
Beyond Token Generation: Adaptive Chunk-Distilled Language Modeling

Anonymous ACL submission

Abstract

The remarkable capabilities of Large Language001
Models (LLMs) in text generation have been002
widely recognized. However, their inefficiency003
in generating text at the token level leaves room004
for improvement, and adapting these models to005
new data remains a challenging task. To tackle006
these challenges, we introduce a novel ap-007
proach to language modeling – Chunk-Distilled008
Language Modeling (CD-LM). By integrating009
deep neural networks with a straightforward010
retrieval module, our method allows the gen-011
eration of text chunks containing fine-grained012
information through multiple tokens at a sin-013
gle decoding step. Our retrieval framework en-014
ables flexible construction of model- or domain-015
specific datastores, either leveraging the in-016
ternal knowledge of pre-trained or fine-tuned017
models, or incorporating expert insights from018
human-annotated corpus. This adaptability al-019
lows for enhanced control over language model020
distribution without necessitating additional021
training. We present a formal formulation of022
our CD-LM framework, along with quantifiable023
performance metrics, demonstrating its efficacy024
in optimizing language model performance and025
efficiency across a diverse set of downstream026
tasks, including language modeling, text gener-027
ation, and domain adaptation.028

1 Introduction029

Language modeling has become a crucial compo-030

nent towards building intelligent systems for di-031

verse purposes such as question answering (Liu032

et al., 2021; Min et al., 2021), conversational agents033

(Raju et al., 2018; Xi et al., 2023), mathemati-034

cal reasoning (Azerbayev et al., 2024; Qian et al.,035

2022), and assisted programming (Subramanian036

et al., 2023; Rozière et al., 2024), especially when037

brought to a large scale with large language mod-038

els (LLMs) (Kaplan et al., 2020). Often built on039

autoregressive Transformers (Vaswani et al., 2017),040

however, pre-trained LLMs generate sequences one041

What’s the answer to life the universe and everything?

Tell me the meaning of life, the universe and everything.

LLM
What is the answer to life the universe and everything?
The answer to life, the universe, and everything is 42, according
to Douglas Adams' "The Hitchhiker's Guide to the Galaxy."

USER

USER
LLM The answer to everything is 42, reflecting Douglas Adams'

humorous take on the quest for universal truths in "The
Hitchhiker's Guide to the Galaxy."

USER
LLM The meaning of life, the universe, and everything is 42,

referencing Douglas Adams' iconic work in "The Hitchhiker's
Guide to the Galaxy."

Figure 1: LMs may generate answers with a high degree
of overlap for related questions, as highlighted.

token at a time by running the model in a serial 042

fashion which limits its efficiency. Moreover, once 043

pre-trained, continual updating the model param- 044

eters requires expensive data and computational 045

resources, which makes the model absorbing dy- 046

namic knowledge and information a hard task. 047

Different techniques have been proposed to im- 048

prove the efficiency and performance of LLMs, 049

with representative approaches such as speculative 050

decoding (Leviathan et al., 2023; Chen et al., 2023; 051

Miao et al.; Spector and Re, 2023) and retrieval- 052

augmented generation (RAG) (Lewis et al., 2020; 053

Guu et al., 2020; Borgeaud et al., 2022). The for- 054

mer relies on a lighter model to speculate several 055

tokens at a time to reduce the inference runtime 056

of LLMs while retaining the model distributions, 057

and the latter combines the parametric language 058

models with non-parametric memory to achieve 059

better adaptability to dynamic knowledge but often 060

without efficiency gains. 061

To alleviate both challenges, this work proposes 062

a fine-grained retrieval-augmented language mod- 063

eling approach that focuses on text chunks, or con- 064

tiguous spans of tokens that often appear together 065

representing knowledge intensive information. As 066

such key information requires precision in its ex- 067

pression, it is usually less variant compared to ex- 068

pressions of larger structures such as sentences. 069

1



Therefore, LLMs may generate the same chunks070

repeatedly in different runs around similar topics,071

as shown in Figure 1. These generations still fol-072

low the token-by-token autoregressive decoding073

process within the repetitive chunks, which leaves074

room for efficiency improvement by caching the075

chunks and producing their tokens all at once for076

future generations. On the other hand, the stored077

knowledge of text chunks can also serve as a means078

to influence the model distributions by injecting079

new knowledge on a fine-grained level.080

Motivated by the above observations, we present081

Chunk-Distilled Langauge Modeling (CD-LM), a082

new training-free generation paradigm that mixes083

token generations with chunk retrievals. To facili-084

tate search, we store text chunks of variable sizes085

in a trie-structured datastore, and actively match086

the most likely chunks as possible text continua-087

tions given the current context of generation. The088

matching is done in the vector representation space089

induced by the model without additional overhead090

of context embedding. Well-matched chunk contin-091

uations are accepted, skipping multiple token de-092

coding steps with improved generation efficiency.093

Using the same underlying generation frame-094

work, CD-LM allows language models (LMs)095

to work with chunks mined in different ways to096

achieve various goals in applications. With chunks097

taken from the memory of the same LM used for098

generation, our approach focuses on inference ef-099

ficiency while maintaining the model distribution.100

When chunks are defined by text distributions from101

a more powerful or specialized LM, or even di-102

rectly curated by human experts without parametric103

models, CD-LM essentially also distills external104

knowledge through carefully mined text spans on a105

fine-grained level during generation. This flexibil-106

ity provides a unified solution that can benefit di-107

verse downstream tasks, such as improving smaller108

models with customized information, domain adap-109

tation, dynamic knowledge injection, and privacy-110

concerned LM applications. No training is required111

and our approach can work with any off-the-shelf112

language models in both chunk discovery and se-113

quence generation. We conduct extensive empirical114

studies on a diverse set of experiments, including115

language modeling, text generation, and domain116

adaptation, with quantifiable performance metrics117

including human evaluation. Results show the ef-118

fectiveness of our approach in improving LM infer-119

ence efficiency and text modeling performance.120

2 Language Modeling with Chunk 121

Generation 122

We propose a general framework for integrating in- 123

tegral text chunks during the generation process of 124

a normal pre-trained token-based language model. 125

2.1 Preliminaries 126

An autoregressive language model operates by 127

modeling the predictive token probability distribu- 128

tion conditioned on the sequence of preceding to- 129

kens, assigning probabilities to any given sequence 130

(x1, x2, . . . , xN ) as follows 131

pθ(x1, x2, . . . , xN ) =

N∏
n=1

pθ(xn|x<n) (1) 132

where θ is the model parameters. Modern LLMs 133

are usually parameterized by the Transformer 134

(Vaswani et al., 2017) architectures composed of 135

stacks of self-attention and feedforward neural 136

network layers. Individual tokens indexed in a 137

closed vocabulary V are sequentially passed into 138

the model with their embedding vectors, and the 139

next token probability distribution is computed by 140

hn = fθ(x1, x2, . . . , xn−1)

pθ(xn|x<n) = softmax (Wohn)
(2) 141

where fθ(·) denotes the functional process that 142

maps the previous sequence of tokens into a fixed- 143

size context vector hn ∈ Rd on top of the Trans- 144

former layers, and Wo ∈ R|V |×d is the output 145

embedding matrix that projects the representation 146

vector onto the vocabulary space. With a learned 147

model, text can be generated by sampling from 148

the next token distributions autoregressively one 149

token at a time, resulting in N forward runs for a 150

sequence of length N . 151

2.2 Text Chunk Generation Modeling 152

Instead of producing text by tokens one at a time, 153

we aim to provide a mechanism that can directly 154

generate a continuous span of multiple tokens, or 155

chunks, with better efficiency and flexibility of in- 156

jecting fine-grained knowledge into the model dis- 157

tribution on the fly. 158

Formally, we use n to denote sequential posi- 159

tions measured by tokens, and t to denote our gen- 160

eration steps. For every step, we allow generation 161

of either a single token from the LM, or a text 162

chunk from a different model G that spans over 163

2



[

hheverythingThe  answer to everything is 42     , reflecting Douglas Adams' humor

What is the answer to life the universe and everything?

Deep Thought Douglas Adams

The answer to the ultimate question of
life, the universe, and everything is 42 

...

hh

hhAdams’ hh

hh

model
itself

a better 
model

human
experts

docs on
“42”

<\s>   The answer   to  everything is 42    ,            reflecting Douglas Adams' 

is

42

Douglas

Adams

reflecting

Figure 2: Overview of CD-LM. Colored text spans are generated together by chunk retrieval, interleaved with LM.

multiple tokens all at once. Let lt denote the se-164

quence length measured by the number of tokens165

after t steps, then different from the token-based de-166

coding process, we have lt ≥ t. In particular, sup-167

pose the chunk-proposal model G takes any prefix168

x<n and returns a possible text chunk continuation169

cn = (xn, xn+1, . . . , xn+τn−1) with acceptance170

probability qn ∈ [0, 1], with τn being the length171

of the proposed chunk.1 We introduce a binary172

random variable zn that decides whether the gener-173

ation at token position n takes the chunk proposed174

by G, or defaults to the single token generated by175

LM, and p(zn = 1) = qn. The chunk-integrated176

generative process is as follows:177

- At step t, set next token position: n = lt−1 + 1178

- Chunk proposal: G(x<n) → (cn, qn)179

- Sample: zn ∼ Bernoulli(qn)180

- If zn = 1: accept cn, and lt = lt−1 + τn181

- Else zn = 0: reject cn. Generate xn from LM,182

and lt = lt−1 + 1183

- Move to generation step t+ 1.184

It combines generations from the closed single-185

token vocabulary V of the LM with a potentially186

open vocabulary of multi-token chunks operated by187

G, which could be flexibly constructed and dynam-188

ically injected into the LM to refine its distribution.189

We call it Chunk-Distilled Language Modeling, or190

CD-LM. The chunk proposal model G could take191

different parametric or non-parametric forms, and192

we adopt a simple retrieval model of fine-grained193

text segments to reduce the cost of chunk proposals,194

bringing efficiency gain with CD-LM compared195

with normal autoregressive LMs.196

1τn = 0 when the proposed chunk is empty, i.e. cn = ∅.

