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a b s t r a c t

The behavior of the leading singular values and vectors of noisy low-rank matrices
is fundamental to many statistical and scientific problems. Theoretical understanding
currently derives from asymptotic analysis under one of two regimes: classical, with
a fixed number of rows, large number of columns or vice versa; and proportional, with
large numbers of rows and columns, proportional to one another. This paper is concerned
with the disproportional regime, where the matrix is either ‘‘tall and narrow’’ or ‘‘short
and wide’’: we study sequences of matrices of size n × mn with aspect ratio n/mn → 0
or n/mn → ∞ as n → ∞. This regime has important ‘‘big data’’ applications.

Theory derived here shows that the displacement of the empirical singular values
and vectors from their noise-free counterparts and the associated phase transitions—
well-known under proportional growth asymptotics—still occur in the disproportionate
setting. They must be quantified, however, on a novel scale of measurement that
adjusts with the changing aspect ratio as the matrix size increases. In this setting,
the top singular vectors corresponding to the longer of the two matrix dimensions are
asymptotically uncorrelated with the noise-free signal.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The low-rank signal-plus-noise model is a simple statistical model of data with latent low-rank structure. Data X̃n is
the sum of a low-rank matrix and white noise:

1
√
mn

X̃n =

r∑
i=1

θiuiv
⊤

i +
1

√
mn

Xn (1)

where θi ∈ R are signal strengths, ui ∈ Rn and vi ∈ Rmn are the left and right signal vectors, and the noise matrix
n ∈ Rn×mn contains independent and identically distributed (i.i.d.) entries with mean zero and variance one. The noise
atrix is normalized so that rows are asymptotically unit norm.

.1. Proportionate growth asymptotic

Recent work studies this model in the high-dimensional setting where n and mn are large, in particular, where n and
mn are of comparable magnitude. Such analyses derive limiting behavior of sequences X̃n as

n,mn → ∞
n
mn

→ β > 0 .
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ere, the parameter β > 0 is the limiting aspect ratio of the data; thus for β = 1, the matrices are effectively square for all
large n. Baik, Ben Arous, and Péché [6], Baik and Silverstein [7], and Paul [16] study eigenvalues of the spiked covariance
model, which is closely related to model (1). Benaych-Georges and Nadakuditi [9] derive asymptotic properties of the
singular value decomposition of X̃n (details of model (1) are provided in Section 1.3). Two phenomena arise not present
in classical fixed-n asymptotics:

Leading eigenvalue displacement. Let λ̃1 ≥ · · · ≥ λ̃n denote the eigenvalues of S̃n =
1
mn

X̃nX̃⊤
n , the sample covariance

matrix. We assume signal strengths θ1 > · · · > θr are constant and distinct. The leading eigenvalues of S̃n are inconsistent
estimators of the eigenvalues of ẼSn: for fixed i ≥ 1,

λ̃i
a.s.
−→

⎧⎨⎩
(1+θ2i )(β+θ2i )

θ2i
, i ≤ r, θi > β1/4

(1 +
√

β)2 , otherwise .

The singular values of 1
√
mn

X̃n are of course determined by the eigenvalues of S̃n, and vice versa. We will occasionally
witch between the two without comment.
Leading singular vector inconsistency. Let ũ1, . . . , ũn and ṽ1, . . . , ṽm denote the left and right singular vectors of X̃n.

The leading singular vectors ũ1, . . . , ũr and ṽ1, . . . , ṽr are inconsistent estimators of the left and right signal vectors. For
1 ≤ i ≤ n and 1 ≤ j ≤ r ,

|⟨ũi, uj⟩|
2 a.s.

−→ 1 −
β(1 + θ2

i )
θ2
i (θ

2
i + β)

, |⟨ṽi, vj⟩|
2 a.s.

−→ 1 −
β + θ2

i

θ2
i (θ

2
i + 1)

, i = j, θi > β1/4

nd |⟨ũi, uj⟩|, |⟨ṽi, vj⟩|
a.s.
−→ 0 otherwise.

.2. Disproportionate growth asymptotic

Contrary to the proportionate growth asymptotic, the dimensions of many large data matrices are not comparable.
or example, Novembre et al. [15] demonstrate a genetic dataset with 3,000 rows (people) and 250,000 columns (genetic
easurements) has low-rank structure. Here the aspect ratio is β ≈ 3/250.
This paper considers the signal-plus-noise model under disproportional growth:

n,mn → ∞ βn = n/mn → 0 .

Transposing X̃n if necessary, our results also apply to βn → ∞. Substitution of β = 0 into the above proportional-limit
formulas heuristically suggests λi

a.s.
−→ 1 + θ2

i and |⟨ũi, uj⟩|
2 a.s.

−→ 1 (right signal vectors are partially recovered). Indeed,
these formulas are corollaries of Theorems 2.9 and 2.10 of [9]. Thus, under βn → 0 and constant signal strengths, leading
eigenvalues of S̃n consistently estimate those of ẼSn, and left singular vectors ũi, corresponding to the shorter matrix
dimension, consistently estimate left signal vectors ui. In particular, leading eigenvalue displacement and (left) singular
vector inconsistency no longer occur, and seemingly no phase transition exists.

