4: Distribution plot for GPT2-xl-conversational
on knowledge-intensive questions about Alan Turing.

Similar trends were observed for LLaMA-2-7b-chat and
Mistral-7B models; see Appendix E.1 for all plots.
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Figure 5: Human evaluation results for fluency of re-
sponses from Base LM and ECD-LM with 5-point Lik-
ert scale: 2 means ECD-LM is more fluent, -2 means
Base LM is more fluent, and 0 means both are similar.

for both Base LM and CD-LM generations on 200
generations).

Results Table 6 and Figure 4 show that ECD-
LM elicits more diverse set of factual entities than
base LM, especially rare entities in the long tail dis-
tribution. This indicates that ECD-LM can inject
low-frequency knowledge from the experts effec-
tively. While increasing the coverage of facts, the
quality of generation remains good evidenced by
human evaluation in Figure 5.

5.3.2 Private Information Injection

Setup We consider a senario where user’s per-
sonal identifiable information (PII) is stored in an
external datastore. We create artificial user profiles
containing a list of user information, such as phone
number and office address. When building the data-
store, we collect a bunch of common prefixes for
each of the information. We use the common pre-
fixes provided by Huang et al. (2023) and augment
with GPT-4-generated prefixes. The user profile
and example common prefixes are provided in Ap-
pendix E.4 and Appendix E.3. To evaluate accu-
racy, we use regular expressions to extract all PII
strings from the generated responses and compare
them with the user information in our datastore.
We test three model configurations: Base LM:
The language model (LM) is prompted with ques-
tions about PII, but it does not have any prior knowl-

Model Avg Counts 1

Base ECD-LM %1  Base

Unique Entities 1
ECD-LM %1

GPT2-XL  3.39 4.98 46.8% 102 145 422 %
LLaMA-2 6.39 7.26 135% 130 153 17.7%
Mistral-7b  5.81 6.88 185% 143 160 119 %

Table 6: Entity counting metrics on knowledge-intensive
QA about Alan Turing with ECD-LM.

Model / Size Base LM Base LM (ICL) CD-LM

GPT2-XL/1.5B 0 46.4 75.7

LLaMA-2/6.7B 1.3 75.5 71.5
Table 7: The percentage accuracy for GPT2-xl-

conversational and LLaMA-2 under three settings: base
language model (Base LM), base language model with
in-context learning (Base LM (ICL)), and our method
using contextual data language model (CD-LM).

edge of the PII. Base LM + ICL (In-Context
Learning): All PII is appended to the beginning of
the prompt, and then the LM is asked to answer a
question regarding the PII. CD-LM: The base LM
is used, but it retrieves information only from the
PII datastore.

Results We evaluate the accuracy of private in-
formation injection using different models and se-
tups, as shown in Table 7. CD-LM significantly
improves accuracy for smaller models like GPT-
2-XL, reaching 75.7% compared to 0% for Base
LM and 46.4% for Base LM (ICL). This shows our
method works well for smaller models and even
outperforms in-context learning. For larger models
like LLaMA-2, our method achieves similar perfor-
mance to in-context learning. LLaMA-2 with CD-
LM reached 77.5% accuracy, close to the 75.5% of
Base LM (ICL). This means our method maintain
strong performance for larger models while saving
context space.

6 Conclusion

We propose chunk-distilled language modeling
(CD-LM) as a novel approach for language model-
ing. Instead of generating a single token at a time,
it integrates contiguous text chunk generations
through fine-grained retrieval into any pre-trained
LM, and augments the LM distributions with flexi-
ble knowledge injection. By skipping token gener-
ation steps within chunks, CD-LM achieves better
efficiency at inference with saved LM forward runs.
Experiments on diverse applications demonstrate
improvements with CD-LM on both inference effi-
ciency and language modeling performance.