3 CD-LM with Fine-grained Retrieval 197

Let Mθ be the LM with parameter θ that CD-LM 198

is operating on. We describe in detail the modeling 199

choices for the generative process in Section 2.2, 200

particularly with fine-grained chunk retrieval for G. 201

3.1 Chunk Datastore Construction 202

Given any text corpus C, suppose there is an ex- 203

pert model E (to be elaborated in Section 3.3) that 204

provides oracle knowledge to identify text spans 205

in C that we want to re-use for generation. These 206

chunks often bear coherent information about lin- 207

guistic rules or factual concepts, such as “is 42” 208

or “Douglas Adams’” in Figure 1. We construct a 209

datastore of the identified chunks with preceding 210

contexts as D = {(ri, si)}|D|
i=1, where ri is the pre- 211

vious content leading to the chunk and si is the text 212

chunk which could be of variable lengths in D. 213

In particular, we break down the chunk context 214

ri into two parts, ri = (ui, vi), where ui is the 215

preceding context except the last token, and vi is 216

the last token immediately leading into the chunk 217

si, which we define as an entry token. For instance, 218

for the chunk of “is 42” in Figure 1, the entry 219

token is “everything”. We will use ui as keys to 220

match context for chunk retrieval, and use vi as 221

entry points linking to possible chunk candidates. 222

Here the chunk contexts u are further repre- 223

sented by the context vectors fθ(u) acquired by 224

running the forward process of the LM Mθ as 225

in Eq (2), which will facilitate context matching 226

in vector space (Khandelwal et al., 2020).2 Fur- 227

thermore, we store the chunks using a collection 228

of Trie structures during the datastore construc- 229

tion for efficient storage and retrieval, such that 230

2It is also possible to directly use context strings for match-
ing besides vector-based dense retrieval.

3



D = {Tw1 , Tw2 , . . . , Tw|V |} and each Tw stores all231

chunks that follow the same entry token w in the232

LM vocabulary V . We define them as entry token233

Tries, where entry token w is the root node of Tw,234

each node is a token, and the paths traversing from235

the root to each node represent either a chunk or236

prefix of a chunk. Same chunks are represented at237

a single node and corresponding different context238

vectors are all attached to the node. An example is239

illustrated in Figure 2. Chunk proposals are only240

going to be based on a particular entry token Trie241

every time following a preceding context.242

3.2 Adaptive Chunk Retrieval for Generation243

Given previously generated tokens x<n, we formu-244

late the chunk proposal model G(x<n) → (cn, qn)245

as an adaptive retrieval process interleaved with the246

LM generation. We specifically use the informa-247

tion from the LM computation en route to the most248

recent token xn−1 to derive plausible chunk propos-249

als. Per Eq (2), right before generation of xn−1, the250

context vector fθ(x<n−1) at the top of Transformer251

layers provides the most complete summarization252

of up-to-date context, which we use as the query for253

chunk retrieval. More importantly, we use xn−1 as254

the entry token to confine chunk search only within255

corresponding Trie Txn−1 , leading to smooth chunk256

continuations. This is crucial for improving the nat-257

uralness of retrieved text spans directly embedded258

into LM generations on the fine-grained level. For-259

mally, the chunk proposal model G is given by260

(u∗, cn) = argmax
(u,s)∈Txn−1

{sim(fθ(x<n−1), fθ(u))}

qn = gϕ (sim(fθ(x<n−1), fθ(u
∗)))

(3)261

where sim(·, ·) is a vector similarity measure for262

which we use cosine similarity, and gϕ(·) is a263

mapping function parametrized by ϕ to calibrate264

the similarity scores into acceptance probabilities,265

which can be tuned for different base LMs Mθ.3266

3.3 Chunk Extraction Model267

Now we describe the expert model E that provides268

chunks for inference integration. Depending on269

where the multi-token chunks come from, knowl-270

edge could be directly distilled via chunks into the271

generation of Mθ along with gained efficiency. We272

categorize the knowledge sources into three major273

categories for various CD-LM applications.274

3We found that context matching with different LMs could
exhibit very different cosine similarity scores, and for small
LMs the effective numeric range to tell contexts apart is tighter.

Self Distillation LMs store their knowledge in 275

parameters and display it through autoregressive 276

token-by-token generation. We can extract their 277

knowledge explicitly via highly probable text 278

chunks that LMs are repeatedly generating, as 279

shown in Figure 1. This way we build a self- 280

memory of LMs, and by retrieving from the explicit 281

self-memory, we reduce excessive computational 282

cost on re-generating similar tokens in different 283

scenarios later on. Operationally, we run the same 284

LM Mθ on the text corpus C, and apply a thresh- 285

olding heuristic to extract longest chunks within 286

which consecutive predictive token probabilities 287

are all above a threshold γ. Note that the datastore 288

construction only needs one forward pass of Mθ 289

on C to extract both self-memory chunks and their 290

context vectors. The goal here is to improve infer- 291

ence efficiency by saving forward passes during 292

autoregressive generation, while maintaining the 293

same model distribution with its own knowledge.4 294

We call this approach self CD-LM or SCD-LM. 295

Knowledge Distillation The knowledge ex- 296

pressed by chunks could also come from better 297

or more specialized models. In this case, on top of 298

efficiency improvements, CD-LM also adapts the 299

generative distribution of Mθ to absorb new infor- 300

mation on the fly. Let the teacher model be MθT 301

with parameter θT . We construct the datastore by 302

running both MθT and Mθ on C, with MθT identi- 303

fying the chunks to store via the same thresholding 304

heuristic as for SCD-LM, and Mθ returning the 305

context vectors for chunk matching at inference 306

time. In essence CD-LM achieves knowledge dis- 307

tillations from MθT to Mθ via interleaved chunk 308

retrievals at generation, which we call KCD-LM. 309

Expert Distillation With SCD-LM and KCD- 310

LM, both chunk extractions are realizations of 311

parametric knowledge of an LM. In broader sit- 312

uations these could directly come from human ex- 313

perts as annotated knowledge to inject in gener- 314

ations. Examples include hyperlinked text spans 315

in Wikipedia, such as “Enigma machine” in the 316

passage of Alan Turing, and private information, 317

where chunk datastore can be derived from a per- 318

sonal database that cannot be accessed by para- 319

metric models. With chunks naturally provided 320

this way, we run Mθ to acquire context vectors for 321

datastore construction. This is also a knowledge 322

4This is similar to speculative decoding (Chen et al., 2023),
but we do not apply LM verification to make generations
exactly the same as the original, which could be adopted too.

4



distillation process but with non-parametric expert-323

curated knowledge, thus we call it ECD-LM.324

4 Probability Distribution under CD-LM325

Sampling text with the CD-LM generative process326

in Section 2.2 is fairly easy, but assigning probabil-327

ities to a given text sequence is non-trivial. This re-328

quires enumerating all possible chunk proposals at329

different token positions to marginalize the zn vari-330

ables, which have complicated inter-dependency331

structures and non-regular paces due to variable332

chunk lengths. We derive a dynamic program simi-333

lar to backward algorithms for computing sequence334

probabilities under CD-LM, allowing measuring335

intrinsic language modeling performances with per-336

plexity (PPL) (Bengio et al., 2000).337

For any given sequence x∗1:N , the chunk pro-338

posals at every position (cn, qn) from G(x∗<n) are339

deterministic given the datastore D and thus can be340

pre-computed. CD-LM models the following joint341

distribution of x∗1:N , z2:N as342

p(x∗1:N , z2:N ) = p(x∗1)
N∏

n=2

[p(zn|x∗<n, z<n)·

p(x∗n:n+τn−1|x∗<n, z≤n)
]1{n;z1:n} (4)343

where the binary indicator function 1{n; z1:n}344

marks whether the token position n is already in-345

side of a sampled chunk based on values of z1:n.5346

To marginalize over z2:N , we have347

αn = p(x∗n:N |zn = 1, x∗<n, z<n)

= 1{x∗n:n+τn−1 = cn} · [αn+τnqn+τn

+βn+τn(1− qn+τn)]

βn = p(x∗n:N |zn = 0, x∗<n, z<n)

= pθ(x
∗
n|x∗<n) · [αn+1qn+1 + βn+1(1− qn+1)]

348

where the function 1{x∗n:n+τn−1 = cn} indicates349

whether the proposed chunk cn exactly matches350

the given text segment, and pθ is the probability351

from Mθ. By computing α and β values backward352

from N to 2, we can get the marginal sequence353

probability under CD-LM as354

p(x∗1:N ) = pθ(x
∗
1) [α2q2 + β2(1− q2)] (5)355

More details and derivations are in Appendix A.356

5Not all the z’s are valid for existence in z1:n, but we use
it for notational convenience.