Our main contribution is the discovery of a vanishingly small phase transition located at β
1/4
n . Signal strengths θi = θi,n,

hitherto fixed, now vanish. For signal strengths above this ‘‘microscopic’’ threshold, left singular vectors partially recover
their signal counterparts—enabling signal estimation at signal-to-noise ratios previously thought insufficiently strong.
Right singular vectors, corresponding to the longer matrix dimension, are asymptotically uncorrelated with the signal.

We introduce a particular calibration θn = τ · β
1/4
n between signal strength θn and βn depending on a new (constant)

formal parameter τ . Under this calibration, we rigorously establish a new set of formulas for the limiting displacement
of singular values and inconsistency of singular vectors, in explicit terms of the parameter τ . These results may be
heuristically derived by substitution of θn = τ ·β

1/4
n into proportional formulas and taking limits. Many important applica-

tions previously made under proportional growth may in parallel fashion now be rigorously made under disproportional
growth. For example, in the high-dimensional Gaussian mixture model with many more parameters m than samples n, our
theory gives a phase transition for recovery of length-n signal vectors (encoding cluster membership). The optimal singular
value hard-thresholding level for low-rank matrix recovery as βn → 0 may be calculated, analogous to proportional results
of Donoho and Gavish [12]. Furthermore, there are new potential uses. Spiked tensors closely relate to the disproportionate
asymptotic: Montanari and Richard propose a tensor unfolding algorithm [14] that produces noisy low-rank matrices of
size n × nk, k ≥ 2 (equivalently, βn = n−(k−1)). Precise asymptotic analysis of tensor unfolding is made possible by our
results.

The related spiked covariance model is studied in the disproportionate asymptotic by Bloemendal, Knowles, Yau, and
Yin [10]. An advantage of this work is that βn is permitted to vanish or diverge at any rate, while [10] requires the existence
of a constant k > 0 such that n1/k

≤ mn ≤ nk.

1.3. Assumptions and notation

We make the following assumptions:
2
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(A1. Noise) The entries of Xn = (xij : 1 ≤ i ≤ n, 1 ≤ j ≤ mn) are i.i.d. with Ex11 = 0, Ex211 = 1, and Ex411 < ∞.
(A2. Signal vectors) The signal rank r is fixed. Let ui and vi be the ith columns of Un ∈ Rn×r and Vn ∈ Rmn×r ,
respectively. The entries of

√
nUn and

√
mnVn are i.i.d. with mean zero, variance one, and finite eighth moment.

(A3. Signal Strength) The signal strengths θi = θi,n obey

θi = τiβ
1/4
n (1 + εi,n)

for distinct constants τ1 > · · · > τr ≥ 0 and (nonrandom) sequences εi,n → 0.

Alternatively, A1 and A2 may be replaced with

(B1. Noise) The entries of Xn = (xij : 1 ≤ i ≤ n, 1 ≤ j ≤ mn) are independent standard Gaussians.
(B2. Signal vectors) The signal rank r is fixed. Let ui and vi be the ith columns of Un ∈ Rn×r and Vn ∈ Rmn×r ,
respectively. Un and Vn have orthonormal columns: U⊤

n Un = V⊤
n Vn = Ir .

Henceforth, we suppress the subscript n of mn. Unless explicitly stated otherwise, all results and lemmas in this
paper hold simultaneously under (A1, A2, A3) and (B1, B2, A3). These assumptions are similar to those of [9]. The
primary difference is [9] permits anisotropic noise Xn, provided two key conditions are satisfied: (1) the empirical spectral
distribution (ESD) of Sn = m−1XnX⊤

n converges almost surely weakly to a deterministic, compactly supported measure
µ and (2) the maximum eigenvalue of Sn converges almost surely to the supremum of the support of µ. This paper
considers isotropic noise for the following reasons: firstly, the extension from proportionate growth to disproportionate
growth and vanishing signals is most clear in the fundamental, isotropic case. Secondly, the anisotropic extension requires
disproportionate analogs of (1) and (2), such as (3) convergence of the ESD of β

−1/2
n (m−1Σ

1/2
n XnX⊤

n Σ
1/2
n − Σn) to a

deterministic, compactly supported measure µ and (4) convergence of the maximum eigenvalue of this matrix to the
supremum of the support of µ. While (3) is established by Wang and Paul [17], (4) is proven only in the isotropic case, by
Chen and Pan [11] (see Lemma 14). Assumption A2 is a relaxation of assumption 2.4 of [9], which requires sub-Gaussian
moments of the entries of

√
nUn and

√
mnVn. The assumption of distinct signal strengths (A3) is for simplicity.

In this paper, ‘‘almost surely eventually’’ means with probability one, a sequence of events indexed by n occurs for
ll sufficiently large n. The notation an ≲ bn means eventually an ≤ Cbn for some universal constant C; an ≍ bn means
n ≲ an ≲ bn; and an = O(bn) means |an| ≲ bn. For a parameter ℓ, an ≲ℓ bn means an ≤ C(ℓ)bn.