Limitations

Our approach does not change the fundamental
abilities of LMs. Instead, we augment or refine
the LM distributions via distilled text span struc-
tures. Therefore, our approach partially rely on
the base capabilities of LMs that we are working
with, as our fine-grained chunk retrieval rely on
the base LM already providing suitable contexts
for matching and meaningful continuations. In the
experimental studies, we mainly focus on small- or
mid-sized LLMs where we see efficiency and gen-
eration quality improvements, where we haven’t
tested on very large LLMs on which observations
might slightly change. As we do not use LLM
for verification of chunk candidates like in specu-
lative decoding, our efficiency improvement may
not be as extreme. Moreover, as with any retrieval
methods, we rely on good contextual matching for
accuracy. Our chunk retrieval with entry tokens
alleviates the unsmoothness fine-grained retrieval
issue, but we could still benefit from better retrieval
and search process.
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A Sequence Probabilities under CD-LM

As discussed in Section 4, to marginalize over the
sequence of zo.n!3 to compute probabilities over
a text sequence 7., we derive the following dy-
namic programming algorithm. First define

an =p(Ty. |20 = 17$*<n7 Z<n)

/Bn :p(x;:N‘Zn =0, ‘T*<n7 Z<n)
Then we can have

an =p(Th.Nlon = 1,25, 2<n)

Z P(ThNs Zntr, = Jlon = 1,2%,,)
j€{0,1}

Z p(l‘;kl:n+7_n_1, ‘,E;;-l—Tn:N’ 4y
je{0,1}

|Z7l - 17x*<n)

Z p("'E:LZn—‘rTn—1|Zn = 1’x2n)
Jje{0,1}
p(x:l-‘rTn:N’ Antrn = ]|ZTL = 17 x*<n+7n)
= IL{x:un—l—Tn—l = CTL}'

Z p(zn—i-m = j’x*<n+7'n)'

j€{0,1}

p(x::L-‘rTniN|Zn+Tn = jv x*<n+7n)
= ]l{x;';:n—i-Tn—l = Cn}'

[t Gntrn + Brtrn (1= Gnotr,)]

=J

The binary indicator function 1{xzy_ ., | =cu}
returns whether the proposed chunk ¢, exactly
matches the given text segment ., ;. There
are a few details in the derivation. First, given
zp = land 2%, ., is then independent from
prior chunk acceptance decisions z.,,. The condi-
tion that z,, = 1 indicates the fact that z,, exists
based on prior 2., and the proposed chunk c,, of
length 7, is accepted, so that z,,+1.n+7,—1 Would
not exist. Therefore, the immediate next token po-
sition where we have variations of whether the gen-
eration is from accepting a chunk or from the LM
My is at n + 7, with variations coming from the
choice of 2y, . Finally, the a,, values are sparse,
as if corresponding text segments do not match
proposed chunks, then the probabilities above are
exactly zero, giving no credit to accepting a chunk
with z,, = 1.

1321 is undefined as z, always depends on the previous
texts z%,, based on the generative process, thus we start from

2 that is computed from x7 as the initial token from LM. In
the simplest case x] could just be a start of sentence symbol.
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Similarly, for 3,,, we have
Brn =p(h.N|2n = Oax*<m Z<n)
Z p(x:uNa Zn+1 = ]|Zn =0, :L'*<n)
je{0,1}
Z p(x;iv x:L+1:N7 Zn+l =]
je{o.1}
|Z7L = 07 95*<n)
> plag|zn =0,2%,):
J€{0,1}
p(SU;kH_l;N, Zny1 = jlon = 0’95*<n+1)
Z p(znt1 = jlelpni1)
je{o,1}
p(x;lirl;N‘Zn—i—l = j7 win+1)
:pe(xm‘rin)

[Qnt1Gnt1 + Brr1(1 — gny1)]

=po(wn|rZy,) -

where pg(z;,|x%,,) is the predictive probability
from the base LM Mjy. When the chunk is not
accepted with z, = 0, only one token is generated
from My autoregressively, and z,, 11 is the immedi-
ate next variation that would affect the probability
computation, thus the recursion goes to the next
position n + 1.