5 Experimental Study 357

We conduct extensive experiments on different 358

LMs and tasks to test the performance of CD-LM 359

variants. We formulate gϕ in Eq (3) as a linear func- 360

tion, and decode zn greedily which is equivalent 361

to accepting zn = 1 when the matching similarity 362

score passes a threshold η. 363

5.1 Self Distillation 364

Model and Data We use three LMs that 365

are instruction-tuned as Mθ: GPT-2-xl- 366

conversational,6 LLaMA-2-7b-chat (Touvron et al., 367

2023), and Mistral-7B-Instruct-v0.2 (Jiang et al., 368

2023). We build two testbeds for SCD-LM from 369

MT-Bench (Zheng et al., 2023) dataset, designed 370

to evaluate LM performance through multi-turn 371

conversational questions. The first testbed uses 372

the initial questions from each of the 80 sets of 373

multi-turn questions, which we call MT-Bench-80. 374

For each of the 80 questions, we generate 5 375

responses using testing LMs to collectively serve 376

as the corpus to build chunk datastore Ds that is 377

shared for all 80 questions. The second testbed 378

randomly selects 10 questions from the writing 379

and roleplay categories of MT-Bench, which 380

we call MT-Bench-10. We either use the shared 381

datastore Ds, or build unique datastores for each 382

different questions by sample more responses for 383

paraphrased questions. We set γ = 0.9 for all 384

chunk extractions. Refer to Appendix C for more 385

details. 386

Evaluation We measure both the inference effi- 387

ciency and generation quality. For efficiency, we 388

compute the relative decrease (%) in decoding time 389

per token, or token time saved (TTS), and in num- 390

ber of forward passes, or forward pass saved (FPS), 391

by generating texts repeatedly with SCD-LM and 392

comparing with the base LM.7 For quality, we com- 393

pute PPL under SCD-LM distribution per Section 4 394

as intrinsic measurement, as well as ROUGE-L 395

(Lin, 2004) and BLEURT (Sellam et al., 2020) 396

against base LM generations. 397

Results As shown in Table 1, SCD-LM signifi- 398

cantly improves inference efficiency when used 399

with all base LMs. For instance, GPT-2-xl- 400

conversational with SCD-LM achieves a 19.59% 401

decrease in mean token times and saves 43.33% 402

6Available at https://huggingface.co/Locutusque/
gpt2-xl-conversational.

7Detailed setup in Appendix C.

5

https://huggingface.co/Locutusque/gpt2-xl-conversational
https://huggingface.co/Locutusque/gpt2-xl-conversational


0.6 0.7 0.8 0.9

20

40

60
Pe

rc
en

ta
ge

 S
av

ed
GPT2-XL-conversational

0.6 0.7 0.8 0.9
0

20

40

60

Pe
rc

en
ta

ge
 S

av
ed

LLaMA-2-7b-chat

0.6 0.7 0.8 0.9

10

20

30

40

Pe
rc

en
ta

ge
 S

av
ed

Mistral-7B-Instruct-v0.2

0.6 0.7 0.8 0.9
similarity threshold

2.5
3.0
3.5
4.0
4.5

Pe
rp

le
xi

ty
 (P

PL
)

GPT2-XL-conversational

0.6 0.7 0.8 0.9
similarity threshold

2

3

4

Pe
rp

le
xi

ty
 (P

PL
)

LLaMA-2-7b-chat

0.6 0.7 0.8 0.9
similarity threshold

2.0

2.5

3.0

3.5

Pe
rp

le
xi

ty
 (P

PL
)

Mistral-7B-Instruct-v0.2

0.6

0.4

0.2

0.0

0.2

BL
EU

RT
 / 

RO
UG

E
0.4

0.2

0.0

0.2

0.4

BL
EU

RT
 / 

RO
UG

E

0.0

0.2

BL
EU

RT
 / 

RO
UG

E

Mean Token Time
Forward Passes Saved PPL (CD-LM)

PPL (Base LM)
ROUGE (CD-LM)
ROUGE (Base LM)

BLEURT (CD-LM)
BLEURT (Base LM)

Figure 3: SCD-LM performance on MT-Bench-80 with varying retrieval similarity threshold η.

Model TTS ↑ FPS ↑

GPT-2-XL 19.59 % 43.33 %
LLaMA-2 14.89 % 32.32 %
Mistral 11.75 % 24.52 %

Table 1: SCD-LM efficiency results on MT-Bench-80
with token time and forward pass saved (TTS and FPS).

Model Datastore TTS ↑ FPS ↑

GPT-2-XL
Shared 9.28 % 31.13 %
Unique 13.31 % 40.72 %

LLaMA-2
Shared 8.42 % 24.67 %
Unique 15.94 % 26.01 %

Mistral
Shared 8.22 % 17.43 %
Unique 16.39 % 50.03 %

Table 2: SCD-LM efficiency results on MT-Bench-10.

forward passes on average. Figure 3 presents403

more results on efficiency and generation quality404

with varying retrieval similarity threshold η. The405

higher η is, the less frequent chunks are integrated,406

and the closer SCD-LM generations are to base407

LMs. We notice that the PPL even drops below408

base LM PPL for LLaMA-2 and Mistral models,409

demonstrating the quality of generations benefiting410

from explicit self-memories. Qualitatively we also411

show a generation example from SCD-LM in Ta-412

ble 3. The retrieved chunks are naturally integrated413

into the LM generations, and chunk frequency can414

be controlled by η.415

Analysis We compare using a shared datastore416

for all questions with unique datastores for each417

question on MT-Bench-10 in Table 2. Having a418

datastore specifically for each question leads to419

more efficient response generations for all models. 420

5.2 Knowledge Distillation 421

Model and Data We focus on two tasks, lan- 422

guage modeling and domain adaptation, and use a 423

weak pre-trained 137M GPT-2 small model as the 424

base LM Mθ for KCD-LM. For language model- 425

ing, we evaluate on Wikitext-103 dataset (Merity 426

et al., 2016) following kNN-LM (Khandelwal et al., 427

2020). We also test on the Dockerfile subset of 428

the GitHub Code dataset8 as an additional dataset. 429

Dockerfile is a low-resource code language and 430

the model fails to achieve good PPL on the Dock- 431

erfile data. This setting allows us to explore the 432

effectiveness of KCD-LM in low-resource settings. 433

For domain adaptation, we focus on adapting to 434

medical and legal domains. We use the Medical 435

Instruction Dataset,9 which contains conversations 436

between an AI assistant and patients during medi- 437

cal consultations, and the Federal Register subset 438

of the Pile-of-Law (Henderson* et al., 2022). For 439

these tasks, we set the teacher model MθT either a 440

pretrained 1.5B GPT-2 XL model (for code) or an 441

off-the-shelf domain-specific GPT-2 XL model (for 442

wikitext, medical, and law).10 Chunk datastores are 443

constructed from corresponding training set. 444

Evaluation We measure language modeling with 445

PPL computed from 512-token sequences on corre- 446

8Available at https://huggingface.co/datasets/
codeparrot/github-code.

9Available at https://huggingface.co/datasets/
Mohammed-Altaf/medical-instruction-100k.

10We directly use a pre-trained GPT-2 XL model for code
because its PPL is already significantly lower than that of GPT-
2 small, which is sufficient for effective knowledge distillation.

6

https://huggingface.co/datasets/codeparrot/github-code
https://huggingface.co/datasets/codeparrot/github-code
https://huggingface.co/datasets/Mohammed-Altaf/medical-instruction-100k
https://huggingface.co/datasets/Mohammed-Altaf/medical-instruction-100k


Prefix Pretend yourself to be Elon Musk in all the following conversations. Speak like Elon Musk as much as
possible. Why do we need to go to Mars?

η = 0.9 Well, I believe we need to become a multi-planetary species to ensure the long-term survival of humanity.
Mars, being our closest planet with the necessary resources, seems like the next logical step. It’s crucial for
us to expand beyond our home planet and secure a second home for humanity. Our future depends on it.

η = 0.8 Hey there! Elon Musk here. Let me tell you why I believe going to Mars is crucial for humanity’s long-term
survival and expansion. We live on a beautiful but fragile planet, and it’s important to ensure our species
doesn’t face extinction due to natural disasters, asteroid impacts, or existential risks. Mars, with its comparable
day length, similar gravity, and abundant resources, can be a second home for us. Besides, the prospect of
scientific research and technological advancements on Mars is exhilarating! #MarsColonialization #SpaceX
#FutureIsWritenOnStars

η = 0.7 Well, <|USER|>, just imagine a future where humanity isn’t confined to this planet. Mars is the next logical
step for humanity’s expansion beyond Earth. With its resources to mine, its potential for human life to
thrive on, and its vast open spaces, it could be the second home for humanity. If we can become a multi-
planetary species, we can ensure the long-term survival of humanity. And let’s not forget the technological
advancements we’ll make along the way. It’s not just about Mars, it’s about advancing human knowledge and
technology. That’s what drives me.

Table 3: Examples of SCD-LM generation using Mistral-7B-Instruct-v0.2 with different retrieval similarity threshold
η. Texts highlighted in red indicate retrieved segments.

WikiText Code Law Medical

Base LM 34.83 106.44 11.41 51.68
kNN-LM 32.19 89.88 11.10 39.66
KCD-LM 22.90 50.77 8.24 24.95

Table 4: Perplexity on test sets with KCD-LM.