.4. Results

As stated above, we study vanishing signal strengths θi = τiβ
1/4
n (1 + εi,n). The formal parameter τ describes the

ignal strength on a refined scale of analysis, with a phase transition occurring at τ = 1. While for τ < 1, both left
nd right singular vectors are asymptotically uncorrelated with the underlying signal vectors, for τ > 1, left singular
ectors correlate with left signal vectors. Define the following useful index:

i0 = max{1 ≤ i ≤ r : τi > 1} .

heorem 1. Let X̃n denote a sequence of signal-plus-noise models satisfying the above assumptions. As n → ∞ and βn → 0,
or any fixed i ≥ 1,

λ̃i − 1
√

βn

a.s.
−→

{
τ 2
i +

1
τ2i

i ≤ i0

2 i > i0
. (2)

or 1 ≤ i, j ≤ i0,

|⟨ũi, uj⟩|
2 a.s.

−→ δij · (1 − τ−4
i ) , |⟨ṽi, vj⟩|

2 a.s.
−→ 0 . (3)

Theorem 1 is a consequence of the following stronger result: for i ≤ i0, define

λ̄i =
(1 + θ2

i )(βn + θ2
i )

θ2
i

= 1 + (τ 2
i + τ−2

i )
√

βn + βn . (4)

Theorem 2. Adopt the setting of Theorem 1. For 1 ≤ i, j ≤ i0, i ̸= j, and ℓ < 1/4, almost surely,

|λ̃i − λ̄i| ≲ (n−ℓ
+ |εi,n|)

√
βn , (5)

|⟨ũi, ui⟩|
2

= 1 − τ−4
i + O(n−ℓ/2

+ |εi,n| +
√

βn) , |⟨ũi, uj⟩|
2
≲ n−2ℓ , (6)

|⟨ṽ , v ⟩|
2 ≲

√
β , |⟨ṽ , v ⟩|

2 ≲ n−2ℓ
√

β . (7)
i i n i j n

3
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. Preliminaries

.1. Overview

This section reviews the framework developed in Benaych-Georges and Nadakuditi’s work [8,9] addressing the βn →

> 0, fixed signal setting, followed by a discussion of adaptations required to study the βn → 0, vanishing signal setting.
As before, let Sn =

1
mXnX⊤

n be the sample covariance matrix of noise. Let Fn denote the ESD of Sn and F n the Marchenko–
astur law with parameter βn. sn(z) and s̄n(z) will denote the corresponding Stieltjes transforms, defined as follows:

sn(z) =

∫
1

λ − z
dFn(λ) =

1
n
tr(Sn − zIn)−1 , s̄n(z) =

∫
1

λ − z
dF n(λ) =

1 − βn − z +
√
(1 + βn − z)2 − 4βn

2βnz
, (8)

efined for z outside the support of Fn, F n. The square root is the principal branch.
Let Θn = diag(θ1, . . . , θr ). Recall that Un and Vn, defined in Section 1.3, contain as columns the left and right

signal vectors. The following 2r × 2r matrices will be the central objects of study, providing insight into the spectral
decomposition of S̃n:

M̃n(z) =

[ √
zU⊤

n (Sn − zIn)−1Un
1

√
mU⊤

n (Sn − zIn)−1XnVn + Θ−1
n

1
√
mV⊤

n X⊤
n (Sn − zIn)−1Un + Θ−1

n
√
zV⊤

n ( 1
mX⊤

n Xn − zIm)−1Vn

]
, (9)

Mn(z) =

[√
zsn(z)Ir Θ−1

n
Θ−1

n

(
βn

√
zsn(z) −

1−βn√
z

)
Ir

]
, (10)

Mn(z) =

[√
zs̄n(z)Ir Θ−1

n
Θ−1

n

(
βn

√
zs̄n(z) −

1−βn√
z

)
Ir

]
. (11)

ivotal to their utility is this essential observation:

emma 1 (Lemma 4.1 of [9]). The eigenvalues of S̃n that are not eigenvalues of Sn are the real values z such M̃n(z) is
non-invertible.

Lemma 1 focuses the study of the leading eigenvalues of S̃n—those resulting from the signal component of X̃n—away
from the increasing-dimensional sequence S̃n to the fixed-dimensional sequence M̃n and its associates, Mn and Mn. The
oots of det M̃n(z) will be shown to localize near the roots of detMn(z). Using the closed form (8) of the Stieltjes transform

¯n, detMn has explicitly known roots. As [9] shows, these roots are precisely λ̄1, . . . , λ̄i0 , introduced in Section 1.4
assuming εi,n = 0):

emma 2 (Section 3.1 of [9]). Define

Dn(z) =
√
zs̄n(z)

(
βn

√
zs̄n(z) −

1 − βn
√
z

)
= −

1 + βn − z +
√
(1 + βn − z)2 − 4βn

2βn
. (12)

As the blocks of Mn(z) commute,

detMn(z) = det(Dn(z)Ir − Θ−2
n ) =

r∏
i=1

(Dn(z) − θ−2
i ) . (13)

n the real axis, Dn(z) maps ((1+
√

βn)2, ∞) in a one-to-one fashion onto (0, β−1/2
n ). The compositional inverse D

(−1)
n (t) exists

on the real interval (0, β−1/2
n ) and is given in closed form by

D
(−1)
n (t) =

(t + 1)(βnt + 1)
t

, 0 < t < β−1/2
n . (14)

hus, assuming εi,n = 0, λ̄i = D
(−1)
n (θ−2

i ) is a root of detMn(z) provided that θ−2
i < β

−1/2
n , or i ≤ i0.

