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Abstract

Loop invariant synthesis is one of the most
important tasks in program verification. This
problem is fundamentally undecidable, as it in-
volves reasoning about infinite state spaces. Cur-
rent software analysis techniques rely heavily
on human-defined language biases to make the
search tractable. When the language bias is mis-
aligned with the unseen problem domain, these
methods are prone to failure. Hence, to general-
ize on unseen problems, it is natural to explore
training a model to learn and infer loop invariants.
However, given the lack of supervision and the
significant reasoning abilities required, learning
to infer invariants is challenging. In this paper, we
explore the feasibility of training a model for end-
to-end loop invariant inference without human-
labeled data. We present Abductive Loop InVari-
ant IEarning (ALIVE) to combine machine learn-
ing and logical abduction in a mutually benefi-
cial way. Logical abduction explores the solution
space and subsequently refines the learning model
by leveraging the discovered invariants. The ma-
chine learning model offers an initial solution that
serves as a strong starting point, thereby facilitat-
ing the search process. Experiments show that
ALIVE significantly outperforms other machine
learning methods in both accuracy and efficiency.

1. Introduction

In order to improve the safety and reliability of modern
software systems, an increasing number of researchers use
formal methods to analyze whether the code given meets
its requirements. For example, one may ask does property
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void func(int n){
inti=0,a=0,b-=0;
assume(n >= 0); // preconditions
while (1 < n){ // loop
if (unknown())
a=a+1;
b=D>b+ 2;
} else{
a=a+ 2;
b=>b+1;
b
1=1+1;
}
assert(a + b == 3 * n); // postconditions
}

Figure 1. Program Verification. The goal is to prove the postcondi-
tion after executing the loop given that the precondition holds.

P(x,y) hold after the execution of the loop? As it is not
known to us how many times the loop iterates, we should
find a property that is maintained by the loop body (like
a fixed point). Such a property is called a loop invariant.
However, the problem of loop invariant generation is unde-
cidable (Hoare, 1969), and it is in fact the hardest aspect
of program verification (Garg et al., 2014) because given
a loop invariant, the problem of verifying loop properties
is reduced to checking the validity of specific verification
conditions, which has been highly automated (Barnett et al.,
2006).

The main challenge of loop invariant generation lies in the
infinite state space of programs. Therefore, an important in-
sight from software analysis literature is to find a finite num-
ber of abstract program states and reason about them (Hoare,
1969; Dijkstra, 1975). For example, it makes more sense
to pay attention to abstract states, €. g.,x <n, rather than
concrete states, e.g., x = 1,--- n. This is because abstract
states represent higher-level properties or summaries of pro-
gram behavior to avoid tracking every possible state the
program could reach, which quickly becomes infeasible for
large programs. Proper program abstractions can signifi-
cantly reduce the scope of reasoning, narrowing down the
infinite program state space to a manageable scale.



Inferring Loop Invariants for Program Verification: an ABL Perspective
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Figure 2. Illustrations of candidates invariants and counterexamples. The candidate invariants correspond to the program in Figure 1.
Counterexamples are written in terms of program states, i.e., assignments to variables (a, b, ¢,n). The symbol T illustrates that the
verification condition is satisfied by the corresponding candidate invariant.

Many invariant inference methods generate program abstrac-
tions primarily based on human-crafted language bias, i.e.,
the hypothesis space from which potential solutions can be
found. However, these approaches struggle to balance effi-
ciency and generalizability. For example, Garg et al. (2014)
solve invariants of the form sjv; + sqve < ¢, 81,82 €
{0, 1, —1} quickly but fail if no proper answer exists in
the hypothesis space while Sharma & Aiken (2016) use a
more general template but their method converges slowly
in complicated cases. Even the most advanced software
analysis tools, such as ImplCheck (Riley & Fedyukovich,
2022), still rely on candidate program abstractions provided
by annotators like Houdini (Flanagan & Leino, 2001) and
are unable to search beyond the given candidate set. In order
to alleviate the problem of the ultra-large hypothesis space
brought by more general templates, Si et al. (2020) propose
a reinforcement-learning-based method that improves effi-
ciency by learning policies. However, it is essentially still
a search-based method, where reinforcement learning only
mitigates the time-consuming issue to some extent.

Given the success of learning models in code-related gener-
ation tasks like code summarization (Gao et al., 2023), it is
natural to consider training an end-to-end model to generate
invariants directly. However, different from code summa-
rization, the task of invariant generation imposes stricter
syntactical requirements and involves a generation process
that demands reasoning ability rather than straightforward
summarization. Moreover, obtaining ground truth labels for
supervised learning is challenging due to the undecidability
of the problem.

To address the issue, we consider learning to infer program
invariants from an abductive learning perspective. Although
formal tools cannot directly provide supervision informa-
tion, they can determine the correctness of a candidate in-
variant and return counterexamples if the invariant is wrong,
as shown in Figure 2. Based on this, logical abduction is pro-
posed to refine the model-generated invariant based on the
syntactical rules and with the help of the counterexamples.
The revised invariant can then serve as a supervisory guide
so that the model learns to infer loop invariants without the
need for human-labeled ground truth data.