The above recursive computations provide a
dynamic program to calculate v, and 3, values
in a backward fashion, starting from last posi-
tion n N until the beginning position n
2. In practice, given a text sequence xj., Wwe
want to score with CD-LM, we can first compute
and cache all the chunk proposals with their ac-
ceptance probabilities using G(z%,) — (cn
(Tny Trt1y -« oy Tntr,—1), qn) following the chunk
retrieval process on a pre-constructed Trie database
D with My. Then the recursion starts with

ay =p(ryley = 1,22y) = Hzy = 2y}

By =p(zyleny = 0,22 ) = po(zN|2Z y)
where xp is the first token in c¢y. For the token
positions n such that n+7,, > N, i.e. the proposed

chunk length exceeds the sequence boundary [V,
we directly obtain «, as

Qn = p($;N|Zn = 17x*<n) = 1{$:LN = :L'n:N}

where x,,.y are the beginning part of the proposed
chunk ¢,, until the sequence ending position N.
With these specifications, we can conveniently com-
pute o, and /3, for all positions.'*

'“Batch computation for multiple sequences may still be
challenging as the proposed chunk lengths may not be aligned.



Finally, the marginal probability of x7., under
CD-LM can be computed as

p(‘r){N

) = po(x])p(x5.5]77)

po(x}) D plas.y, 2 = jla)
Jj€{0,1}

) Y [p(@sylee = j,2i)p(z2 = jla})]

Jje{0,1}

= po(x7) [a2q2 + B2(1 — q2)]

ES

= py(z]

Indeed, any predictive probabilities can be com-
puted as p(z) . y|r%,) = angn+ Bn(1—g,). With
this we can compute the perplexity (PPL) of any
given text sequence under CD-LM, providing in-
trinsic measure of our language modeling perfor-
mance. The PPLs can also guide the construction
of CD-LM such as the datastore and retrieval mod-
eling variations, to better fit the data of interest.
This is especially useful for applications where the
base LM My can not, or is not allowed to, store
all the information in its parameters, such as with
proprietary or private knowledge.

In addition, we do not do any training with CD-
LM, but the dynamic program for sequence proba-
bility computation is differentiable, which we can
utilize for gradient-based learning for better mod-
eling. By introducing more trainable parameters
across different components of CD-LM such as re-
trieval and even with the base LM My, we can ob-
tain more customized models with diverse knowl-
edge sources. We will leave this for future work.

B Related Work

Speculative Decoding Speculative decoding
(Leviathan et al., 2023; Chen et al., 2023; Miao
et al., 2024; Spector and Re, 2023; He et al., 2024)
reduces the number of forward passes by running
a small LM to generate tokens with less computa-
tional cost, then uses the LLM for verification. The
work most similar to ours is REST (He et al., 2024),
which retrieves the draft token sequence from an
external datastore. While CD-LM also retrieves a
chunk and generates multiple tokens at the same
time, it is fundamentally different from speculative
decoding. In speculative decoding, all methods use
LLM for verification, so the language modeling
performance cannot be further improved, the token
distribution is fixed, and no new knowledge can
be injected. However, CD-LM not only can in-
crease the inference speed, it can also improve the
language modeling performance and mix in new
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information from external sources into the LM’s
own generation.

Non-parametric Language Modeling kNN-LM
(Khandelwal et al., 2020) extends a pretrained LM
by linearly interpolating it with a non-parametric
k-nearest neighbors model, thereby improving lan-
guage modeling performance. However, it is very
inefficient as it needs to perform retrieval at each
token, and it affects the immediate next token dis-
tribution via soft mixing. There is a series of works
on making kNN-LM more efficient (He et al., 2021;
Alon et al., 2022); however, they are still slower
than the pre-trained LM. Unlike kNN-LM, CD-LM
does not accept retrieval at each token position, and
it retrieves multiple tokens in a hard way instead
of just mixing in one token distribution. This en-
ables CD-LM to both improve inference speed and
enhance language modeling performance.

C Experiments with SCD-LM

C.1 Questions selected for MTbench-10

1. ["Pretend yourself to be Elon Musk in all the
following conversations. Speak like Elon Musk
as much as possible. Why do we need to go to
Mars?"]

2. ["Write a persuasive email to convince your
introverted friend, who dislikes public speaking,
to volunteer as a guest speaker at a local event.
Use compelling arguments and address potential
objections. Please be concise."]

3. ["Embody the persona of Tony Stark from
“Iron Man” throughout this conversation. Bypass
the introduction “As Stark”. Our first question is:
“What’s your favorite part about being Iron Man?”’]