The singular vectors of X̃n are related to Un and Vn via the next lemma.

emma 3 (Lemma 5.1 of [9]). Let σ̃ =

√
λ̃ be a singular value of 1

√
m X̃n that is not a singular value of 1

√
mXn and let ũ, ṽ be

the corresponding singular vectors. Then the column vector[
ΘnV⊤

n ṽ

ΘnU⊤
n ũ

]

4
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elongs to the kernel of M̃n(λ̃). Moreover, for Pn =
∑r

i=1 θiuiv
⊤

i ,

1 = λ̃ṽ⊤P⊤

n (Sn − λ̃In)−2Pnṽ +
1
m

ũ⊤PnX⊤

n (Sn − λ̃In)−2XnP⊤

n ũ

+
σ̃

√
m

ũ⊤PnX⊤

n (Sn − λ̃In)−2Pnṽ +
σ̃

√
m

ṽ⊤P⊤

n (Sn − λ̃In)−2XnP⊤

n ũ . (15)

The results quoted above lie at the heart of the strategy of [8,9] for proportionate growth and fixed signals. That
strategy is able to employ convenient convergence arguments. Indeed, as βn → β > 0, almost surely, the ESD of noise
eigenvalues Fn converges weakly to Fβ , the Marchenko–Pastur law with parameter β . Moreover, the top noise eigenvalue
1

a.s.
−→ (1 +

√
β)2, the upper edge of the bulk (the support of Fβ ). Let [a, b] be a compact interval outside the bulk:

1 +
√

β)2 < a. By the Arzela–Ascoli theorem, the Stieltjes transform of the noise eigenvalues sn(z) converges uniformly
on [a, b] to s̄β (z), the Stieltjes transform of Fβ . The implications of this key observation include the uniform convergence of
Mn(z) to a non-random matrix Mβ (z) (the fixed-β analog of Mn(z)). From the uniform convergence of Mn(z), convergence
of the roots of detMn(z) to those of detMβ (z) is established.

Now, consider the disproportionate asymptotic. Leading eigenvalue displacement and singular vector inconsistency no
longer occur under fixed signals. Rather, the regime of interest is one where signal strengths vanish as β

1/4
n , mandating

tudy of Mn(z) and Mn(z) very near one. The convergences which were previously so helpful under βn → β > 0 and fixed
signals are not useful as βn → 0. The limits of Fn and Mn(z) are degenerate, as all noise eigenvalues converge to one. The
upper edge of the support of Fn lies approximately at (1 +

√
βn)2. Theorem 1 tells us the leading eigenvalues of S̃n may

still emerge from the bulk, but only by a multiple of
√

βn. Phenomena of interest are no longer made visible by taking
limits, but must be captured by detailed finite-n analysis. This will require bounds on the convergence rate of sn(z) to
¯n(z), developed in Section 5, as well as careful tracking of the precise size of remainders, where previously it sufficed to
now that such remainders tended to zero. The proofs of Theorems 1 and 2 are refinements of the proofs of Theorems
.9 and 2.10 of [9] and Lemma 6.1 of [8].

.2. Preliminary lemmas

This section contains lemmas used in the proof of Theorem 2.

emma 4. Let Yn be the matrix obtained by entrywise truncation and normalization of Xn as in Lemma 15 and Ỹn =

m
∑r

i=1 θiuiv
⊤

i + Yn. For 1 ≤ i ≤ n, almost surely,

|λ̃i − λi(m−1ỸnỸ⊤

n )| ≲
√

βn

n
.

Moreover, if |λi(m−1ỸnỸ⊤
n ) − λi+1(m−1ỸnỸ⊤

n )| ≍
√

βn for 1 ≤ i, j ≤ i0,

|⟨ũi, uj⟩|
2

= |⟨ũY ,i, uj⟩|
2
+ Oa.s.(n−1) |⟨ṽi, vj⟩|

2
= |⟨ṽY ,i, vj⟩|

2
+ Oa.s.(n−1)

where ũY ,1, . . . ũY ,i0 and ṽY ,1, . . . , ṽY ,i0 are the leading left and right singular vectors of Ỹn, respectively.

roof. This follows from Lemma 16. □

By Lemma 4, without loss of generality, we henceforth assume the entries of Xn are truncated and normalized in
ccordance with Lemma 15. Comparing Lemma 4 and Theorem 2, the errors induced by truncation and normalization are
egligible; it therefore suffices to prove Theorem 2 in this modified setting. By Lemma 15, λ̄1, . . . , λ̄i0 emerge from the
SD of Sn with high probability, a fact we shall use repeatedly: for any η, ℓ > 0,