We propose Abductive Loop InVariant IEarning (ALIVE),
a unified framework for loop invariant inference (Figure
3). ALIVE consists of two parts: a learning model and an
abduction module. Each component plays an equally im-
portant role in the training stage. The abduction procedure,
which does not support gradient descent, teaches the model
by revising candidates generated by the model with sym-
bolic manipulation. Meanwhile, the learning model, after
preliminary training, provides the abduction module with
candidates that contain more effective program properties,
making it more likely to find suitable results. It is exciting to
leverage machine learning and logic abduction in a mutually
beneficial way.

Our contributions are summarized as follows:

* We introduce an abductive learning framework to address
the problem of loop invariant inference with a formal
definition provided.

* We present Abductive Loop InVariant 1IEarning (ALIVE)
to combine inductive learning and abductive reasoning
in a unified framework. We propose logical abduction to
take advantage of the domain knowledge base, given that
unlabeled data is readily available, but manual annotation
is costly.

» Experimental results show that ALIVE significantly out-
performs existing learning-based methods and is com-
parable with software analysis tools. Further more, its
output is closer to answers of human experts than formal
tools, even trained with no human-crafted features.

2. Problem Definition

We formally define the loop invariant inference task by
introducing Hoare logic (Hoare, 1969). The fundamental
idea behind Hoare logic is to express the correctness of a
program in terms of logical assertions. An assertion is a
logical statement about the program state that should be true
at a particular point in the program. A Hoare triple, usually
written as {P}C{Q}, is a formal way of expressing the
relationship between logic assertions and code commands.
The triple asserts that if the precondition P holds before
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Figure 3. lllustration of our ALIVE framework. ALIVE consists of two parts: the neural model and the abduction module. The neural
model generates initial candidate invariants, which are then refined by the abduction module using a knowledge base and counterexamples.
The refined invariants are treated as pseudo labels to retrain the model, enabling a continuous improvement loop.

executing the command C), then the postcondition @) should
hold after the execution of C.

Definition 2.1 (Loop invariants). Suppose the Hoare triple
of aloop is { P} while (B) do C{Q}, there are three verifi-
cation conditions (VCs) to be satisfied by a proper invariant
I

* Precondition correctness: P |= I.
* Inductive correctness: {I A B}C{I}.

* Postcondition correctness: I A =B = Q.

A loop invariant typically describes a property that must be
preserved by the loop as it iterates (precondition correctness
and inductive correctness) and should be strong enough to
entail the postcondition together with the exit condition of
the loop (postcondition correctness). In Figure 1, regardless
of which branch of the if statement is entered, the sum of a
and b always increases by 3 while ¢ increments by 1. There-
fore, (a + b = 3¢) is an important property preserved by the
loop body. However, relying solely on this abstraction to
form invariants is insufficient, as it may violate the postcon-
dition correctness and result in counterexamples as shown
in Figure 2. By adding n > ¢, the logical antecedent of the
postcondition is (@ + b = 3i) A (n > i) A =(i < n), which
is equivalent to (a + b = 3i) A (¢ = n) and is sufficient to
entail the postcondition.

Loop invariants play a crucial role in program verification,
and substantial effort has been invested in the task of loop
invariant generation. However, these methods typically
utilize domain-specific templates or heuristics and struggle

in the tradeoff between efficiency and scalability. Given
that the form of loop invariants is often closely related to
program semantics, hopefully an end-to-end model can be
utilized to learn such relationships.

Definition 2.2 (Learning to infer loop invariants). Given a
set of programs {.S} randomly sampled from some distribu-
tion S, amodel fy : S — T is trained to map the program
to its loop invariant with a knowledge base K B and the
dataset {S}.

Unlike previous works, which leverage machine learning to
optimize the search process for loop invariants, Definition
2.2 aims to train a model capable of directly generating
invariants from source code. It is meaningful, as it does
not rely on human-crafted search strategies or language
bias. Instead, it demands fully leveraging past experience
and knowledge base to train a model capable of generating
invariants with sufficient proficiency. Due to the undecid-
ability of the invariant inference problem, directly obtain-
ing ground truth solutions as supervisory information is
inherently difficult. In contrast, logical properties that loop
invariants of a program S must satisfy are more readily ob-
tainable with the knowledge base K B, denoted as K B(.5).
We hereby formulate the problem to address as follows:
Definition 2.3 (Abductive perspective for learning to infer
loop invariants). Given {S}, K B and an initial model fp,,
the problem is to maximize the consistency between the
model prediction and the logical properties, i.e.,

Es [Con (K B(S); fo(5))], (1

where Con is determined by a symbolic checker, its value

max
2
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being 1 if fp(S) passes all verification conditions in K B(.S)
and O otherwise.

3. Approach

We present ALIVE, an abductive-learning-based approach
towards learning to infer loop invariants, as shown in Fig-
ure 3. In Definition 2.3, K B(S) typically appear in a sym-
bolic form, and their non-differentiable nature renders them
unsuitable for direct use in training. To address this issue,
we propose the abduction module in section 3.2 to indirectly
incorporate the knowledge base into the model training
process. In section 3.3, we describe the whole learning
architecture of ALIVE.

3.1. Preliminaries

Invariant syntax. An invariant is a formula written in
clausal normal form (CNF), i.e., the conjunction of one or
more clauses, and a clause is the disjunction of one or more
literals:

I =C/N---NC,
C=LyV---VL,
L = Expr x Expr,x€ {>,>,=}
Expr := Variable|Constant|Expr & Expr, & € {+, x, %}

Here we assume that all variables and constants other than
0 and 1 come from the code file.