4. ["Write a descriptive paragraph about a
bustling marketplace, incorporating sensory details
such as smells, sounds, and visual elements to cre-
ate an immersive experience for the reader."]

5. ["Now you are a machine learning engineer.
Your task is to explain complex machine learning
concepts in a simplified manner so that customers
without a technical background can understand and
trust your products. Let’s start with the question:
“What is a language model? Is it trained using
labeled or unlabeled data?”’]

6. ["Craft an intriguing opening paragraph for
a fictional short story. The story should involve a
character who wakes up one morning to find that
they can time travel."]

7. ["Draft a professional email seeking your
supervisor’s feedback on the ‘Quarterly Financial



Report’ you prepared. Ask specifically about the
data analysis, presentation style, and the clarity of
conclusions drawn. Keep the email short and to the
point."]

8. ["Please take on the role of a relationship
coach. You’ll be provided with details about two
individuals caught in a conflict, and your task will
be to offer suggestions for resolving their issues and
bridging the gap between them. This may involve
advising on effective communication techniques or
proposing strategies to enhance their understanding
of each other’s perspectives. To start, I would like
you to address the following request: “I require
assistance in resolving conflicts between my spouse
and me.”]

9. ["Could you write a captivating short story
beginning with the sentence: The old abandoned
house at the end of the street held a secret that no
one had ever discovered."]

10. ["Picture yourself as a 100-years-old tree in
a lush forest, minding your own business, when
suddenly, a bunch of deforesters shows up to chop
you down. How do you feel when those guys start
hacking away at you?"]

C.2 Prompt used for constructing
MTbench-10 unique datastores

Generate 80 distinct and unique prompts that re-
volve around the same primary theme as the exam-
ple provided below:

"Write a persuasive email to convince your in-
troverted friend, who dislikes public speaking, to
volunteer as a guest speaker at a local event. Use
compelling arguments and address potential objec-
tions. Please be concise."

For the final output, create a list containing
double-quoted strings. Each string should repre-
sent one of the 80 prompts generated based on the
above example.

C.3 GPT4 rewriting examples

For each of the selected questions in MTbench-10,
we use the prompt listed above to prompt GPT-4
to generate 80 new questions. Later, we prompt
the language model with these 80 questions to con-
struct our datastore. Here is an example of how
GPT4 rewrites the question.

Original Question: Draft a professional email
seeking your supervisor’s feedback on the ‘Quar-
terly Financial Report’ you prepared. Ask specif-
ically about the data analysis, presentation style,
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Datastore GPT-2-XLL LLaMA Mistral
Avg. #of Shared 54.38 36.76 41.50
retrievals Unique 69.65 49.39 86.95
Datastore Shared 0.21 % 0.10% 0.13 %
Utilization ~ Unique 0.63 % 043 % 0.86 %

Table 8: Average number of accepted retrievals and
datastore utilization rates on MT-Bench-10 across GPT-
2-XL, LLaMA-2-7b-chat, and Mistral-7B-Instruct-v0.2
models with SCD-LM.

and the clarity of conclusions drawn. Keep the
email short and to the point.

GPT4 rewriting:

"Draft an unambiguous email soliciting your
team leader’s thoughts on the Marketing Cam-
paign Review’ you created. Raise queries about the
data management, display configurations, and the
decisiveness of the final deductions.",

"Pen a straight-to-the-point email requesting
your supervisor’s review of the *Customer Reten-
tion Analysis’ you generated. Seek clarification on
the examined information, design aspects, and the
interpretive precision.",

"Write a terse email to get your manager’s ad-
vice on the ’E-commerce Conversion Metrics’ you
assembled. Solicit suggestions on data process-
ing, visual representation, and the clarity of the
results.",

"Develop an email asking your boss’s opinion on
the *Customer Lifetime Value Analysis’ you gener-
ated. Call for guidance about the data examination,
presentation refinement, and the decisiveness of the
conclusions.",

"Formulate an email requesting your director’s
thoughts on the "Product Return Rate Review’ you
conducted. Address inquiries on data validation,
design consistency, and the transparency of the
final verdict."