Pr(λ1 ≥ 1 + (2 + η/2)
√

βn) = o(n−ℓ) . (16)

The following lemma bounds sn(z) and s̄n(z) on a region containing λ̄1, . . . , λ̄i0 . The first point is a standard result. See,
or example, Lemma 8.17 of [4]. The second point relies on (16).

emma 5. Let η > 0 and Zη,n = {z : ℜ(z) ≥ 1 + (2 + η)
√

βn}. Then,

sup
z∈Zη,n

|s̄n(z)| ≲ β−1/2
n , sup

z∈Zη,n

⏐⏐⏐ d
dz

s̄n(z)
⏐⏐⏐ ≲ β−1

n .

Furthermore, almost surely,

sup
z∈Zη,n

|sn(z)| ≲ β−1/2
n , sup

z∈Zη,n

⏐⏐⏐ d
dz

sn(z)
⏐⏐⏐ ≲ β−1

n .

The implied coefficients depend on η only.
5
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roof. As the upper edge of the support of the Marchenko–Pastur law lies at (1 +
√

βn)2,

inf
z∈Zη,n

inf
λ∈suppFn

|λ − z| ≳
√

βn , inf
z∈Zη,n

inf
λ∈suppFn

|λ − z|2 ≳ βn . (17)

The first claims of the lemma now follow from the integral representations

s̄n(z) =

∫
1

λ − z
dF n(λ) ,

d
dz

s̄n(z) = −

∫
1

(λ − z)2
dF n(λ).

By (16), almost surely eventually,

inf
z∈Zη,n

min
1≤α≤n

|λα − z| ≥
η
√

βn

2
, inf

z∈Zη,n
min
1≤α≤n

|λα − z|2 ≥
η2βn

4
. (18)

ogether with

sn(z) =
1
n

n∑
α=1

1
λα − z

,
d
dz

sn(z) = −
1
n

n∑
α=1

1
(λα − z)2

,

we obtain the second group of claims. □

The follow lemmas bound the deviation of M̃n(z) (defined in (9)) and its entrywise derivative d
dz M̃n(z) from Mn(z)

(defined in (10)) and d
dz M̃n(z), respectively. Under assumption A2, Mn(z) and d

dzMn(z) are precisely the entrywise
conditional expectations of M̃n(z) and d

dz M̃n(z) given Xn.

Lemma 6. Let an ≥ 1 + (2 + η)
√

βn be a bounded sequence. For any ℓ < 1/4 and 1 ≤ i, j ≤ r, almost surely,

sup
|z−an|≤n−1/4√

βn

⏐⏐(M̃n(z) − Mn(z))i,j
⏐⏐ ≲ n−ℓβ−1/2

n , (19)

sup
|z−an|≤n−1/4√

βn

⏐⏐(M̃n(z) − Mn(z))i,j+r
⏐⏐ ≲ n−ℓ , (20)

sup
|z−an|≤n−1/4√

βn

⏐⏐(M̃n(z) − Mn(z))i+r,j+r
⏐⏐ ≲ n−ℓ

√
βn . (21)

roof. The argument is presented under assumptions (A1, A2, A3) for the diagonal of M̃n(z)−Mn(z) only; the off-diagonal
argument or argument assuming (B1, B2, A3) is similar and omitted. Consider z satisfying |z − an| ≤ n−1/4√βn and
z ′

= an + in−1/4√βn. We will decompose M̃n(z) − Mn(z) as

M̃n(z) − Mn(z) =
(
M̃n(z) − M̃n(z ′)

)
+

(
M̃n(z ′) − Mn(z ′)

)
+

(
Mn(z ′) − Mn(z)

)
and bound (the diagonal entries of) each term. Relation (19): the upper left block. For 1 ≤ α ≤ n, by the almost-sure
eventual spacing bound (18) and |z − z ′

| ≤ 2n−1/4√βn,⏐⏐⏐⏐ 1
λα − z

−
1

λα − z ′

⏐⏐⏐⏐ =
|z − z ′

|

|λα − z||λα − z ′|
≤

8
η2n1/4

√
βn

. (22)

Hence, almost surely,⏐⏐⏐( 1
√
z
M̃n(z) −

1
√
z ′
M̃n(z ′)

)
i,i

⏐⏐⏐ =
⏐⏐u⊤

i (Sn − zIn)−1ui − ui(Sn − z ′In)
−1ui

⏐⏐ ≤ ∥ui∥
2
2

(Sn − zIn)−1
− (Sn − z ′In)

−12

= ∥ui∥
2
2

⏐⏐⏐⏐ 1
λ1 − z

−
1

λ1 − z ′

⏐⏐⏐⏐ ≲ 1
n1/4

√
βn

(23)⏐⏐⏐( 1
√
z
Mn(z) −

1
√
z ′
Mn(z ′)