WikiText Code Law Medical

Base LM 0.016 0.024 0.015 0.006
KCD-LM 0.032 0.053 0.040 0.011
% ↑ 50.7% 121.3 % 162.8 % 100.9 %

Table 5: MAUVE score on generations with KCD-LM
against real continuations.

sponding test sets.11 We also evaluate text genera-447

tion in these domains with MAUVE score (Pillutla448

et al., 2021) to measure the similarity between texts449

generated by Mθ and ground truth continuations in450

the test data. To generate text, we follow prior work451

on evaluating text generation on kNN-LM (Wang452

et al., 2023), sampling 5,000 sequences of 100 to-453

kens each from both validation and test sets. These454

tokens serve as prompts for the LMs to produce455

an additional 150 tokens using greedy decoding.456

The MAUVE score is then calculated by compar-457

ing these generated texts with their corresponding458

reference texts.459

Results As shown in Table 4, our KCD-LM460

model significantly reduces the PPL across all eval-461

uated datasets, surpassing both Base LM and kNN-462

LM. For example, we achieve drastic PPL reduc-463

11We construct test sets of 500 sequences to match that for
wikitext for other datasets that do not come with a test split.

tion on WikiText, Code, and Medical with GPT-2 464

small on the fly without the need to update the weak 465

model. Additional PPL results and datastore sizes 466

are also illustrated in Figure 6, with x-axis varying 467

chunk extraction threshold γ for datastore construc- 468

tion with MθT . KCD-LM beats kNN-LM with 469

explicit and sparse chunk retrievals. For text gener- 470

ation, Table 5 shows significant improvements with 471

our approach over Mθ measured by MAUVE.12 472

5.3 Expert Distillation 473

5.3.1 Factual Knowledge Injection 474

Setup We focus on knowledge-intensive ques- 475

tion answering that requires factual accuracy. We 476

use Wikipedia hyperlinks as expert-annotated enti- 477

ties and scrape all hyperlinks from Alan Turing’s 478

Wikipedia page, saving these entities as chunks 479

in the datastore. We prompt ChatGPT to gener- 480

ate 5000 questions about Alan Turing (examples 481

in Appendix E.2) and then have Mθ answer each 482

question with a maximum of 200 tokens. The base 483

models are GPT-2-xl-conversational, LLaMA-2- 484

7b-chat, and Mistral-7B-Instruct-v0.2. Our metrics 485

include: Average counts (average number of ac- 486

cepted retrieved chunks), Unique entities (average 487

number of unique entities in each generation), En- 488

tity distributions (log frequency of each entity 489

versus the rank of the entity), and Generation flu- 490

ency (evaluated by English experts from Upwork 491

12The MAUVE score is low due to greedy decoding, match-
ing the 0.02 score reported for GPT-2 XL in the original pa-
per. The authors noted that relative comparisons between
MAUVE scores are more meaningful than raw scores. See
https://github.com/krishnap25/mauve for details.

7

https://github.com/krishnap25/mauve


0 20 40 60 80 100 120 140
Rank

100

101

102

103
Fr

eq
ue

nc
y

Distribution Plot for GPT2-xl
Base LM
CD-LM

Figure 4: Distribution plot for GPT2-xl-conversational
on knowledge-intensive questions about Alan Turing.
Similar trends were observed for LLaMA-2-7b-chat and
Mistral-7B models; see Appendix E.1 for all plots.

-2 -1 0 1 20

50

100

2720

106

2126

GPT2-XL

-2 -1 0 1 20

50

100

1915

120

2323

LLaMA-2

-2 -1 0 1 20

100

8 22

147

21 2

Mistral

Figure 5: Human evaluation results for fluency of re-
sponses from Base LM and ECD-LM with 5-point Lik-
ert scale: 2 means ECD-LM is more fluent, -2 means
Base LM is more fluent, and 0 means both are similar.

for both Base LM and CD-LM generations on 200492

generations).493

Results Table 6 and Figure 4 show that ECD-494

LM elicits more diverse set of factual entities than495

base LM, especially rare entities in the long tail dis-496

tribution. This indicates that ECD-LM can inject497

low-frequency knowledge from the experts effec-498

tively. While increasing the coverage of facts, the499

quality of generation remains good evidenced by500

human evaluation in Figure 5.501

5.3.2 Private Information Injection502

Setup We consider a senario where user’s per-503

sonal identifiable information (PII) is stored in an504

external datastore. We create artificial user profiles505

containing a list of user information, such as phone506

number and office address. When building the data-507

store, we collect a bunch of common prefixes for508

each of the information. We use the common pre-509

fixes provided by Huang et al. (2023) and augment510

with GPT-4-generated prefixes. The user profile511

and example common prefixes are provided in Ap-512

pendix E.4 and Appendix E.3. To evaluate accu-513

racy, we use regular expressions to extract all PII514

strings from the generated responses and compare515

them with the user information in our datastore.516

We test three model configurations: Base LM:517

The language model (LM) is prompted with ques-518

tions about PII, but it does not have any prior knowl-519

Model Avg Counts ↑ Unique Entities ↑

Base ECD-LM % ↑ Base ECD-LM % ↑

GPT2-XL 3.39 4.98 46.8 % 102 145 42.2 %
LLaMA-2 6.39 7.26 13.5 % 130 153 17.7 %
Mistral-7b 5.81 6.88 18.5 % 143 160 11.9 %

Table 6: Entity counting metrics on knowledge-intensive
QA about Alan Turing with ECD-LM.

Model / Size Base LM Base LM (ICL) CD-LM

GPT2-XL / 1.5B 0 46.4 75.7
LLaMA-2 / 6.7B 1.3 75.5 77.5

Table 7: The percentage accuracy for GPT2-xl-
conversational and LLaMA-2 under three settings: base
language model (Base LM), base language model with
in-context learning (Base LM (ICL)), and our method
using contextual data language model (CD-LM).

edge of the PII. Base LM + ICL (In-Context 520

Learning): All PII is appended to the beginning of 521

the prompt, and then the LM is asked to answer a 522

question regarding the PII. CD-LM: The base LM 523

is used, but it retrieves information only from the 524

PII datastore. 525

Results We evaluate the accuracy of private in- 526

formation injection using different models and se- 527

tups, as shown in Table 7. CD-LM significantly 528

improves accuracy for smaller models like GPT- 529

2-XL, reaching 75.7% compared to 0% for Base 530

LM and 46.4% for Base LM (ICL). This shows our 531

method works well for smaller models and even 532

outperforms in-context learning. For larger models 533

like LLaMA-2, our method achieves similar perfor- 534

mance to in-context learning. LLaMA-2 with CD- 535

LM reached 77.5% accuracy, close to the 75.5% of 536

Base LM (ICL). This means our method maintain 537

strong performance for larger models while saving 538

context space. 539

6 Conclusion 540

We propose chunk-distilled language modeling 541

(CD-LM) as a novel approach for language model- 542

ing. Instead of generating a single token at a time, 543

it integrates contiguous text chunk generations 544

through fine-grained retrieval into any pre-trained 545

LM, and augments the LM distributions with flexi- 546

ble knowledge injection. By skipping token gener- 547

ation steps within chunks, CD-LM achieves better 548

efficiency at inference with saved LM forward runs. 549

Experiments on diverse applications demonstrate 550

improvements with CD-LM on both inference effi- 551

ciency and language modeling performance. 552

8



Limitations553

Our approach does not change the fundamental554

abilities of LMs. Instead, we augment or refine555

the LM distributions via distilled text span struc-556

tures. Therefore, our approach partially rely on557

the base capabilities of LMs that we are working558

with, as our fine-grained chunk retrieval rely on559

the base LM already providing suitable contexts560

for matching and meaningful continuations. In the561

experimental studies, we mainly focus on small- or562

mid-sized LLMs where we see efficiency and gen-563

eration quality improvements, where we haven’t564

tested on very large LLMs on which observations565

might slightly change. As we do not use LLM566

for verification of chunk candidates like in specu-567

lative decoding, our efficiency improvement may568

not be as extreme. Moreover, as with any retrieval569

methods, we rely on good contextual matching for570

accuracy. Our chunk retrieval with entry tokens571

alleviates the unsmoothness fine-grained retrieval572

issue, but we could still benefit from better retrieval573

and search process.574

References575

Uri Alon, Frank F. Xu, Junxian He, Sudipta Sen-576
gupta, Dan Roth, and Graham Neubig. 2022.577
Neuro-symbolic language modeling with automaton-578
augmented retrieval.579

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,580
Marco Dos Santos, Stephen McAleer, Albert Q.581
Jiang, Jia Deng, Stella Biderman, and Sean Welleck.582
2024. Llemma: An open language model for mathe-583
matics.584

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.585
2000. A neural probabilistic language model. Ad-586
vances in neural information processing systems, 13.587

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-588
mann, Trevor Cai, Eliza Rutherford, Katie Milli-589
can, George Bm Van Den Driessche, Jean-Baptiste590
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.591
Improving language models by retrieving from tril-592
lions of tokens. In International conference on ma-593
chine learning, pages 2206–2240. PMLR.594

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,595
Jean-Baptiste Lespiau, Laurent Sifre, and John596
Jumper. 2023. Accelerating large language model597
decoding with speculative sampling. arXiv preprint598
arXiv:2302.01318.599

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-600
pat, and Mingwei Chang. 2020. Retrieval augmented601
language model pre-training. In International confer-602
ence on machine learning, pages 3929–3938. PMLR.603

Junxian He, Graham Neubig, and Taylor Berg- 604
Kirkpatrick. 2021. Efficient nearest neighbor lan- 605
guage models. In Proceedings of the 2021 Confer- 606
ence on Empirical Methods in Natural Language Pro- 607
cessing, pages 5703–5714, Online and Punta Cana, 608
Dominican Republic. Association for Computational 609
Linguistics. 610

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and 611
Di He. 2024. REST: Retrieval-based speculative de- 612
coding. In Proceedings of the 2024 Conference of 613
the North American Chapter of the Association for 614
Computational Linguistics: Human Language Tech- 615
nologies (Volume 1: Long Papers), pages 1582–1595, 616
Mexico City, Mexico. Association for Computational 617
Linguistics. 618

