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Abstract: Advances in generalist robot learning models have been fuelled by
large-scale demonstration datasets, yet which data are most effective remains un-
derexplored. In particular, the role of teleoperation modality in shaping demon-
stration quality and downstream learning performance is still poorly understood.
In this work, we present a comparative study of two common teleoperation inter-
faces, VR controllers and a haptic device, for collecting robot demonstrations on a
robot platform. We focus on two assistive manipulation tasks, surface wiping and
lamp switching, and collect a dataset of 400 human demonstrations. To capture
operator workload, each session is evaluated using the NASA Task Load Index.
We fine-tune the Octo model on these datasets, systematically varying the inclu-
sion of robot state information and action horizon length. Our results highlight
clear differences in data quality across modalities and their downstream impact on
imitation learning performance. This study contributes insights into what makes
robot learning data “good” and provides guidance on data collection design for
assistive manipulation.
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1 Introduction

Recent advances in generalist robot learning have been driven by large-scale demonstration datasets
collected across diverse robots, tasks, and teleoperation setups [1, 2, 3, 4, 5]. While these datasets
have enabled impressive progress, fundamental questions remain: what kinds of data are most useful
for training or fine-tuning these models, and how should such data be collected? One critical but
underexplored factor is the choice of teleoperation modality, which can strongly influence demon-
stration quality through differences in ease of use, precision, feedback, and operator workload.

At the same time, current systems often remain brittle when deployed in real-world settings. They
can struggle with distribution shifts, when data collected on one embodiment must be transferred to
another, or when policies trained in simulation are deployed on physical robots. These limitations
are especially evident in domains such as assistive robotics, where robustness and reliability are
essential. Understanding how data properties, and in particular teleoperation modality, shape down-
stream policy learning is therefore a central question for building more effective and generalizable
robot learning systems.

In this work, we take a data-centric perspective and study how the choice of teleoperation modality
affects downstream imitation learning performance. Specifically, we collect demonstrations for two
representative assistive tasks: wiping a table surface and turning a desk lamp on and off, using a
UR10e robotic arm. To generate these demonstrations, we focus on two widely used teleoperation
interfaces: 1) VR controllers (Meta Quest 3), which offer flexible spatial mapping and accessibility,



and 2) Haptic devices (Haply Inverse 3), which provide grounded force-feedback and open the door
to integrating tactile sensing in the future. Our dataset includes 100 episodes per modality per task
(400 episodes in total), complemented by subjective workload ratings using the NASA Task Load
Index (NASA-TLX) [6].

On the model side, we fine-tune Octo [3], following [7] which established it as a representative
generalist robotic policy. Octo balances efficiency and capability: it is expressive for generalist
manipulation policies while remaining effective for fine-tuning on moderate-scale datasets. We use
Octo’s transformer-based architecture and modular design, which is explicitly designed to adapt to
new embodiments and setups, making it well suited for studying data-centric design choices. In
contrast, more recent models such as OpenVLA [8] or policies developed by Physical Intelligence
[9] are significantly larger, require substantially more data, and present higher computational costs
for fine-tuning, factors that make them less appropriate for our setting. Using Octo therefore allows
us to systematically vary two key fine-tuning design factors, whether robot state inputs are included
and the action horizon length, while keeping the experiments feasible and interpretable. This setup
enables us to analyze how teleoperation modality, dataset quality, and fine-tuning strategies interact
to shape downstream policy performance.

Our contributions are threefold:

• We present a comparative dataset of assistive task demonstrations collected via VR con-
trollers and haptic devices, paired with NASA-TLX subjective workload measures.

• We analyze how teleoperation modality influences demonstration quality and model fine-
tuning performance on the Octo policy, providing evidence for which modalities produce
“better” robot learning data.

• We investigate data-related fine-tuning design choices (inclusion of robot states and ac-
tion horizon length) to highlight the role of dataset properties in enabling real-world robot
performance.

2 Related Work

Teleoperation for assistive data collection. In the context of assistive robotics, most prior work
has focused on simulation frameworks or small-scale real-world systems, but relatively few have
studied how teleoperation can be leveraged to collect demonstrations that directly support learning.
For example, the HARMONIC dataset captured human participants teleoperating a robotic arm to
perform an assistive eating task, while recording multimodal data such as eye gaze, EMG, stereo
video, and robot control signals [10]. This dataset has been valuable for analyzing human–robot
interaction and modelling user intent, but has not been directly benchmarked for policy learning.
Similarly, recent work on robotic assisted feeding introduced a visual imitation network with an
attention mechanism trained on teleoperated demonstrations, showing how teleoperation data can
enable real-robot deployment in a constrained task [11].