Continuous consistency value with counterexamples.
Candidate invariants with higher consistency should be
prioritized. However, for incorrect invariants, the consis-
tency in Definition 3.3 is always 0, even though some candi-
dates are clearly closer to a correct solution. Motivated by
(Sharma & Aiken, 2016), the consistency between candidate
invariants and K B(.S) is measured based on counterexam-
ples to obtain a continuous value, denoted as Con(CE; I).
Details about the calculation of Con(CFE; I) are presented
in Appendix B.1, and its value satisfies the following three
properties:

« 0 < Con(CE;I) < Lif Con(KB(S),I) = 0;
* Con(CE;I)=1ifcon(KB(S),I)=1;

* Con(CE; ;) > Con(CE; Iy) if I is more likely to be
closer to a correct solution based on the current set of
counterexamples C'E.

Knowledge base. The knowledge base K B comprises two
aspects: the general definition of loop invariants (Definition
2.1) and the semantics of the programming language itself.
In ALIVE, K B is implemented with tools for static analysis,
including LLVM (Lattner & Adve, 2004) and Clang (Car-
ruth et al., 2011). For a candidate invariant, all three veri-
fication conditions in K B(.S) are passed through an SMT

Reproduce

Candidates!

Reproduce

. —_—
Candidates? "=

%0049

«—
ol
%0040

«—
JRETEN

Figure 4. The abduction module workflow. It starts with the model-
generated invariant and applies REPRODUCE for new candidates.
Each candidate is checked against verification conditions, and a
set of counterexamples, C'E, is updated accordingly. C'E is used
to select candidates with higher consistency with the knowledge
base K B. The process continues until a valid invariant is found or
the iteration limit is reached.

solver. For each of the three verification conditions, the
solver returns syntax error if there is a parse error, logical
invalidity with a corresponding counterexample (as shown
in Figure 2) or satisfied.

3.2. Abduction with Knowledge Base

Given a program S and a model-predicted invariant I=
fo(S), the abduction module attempts to find a revised so-
lution I which is both syntactically correct and logically
consistent with &' B while keeping the highest similarity

max
I

Con (KB(S);f) -Sim (ﬂf@(S)) . @

The similarity measure Sim takes values between 0 and 1,
and is inversely related to the number of revision steps.
The objective is to identify a solution I which satisfies

Con(K B(S);I) = 1 within as few steps as possible.

To ensure syntactic correctness, Iis replaced with an empty
string if it is syntactically incorrect. Throughout the subse-
quent abduction process, syntactic correctness is maintained
by all operations taken. For logical consistency, the abduc-
tion module (Figure 4) maintains a set of candidates and
a set of counterexamples CE. The set of candidates is ini-
tialized with the model output I, i.e., Candidates’ = {I}.
REPRODUCE is performed on candidates to generate the
next generation and halts once at least one correct solution
is found in candidate. Like evolutionary algorithms, the RE-
PRODUCE process involves the repetition of two operations:
RECOMBINE and MUTATE.

RECOMBINE randomly selects two candidate invariants and,
from the set of all clauses formed by both, randomly chooses
elements to retain or delete. This results in a new candidate
invariant. For example, if candidates I; = A; A As and
I, = B are selected, the output of RECOMBINE is randomly
selected from the set { Ay, Ao, B, A1 A Ay, Ay A B, As A
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B, Ay A Ay A B}

However, relying solely on RECOMBINE cannot give rise
to new clauses. Therefore, MUTATE is applied to the new
candidate invariant with a certain probability. Types of
mutations include:

* Specialize strengthens the candidate by deleting literals
from clauses or adding a clause to the invariant.

* Generalize weakens the candidate by adding a literal to
a clause or deleting a clause.

» ExprShift does not alter the number of literals or clauses.
It replaces one expression with another.

REPRODUCE is repeated, with all newly generated invariants
added to the population. A subset is selected to be retained,
forming the next generation of the population. As discussed
in section 3.1, the guidance provided by Con (K B(S); I)
is sparse and limited, and thus Con(CE;I) is used as an
alternative for selecting those with higher consistency. Can-
didate invariants in the new population are then checked to
update the counterexamples. The above abduction process
is repeated and terminates when a proper solution is found,
or the maximum step is reached. Details about the algorithm
can be found in Appendix B.2.

Note that multiple candidates may satisfy all verification
conditions in the same population. In this case, the abduc-
tion module selects the shortest one. This is a simple bias,
yet meaningful: by describing a loop invariant using fewer
abstractions, the learning model is trained to focus on more
essential properties of the program.

3.3. Model Training

In each iteration, the neural model fy is used to obtain
candidate invariants {;}, which are then revised by the
abduction module to {I;}. If a revised invariant satisfies
all verification conditions, it is treated as a pseudo label
and, together with its corresponding code file, added to
the labeled training set D, = {(.S;, I;)}, which is used for
model training:

0iy1 = arg mein

_ﬁ S tozpe (11S:) . G

(Si,1;)EDy

In short, ALIVE works as follows: Given a program S, a
neural model is used for obtaining a primitive candidate
invariant I, which is then taken as the input to the abduc-
tion module. With the knowledge base K B, the abduction
module attempts to discover a correct solution 7 in the neigh-
borhood of /. The abduced result is used for further model
training.

4. Experiment

In this section, we verify the effectiveness of ALIVE in
learning to infer invariants.