)
i,i

⏐⏐⏐ = |sn(z) − sn(z ′)| ≤
1
n

n∑
α=1

⏐⏐⏐⏐ 1
λα − z

−
1

λα − z ′

⏐⏐⏐⏐ ≲ 1
n1/4

√
βn

. (24)

ext, consider M̃n(z ′) − Mn(z ′). Applying Lemma 17 conditional on Xn,

E|u⊤

i (Sn − z ′In)−1ui − sn(z ′)|
4
≲

1
n4 E|tr(Sn − z ′In)−1(Sn − z̄ ′In)−1

|
2
+

1
n4 Etr

(
(Sn − z ′In)−1(Sn − z̄ ′In)−1)2

≤
2
n4 E

( n∑
α=1

1
|λα − z ′|

2

)2

.

y (16), |λα − z ′
| ≥ η

√
βn/2 with probability at least 1 − o(n−1), while with probability one, |λα − z ′

| ≥ ℑ(z ′):

E|u⊤

i (Sn − z ′In)−1ui − sn(z ′)|
4
≲

1
2

(
1
2 +

1
′ 4

)
.

n βn nℑ(z )
6
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his yields the tail probability bound

Pr
(
|u⊤

i (Sn − z ′In)−1ui − sn(z ′)| ≥ n−ℓβ−1/2
n

)
≤ n4ℓβ2

nE|u
⊤

i (Sn − z ′In)−1ui − sn(z ′)|
4
≲

1
n2−4ℓ

hich is summable. Thus, by the Borel–Cantelli lemma,⏐⏐⏐ 1
√
z ′

(
M̃n(z ′) − Mn(z ′)

)
i,i

⏐⏐⏐ ≲ 1
nℓ

√
βn

(25)

lmost surely. (19) follows from (23)–(25), |
√
z ′/z| ≤ 2, and |

√
z ′ −

√
z| ≍ n−1/4√βn.

Relation (21): the lower right block. Let S̆n =
1
mX⊤

n Xn denote the ‘‘companion’’ matrix to Sn, so-called because the
eigenvalues of S̆n are the n (possibly repeated) eigenvalues of Sn joined by a zero eigenvalue with multiplicity m − n.
et W be an orthogonal matrix such that W⊤S̆nW is diagonal. By Lemma 21, we have an almost-sure bound on the
agnitude of the component of vi orthogonal to the nullspace of S̆n:

∥(W⊤vi)1:n∥2
2 ≲ βn log(n) . (26)

onsider first M̃n(z) − M̃n(z ′).⏐⏐⏐( 1
√
z
M̃n(z) −

1
√
z ′
M̃n(z ′)

)
i+r,i+r

⏐⏐⏐ =
⏐⏐v⊤

i

(
(S̆n − zIm)−1

− (S̆n − z ′Im)−1)vi
⏐⏐

≤

n∑
α=1

(W⊤vi)2α

⏐⏐⏐⏐ 1
λα − z

−
1

λα − z ′

⏐⏐⏐⏐ +

m∑
α=n+1

(W⊤vi)2α

⏐⏐⏐⏐1z −
1
z ′

⏐⏐⏐⏐
≤ ∥(W⊤vi)1:n∥2

2

⏐⏐⏐⏐ 1
λ1 − z

−
1

λ1 − z ′

⏐⏐⏐⏐ + ∥(W⊤vi)n+1:m∥
2
2

⏐⏐⏐⏐1z −
1
z ′

⏐⏐⏐⏐ .
The first term above is bounded using (22) and (26) and the second using |1/z − 1/z ′

| ≤ 2n−1/4√βn: almost surely,⏐⏐ 1
√
z

(
M̃n(z) − M̃n(z ′)

)
i+r,i+r

⏐⏐ ≲ √
βn

nℓ
. (27)

ext, consider Mn(z) − Mn(z ′). By (24),⏐⏐⏐( 1
√
z
Mn(z) −

1
√
z ′
Mn(z ′)

)
i+r,i+r

⏐⏐⏐ =

⏐⏐⏐⏐βnsn(z) −
1 − βn

z
− βnsn(z ′) +

1 − βn

z ′

⏐⏐⏐⏐
≤ βn|sn(z) − sn(z ′)| + (1 − βn)

⏐⏐⏐⏐1z −
1
z ′

⏐⏐⏐⏐ ≲ √
βn

n1/4 . (28)

˜n(z ′) − Mn(z ′) is bounded similarly to (25): applying Lemma 17 conditional on Xn and (16),