Beyond these examples, large-scale datasets such as OXE [5] and DROID [4] have enabled generalist
robot policies, but they do not isolate the role of teleoperation modality in assistive scenarios. To our
knowledge, there has been little systematic investigation of how different teleoperation interfaces,
such as VR controllers or haptic devices, affect the quality of demonstrations and the performance
of downstream policies in assistive tasks. This gap motivates our study: by comparing VR and
haptic teleoperation on real assistive manipulation tasks, we provide new evidence on how modality
influences data quality and learning outcomes.

Fine-tuning strategies. With good data, effective adaptation strategies are essential for generalist
manipulation policies. Octo [3] is a representative open generalist policy trained on OXE (˜800k
episodes), designed for rapid adaptation to new observation and action spaces, making it a natural
backbone for data-centric studies. A recent paper [7] systematically ablates key fine-tuning design
choices (action space, policy head, supervision targets, and parameter subsets) and offers guidance
for adapting Octo-style generalist manipulation policies (GMPs). Complementary lines of work [12]
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Figure 1: Overview of the data collection and learning pipeline. Teleoperation data are gathered on
the UR10e robot arm using a VR controller and a haptic device, with user feedback collected via
NASA-TLX. We then analyze the data using multiple quality metrics. To validate real-world perfor-
mance, we further examine fine-tuning on Octo with each dataset individually and in combination,
while systematically varying key design choices.

examine what data to fine-tune on. It directly compares demonstration modalities (kinesthetic, VR,
spacemouse) and their downstream impact. Beyond Octo, approaches such as RoboFuME [13] and
Diffusion Policy [14] motivate our own exploration of action horizon and state input choices during
fine-tuning. In contrast to proposing new learners, our study quantifies how teleoperation modality
and fine-tuning design factors interact to shape Octo’s performance.

3 Methodology

Our methodology, illustrated in Fig. 1, is a structured pipeline designed to evaluate teleoperation
modalities and design choices for robot policy learning. We collect demonstrations on a UR10e
robot for two tasks: wiping a table surface and toggling a desk lamp. To promote data diversity
and encourage model generalisation, the lamp is placed at five evenly spaced positions during data
collection. These tasks are chosen as representative of assistive robotics applications: the wiping
task emphasizes motions requiring a large range of movement, while the lamp task emphasizes
precise manipulation (such as accurately engaging the pull chain without applying excessive force).

For each task, we collected demonstrations using two distinct teleoperation methods: a VR con-
troller and a haptics-based 3D input device. Five participants were recruited (with Ethical Clearance
in place), each contributing 20 episodes per modality per task, resulting in a total of 400 episodes
across all modalities and tasks. To balance experience levels, participants were rotated across experi-
ments and given a five-minute familiarisation period before recording. The participant pool included
both male and female operators, with ages ranging from 21 to 63 years, and represented a mix of
technical backgrounds and prior experience with robot controllers. This design ensured a consistent
distribution of beginner, intermediate, and expert demonstrations for both modalities.

In addition, we ask users to complete NASA-TLX forms to measure subjective metrics that af-
fect teleoperation usability. The demonstrations are converted into the standardized Reinforcement
Learning Datasets (RLDS) format [15] to enable consistent downstream processing. We then per-
form data quality analysis across modalities to measure smoothness and control precision, focusing
on metrics such as end-effector trajectories, action variance, and jerkiness. Finally, the collected
data is used to fine-tune Octo, a state-of-the-art generalist robot policy, allowing us to assess how
different input modalities influence downstream imitation learning performance.

3.1 Design Decisions

In imitation learning, the success of a policy depends not only on the learning algorithm but also on
the design of the dataset. This involves two levels of decisions. At the collection level, the choice
of teleoperation modality (e.g., VR vs. haptics) determines the fidelity, variability, and workload
associated with the demonstrations [12]. At the usage level, representation decisions define how
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demonstrations are consumed: whether to include detailed proprioceptive state information or more
compact encodings, and how much temporal supervision to impose through the choice of action
horizon (how many steps into the future, the policy predicts). Each of these factors changes the
effective data distribution which the policy learns from.

While existing surveys comprehensively map methods, environments, and evaluation metrics in
imitation learning [16], they provide limited guidance on how dataset design choices interact with
operator workload and generalisation. We therefore pose the problem of identifying which dataset
decisions (spanning modality, state inputs, and temporal structure) produce demonstrations that are
both practical to collect and effective for training robust, consistently successful policies.