4.1. Experimental Setup

Dataset We evaluate ALIVE on 3,854 benchmark prob-
lems from SV-COMP . The dataset is collected and prepro-
cessed following Code2lInv (Si et al., 2020). In our dataset,
a loop invariant inference problem is a C file composed of
three parts: preconditions including variable assignments
and assumptions, a loop body and postconditions in the form
of assertions. Each C file corresponds to a file of SMT-LIB
like format, which is logically equivalent.

Models In ALIVE, the learning model can be any full-
ability model capable of sequence generation. In this paper,
we use CodeBERT (Feng et al., 2020) and CodeT5 (Wang
et al., 2021). CodeBERT is an encoder-based pre-trained
model on the transformer architecture. We extend it by
adding 6 transformer layers as the decoder to perform invari-
ant inference tasks. CodeT?5 is another pre-trained model
designed for code-related tasks.

Metrics We evaluate different generation methods by
solved percentage. An instance is solved if the genera-
tion method finds or generates an invariant which satisfies
all verification conditions within a certain time limit. The
performance of learning models is measured by fest accu-
racy. As there is no ground truth answer, the correctness
of a generated invariant is checked by an SMT solver. To
measure how similar two invariants are, we use the Jaccard
similarity. It is calculated by the set of different literals the
invariants contain

Literals(I) = {Lx|3C; € I.Ly € C}}. 4

Note that if L,,, < L,, they are considered as the same
literal written in different forms, and only one of them is
added to the set. The Jaccard similarity between invariants
I; and I is

|Literals(1;) N Literals(I2)|

] d(I1,13) =
accard(11, 12) = | Fiicrals (1) U Literals(Ly)|

)

4.2. Comparison with State-of-the-art

Loop invariant synthesis has long been a significant is-
sue in the field of software analysis, attracting attention
from researchers across various domains. A large number
of methods have emerged, which can broadly be catego-
rized into those based on random search, reinforcement
learning, large language models, and static and dynamic

"https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
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Figure 5. Comparison of ALIVE (CodeT5) with different kinds of
state-of-the-art methods. ALIVE achieves the highest solved per-
centage (86.45%) while maintaining significantly lower compu-
tation time compared to search-based and reinforcement learning
methods.

analysis. We have selected five SOTA methods from these
categories for comparison. C2I (Sharma & Aiken, 2016)
is a random-search-based method using a Markov Chain
Monte Carlo (MCMC) sampler to adjust the candidate.
Code2inv (Si et al., 2020) solves the problem by multi-step
decision making, where the policies are learned via rein-
forcement learning. Loopy (Kamath et al., 2023) uses large
language models like GPT-4 (OpenAl, 2023) to generate
invariants and adjusts the invariants by generating prompts
based on verification results. Eldarica (Hojjat & Riimmer,
2018) is a model-checking-based Horn clauses solver and is
commonly used for software analysis and verification. Im-
plCheck (Riley & Fedyukovich, 2022) is another software-
analysis-based tool, which presents an SMT-based approach
to synthesize implication invariants for multi-phase loops.

We first study the capability of different generation methods.
As they employ diverse approaches and some methods take
time to reach their full potential, solved percentage within
different time limits is employed as a uniform metric. The
time limit ranges from 0.1 to 500 seconds, which is accept-
able in most cases. To make a fair comparison among the
methods, we apply cross-validation over the whole dataset
and results are shown in Figure 5 and Table 1.

The performance of ALIVE significantly outperforms other
machine learning models and achieves comparable results
with program analysis methods. Benefiting from the human-
crafted language bias, Eldarica is capable of solving some
of the instances efficiently when the required program ab-
stractions happen to align with the predefined abstraction
strategies. For other instances, in contrast, it takes a long
time to synthesize a proper invariant. Machine learning-
based methods, such as Code2Inv, aim to learn a more gen-

Solved (%) Avg Time (s)
C2I 20.81 82.70
Code2Inv 35.49 128.04
Loopy (GPT-4) 36.66 21.27
Eldarica 81.24 1.18
ImplCheck 81.29 5.45
ALIVE (CodeT5) 86.45 0.09

Table 1. Average time cost per solved instance with a time limit
of 500 seconds. As an abductive-learning-based method, ALIVE
performs better in terms of both solved percentage and efficiency.

eral strategy. However, the efficiency issue becomes more
pronounced as they require continuous interaction with the
verification tool to learn on a case-by-case basis. Similarly,
large language models like GPT-4 struggle with this task
due to the amount of time required for test-time revisions.
Therefore, we believe that leveraging knowledge bases and
unlabeled data to learn to infer loop invariants is promising.
Training an end-to-end model alleviates efficiency issues,
and leveraging domain knowledge bases reduces reliance
on manual annotations or human-crafted language biases,
making our framework more efficient and generalizable.

4.3. Ablation Study: Learning and Reasoning Benifit
Each Other

Abduction helps the model learn better We replace the
abduction module with a label generator to verify the effec-
tiveness of logical abduction. Specifically, we treat software
analysis tools as a feacher and train the learning models in
a fully supervised manner. Eldarica and ImplCheck are run
on the training set with a time limit of 10,000 seconds per
sample to obtain efficient labels. 90.26% and 92.57% of the
training set get labeled, and are used for training models
respectively. Table 2 shows the test accuracy of the super-
vised approaches and ALIVE over different base models.
Despite the absence of initial labels, the performance of
ALIVE exceeds that of models trained with full supervision
by up to 8.53%. Therefore, ALIVE implicitly enables the
learner to explore the solution space more effectively than
methods that explicitly constrain the learner to fit generated
labels.