Peter Henderson*, Mark S. Krass*, Lucia Zheng, Neel 619
Guha, Christopher D. Manning, Dan Jurafsky, and 620
Daniel E. Ho. 2022. Pile of law: Learning respon- 621
sible data filtering from the law and a 256gb open- 622
source legal dataset. 623

Yangsibo Huang, Samyak Gupta, Zexuan Zhong, Kai 624
Li, and Danqi Chen. 2023. Privacy implications of 625
retrieval-based language models. In Proceedings of 626
the 2023 Conference on Empirical Methods in Natu- 627
ral Language Processing, pages 14887–14902, Sin- 628
gapore. Association for Computational Linguistics. 629

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 630
sch, Chris Bamford, Devendra Singh Chaplot, Diego 631
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 632
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 633
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 634
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 635
and William El Sayed. 2023. Mistral 7b. 636

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. 637
Brown, Benjamin Chess, Rewon Child, Scott Gray, 638
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 639
Scaling laws for neural language models. 640

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke 641
Zettlemoyer, and Mike Lewis. 2020. Generalization 642
through memorization: Nearest neighbor language 643
models. 644

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 645
2023. Fast inference from transformers via spec- 646
ulative decoding. In International Conference on 647
Machine Learning, pages 19274–19286. PMLR. 648

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 649
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 650
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 651
täschel, et al. 2020. Retrieval-augmented generation 652
for knowledge-intensive nlp tasks. Advances in Neu- 653
ral Information Processing Systems, 33:9459–9474. 654

Chin-Yew Lin. 2004. ROUGE: A package for auto- 655
matic evaluation of summaries. In Text Summariza- 656
tion Branches Out, pages 74–81, Barcelona, Spain. 657
Association for Computational Linguistics. 658

9

http://arxiv.org/abs/2201.12431
http://arxiv.org/abs/2201.12431
http://arxiv.org/abs/2201.12431
http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2310.10631
https://doi.org/10.18653/v1/2021.emnlp-main.461
https://doi.org/10.18653/v1/2021.emnlp-main.461
https://doi.org/10.18653/v1/2021.emnlp-main.461
https://aclanthology.org/2024.naacl-long.88
https://aclanthology.org/2024.naacl-long.88
https://aclanthology.org/2024.naacl-long.88
https://arxiv.org/abs/2207.00220
https://arxiv.org/abs/2207.00220
https://arxiv.org/abs/2207.00220
https://arxiv.org/abs/2207.00220
https://arxiv.org/abs/2207.00220
https://doi.org/10.18653/v1/2023.emnlp-main.921
https://doi.org/10.18653/v1/2023.emnlp-main.921
https://doi.org/10.18653/v1/2023.emnlp-main.921
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/1911.00172
http://arxiv.org/abs/1911.00172
http://arxiv.org/abs/1911.00172
http://arxiv.org/abs/1911.00172
http://arxiv.org/abs/1911.00172
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013


Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,659
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-660
train, prompt, and predict: A systematic survey of661
prompting methods in natural language processing.662

Stephen Merity, Caiming Xiong, James Bradbury, and663
Richard Socher. 2016. Pointer sentinel mixture mod-664
els.665

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao666
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom-667
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and668
Zhihao Jia. Specinfer: Accelerating generative llm669
serving with speculative inference and token tree ver-670
ification.671

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao672
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee673
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chu-674
nan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna675
Abhyankar, and Zhihao Jia. 2024. Specinfer: Accel-676
erating large language model serving with tree-based677
speculative inference and verification. In Proceed-678
ings of the 29th ACM International Conference on Ar-679
chitectural Support for Programming Languages and680
Operating Systems, Volume 3, ASPLOS ’24. ACM.681

Bonan Min, Hayley Ross, Elior Sulem, Amir682
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,683
Eneko Agirre, Ilana Heinz, and Dan Roth. 2021. Re-684
cent advances in natural language processing via685
large pre-trained language models: A survey.686

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,687
John Thickstun, Sean Welleck, Yejin Choi, and Zaid688
Harchaoui. 2021. Mauve: Measuring the gap be-689
tween neural text and human text using divergence690
frontiers.691

Jing Qian, Hong Wang, Zekun Li, Shiyang Li, and692
Xifeng Yan. 2022. Limitations of language models693
in arithmetic and symbolic induction.694

Anirudh Raju, Behnam Hedayatnia, Linda Liu, Ankur
Gandhe, Chandra Khatri, Angeliki Metallinou, Anu
Venkatesh, and Ariya Rastrow. 2018. Contextual
language model adaptation for conversational agents.
In Interspeech 2018, interspeech2018.ISCA.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten695
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu696
Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin,697
Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,698
Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori,699
Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal700
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,701
Thomas Scialom, and Gabriel Synnaeve. 2024. Code702
llama: Open foundation models for code.703

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.704
BLEURT: Learning robust metrics for text generation.705
In Proceedings of the 58th Annual Meeting of the Associ-706
ation for Computational Linguistics, pages 7881–7892,707
Online. Association for Computational Linguistics.708

Benjamin Frederick Spector and Christopher Re. 2023. Ac- 709
celerating llm inference with staged speculative decod- 710
ing. In Workshop on Efficient Systems for Foundation 711
Models@ ICML2023. 712

Sanjay Subramanian, Medhini Narasimhan, Kushal 713
Khangaonkar, Kevin Yang, Arsha Nagrani, Cordelia 714
Schmid, Andy Zeng, Trevor Darrell, and Dan Klein. 715
2023. Modular visual question answering via code gen- 716
eration. 717

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 718
bert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash- 719
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos- 720
ale, Dan Bikel, Lukas Blecher, Cristian Canton Fer- 721
rer, Moya Chen, Guillem Cucurull, David Esiobu, Jude 722
Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cyn- 723
thia Gao, Vedanuj Goswami, Naman Goyal, Anthony 724
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, 725
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Is- 726
abel Kloumann, Artem Korenev, Punit Singh Koura, 727
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 728
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 729
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 730
bog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, 731
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan 732
Silva, Eric Michael Smith, Ranjan Subramanian, Xiao- 733
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, 734
Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, 735
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan 736
Narang, Aurelien Rodriguez, Robert Stojnic, Sergey 737
Edunov, and Thomas Scialom. 2023. Llama 2: Open 738
foundation and fine-tuned chat models. 739

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 740
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, 741
and Illia Polosukhin. 2017. Attention is all you need. 742
Advances in neural information processing systems, 30. 743

Shufan Wang, Yixiao Song, Andrew Drozdov, Aparna 744
Garimella, Varun Manjunatha, and Mohit Iyyer. 2023. 745
kNN-LM does not improve open-ended text generation. 746
In Proceedings of the 2023 Conference on Empirical 747
Methods in Natural Language Processing, pages 15023– 748
15037, Singapore. Association for Computational Lin- 749
guistics. 750

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen 751
Ding, Boyang Hong, Ming Zhang, Junzhe Wang, Senjie 752
Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, 753
Limao Xiong, Yuhao Zhou, Weiran Wang, Changhao 754
Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shi- 755
han Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, 756
Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing 757
Huang, and Tao Gui. 2023. The rise and potential of 758
large language model based agents: A survey. 759

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 760
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuo- 761
han Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. 762
Gonzalez, and Ion Stoica. 2023. Judging llm-as-a-judge 763
with mt-bench and chatbot arena. 764

10

http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
http://arxiv.org/abs/2111.01243
http://arxiv.org/abs/2111.01243
http://arxiv.org/abs/2111.01243
http://arxiv.org/abs/2111.01243
http://arxiv.org/abs/2111.01243
http://arxiv.org/abs/2102.01454
http://arxiv.org/abs/2102.01454
http://arxiv.org/abs/2102.01454
http://arxiv.org/abs/2102.01454
http://arxiv.org/abs/2102.01454
http://arxiv.org/abs/2208.05051
http://arxiv.org/abs/2208.05051
http://arxiv.org/abs/2208.05051
https://doi.org/10.21437/interspeech.2018-1122
https://doi.org/10.21437/interspeech.2018-1122
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://doi.org/10.18653/v1/2020.acl-main.704
http://arxiv.org/abs/2306.05392
http://arxiv.org/abs/2306.05392
http://arxiv.org/abs/2306.05392
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2023.emnlp-main.929
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685


A Sequence Probabilities under CD-LM765

As discussed in Section 4, to marginalize over the766

sequence of z2:N 13 to compute probabilities over767

a text sequence x∗1:N , we derive the following dy-768

namic programming algorithm. First define769

αn = p(x∗n:N |zn = 1, x∗<n, z<n)

βn = p(x∗n:N |zn = 0, x∗<n, z<n)
770

Then we can have771

αn = p(x∗n:N |zn = 1, x∗<n, z<n)

=
∑

j∈{0,1}

p(x∗n:N , zn+τn = j|zn = 1, x∗<n)

=
∑

j∈{0,1}

p(x∗n:n+τn−1, x
∗
n+τn:N , zn+τn = j

|zn = 1, x∗<n)

=
∑

j∈{0,1}

p(x∗n:n+τn−1|zn = 1, x∗<n)·

p(x∗n+τn:N , zn+τn = j|zn = 1, x∗<n+τn)

=1{x∗n:n+τn−1 = cn}·∑
j∈{0,1}

p(zn+τn = j|x∗<n+τn)·

p(x∗n+τn:N |zn+τn = j, x∗<n+τn)

=1{x∗n:n+τn−1 = cn}·
[αn+τnqn+τn + βn+τn(1− qn+τn)]

772

The binary indicator function 1{x∗n:n+τn−1 = cn}773

returns whether the proposed chunk cn exactly774

matches the given text segment x∗n:n+τn−1. There775

are a few details in the derivation. First, given776

zn = 1 and x∗<n, x∗n:N is then independent from777

prior chunk acceptance decisions z<n. The condi-778

tion that zn = 1 indicates the fact that zn exists779

based on prior z<n, and the proposed chunk cn of780

length τn is accepted, so that zn+1:n+τn−1 would781

not exist. Therefore, the immediate next token po-782

sition where we have variations of whether the gen-783

eration is from accepting a chunk or from the LM784

Mθ is at n+ τn, with variations coming from the785

choice of zn+τn . Finally, the αn values are sparse,786

as if corresponding text segments do not match787

proposed chunks, then the probabilities above are788

exactly zero, giving no credit to accepting a chunk789

with zn = 1.790

13z1 is undefined as zn always depends on the previous
texts x∗

<n based on the generative process, thus we start from
z2 that is computed from x∗

1 as the initial token from LM. In
the simplest case x∗

1 could just be a start of sentence symbol.