3.2 Teleoperation Modalities

VR Controller. Prior work [4] has already implemented the Oculus (VR) controller in data collec-
tion, and it has become a predominant methodology for robot teleoperation [5]. Our approach and
setup are similar to [4]; we utilize a Meta Quest 3 headset and controller to read continuous posi-
tions. The operator movements are replicated on the robot such that the controller observations are
mapped to the end effector pose. Gripper actions and robot movement status (enabled/disabled) are
regulated by the controller buttons. Overall, the Oculus controller methodology allows for a large
range of motion, and is ideal for completing broad tasks with great efficiency.

Haptic Device. The haptic data collection methodology utilizes a Haply Inverse3, which consists of
a haptic system body, arms, and a pen (VerseGrip). Similar to the functionality of the VR controller,
the operator can manipulate the pen’s position to control the robot’s end-effector pose. The pen but-
tons are associated with toggling the gripper action and robot movement status (enabled/disabled).
Notably, the haptic device allows for finer controls due to its steadiness and responsiveness.

3.3 Subjective Metrics

After completing their demonstration episodes, each participant filled out a NASA-TLX survey.
They rated six dimensions of workload, mental demand, physical demand, temporal demand, per-
formance, effort, and frustration, on a 21-point Likert scale (0 = lowest workload, 20 = highest).
Lower scores therefore indicate lower perceived workload.

3.4 Data Quality Metrics

Inspired by Li et al. [12], we employ a combination of qualitative and quantitative metrics to eval-
uate the quality of the demonstrated actions. Specifically, we utilize the end-effector trajectories,
visualized in Cartesian coordinates (x, y, z), as our primary qualitative measure. For quantitative
analysis, we adopt action variance and action jerkiness. Action variance is computed by comparing
each action with the mean of actions from its K nearest state neighbours:

ActionVariance(D) =
1

|D|
∑

(s,a)∈D

(a− 1

K

∑
(ŝ,â)∈NN(s,D,K)

â)2 (1)

Additionally, we calculate jerkiness as the second-order derivative of the action sequence.

3.5 Octo Robot Generalist Policy

We fine-tuned Octo Base 1.5 for 40k steps using demonstrations collected from both VR and haptic
teleoperation. Training was performed with a cosine learning rate schedule peaking at 3 × 10−4,
a warmup of 2000 steps, weight decay of 0.01, and gradient clipping set to 1.0. We adopted a
language-conditioned full fine-tuning setup, without freezing any model components. The input
observations consisted of an isometric third-person view of the robot, a wrist-mounted camera view,
and a short action history (current and previous step, window size = 2).
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Figure 2: End-effector trajectories. VR produces more consistent trajectories for the wiping task,
whereas the haptic device yields clearer pulling motions for the lamp task (five distinct vertical lines
for five lamp positions).

Table 1: Action variance.

VR Haptics

Wipe 0.00057 0.00016
Lamp 0.00015 0.00006

Table 2: Jerkiness (mean ± std).

VR Haptics

Wipe 0.23 ± 0.33 0.12 ± 0.14
Lamp 0.12 ± 0.17 0.08 ± 0.08

4 Results and Analysis

4.1 Data Quality Results

To examine demonstration characteristics across teleoperation modalities, we visualize end-effector
trajectories in Fig. 2. Visual inspection suggests that VR produces more consistent trajectories
for the wiping task, whereas the haptic device yields clearer pulling motions for the lamp task,
reflecting task requirements: wiping involves a large range of motion, while the lamp task requires
precise manipulation.

As shown in Table 1 and 2, VR exhibits higher action variance and jerkiness across both tasks.
Although this is expected, inferring controller positions via VR goggles is less stable than using a
fixed haptic device, thus these quantitative differences do not fully capture data quality. In particular,
differences in jerkiness are minimal, and the higher variance observed for VR on the wiping task
can be largely due to the range of gripper ending positions (which occurs after task completion and
is therefore inconsequential). Overall, VR provides higher-quality data for the wiping task, while
haptic control is preferable for the lamp task.

4.2 NASA Task Load Index Results

Table 3 and 4 highlight clear differences across both tasks and modalities. Wiping was consis-
tently more taxing than lamp switching, with higher mental demand (10.2 vs. 8.7), higher effort (9.6
vs. 8.7), and worse perceived performance (10.0 vs. 7.4). This matches intuition: wiping requires
continuous, contact-rich motion, whereas lamp switching is short and discrete.