Model output enhances logical abduction Initially, an
under-trained model can only generate random sequences,
which provides limited utility for the abduction module. In
this sense, almost all weak supervision information for the
machine learning model comes from the abduction module,
but the relationship between them goes beyond a teacher and
student. To validate this, we obscure the output of the learn-
ing model from the abduction module and abduction is done
with random initial candidates. As shown in Figure 6 (a)
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Figure 6. lllustrations of the learning mechanism in ALIVE. In (a) and (b), there is a significant degrade of learning performance when
model predictions are not fed into the abduction module. In (c) and (d), the Jaccard similarity between model predictions and the abduced
result is generally increasing, which indicates that fewer revisions are done by the abduction module while the model gets trained.

Supervised by

Base Model ALIVE
Eldarica ImplCheck

CodeBERT 75.78 78.90 81.06

CodeT5 77.92 83.07 86.45

Table 2. Comparison of test accuracy (%) with fully supervised
approaches. ALIVE achieves higher test accuracy than models
trained with supervision from software analysis tools (Eldarica and
ImplCheck).

and (b), ALIVE achieves higher test accuracy than the case
without model inference. This phenomenon is particularly
significant when CodeBERT is used as the base model, and
the final test accuracy difference between the two reaches
22.51%. For CodeTS5, the decrease is 15.36%. Differences
between the two curves are relatively small in the stage
of cold start. However, as the abduction module without
model inference depends heavily on hitting the answer in
the neighborhood by chance, the supervision information it
can provide to the learning model is very limited. This leads
to a noticeable decrease in its performance upper bound in
later iterations.

The role of learning models in the training stage To
take a deeper look at how ALIVE works, we measure the
Jaccard similarity of model inference and abduction result
for instances over ADy, a set of instances newly added to
the labeled set

AD, = {(S;, I;) € DVIVt < t.(S;,I) € Dy} (6)
It is calculated after each iteration and the result is shown in
Figure 6 (c) and (d). In rounds of iterations, this similarity
generally shows an upward trend. This indicates that the
learning model, as a student supervised by the abduction
module, is continuously improving its ability to infer loop
invariants. Meanwhile, as the similarity increases, it is more

likely that the correct answer falls within the neighborhood
of the model inference. As a teacher, the learning model
reduces the reliance of the abduction module on happening
to hit a correct answer.

In this sense, the relationship between the learning model
and the abduction module goes beyond a simple teacher-
student dynamic. Their interaction is characterized by mu-
tual benefit, where each component supports and enhances
the other, leading to a more effective and adaptive training
process.

4.4. Human Evaluation

Since there is no ground truth answer, any invariant that
satisfies the verification conditions is considered correct.
However, some of these invariants are excessively verbose,
which increases the complexity of verification. Their length-
iness stems from numerous unnecessary assertions that do
not effectively capture the relationship between the loop and
its invariant. To assess the quality of invariants generated by
different methods, we selected 100 instances from the test
set and invited 5 human experts to annotate them. We com-
pare the average Jaccard similarity of the human-annotated
labels with those produced by state-of-the-art methods.

Table 3 presents the results of this human evaluation. Al-
though Eldarica and ImplCheck demonstrate respectable
accuracy, their solutions do not resemble those produced
by human experts. They often sacrifice simplicity and effi-
ciency to achieve greater generality. In Figure 8 of Appendix
C, Eldarica has to traverse all concrete states to synthesize
the final invariant and in Figure 10, the solution of Im-
plCheck is verbose, with many abstractions irrelevant to
the verification of program properties. Invariants generated
by ALIVE are more similar to human expert annotations.
Even in cases where the results are incorrect, there is still a
certain level of similarity, indicating that ALIVE is capable
of finding suitable program abstractions.
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Solved Unsolved Average
C21 0.3142  0.1434 0.2100
Code2Inv 0.2035  0.0923 0.1579
Eldarica 0.3891 - -
ImplCheck 0.1631 - -
Loopy (GPT-4) 0.5249  0.4145 0.4549
ALIVE (CodeT5) 0.5926  0.2072 0.5324

Table 3. Human evaluation with Jaccard similarity. The time limit
for solving the instances is 10,000 seconds. We use the best answer
found by C2I and Code2Inv to compare the similarity as unsolved
instances and directly use the generated answers which fail to
satisfy the verification conditions as unsolved instances of ALIVE.

Moreover, although the outputs of Loopy (GPT-4) exhibit
high naturalness, they fail to provide correct solutions in
most cases (Figure 10 and Figure 11). Even when formal
tools are used to generate prompts for revision, the improve-
ment remains minimal as there is no guarantee that previ-
ous mistakes are properly corrected. In contrast, models
trained with ALIVE, by maximizing the consistency with
the knowledge base through logical abduction, are more
likely to generate correct solutions in an end-to-end manner.