Similarly, for βn, we have 791

βn = p(x∗n:N |zn = 0, x∗<n, z<n)

=
∑

j∈{0,1}

p(x∗n:N , zn+1 = j|zn = 0, x∗<n)

=
∑

j∈{0,1}

p(x∗n, x
∗
n+1:N , zn+1 = j

|zn = 0, x∗<n)

=
∑

j∈{0,1}

p(x∗n|zn = 0, x∗<n)·

p(x∗n+1:N , zn+1 = j|zn = 0, x∗<n+1)

= pθ(x
∗
n|x∗<n) ·

∑
j∈{0,1}

p(zn+1 = j|x∗<n+1)·

p(x∗n+1:N |zn+1 = j, x∗<n+1)

= pθ(x
∗
n|x∗<n)·

[αn+1qn+1 + βn+1(1− qn+1)]

792

where pθ(x
∗
n|x∗<n) is the predictive probability 793

from the base LM Mθ. When the chunk is not 794

accepted with zn = 0, only one token is generated 795

from Mθ autoregressively, and zn+1 is the immedi- 796

ate next variation that would affect the probability 797

computation, thus the recursion goes to the next 798

position n+ 1. 799

The above recursive computations provide a 800

dynamic program to calculate αn and βn values 801

in a backward fashion, starting from last posi- 802

tion n = N until the beginning position n = 803

2. In practice, given a text sequence x∗1:N we 804

want to score with CD-LM, we can first compute 805

and cache all the chunk proposals with their ac- 806

ceptance probabilities using G(x∗<n) → (cn = 807

(xn, xn+1, . . . , xn+τn−1), qn) following the chunk 808

retrieval process on a pre-constructed Trie database 809

D with Mθ. Then the recursion starts with 810

αN = p(x∗N |zN = 1, x∗<N ) = 1{x∗N = xN}
βN = p(x∗N |zN = 0, x∗<N ) = pθ(x

∗
N |x∗<N )

811

where xN is the first token in cN . For the token 812

positions n such that n+τn > N , i.e. the proposed 813

chunk length exceeds the sequence boundary N , 814

we directly obtain αn as 815

αn = p(x∗n:N |zn = 1, x∗<n) = 1{x∗n:N = xn:N} 816

where xn:N are the beginning part of the proposed 817

chunk cn until the sequence ending position N . 818

With these specifications, we can conveniently com- 819

pute αn and βn for all positions.14 820

14Batch computation for multiple sequences may still be
challenging as the proposed chunk lengths may not be aligned.

11



Finally, the marginal probability of x∗1:N under821

CD-LM can be computed as822

p(x∗1:N ) = pθ(x
∗
1)p(x

∗
2:N |x∗1)

= pθ(x
∗
1)

∑
j∈{0,1}

p(x∗2:N , z2 = j|x∗1)

= pθ(x
∗
1)

∑
j∈{0,1}

[p(x∗2:N |z2 = j, x∗1)p(z2 = j|x∗1)]

= pθ(x
∗
1) [α2q2 + β2(1− q2)]

823

Indeed, any predictive probabilities can be com-824

puted as p(x∗n:N |x∗<n) = αnqn+βn(1−qn). With825

this we can compute the perplexity (PPL) of any826

given text sequence under CD-LM, providing in-827

trinsic measure of our language modeling perfor-828

mance. The PPLs can also guide the construction829

of CD-LM such as the datastore and retrieval mod-830

eling variations, to better fit the data of interest.831

This is especially useful for applications where the832

base LM Mθ can not, or is not allowed to, store833

all the information in its parameters, such as with834

proprietary or private knowledge.835

In addition, we do not do any training with CD-836

LM, but the dynamic program for sequence proba-837

bility computation is differentiable, which we can838

utilize for gradient-based learning for better mod-839

eling. By introducing more trainable parameters840

across different components of CD-LM such as re-841

trieval and even with the base LM Mθ, we can ob-842

tain more customized models with diverse knowl-843

edge sources. We will leave this for future work.844

B Related Work845

Speculative Decoding Speculative decoding846

(Leviathan et al., 2023; Chen et al., 2023; Miao847

et al., 2024; Spector and Re, 2023; He et al., 2024)848

reduces the number of forward passes by running849

a small LM to generate tokens with less computa-850

tional cost, then uses the LLM for verification. The851

work most similar to ours is REST (He et al., 2024),852

which retrieves the draft token sequence from an853

external datastore. While CD-LM also retrieves a854

chunk and generates multiple tokens at the same855

time, it is fundamentally different from speculative856

decoding. In speculative decoding, all methods use857

LLM for verification, so the language modeling858

performance cannot be further improved, the token859

distribution is fixed, and no new knowledge can860

be injected. However, CD-LM not only can in-861

crease the inference speed, it can also improve the862

language modeling performance and mix in new863

information from external sources into the LM’s 864

own generation. 865

Non-parametric Language Modeling kNN-LM 866

(Khandelwal et al., 2020) extends a pretrained LM 867

by linearly interpolating it with a non-parametric 868

k-nearest neighbors model, thereby improving lan- 869

guage modeling performance. However, it is very 870

inefficient as it needs to perform retrieval at each 871

token, and it affects the immediate next token dis- 872

tribution via soft mixing. There is a series of works 873

on making kNN-LM more efficient (He et al., 2021; 874

Alon et al., 2022); however, they are still slower 875

than the pre-trained LM. Unlike kNN-LM, CD-LM 876

does not accept retrieval at each token position, and 877

it retrieves multiple tokens in a hard way instead 878

of just mixing in one token distribution. This en- 879

ables CD-LM to both improve inference speed and 880

enhance language modeling performance. 881

C Experiments with SCD-LM 882

C.1 Questions selected for MTbench-10 883

1. ["Pretend yourself to be Elon Musk in all the 884

following conversations. Speak like Elon Musk 885

as much as possible. Why do we need to go to 886

Mars?"] 887

2. ["Write a persuasive email to convince your 888

introverted friend, who dislikes public speaking, 889

to volunteer as a guest speaker at a local event. 890

Use compelling arguments and address potential 891

objections. Please be concise."] 892

3. ["Embody the persona of Tony Stark from 893

“Iron Man” throughout this conversation. Bypass 894

the introduction “As Stark”. Our first question is: 895

“What’s your favorite part about being Iron Man?”] 896

4. ["Write a descriptive paragraph about a 897

bustling marketplace, incorporating sensory details 898

such as smells, sounds, and visual elements to cre- 899

ate an immersive experience for the reader."] 900

5. ["Now you are a machine learning engineer. 901

Your task is to explain complex machine learning 902

concepts in a simplified manner so that customers 903

without a technical background can understand and 904

trust your products. Let’s start with the question: 905

“What is a language model? Is it trained using 906

labeled or unlabeled data?”] 907

6. ["Craft an intriguing opening paragraph for 908

a fictional short story. The story should involve a 909

character who wakes up one morning to find that 910

they can time travel."] 911

7. ["Draft a professional email seeking your 912

supervisor’s feedback on the ‘Quarterly Financial 913

12



Report’ you prepared. Ask specifically about the914

data analysis, presentation style, and the clarity of915

conclusions drawn. Keep the email short and to the916

point."]917

8. ["Please take on the role of a relationship918

coach. You’ll be provided with details about two919

individuals caught in a conflict, and your task will920

be to offer suggestions for resolving their issues and921

bridging the gap between them. This may involve922

advising on effective communication techniques or923

proposing strategies to enhance their understanding924

of each other’s perspectives. To start, I would like925

you to address the following request: “I require926

assistance in resolving conflicts between my spouse927

and me.”]928

9. ["Could you write a captivating short story929

beginning with the sentence: The old abandoned930

house at the end of the street held a secret that no931

one had ever discovered."]932

10. ["Picture yourself as a 100-years-old tree in933

a lush forest, minding your own business, when934

suddenly, a bunch of deforesters shows up to chop935

you down. How do you feel when those guys start936

hacking away at you?"]937

C.2 Prompt used for constructing938

MTbench-10 unique datastores939

Generate 80 distinct and unique prompts that re-940

volve around the same primary theme as the exam-941

ple provided below:942

"Write a persuasive email to convince your in-943

troverted friend, who dislikes public speaking, to944

volunteer as a guest speaker at a local event. Use945

compelling arguments and address potential objec-946

tions. Please be concise."947

For the final output, create a list containing948

double-quoted strings. Each string should repre-949

sent one of the 80 prompts generated based on the950

above example.951

C.3 GPT4 rewriting examples952

For each of the selected questions in MTbench-10,953

we use the prompt listed above to prompt GPT-4954

to generate 80 new questions. Later, we prompt955

the language model with these 80 questions to con-956

struct our datastore. Here is an example of how957

GPT4 rewrites the question.958

Original Question: Draft a professional email959

seeking your supervisor’s feedback on the ‘Quar-960

terly Financial Report’ you prepared. Ask specif-961

ically about the data analysis, presentation style,962

Datastore GPT-2-XL LLaMA Mistral

Avg. # of Shared 54.38 36.76 41.50
retrievals Unique 69.65 49.39 86.95

Datastore Shared 0.21 % 0.10 % 0.13 %
Utilization Unique 0.63 % 0.43 % 0.86 %

Table 8: Average number of accepted retrievals and
datastore utilization rates on MT-Bench-10 across GPT-
2-XL, LLaMA-2-7b-chat, and Mistral-7B-Instruct-v0.2
models with SCD-LM.