On comparing modalities, VR reduced operator burden, lowering physical demand (6.6 vs. 10.0)
and temporal demand (7.7 vs. 9.0), but at the cost of lower perceived performance (9.6 vs. 7.8) and
higher frustration (7.6 vs. 6.2). In general, VR was easier to use, but operators felt less precise
and more irritated. Haptic control, though effortful, gave operators a greater sense of success and
control.

These subjective experiences align with our earlier quantitative findings on action variance and jerki-
ness. VR produced noisier trajectories, which reflects the higher frustration ratings. Holistically, the
results suggest a tradeoff: VR supports scalable data collection, while haptics yields higher-fidelity
demonstrations applicable for training robust policies.

Mean pose error (cm) is computed at the onset of grasp or actuation as the Euclidean distance
between the end-effector grasp frame and a task-specific target (the towel pinch point or the lamp
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Table 3: NASA-TLX results per task (lower is better)

Task Mental Dem. Physical Dem. Temporal Dem. Performance Effort Frustr.

Wipe 10.2 8.4 8.6 10.0 9.6 6.3
Lamp 8.7 8.2 8.1 7.4 8.7 7.5

Table 4: NASA-TLX results per modality (lower is better)

Col. Method Mental Dem. Physical Dem. Temporal Dem. Performance Effort Frustr.

Haptics 10.0 10.0 9.0 7.8 9.2 6.2
VR 8.9 6.6 7.7 9.6 9.1 7.6

pull-switch), averaged across trials. Pose error serves as an indirect indicator of task failure, since
deviations from the ideal location prevent correct execution (e.g., closing the gripper on the towel or
pulling the lamp switch). These measurements complement success rates by providing insight into
how lower-performing policies fail.

4.3 Success Rate and Pose Error on Model Deployment

Table 5: Success rate (%) and pose alignment error (cm). AH: action horizon; P: proprioception
included. † Indicates low error due to oscillatory behaviour rather than task completion.

Configuration
Wipe Lamp

Success Pose Err Success Pose Err
(%) (cm) (%) (cm)

Mixed, AH 10 73 3.4 80 2.0
VR, AH 10 47 4.7 53 3.4
Haptic, AH 10 40 4.7 53 3.2
Mixed, AH 15 27 4.6 47 4.6
Mixed, AH 5 20 10.5 33 5.3
Mixed, AH 10, P 20 9.7 13 3.7†

Table 5 summarises success rates across both tasks. Mixed-modality training (i.e., 100 episodes per
task sampled randomly from 50% of the VR and haptic datasets, respectively) yields the highest
performance, achieving 80% on the Lamp task and 73% on Wipe. These results substantially out-
perform single-modality training with VR (53% and 47%) or haptics (40% on Wipe). We also find
that action horizons that are too short or too long (AH 5 or AH 15) reduce wiping success to 20%
and 27%, respectively, underscoring horizon length as a key parameter influencing policy robust-
ness. The strongest configurations rely on image observations combined with short action histories,
while omitting explicit proprioceptive inputs, consistent with prior findings that excluding detailed
proprioception can improve generalisation.

For the “Mixed, Action Horizon 10, Proprioception” configuration, the trained policy exhibited
oscillatory behaviour, repeatedly moving around the lamp without converging. Although this be-
haviour produced a deceptively low pose error (since the end-effector frequently passed through the
correct target location), the robot never stabilized long enough to complete the task successfully.

We evaluate the best-performing policies trained on each task and present their inference results in
Fig. 3. On the left, the image sequence (top-to-bottom, left-to-right) illustrates a successful execution
of the wiping task. On the right, the sequence (left-to-right) depicts a successful execution of the
lamp toggling task.
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Figure 3: Inference results on the two tasks. The left panel shows a successful wiping episode,
where the robot grasps a towel and wipes the table surface. The right panel shows the lamp task,
where the robot grasps a thin string and pulls it to toggle the light.

5 Discussions

We treated data quality, sensor rig design, and training/evaluation alignment as first-order factors.
We systematically varied two factors and assessed their impact on real-world robot behaviour: (i)
inclusion of robot state inputs (joint angles, Tool Centre Point (TCP) pose, gripper status) and (ii)
the action horizon length. Action horizon length strongly affected deployed performance on our
5.5 Hz control loop: horizons that were too short or too long degraded stability, while tuned values
around 10 produced more reliable and consistent policies. Although only the first action is executed
at inference, training with longer horizons provided richer temporal supervision that improved ro-
bustness. It should be recognized that offline validation metrics were insensitive to horizon length,
underscoring that real-robot evaluation is essential for selecting horizon settings.