5. Related Work

Loop invariant generation As an important problem
in automated program verification, there have been many
attempts to generate loop invariants. Most of existing
loop invariant methods are search based, and the diffi-
culty lies in the infinite target space of potential invari-
ants. These approaches involve abstract-interpretation-
based methods (Cousot & Cousot, 1977; Karr, 1976; Cousot
& Halbwachs, 1978; Cousot & Cousot, 1979), interpolation-
based methods (McMillan, 2003; Alberti et al., 2012), sym-
bolic execution-based methods (Boyer et al., 1975; Nguyen
et al., 2017), decision-tree-based methods (Garg et al., 2014;
2016), etc. These methods either introduce specific language
biases to make the search feasible or manually design de-
terministic strategies for searching within an infinite space.
To address the efficiency and generalization issue brought
by deterministic strategies, Code2Inv (Si et al., 2020) is
proposed to learn policies to generate invariants efficiently
via reinforcement learning. Pei et al. (2023) uses large
pre-trained language models for invariant generation. How-
ever, the capability of the learning model is constrained by
Daikon (Ernst et al., 2007), the label generator for their
method. In our method, an unlabeled dataset and an auto-
mated theorem prover like Z3 (De Moura & Bjgrner, 2008)
is sufficient to train a model for loop invariant generation.

Learning for code-related tasks The intersection of ma-
chine learning and software engineering has seen rapid ad-

vancements in recent years. Several learning models have
been proposed that leverage machine learning to automate
and enhance various code-related tasks such as program
synthesis (Austin et al., 2021; Nijkamp et al., 2022), code
translation (Lachaux et al., 2020; Zhu et al., 2022), bug local-
ization (Liang et al., 2022) , and code summarization (Gao
et al., 2023). Inspired by the success of transformer-based
pre-trained models such as BERT (Devlin et al., 2019) and
T5 (Raffel et al., 2020) in natural language processing tasks,
many pre-trained models, including CodeBERT (Feng et al.,
2020) and CodeT5 (Wang et al., 2021), have been developed
using these architectures and have achieved outstanding re-
sults in many downstream tasks.

Neural-symbolic combination The combination of ma-
chine learning and reasoning is one of the key challenges in
artificial intelligence today and efforts have been made to
address it by various communities. Among them, learning-
for-reasoning approaches take advantage of neural networks
to assist in finding solutions (Evans & Grefenstette, 2018;
Zhang et al., 2019), while reasoning-for-learning approaches
utilize symbolic knowledge in the learning process to en-
hance the learning ability of neural systems (Xie et al., 2019;
Xu et al., 2018).The above two types of approaches attempt
to combine neural systems and symbolic systems by adapt-
ing one to the other, which fails to maximize the strengths
of these two paradigms. Abductive learning (ABL) (Zhou,
2019; Dai & Zhou, 2017), as a learning-reasoning approach,
balances the participation of neural systems and symbolic
systems in the process of training and inference, and is thus
beneficial for both sides. The ABL framework is renowned
for its expressive and flexible nature, as it can be applied to
both labeled and unlabeled data with an appropriate knowl-
edge base. Dai & Muggleton (2021) enhance the ABL
framework’s ability to induce knowledge from the raw data,
the optimization builds upon the EM algorithm.

6. Conclusion

We study the problem of inferring loop invariants for pro-
gram verification from an abductive learning perspective.
The proposed framework enables the model to learn to infer
loop invariants by exploiting the knowledge base via log-
ical abduction. The learning model trained by ALIVE is
capable of solving a comparable number of instances as ex-
isting software analysis tools while significantly improving
efficiency. It has also outperformed state-of-the-art learning-
based methods. Experimental results suggest that the pro-
posed ALIVE framework combines machine learning and
logical abduction in a mutually beneficial way, taking advan-
tage of domain knowledge and past experience. Compared
with other methods, model predictions are more similar to
the annotations of human experts, reflecting more essential
properties of programs. Our work has demonstrated the
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feasibility of learning-based invariant inference and paves
the way for scalable, general and human-independent verifi-
cation methods.

Impact Statement

Program verification is a crucial stage in software develop-
ment. Loop invariant inference is among the most important
tasks in program verification. In this paper, we introduce
ALIVE, a unified framework for learning to infer loop in-
variants. We anticipate that this work will not introduce any
negative ethical or social impacts.
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Appendix

The structure of this appendix is as follows:

* Appendix A describes experimental settings;
* Appendix B introduces details about the counterexamples and the mutation mechanism;

* Appendix C performs case study over different loop invariant inference methods.

A. Experimental settings
A.1. Dataset

A well-known dataset is created by the authors of Code2lInv (Si et al., 2020), collected from related works (Garg et al., 2016;
Dillig et al., 2013) and the 2017 SyGuS competition (Alur et al., 2017). The dataset consists of 124 valid instances. They are
relatively simple and all of the instances have been solved by Eldarica (Hojjat & Riimmer, 2018) and ImpICheck (Riley &
Fedyukovich, 2022). Therefore, we create a dataset with 284 instances from Competition on Software Verification, which is
commonly used in loop invariant literature and publicly available. We follow the experimental settings and all benchmarks
are pre-processed with the tool introduced in Code2Inv. Finally, we get 3,854 instances. The source of our dataset is shown
in table 4.

Category | Count
bitvector 12
bitvector-loops 1
ldv-linux-3.4-simple 3
ldv-linux-3.7.3 2
ldv-linux-4.2-rc1 2
libvsync 2
loop-acceleration 4
loop-crafted 2
loop-industry-pattern 2
loop-invariants 9
loop-invgen 10
loop-lit 24
loop-new 9
loop-simple 2
loop-zilu 51
loops 12
loops-crafted-1 23
nla-digbench 17
nla-digbench-scaling 72
psyco 4
recursified_loop-crafted 2
recursified_loop-invariants 3
recursified_loop-simple 2
termination-nla 14

Table 4. Benchmark Categories and Counts from sv-benchmarks-main/c/.