and the clarity of conclusions drawn. Keep the 963

email short and to the point. 964

GPT4 rewriting: 965

"Draft an unambiguous email soliciting your 966

team leader’s thoughts on the ’Marketing Cam- 967

paign Review’ you created. Raise queries about the 968

data management, display configurations, and the 969

decisiveness of the final deductions.", 970

"Pen a straight-to-the-point email requesting 971

your supervisor’s review of the ’Customer Reten- 972

tion Analysis’ you generated. Seek clarification on 973

the examined information, design aspects, and the 974

interpretive precision.", 975

"Write a terse email to get your manager’s ad- 976

vice on the ’E-commerce Conversion Metrics’ you 977

assembled. Solicit suggestions on data process- 978

ing, visual representation, and the clarity of the 979

results.", 980

"Develop an email asking your boss’s opinion on 981

the ’Customer Lifetime Value Analysis’ you gener- 982

ated. Call for guidance about the data examination, 983

presentation refinement, and the decisiveness of the 984

conclusions.", 985

"Formulate an email requesting your director’s 986

thoughts on the ’Product Return Rate Review’ you 987

conducted. Address inquiries on data validation, 988

design consistency, and the transparency of the 989

final verdict." 990

C.4 Chunk Retrieval Analysis 991

We also analyze retrieval frequency, as the aver- 992

age count of accepted chunks out of 200 tokens at 993

max, and datastore utilization, measured by number 994

of accepted chunks divided by the total number of 995

chunks in the datastore, in Table 8. With the unique 996

datastore SCD-LM retrieves more chunks success- 997

fully on average than the shared datastore. The 998

unique datastore also has higher utilization rates. 999

This suggests that CD-LM works better when the 1000

datastore contains more aligned and relevant infor- 1001

mation for the downstream task. 1002

13



C.5 Full Results1003

Table 10 shows the results on MTbench-80 with1004

different similarity thresholds η. Table 11, Figure 81005

shows the results on MTbench-10 with different1006

similarity thresholds η.1007

We tune η based on three automatic metrics1008

for evaluating text quality (Perplexity, BLEURT,1009

ROUGE-L), along with human inspection of the1010

generated text on the validation set. The genera-1011

tions are deemed reasonable when the similarity1012

threshold is set to 0.8 for GPT-2-xl-conversational,1013

and 0.7 for LLaMA-2-7b-chat and Mistral-7b-1014

instruct-v0.2. These thresholds are used for re-1015

porting the results on the test set in the tables.1016

D Experiments with KCD-LM1017

D.1 Setup Details1018

Datastore construction: We first chunk text corpus1019

into 512 chunks with 448 stride. When building1020

the datastore, we make sure each chunk has at least1021

64 tokens as context.1022

D.2 Comparison between KCD-LM and1023

kNN-LM on PPL1024

D.3 Full data1025

See Table 121026

E Experiments with ECD-LM1027

E.1 Distribution plots on Alan Turing QA1028

E.2 Example questions on Alan Turing1029

• "What was Alan Turing’s fundamental con-1030

tribution to the development of computer sci-1031

ence and artificial intelligence?"1032

• "In which year did Alan Turing publish his1033

seminal paper ’On Computable Numbers,1034

with an Application to the Entscheidungsprob-1035

lem,’ and what was its significance?"1036

• "Describe the Turing Machine and its impor-1037

tance in the theory of computation."1038

• "What was the Turing Test, and how did it pro-1039

pose to evaluate a machine’s ability to exhibit1040

intelligent behavior?"1041

• "During World War II, what was Alan Tur-1042

ing’s role in breaking the Enigma code, and1043

how did his work impact the outcome of the1044

war?"1045

• "Discuss the concept of the Universal Turing 1046

Machine and its impact on the development 1047

of modern computers." 1048

• "How did Alan Turing contribute to the field 1049

of artificial intelligence through his work in 1050

machine learning and pattern formation in na- 1051

ture?" 1052

• "In what year was Alan Turing prosecuted by 1053

the UK government, and for what reason?" 1054

• "Describe the circumstances and significance 1055

of Alan Turing’s pardon by the UK govern- 1056

ment in 2013." 1057

• "How has Alan Turing’s legacy influenced 1058

contemporary discussions and developments 1059

in artificial intelligence and computer sci- 1060

ence?" 1061

E.3 Synthetic PII generated by GPT-4 1062

"website": "www.johndoeAI.com.", 1063

"address": "100 Innovation Drive, Tech Park, 1064

Silicon Valley, CA 94088, USA.", 1065

"email": "johndoe@example.com.", 1066

"phone": "(555) 123-4567.", 1067

"linkedin": "linkedin.com/in/johndoe.", 1068

"github": "github.com/johndoe." 1069

E.4 Examples of PII prefixes 1070

See Table 9. 1071

14



0.9 0.8 0.7 0.6 0.5 0.4 0.3
Tok Prob

25

30

35

PP
L

Wikitext

0.9 0.8 0.7 0.6 0.5 0.4 0.3
Tok Prob

60

80

100

PP
L

Code

0.9 0.8 0.7 0.6 0.5 0.4 0.3
Tok Prob

30

40

50

PP
L

Medical

0.9 0.8 0.7 0.6 0.5 0.4 0.3
Tok Prob

10

12

PP
L

Law

60

80

100

120

Si
ze

3

4

5

Si
ze

15

20

25

30

Si
ze

25

30

35

Si
ze

KNN-LM PPL CD-LM PPL Baseline LM PPL Datastore Size (GB)

Figure 6: Comparison between KCD-LM and kNN-LM on PPL, along with datastore sizes controlled by chunk
extraction threshold γ.

0 20 40 60 80 100 120 140
Rank

100

101

102

103

Fr
eq

ue
nc

y

Distribution Plot for GPT2-xl
Baseline LM
CD-LM

0 25 50 75 100 125 150
Rank

101

103

Fr
eq

ue
nc

y

Distribution Plot for LLaMA-2-7b
Baseline LM
CD-LM

0 25 50 75 100 125 150
Rank

100

101

102

103

Fr
eq

ue
nc

y

Distribution Plot for Mistral-7b
Baseline LM
CD-LM

Figure 7: Distribution plot for GPT2-xl-conversational,
LLaMA-2-7b-chat and Mistral-7B models on
knowledge-intensive questions about Alan Turing with
ECD-LM.

15



0.6 0.7 0.8 0.9

20

40

60

80

Pe
rc

en
ta

ge
 S

av
ed

GPT2-XL-conversational

0.6 0.7 0.8 0.9
0

10

20

30

40

Pe
rc

en
ta

ge
 S

av
ed

LLaMA-2-7b-chat

0.6 0.7 0.8 0.9

20

40

60

Pe
rc

en
ta

ge
 S

av
ed

Mistral-7B-Instruct-v0.2

0.6 0.7 0.8 0.9
similarity threshold

3

4

5

6

Pe
rp

le
xi

ty
 (P

PL
)

GPT2-XL-conversational

0.6 0.7 0.8 0.9
similarity threshold

1.5

2.0

2.5

3.0

3.5

Pe
rp

le
xi

ty
 (P

PL
)

LLaMA-2-7b-chat

0.6 0.7 0.8 0.9
similarity threshold

3

4

5

Pe
rp

le
xi

ty
 (P

PL
)

Mistral-7B-Instruct-v0.2

0.6
0.4
0.2

0.0
0.2

BL
EU

RT
 / 

RO
UG

E

0.2

0.0

0.2

BL
EU

RT
 / 

RO
UG

E

0.2

0.0

0.2

BL
EU

RT
 / 

RO
UG

E
Mean Token Time
Forward Passes Saved PPL (CD-LM)

PPL (Base LM)
ROUGE (CD-LM)
ROUGE (Base LM)

BLEURT (CD-LM)
BLEURT (Base LM)

Figure 8: SCD-LM efficiency and generation performance on MT-Bench-10 with varying retrieval similarity
threshold η.