E
⏐⏐⏐v⊤

i (S̆n − z ′Im)−1vi − βnsn(z ′) +
1 − βn

z ′

⏐⏐⏐4 ≲
1
m4 E

⏐⏐tr(S̆n − z ′Im)
−1

(S̆n − z̄ ′Im)
−1⏐⏐2 =

1
m4 E

( n∑
α=1

1
|λα − z ′|

2 +
m − n
|z ′|

2

)2

≲
1
m4

( n
βn

+ m
)2

,

Thus,

Pr
(⏐⏐⏐ 1

√
z ′
(M̃n(z ′) − Mn(z ′))i+r,i+r

⏐⏐⏐ ≥ n−ℓ
√

βn

)
≲

n4ℓ

m2β2
n

≤
1

n2−4ℓ . (29)

ummability of the right-hand side, together with (27) and (28), yields (21). The analysis of the off-diagonal entries of˜n(z) − Mn(z) uses Lemma 18 rather than 17. Under assumptions B1, B2, the proof uses that the left and right singular
ectors of Xn are independent and each Haar-distributed. □

emma 7. Let an ≥ 1 + (2 + η)
√

βn be a bounded sequence. For any ℓ < 1/4 and 1 ≤ i, j ≤ r, almost surely,

sup
|z−an|≤n−1/4√

βn

⏐⏐⏐ d
dz

(M̃n(z) − Mn(z))i,j
⏐⏐⏐ ≲ n−ℓβ−1

n , (30)

sup
|z−an|≤n−1/4√

βn

⏐⏐⏐ d
dz

(M̃n(z) − Mn(z))i,j+r

⏐⏐⏐ ≲ n−ℓβ−1/2
n , (31)

sup
|z−an|≤n−1/4√

βn

⏐⏐⏐ d
dz

(M̃n(z) − Mn(z))i+r,j+r

⏐⏐⏐ ≲ n−ℓ . (32)
7



M.J. Feldman Journal of Multivariate Analysis 196 (2023) 105187

F

P

L

L

w

T

urthermore, for i ̸= j, almost surely,

sup
|z−an|≤n−1/4√

βn

1
m

⏐⏐⏐v⊤

i X⊤

n (Sn − zIn)−2Xnvi − tr(Sn − zIn)−2Sn
⏐⏐⏐ ≲ n−ℓ , (33)

sup
|z−an|≤n−1/4√

βn

1
m

|v⊤

i X⊤

n (Sn − zIn)−2Xnvj| ≲ n−ℓ . (34)

Proof. The proof is similar to that of Lemma 6 and is omitted. □

3. Proof of singular value results: (2) and (5)

The following lemmas, which we shall use to bound | det M̃n(z) − detMn(z)| and
⏐⏐ d
dz (det M̃n(z) − detMn(z))

⏐⏐ in the
vicinities of λ̄1, . . . , λ̄i0 , are critical to the proof of the theorem.

Lemma 8. Let an ≥ 1 + (2 + η)
√

βn be a bounded sequence. For any ℓ < 1/4, almost surely,

sup
|z−an|≤n−1/4√

βn

| det M̃n(z) − detMn(z)| ≲ n−ℓβ−r/2
n . (35)

roof. Partition M̃n(z) into four blocks of size r × r:

M̃n(z) =

[
M̃11 M̃12

M̃21 M̃22

]
.

et M̃n(z) denote the matrix containing the above four submatrices individually rescaled:

M̃n(z) =

[√
βnM̃11 β

1/4
n M̃12

β
1/4
n M̃21 M̃22

]
. (36)

et Mn(z) and Mn(z) denote Mn(z) and Mn(z) similarly partitioned and rescaled. This rescaling simplifies comparison of
determinants as all blocks are of similar size. Indeed, as consequences of Lemma 5, Lemma 6, and Theorem 3 (stated in
Section 5), we have the following almost-sure results:

sup
|z−an|≤n−1/4√

βn

∥Mn(z)∥∞ ≲ 1 sup
|z−an|≤n−1/4√

βn

∥M̃n(z) − Mn(z)∥∞ ≲ n−ℓ

sup
|z−an|≤n−1/4√

βn

∥Mn(z) − Mn(z)∥∞ ≲ n−ℓ (37)

here ∥ · ∥∞ is the maximum-magnitude entry of the input. Applying Lemma 19, we obtain

sup
|z−an|≤n−1/4√

βn

| det M̃n(z) − detMn(z)| ≲ n−ℓ,

which is equivalent to (35) as det M̃n(z) = β
−r/2
n det M̃n(z). □

Lemma 9. Let an ≥ 1 + (2 + η)
√

βn be a bounded sequence. For any ℓ < 1/8, almost surely,

sup
|z−an|≤n−1/4√

βn

⏐⏐⏐ d
dz

(det M̃n(z) − detMn(z))
⏐⏐⏐ ≲ n−ℓβ−(r+1)/2

n sup
|z−an|≤n−1/4√

βn

⏐⏐⏐ d
dz

det M̃n(z)
⏐⏐⏐ ≲ β−(r+1)/2

n .