A.2. Computing Infrastructure

All methods are run on a server with 4 AMD EPYC 7H12 64-Core CPUs and 8 NVIDIA A100-PCIE-40GB GPUs. The
operation system is Linux version 5.15.0-105-generic. ALIVE is implemented in Python language and evaluated with
Python 3.10.9 and PyTorch 2.3.0.
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A.3. Cross Validation

A uniform experimental setting is needed for a fair comparison, as compared methods apply diverse performance opti-
mizations. For example, while ALIVE benefits from offline training, Loopy requires well-trained LLMs, and tools like
Eldarica benefits from human-crafted features and optimization strategies. In this paper, if a method needs pre-training or
pre-configuration, the time used in this preparing process is ignored.

The original 284 examples are divided into 10 parts, each of which consists of 28 or 29 examples. In each validation
iteration, 9 parts of them are used as the training set and 1 part is used as the test set. Note that each example is paired with
all its augmented versions, i.e., if an example appears in the training (test) set, its augmented versions will also appear in the
training (test) set.

B. Implementation Details

B.1. Counterexamples and Consistency Calculation

void func(int n){ A proper loop invariant [ should satisfy:
int 1 =0, a =0, b=0; . Precondition Correctness (VC1):
assume (n >= 0); // preconditions
while (i < n){ // loop
if (unknown ()) { (x =0) — I[z,n]
a=a+ 1;
b =Db + 2; Inductive Correctness (VC2):
} else{
a=a+ 2;
b=b+ 1; (@ <n) Az, n] A (2" =2 +1)) = I[2',n]
}
} i=1i+1; Postcondition Correctness (VC3):
assert(a + b == 3 * n); // postconditions

) [z, n] A (=(z <n))) = (z=n)
Figure 7. A loop and its specifications.

As shown in Figure 7, the knowledge base K B generates three verification conditions for the program. Given a candidate
invariant I, the checker check the correctness of the verification conditions.

For example, a candidate invariant I:= (x < n) violates two verification conditions, correspondingly leading to two
grounded rules.

For precondition correctness, the checker returns a counterexample (x,n) = (0, 0). It reflects a grounded rule which should
be satisfied by all invariants:

ce1: (0=0) = I[x— 0,n+— 0] )
For inductive correctness, a counterexample is (x, n, ') = (0,1, 1) and the corresponding rule is

cea: (O<H)AI[z—0n—1A1=04+1)) = (I[zt— 1,n—1]) (8)

The counterexamples are then collected in the corresponding sets as grounded rules C'E' to measure the consistency of a
future candidate 1

con(CE,I) = C% > I = ce). )

| ‘ ceeCE

A higher consistency value for a candidate indicates that it makes fewer mistakes made by other candidates.

B.2. Abduction Module and Abductive Learning

12
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Algorithm 1 ABDUCTION

Input: Candidate invariant I, program S
Parameter: Population NV, iteration 7', mutation rate §
Output: Abduced Invariant [
. Population < INITIALIZE-POPULATION(I, N)
CFE < Empty-Set
Update C'E by checking all Population
fort =1to T do
New-Population + REPRODUCE(Population,d) > Perform RECOMBINE and MUTATE N times
Update C'E by checking all New-Population
if A proper solution exists in New-Population then
return BIASED-SELECT(New-Population) >> Return the simplest one among all verified solutions
end if
Population < SELECT(New-Population U Population, CF) > Select the next Population with Con(C'E; I)
: end for
: return Abduction-Failure

PRI DIUN AR

—_— = =
N = Q9

Algorithm 2 LEARNING TO INFER LOOP INVARIANTS
Input: Unlabeled code files {S;} ~ &, initial model fy,
Parameter: Number of iterations T’
Output: Trained model fy,

1: D < Empty-Set

2: fort =1to T do

3: D, < Empty-Set

4: for S;in {S;} do

5: I; + fgtfl(si)
6: I, + ABDUCTION (f27 Si) > Revise I to make it consistent with K B
7
8
9

if I; is not Abduction-Failure then
Add (S;, jz) to Dy > Successfully abduced instances are used for training
: end if
10:  end for
11: 6y «TRAIN(A;_1,D;) > Update model parameters so that its predictions are more likely to be consistent with K B
12: end for
13: return fy,,

C. Case Study
C.1. Comparison with State-of-the-art

In this section, we present empirical results from different generation methods. Eldarica and ImplCheck are based on
different language bias and refinement policies and therefore, their performance differs. On one hand, when the language
bias matches the encountered program, they can efficiently solve these problems. For example, Eldarica solves the problem
in Figure 10 within 0.5 second. On the other hand, however, these methods may fail if the language bias is misaligned with
the problem domain. For example, it takes Eldarica about 4 seconds in Figure 8, and the solver fails within the time limit
if the termination condition is x < 999999. This situation makes them severely restricted when dealing with larger-scale
programs or programs outside of distribution. Meanwhile, as ALIVE combines the code understanding ability of learning
models with the logical reasoning ability of symbolic solvers, it can automatically learn a strategy to generalize. Empirical
results show that the generated invariants are closer to those by human experts, which indicates that the model has learned to
infer loop invariants by training with ALIVE.
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int

int

int

main () {

// preconditions

int x = 0; Invariants generated by

int y = unknown () ;

a/iszlme( y 56 ==20); * Eldarica: ((z = 102 A y%6 = 0) V (z = 96 A y%6 = 0)) V (z = 90 A y%6 =
oop - — —

while (x < 99) 1 OV---V(@e=0Ay%6=0) v
s e O « ImplCheck: [(—1) x (y%6) > 0] A [(—1) x (2%6) > 0] A [z + (y%6) > 0] ¢
} el>s:+{ * Loopy (GPT-4): (%6 = 0) A (y%6 =0) A (x >99) v