Surprisingly, policies trained without robot state inputs were more robust in our setup, improving ap-
proach accuracy and grasp initiation. We verified reasonable timing and values in the state streams,
suggesting the effect likely stems from distribution or representation mismatches between the pro-
vided proprioceptive channels and the model’s pretraining and camera configuration. This motivates
selective inclusion or ablation of proprioceptive fields rather than assuming that “more state” always
yields better generalisation.

Beyond these two controlled variations, several data- and rig-centric issues proved material. Fixing
subtle pipeline bugs, most notably an RGB/BGR image-space mismatch between training and in-
ference, and stale RNG keys reused across inference steps, produced clear stability gains. Camera
placement and viewpoint also mattered: a rigid, third-person camera with broad tabletop coverage
reduced self-occlusion, while the wrist camera exhibited visual aliasing near shallow approach an-
gles, where qualitatively similar images corresponded to distinct end-effector poses. Finally, light-
ing variations in the Lamp task measurably affected policy stability despite standard photometric
augmentations (unchanged from Octo Base), indicating that exposure control and task-specific aug-
mentation remain important components of a data-first recipe for reliable deployment

Where we complement previous work [7] on strategies for training Octo: We corroborate several
findings. Replacing the diffusion head with simpler linear heads yielded clear gains for us as well,
supporting the claim that simpler heads can be more robust in practice. We also found, consistent
with that work, that the “20-100 demos” guidance sits at the upper end in real deployments. Policies
improved most as we approached the higher-count regime for number of demos.

Their conclusion in [12] that mixing teleoperation modalities can improve robustness aligns with
our experience. We used VR and a 3D haptic controller and saw indications that heterogeneous
demonstrations diversify state-action coverage and mitigate policy myopia. Our horizon-control
experiments further suggest that temporal consistency mechanisms (beyond data diversification) are
important for stable gripper actuation. This is an aspect that complements their data-collection
focus with an inference-time control insight. New observations that refine the literature include:
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(1) horizon length “sweet spots” matter when execution frequency is low, (2) selective proprio can
outperform full proprio, indicating that “more sensors” is not always better, and (3) lighting remains
a significant residual domain gap even with standard augmentations, which motivates more targeted
photometric randomization and/or exposure control.

6 Conclusion

This work examined how data and design choices shape imitation learning performance for assistive
manipulation. Using 400 demonstrations collected with VR and haptic teleoperation across wiping
and lamp-switching tasks, paired with NASA-TLX ratings, we fine-tuned a generalist policy (Octo)
while varying robot state inputs and action horizon. We found that these seemingly simple choices
matter substantially in deployment: mixed-modality datasets with a tuned action horizon achieved
the highest real-robot success (up to 73% on wiping and 80% on lamp), while offline metrics were
largely insensitive to horizon length, underscoring the importance of real-robot evaluation. Modality
trade-offs were consistent across quantitative and subjective measures: VR facilitated scalable col-
lection with lower physical/temporal demand but noisier trajectories and higher frustration, whereas
haptics yielded higher-fidelity demonstrations and better perceived performance.

Our design takeaways are data-centric. First, action horizon is a critical factor with task- and loop-
frequency-dependent “sweet spots” (around 10 steps at ∼5.5 Hz here); too short or too long de-
graded stability. Second, selectively excluding detailed proprioceptive inputs improved robustness
in our setup, suggesting that more sensors are not always better if misaligned with pretraining or
the camera configuration. Third, rig and environment factors, camera viewpoint, near-contact vi-
sual aliasing from the wrist camera, and lighting variability, materially affected reliability despite
standard augmentations. Together, these findings argue for a practical recipe for assistive settings:
combine modalities to broaden state-action coverage, tune temporal supervision for the execution
rate, ablate state inputs judiciously, and invest in rig/lighting design.

Looking forward, we identify several priorities for future work. First, the intriguing finding that
excluding proprioception can help calls for deeper diagnostic ablations to clarify underlying causes.
Second, our evaluation was limited to two tasks; expanding task diversity will be essential for testing
generalization to broader assistive settings. Third, while our dataset of 400 demonstrations enabled
careful controlled comparisons, scaling to larger balanced collections, closer to benchmarks such as
DROID or OXE, will better probe modality effects at scale. Fourth, the robustness of proprioception-
related findings requires further exploration, ideally under matched protocols across joint-space and
end-effector demonstrations. Fifth, environmental confounds such as rig setup and lighting condi-
tions should be systematically isolated and mitigated to improve reproducibility. Finally, while Octo
was an appropriate choice for controlled ablations, extending the analysis to larger-scale policies
such as OpenVLA would test the generality of our conclusions.
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