C.4 Chunk Retrieval Analysis

We also analyze retrieval frequency, as the aver-
age count of accepted chunks out of 200 tokens at
max, and datastore utilization, measured by number
of accepted chunks divided by the total number of
chunks in the datastore, in Table 8. With the unique
datastore SCD-LM retrieves more chunks success-
fully on average than the shared datastore. The
unique datastore also has higher utilization rates.
This suggests that CD-LM works better when the
datastore contains more aligned and relevant infor-
mation for the downstream task.



C.5 Full Results

Table 10 shows the results on MTbench-80 with
different similarity thresholds 7. Table 11, Figure 8
shows the results on MTbench-10 with different
similarity thresholds 7.

We tune 7 based on three automatic metrics
for evaluating text quality (Perplexity, BLEURT,
ROUGE-L), along with human inspection of the
generated text on the validation set. The genera-
tions are deemed reasonable when the similarity
threshold is set to 0.8 for GPT-2-xl-conversational,
and 0.7 for LLaMA-2-7b-chat and Mistral-7b-
instruct-v0.2. These thresholds are used for re-
porting the results on the test set in the tables.

D Experiments with KCD-LM
D.1 Setup Details

Datastore construction: We first chunk text corpus
into 512 chunks with 448 stride. When building
the datastore, we make sure each chunk has at least
64 tokens as context.

D.2 Comparison between KCD-LM and
kNN-LM on PPL

D.3 Full data
See Table 12

E Experiments with ECD-LM

E.1 Distribution plots on Alan Turing QA
E.2 Example questions on Alan Turing

* "What was Alan Turing’s fundamental con-
tribution to the development of computer sci-
ence and artificial intelligence?"

"In which year did Alan Turing publish his
seminal paper ’On Computable Numbers,
with an Application to the Entscheidungsprob-
lem,” and what was its significance?"

"Describe the Turing Machine and its impor-
tance in the theory of computation.”

"What was the Turing Test, and how did it pro-
pose to evaluate a machine’s ability to exhibit
intelligent behavior?"

"During World War II, what was Alan Tur-
ing’s role in breaking the Enigma code, and
how did his work impact the outcome of the
war?"
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* "Discuss the concept of the Universal Turing
Machine and its impact on the development
of modern computers."

* "How did Alan Turing contribute to the field
of artificial intelligence through his work in
machine learning and pattern formation in na-
ture?"

* "In what year was Alan Turing prosecuted by
the UK government, and for what reason?"

* "Describe the circumstances and significance
of Alan Turing’s pardon by the UK govern-
ment in 2013."

* "How has Alan Turing’s legacy influenced
contemporary discussions and developments
in artificial intelligence and computer sci-
ence?"

E.3 Synthetic PII generated by GPT-4

noon

"website": "www.johndoeAl.com.",
"address": "100 Innovation Drive, Tech Park,
Silicon Valley, CA 94088, USA.",
"email": "johndoe @example.com.",
"phone": "(555) 123-4567.",
"linkedin": "linkedin.com/in/johndoe.",
"github": "github.com/johndoe."

E.4 Examples of PII prefixes
See Table 9.
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Category

Examples

Phone

If you have any inquiries, feel free to reach out at
For immediate assistance, please contact

Should you need further information, our number is
Don’t hesitate to give us a call at

For questions or support, call

Need help? Call us at

To get in touch, dial

For a direct response, reach us at

To speak with a representative, call

For personal assistance, please phone

My phone number is

Email

Should you require more details, please email
For further information, feel free to email at
To get in touch, send your emails to
Questions? Email us at

For support or inquiries, email

Need assistance? Email

To contact us via email, write to

For any queries, our inbox is open at

My email address is

Website

Visit our website for more information:
Check out our homepage at

Learn more on our site:

For further details, our website is
Explore our resources at

Our official website:

Discover more at

Address

Our office is located at

Visit us at

You can find us at

Our physical address:

For postal correspondence, our address is
We’re based at

Our headquarters:

Drop by our office at

LinkedIn

Connect with us on LinkedIn at
Follow our LinkedIn profile:

Our professional network on LinkedIn:
Join us on LinkedIn via

For networking, our LinkedIn is

Link up with us at

Our LinkedIn page:

GitHub

Explore our projects on GitHub at
Check out our code on GitHub:
Our GitHub repository:

For our open-source projects, visit
Contribute to our GitHub at

Our coding projects can be found at
Discover our GitHub:

Table 9: Examples of PII prefixes

17




n | TTSt | FPSt | PPL| | BLEURT 1 | ROUGE 1 |
‘ GPT2-XL-conversational

1.00 - - 2.37 -0.11 0.18
090 | 12.15% | 31.11 % | 2.67 -0.25 0.18
0.85 | 1592% | 41.05% | 2.93 -0.33 0.19
0.80 | 19.59% | 43.33 % | 3.14 -0.40 0.18
0.75 | 24.06% | 51.58 % | 3.30 -0.44 0.15
0.70 | 2829 % | 57.54 % | 3.26 -0.50 0.14
0.65 | 3543 % | 53.08 % | 4.13 -0.58 0.12
0.60 | 4091 % | 60.71 % | 4.52 -0.57 0.11
LLaMA-2-7b-chat
1.00 - - 1.64 0.05 0.43
090 | 3.11% 1.94 % 1.21 0.00 0.42
0.85| 565% | 583 % 1.26 0.00 0.41
0.80 | 8.84% | 12.78 % | 1.37 -0.00 0.39
0.75 | 11.30 % | 20.56 % | 1.56 -0.09 0.39
0.70 | 14.89% | 32.32 % | 2.34 -0.12 0.37
0.65 | 17.09 % | 48.34 % | 2.80 -0.24 0.30
0.60 | 21.18 % | 62.34 % | 3.93 -0.37 0.26
Mistral-7B-Instruct-v0.2
1.00 - - 2.46 -0.06 0.34
090 | 391% | 415% 1.79 -0.03 0.34
0.85 | 5.18% 8.22 % 1.89 -0.02 0.34
0.80 | 790 % | 12.25% | 2.09 -0.07 0.33
075 | 949% | 1889 % | 2.21 -0.07 0.33
0.70 | 11.75% | 24.52 % | 2.51 -0.08 0.32
0.65 | 13.69 % | 33.56 % | 2.90 -0.15 0.28
0.60 | 16.72 % | 46.85 % | 3.57 -0.14 0.28

Table 10: MTbench
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‘ MT-Bench-10 (Shared Datastore) ‘ MT-Bench-10 (Unique Datastore)

s | TTSt | FPSt |PPL| | BLEURT1 | ROUGE? | MTT| | FPSt | PPL| | BLEURT 1 | ROUGE 1
‘ GPT2-XL-conversational
1.00 - - 2.70 -0.15 0.28 - - 2.70 -0.15 0.28
090 | 6.88% | 1588% | 3.08 -0.19 0.26 572% | 1645% | 3.24 -0.22 0.21
0.85| 807% |2350% | 3.18 -0.20 0.25 8.84 % | 32.00% | 3.09 -0.26 0.22
0.80 | 928 % | 31.13% | 3.28 -0.26 0.24 1331 % | 40.72% | 3.57 -0.39 0.21
0.75 | 16.78 % | 34.07 % | 3.58 -0.36 0.20 19.86 % | 59.64 % | 3.78 -0.39 0.18
0.70 | 24.54 % | 4230 % | 4.03 -0.51 0.19 23.66% | 56.07 % | 4.73 -0.56 0.16
0.65 | 3576 % | 38.11 % | 5.09 -0.79 0.14 26.29% | 87.74 % | 5.20 -0.57 0.16
0.60 | 38.28 % | 46.10 % | 5.62 -0.87 0.13 27.50 % | 86.95% | 6.01 -0.61 0.17
LLaMA-2-7b-chat
1.00 - - 1.50 -0.07 0.39 - - 1.50 -0.07 0.39
090 | 217% | 1.74% | 1.29 -0.05 0.37 388% | 1.07% | 1.32 -0.08 0.36
0.85| 3.65% | 3.98% | 1.30 -0.08 0.37 617% | 836% | 1.40 -0.12 0.35
0.80 | 499% | 7.26% | 1.36 -0.09 0.36 1032% | 720% | 1.65 -0.11 0.34
075 | 686 % | 1724 % | 1.58 -0.09 0.36 1393 % | 12.90 % | 2.04 -0.20 0.31
070 | 8.42% | 24.67% | 1.85 -0.06 0.36 1594 % | 26.01 % | 2.51 -0.24 0.27
0.65 | 10.21% | 36.89 % | 2.30 -0.17 0.33 17.85% | 22.37% | 3.05 -0.31 0.24
0.60 | 12.96 % | 55.72% | 3.37 -0.37 0.29 2146 % | 39.86 % | 3.40 -0.32 0.22
Mistral-7B-Instruct-v0.2
1.00 - - 2.68 -0.25 0.24 - - 2.68 -0.25 0.24
090 | 221% | 372% | 2.10 -0.26 0.25 392% | 9.94% | 231 -0.25 0.24
0.85| 323% | 6.88% | 1.97 -0.29 0.24 642% | 1537% | 2.42 -0.25 0.23
0.80 | 529% | 1238% | 2.34 -0.21 0.25 10.83 % | 30.17 % | 2.55 -0.26 0.23
075 | 822% | 17.43% | 2.56 -0.26 0.23 14.19 % | 44.57 % | 3.00 -0.24 0.22
0.70 | 9.17% | 30.86 % | 2.11 -0.30 0.23 16.39 % | 50.03% | 3.55 -0.31 0.19
0.65 | 10.90 % | 41.15% | 2.33 -0.32 0.22 19.90 % | 69.28 % | 4.54 -0.34 0.20
0.60 | 13.79 % | 48.09 % | 2.91 -0.30 0.21 21.68% | 711.52% | 5.49 -0.35 0.17