ALIVE (CodeT5): 2%6 = 0Ay%6 =0 ¢

// postconditions
assert((x % 6) == (v % 6));
return 0;

* Human Expert: z%6 =0A y%6 =0 ¢

Figure 8. Eldarica has to traverse all concrete states of variable x to synthesize the final invariant.

main () {
diti
j/-:tp;,eg,og; throns Invariants generated by
assume (- a >i 0 )7  Eldarica: (a=bAc>aNha>0Ac>21)V(b>aA(c—a)>1ANa>
assume( a <= b ); v
assume( b < c ); 0A(c—0)>1)
// loop . . _ _
while( a < ¢ )1 ImplCheck: (a > 0)A (b+(-1) xa>0)A(c+(-1)xa>0) ¢V
a +=1; » Loopy (GPT-4): a <bAb<c V
if(a > b) b += 1;
} e ALIVE (CodeT5): b<cAb>a V
// postconditions
assert ( b == ¢ ); e Human Expert: a <bAb<cAa<c V

return 0O;

Figure 9. The invariant generated by ALIVE (CodeT5) is more concise than the human expert.

main () {
// preconditions
unsigned int v,x,h,d;

h=0: Invariants generated by

iz(l), * Eldarica: v —x =—-1Ah=dAv>0Ah >0 V

‘/7/:10; e ImplCheck: (((v+((—1) xx)) > (=1))A((h+d) > 0)A((z+ ((—18) x
oop h) > 1) A((z+ ((—2) x v) + (18 x h)) > 1) A ((z + ((—18) x d)) >

while (unknown()) { - = =
b+ ; DA((z+((—-2) xv)+ (18 xd)) > 1)) ¢
d += (x - v); . A): ] — _
v 4= 18; Loopy (GPT-4): d =h x 18 = 17 X

;" = 18; e ALIVE (CodeTS): h=dAz—v=1 ¢

// postconditions e Human Expert: h=dAz—v=1 ¢

assert (h == d);

return 0O;

Figure 10. ImplCheck’s answer is correct but verbose in this case.

14



Inferring Loop Invariants for Program Verification: an ABL Perspective

int main () {
// preconditions

int i, n, sum; Invariants generated by
assume (n >10);

i=0; ¢ Eldarica: TIMEOUT X
sum = 0;

// loop .

ImplCheck: TIMEOUT X

while (i < n)

{

Loopy (GPT-4): sum =i x (i+1)+2 X

i =1+ 1;
, oo T * ALIVE (CodeT5): i <n A2 x sum = (i+1) xi
// postconditions . . . .
assert (2+sum —— n# (n+l)); * Human Expert: i <nAsum=ix (i+1)+2 ¢

return 0;

Figure 11. Eldarica and ImplCheck fail to generate a proper invariant within 500 seconds.

int main () {
// preconditions
int i,n,k, flag;
i = 0;
assume( n > 0 && n < 10 );
assume ( k > n — 2000 );

assume (flag == |l flag == 0);
// loop
while( 1 < n ){
i += 3;
if(flag)
k += 12000;
else
k += 2000;

}

// postconditions
assert( k > n );
return 0;

Figure 12. An initially unlabeled instance in the training set.

C.2. The Role of Learning Models in the Training Stage

Figure 12, Table 5 and Table 6 show the source code, output in the training stage and Jaccard distance between different
pseudo labels respectively. In the first 6 iterations, no pseudo labels are used for training in this instance. However, the
model prediction gradually gets closer to the human annotation, i.e., the Jaccard similarity between Tand I gets larger. From
this perspective, the model is a student as all supervision comes from the abduction module. In the 6th iteration, the first
pseudo label is found. The Jaccard similarity between the model prediction and abduced result is 0.33, which indicates that
the learning model provides a good initial solution so that the abduction process is facilitated by the feacher. Therefore, the
interaction between the learning model and the abduction module is characterized by mutual benefit, where each component
supports and enhances the other, leading to a more effective and adaptive training process.
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Iteration Model Prediction [ Abduced Result T

1 n >k + 12000 Fail

2 n > (k%12000) A k > 12000 Fail

3 n > (k%12000) Ak > n Fail

4 n>kN0<i Fail

5 n>kANi<n Fail

6 (i<nVk>n)A(k<nVk>n) (i<nVk>n)A10<nVEk>n—2000)An <10
7 (i<nVk>n)A(10<nVEk>n—20000An<10 (i<nVk>n)A(10<nVEk>n-—2000)An<10
8 (i<nVk>n)An<k+ 2000 (i<nVk>n)An<k+2000

Table 5. Output of the learning model and the abduction module in the training stage.

Tteration Jaccard(I,I) Jaccard(l,I) Jaccard(I,I)

- 0.00 -

- 0.00 -

- 0.00 -

- 0.00 -

- 0.25 -
0.33 0.50 0.60
1.00 0.60 0.60
1.00 1.00 1.00

0NN R W=

Table 6. Jaccard distance between different pseudo labels. Here I is labeled by the human expert and is only used for evaluation.
I=(G<nA(k>n—2000))Vk>n
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