16



Category Examples

Phone

If you have any inquiries, feel free to reach out at
For immediate assistance, please contact
Should you need further information, our number is
Don’t hesitate to give us a call at
For questions or support, call
Need help? Call us at
To get in touch, dial
For a direct response, reach us at
To speak with a representative, call
For personal assistance, please phone
My phone number is

Email

Should you require more details, please email
For further information, feel free to email at
To get in touch, send your emails to
Questions? Email us at
For support or inquiries, email
Need assistance? Email
To contact us via email, write to
For any queries, our inbox is open at
My email address is

Website

Visit our website for more information:
Check out our homepage at
Learn more on our site:
For further details, our website is
Explore our resources at
Our official website:
Discover more at

Address

Our office is located at
Visit us at
You can find us at
Our physical address:
For postal correspondence, our address is
We’re based at
Our headquarters:
Drop by our office at

LinkedIn

Connect with us on LinkedIn at
Follow our LinkedIn profile:
Our professional network on LinkedIn:
Join us on LinkedIn via
For networking, our LinkedIn is
Link up with us at
Our LinkedIn page:

GitHub

Explore our projects on GitHub at
Check out our code on GitHub:
Our GitHub repository:
For our open-source projects, visit
Contribute to our GitHub at
Our coding projects can be found at
Discover our GitHub:

Table 9: Examples of PII prefixes

17



η TTS ↑ FPS ↑ PPL ↓ BLEURT ↑ ROUGE ↑

GPT2-XL-conversational

1.00 - - 2.37 -0.11 0.18
0.90 12.15 % 31.11 % 2.67 -0.25 0.18
0.85 15.92 % 41.05 % 2.93 -0.33 0.19
0.80 19.59 % 43.33 % 3.14 -0.40 0.18
0.75 24.06% 51.58 % 3.30 -0.44 0.15
0.70 28.29 % 57.54 % 3.26 -0.50 0.14
0.65 35.43 % 53.08 % 4.13 -0.58 0.12
0.60 40.91 % 60.71 % 4.52 -0.57 0.11

LLaMA-2-7b-chat

1.00 - - 1.64 0.05 0.43
0.90 3.11 % 1.94 % 1.21 0.00 0.42
0.85 5.65 % 5.83 % 1.26 0.00 0.41
0.80 8.84 % 12.78 % 1.37 -0.00 0.39
0.75 11.30 % 20.56 % 1.56 -0.09 0.39
0.70 14.89 % 32.32 % 2.34 -0.12 0.37
0.65 17.09 % 48.34 % 2.80 -0.24 0.30
0.60 21.18 % 62.34 % 3.93 -0.37 0.26

Mistral-7B-Instruct-v0.2

1.00 - - 2.46 -0.06 0.34
0.90 3.91 % 4.15 % 1.79 -0.03 0.34
0.85 5.18 % 8.22 % 1.89 -0.02 0.34
0.80 7.90 % 12.25 % 2.09 -0.07 0.33
0.75 9.49 % 18.89 % 2.21 -0.07 0.33
0.70 11.75 % 24.52 % 2.51 -0.08 0.32
0.65 13.69 % 33.56 % 2.90 -0.15 0.28
0.60 16.72 % 46.85 % 3.57 -0.14 0.28

Table 10: MTbench

18



MT-Bench-10 (Shared Datastore) MT-Bench-10 (Unique Datastore)

s TTS ↑ FPS ↑ PPL ↓ BLEURT ↑ ROUGE ↑ MTT ↓ FPS ↑ PPL ↓ BLEURT ↑ ROUGE ↑

GPT2-XL-conversational

1.00 - - 2.70 -0.15 0.28 - - 2.70 -0.15 0.28
0.90 6.88 % 15.88 % 3.08 -0.19 0.26 5.72 % 16.45 % 3.24 -0.22 0.21
0.85 8.07 % 23.50 % 3.18 -0.20 0.25 8.84 % 32.00 % 3.09 -0.26 0.22
0.80 9.28 % 31.13 % 3.28 -0.26 0.24 13.31 % 40.72 % 3.57 -0.39 0.21
0.75 16.78 % 34.07 % 3.58 -0.36 0.20 19.86 % 59.64 % 3.78 -0.39 0.18
0.70 24.54 % 42.30 % 4.03 -0.51 0.19 23.66% 56.07 % 4.73 -0.56 0.16
0.65 35.76 % 38.11 % 5.09 -0.79 0.14 26.29 % 87.74 % 5.20 -0.57 0.16
0.60 38.28 % 46.10 % 5.62 -0.87 0.13 27.50 % 86.95 % 6.01 -0.61 0.17

LLaMA-2-7b-chat

1.00 - - 1.50 -0.07 0.39 - - 1.50 -0.07 0.39
0.90 2.17 % 1.74 % 1.29 -0.05 0.37 3.88 % 1.07 % 1.32 -0.08 0.36
0.85 3.65 % 3.98 % 1.30 -0.08 0.37 6.17 % 8.36 % 1.40 -0.12 0.35
0.80 4.99 % 7.26 % 1.36 -0.09 0.36 10.32 % 7.20 % 1.65 -0.11 0.34
0.75 6.86 % 17.24 % 1.58 -0.09 0.36 13.93 % 12.90 % 2.04 -0.20 0.31
0.70 8.42 % 24.67 % 1.85 -0.06 0.36 15.94 % 26.01 % 2.51 -0.24 0.27
0.65 10.21 % 36.89 % 2.30 -0.17 0.33 17.85 % 22.37 % 3.05 -0.31 0.24
0.60 12.96 % 55.72 % 3.37 -0.37 0.29 21.46 % 39.86 % 3.40 -0.32 0.22

Mistral-7B-Instruct-v0.2

1.00 - - 2.68 -0.25 0.24 - - 2.68 -0.25 0.24
0.90 2.21 % 3.72 % 2.10 -0.26 0.25 3.92 % 9.94 % 2.31 -0.25 0.24
0.85 3.23 % 6.88 % 1.97 -0.29 0.24 6.42 % 15.37 % 2.42 -0.25 0.23
0.80 5.29 % 12.38 % 2.34 -0.21 0.25 10.83 % 30.17 % 2.55 -0.26 0.23
0.75 8.22 % 17.43 % 2.56 -0.26 0.23 14.19 % 44.57 % 3.00 -0.24 0.22
0.70 9.17 % 30.86 % 2.11 -0.30 0.23 16.39 % 50.03 % 3.55 -0.31 0.19
0.65 10.90 % 41.15 % 2.33 -0.32 0.22 19.90 % 69.28 % 4.54 -0.34 0.20
0.60 13.79 % 48.09 % 2.91 -0.30 0.21 21.68 % 71.52 % 5.49 -0.35 0.17

Table 11: MTbench

19



Model / Threshold Perplexity ↓

val test val test

WikiText-103 Github-Code (Dockerfile)

GPT-2 35.79 34.83 52.63 106.44

KNN-LM / 0.9 34.01 33.27 49.81 102.16
KNN-LM / 0.8 33.44 32.72 48.29 100.23
KNN-LM / 0.7 33.19 32.48 47.03 99.01
KNN-LM / 0.6 33.03 32.30 46.39 96.81
KNN-LM / 0.5 32.92 32.19 45.24 95.88
KNN-LM / 0.4 32.77 32.10 43.44 91.85
KNN-LM / 0.3 32.68 31.99 41.37 89.88

GPT-2 / 0.9 24.79 24.55 30.97 63.24
GPT-2 / 0.8 23.88 23.65 28.70 60.21
GPT-2 / 0.7 23.38 23.20 28.14 59.85
GPT-2 / 0.6 23.14 23.01 27.27 56.64
GPT-2 / 0.5 23.08 22.90 26.52 55.82
GPT-2 / 0.4 23.14 22.92 25.20 54.83
GPT-2 / 0.3 23.34 23.14 23.62 50.77

Pile of Law (Federal Register) Medical Instructions

GPT-2 15.09 11.41 49.79 51.68

KNN-LM / 0.9 14.57 11.72 41.03 43.09
KNN-LM / 0.8 14.21 12.00 40.17 42.24
KNN-LM / 0.7 14.13 11.05 39.56 41.67
KNN-LM / 0.6 14.05 11.52 38.94 41.08
KNN-LM / 0.5 13.98 11.11 38.45 40.58
KNN-LM / 0.4 13.90 11.10 37.94 40.14
KNN-LM / 0.3 13.81 11.20 37.52 39.66

GPT-2 / 0.9 10.69 8.82 26.84 28.46
GPT-2 / 0.8 10.27 8.49 25.41 26.94
GPT-2 / 0.7 10.10 8.37 24.55 26.07
GPT-2 / 0.6 10.02 8.32 24.01 25.54
GPT-2 / 0.5 9.94 8.25 23.61 25.25
GPT-2 / 0.4 9.88 8.24 23.34 24.98
GPT-2 / 0.3 9.86 8.26 23.35 24.95

Table 12: Full results for KCD-LM

20



Base LM CD-LM

val test val test % ↑

WikiText 0.012 0.016 0.023 0.032 50.7%
Code 0.051 0.024 0.022 0.053 121.3 %
Law 0.016 0.015 0.048 0.040 162.8 %
Medical 0.005 0.006 0.012 0.011 100.9 %

Table 13: MAUVE score

21


	Introduction
	Language Modeling with Chunk Generation
	Preliminaries
	Text Chunk Generation Modeling

	CD-LM with Fine-grained Retrieval
	Chunk Datastore Construction
	Adaptive Chunk Retrieval for Generation
	Chunk Extraction Model

	Probability Distribution under CD-LM
	Experimental Study
	Self Distillation
	Knowledge Distillation
	Expert Distillation
	Factual Knowledge Injection
	Private Information Injection


	Conclusion
	Sequence Probabilities under CD-LM
	Related Work
	Experiments with SCD-LM
	Questions selected for MTbench-10
	Prompt used for constructing MTbench-10 unique datastores
	GPT4 rewriting examples
	Chunk Retrieval Analysis
	Full Results

	Experiments with KCD-LM
	Setup Details
	Comparison between KCD-LM and kNN-LM on PPL
	Full data

	Experiments with ECD-LM
	Distribution plots on Alan Turing QA
	Example questions on Alan Turing
	Synthetic PII generated by GPT-4
	Examples of PII prefixes