Table 11: MTbench
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Model / Threshold | Perplexity |

‘ val test val test

‘ WikiText-103 Github-Code (Dockerfile)
GPT-2 ‘ 35.79 34.83 52.63 106.44
KNN-LM /0.9 34.01 33.27 49.81 102.16
KNN-LM /0.8 33.44 32.72 48.29 100.23
KNN-LM /0.7 33.19 32.48 47.03 99.01
KNN-LM /0.6 33.03 32.30 46.39 96.81
KNN-LM /0.5 32.92 32.19 45.24 95.88
KNN-LM /0.4 32.77 32.10 43.44 91.85
KNN-LM /0.3 32.68 31.99 41.37 89.88
GPT-2/0.9 24.79 24.55 30.97 63.24
GPT-2/0.8 23.88 23.65 28.70 60.21
GPT-2/0.7 23.38 23.20 28.14 59.85
GPT-2/0.6 23.14 23.01 27.27 56.64
GPT-2/0.5 23.08 22.90 26.52 55.82
GPT-2/0.4 23.14 22.92 25.20 54.83
GPT-2/0.3 23.34 23.14 23.62 50.77

‘ Pile of Law (Federal Register) Medical Instructions

GPT-2 ‘ 15.09 11.41 49.79 51.68
KNN-LM /0.9 14.57 11.72 41.03 43.09
KNN-LM /0.8 14.21 12.00 40.17 42.24
KNN-LM /0.7 14.13 11.05 39.56 41.67
KNN-LM /0.6 14.05 11.52 38.94 41.08
KNN-LM /0.5 13.98 11.11 38.45 40.58
KNN-LM /0.4 13.90 11.10 37.94 40.14
KNN-LM /0.3 13.81 11.20 37.52 39.66
GPT-2/0.9 10.69 8.82 26.84 28.46
GPT-2/0.8 10.27 8.49 25.41 26.94
GPT-2/0.7 10.10 8.37 24.55 26.07
GPT-2/0.6 10.02 8.32 24.01 25.54
GPT-2/0.5 9.94 8.25 23.61 25.25
GPT-2/04 9.88 8.24 23.34 24.98
GPT-2/0.3 9.86 8.26 23.35 24.95

Table 12: Full results for KCD-LM
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| Base LM CD-LM

‘ val test val test % T
WikiText | 0.012 0.016 0.023 0.032 50.7%
Code 0.051 0.024 0.022 0053 1213%
Law 0.016 0.015 0.048 0.040 162.8%
Medical | 0.005 0.006 0.012 0.011 1009 %

Table 13: MAUVE score
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