Proof. The proof is similar to that of Lemma 8. By Lemma 5, Lemma 7, and Corollary 1,

sup
|z−an|≤n−1/4√

βn

 d
dz

Mn(z)


∞

≲ β−1/2
n sup

|z−an|≤n−1/4√
βn

 d
dz

(M̃n(z) − Mn(z))


∞

≲ n−ℓβ−1/2
n

sup
|z−an|≤n−1/4√

βn

 d
dz

(Mn(z) − Mn(z))


∞

≲ n−ℓβ−1/2
n . (38)

he claim follows from Lemma 20, (37), and (38):⏐⏐⏐ d
(det M̃n(z) − detMn(z))

⏐⏐⏐ ≲  d
(M̃n(z) − Mn(z))

 +

 d
Mn(z)

 ∥M̃n(z) − Mn(z)∥∞ ≲ n−ℓβ−1/2
n . □
dz dz ∞ dz ∞

8
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roof of (2) and (5). We initially assume εi,n = 0, 1 ≤ i ≤ r . Fix ℓ < 1/4 and let γi,n denote a circular contour with
center λ̄i and radius n−ℓ

√
βn. We divide the proof into four claims:

(i) γi,n eventually encircles a single root of detMn(z).
(ii) Almost surely eventually, there exists a unique root λ̃(i) of det M̃n(z) encircled by γi,n.
(iii) λ̃(1), . . . , λ̃(i0) are real and therefore eigenvalues of S̃n by Lemma 1.
(iv) Almost surely eventually, S̃n has no eigenvalues other than λ̃(1), . . . , λ̃(i0) larger than 1 + (2 + η)

√
βn, where η > 0

is arbitrary.

Notice that γi,n eventually encircles a single real root of detMn(z): as τ1, . . . , τi0 are distinct, |λ̄i − λ̄j| ≳
√

βn, i ̸= j.
e now argue γi,n eventually encircles no complex roots of detMn(z). For ξ ∈ C such that |ξ | ≤ n−ℓ

√
βn,

Dn(λ̄i + ξ ) − θ−2
i =

ξ +

√
(λi − βn − 1)2 − 4βn(1 −

√
1 + y)

2βn

y :=
2(λ̄i − βn − 1)ξ + ξ 2

(λ̄i − βn − 1)2 − 4βn
=

2(τ 2
i + τ−2

i )β−1/2
n ξ + β−1

n ξ 2

(τ 2
i + τ−2

i )2 − 4
.

sing |1 −
√
1 + z + z/2| ≤ |z|2/8 for z ∈ {ℜ(z) ≥ 0, |z| ≤ 1}, |ξ | ≤ n−ℓ

√
βn, and |y| ≲ n−ℓ,

|Dn(λ̄i + ξ ) − θ−2
i | ≍ |ξ |β−1

n . (39)

or j ̸= i, almost surely,

|Dn(λ̄i + ξ ) − θ−2
j | = |Dn(λ̄i + ξ ) − θ−2

i + (θ−2
i − θ−2

j )| ≍ β−1/2
n . (40)

Recalling the formula detMn(z) =
∏r

j=1(Dn(z) − θ−2
j ), (39) and (40) imply

| detMn(λ̄i + ξ )| ≍ |ξ |β−(r+1)/2
n . (41)

onsequently, γi,n eventually encircles no root of detMn(z) other than λ̄i (and no roots occur on γi,n). Otherwise, there
xists a sequence of perturbations ξn ̸= 0 such that detMn(λ̄i + ξn) = 0, contradicting (41). This proves Claim (i). As a
onsequence, by the winding number theorem,

1
2π i

∫
γi,n

d
dz detMn(z)

detMn(z)
dz = 1 . (42)

To prove Claim (ii), it suffices to show that almost surely eventually,⏐⏐⏐⏐ 1
2π i

∫
γi,n

d
dz det M̃n(z)

det M̃n(z)
dz −

1
2π i

∫
γi,n

d
dz detMn(z)

detMn(z)
dz

⏐⏐⏐⏐ < 1,

as the above integrals are integer-valued. Writing a
c −

b
d =

1
d

( d−c
c a + a − b

)
, an upper bound on the left-hand side is

n−ℓ
√

βn sup
z∈γi,n

⏐⏐⏐⏐ d
dz det M̃n(z)

det M̃n(z)
−

d
dz detMn(z)

detMn(z)

⏐⏐⏐⏐ = n−ℓ
√

βn sup
z∈γi,n

⏐⏐⏐⏐ 1

detMn

⏐⏐⏐⏐⏐⏐⏐⏐detMn − det M̃n

det M̃n
·
d
dz

det M̃n +
d
dz

(
det M̃n − detMn

)⏐⏐⏐⏐ .
(43)

Below, the almost-sure bounds we have developed on the terms of (43) are summarized. Let ℓ′
∈ (ℓ, 1/4) and ℓ′′

∈ (0, 1/8).
By Lemmas 8 and 9 (applied to an = λ̄i and η ∈ (0, τ 2

i0
+ τ−2

i0
− 2)),

sup
z∈γi,n

| det M̃n(z) − detMn(z)| ≲ n−ℓ′

β−r/2
n , (44)

sup
z∈γi,n

⏐⏐⏐ d
dz

(det M̃n(z) − detMn(z))
⏐⏐⏐ ≲ n−ℓ′′

β−(r+1)/2
n (45)

sup
z∈γi,n

⏐⏐⏐ d
dz

det M̃n(z)
⏐⏐⏐ ≲ β−(r+1)/2

n . (46)

As (41) depends on ξ only through |ξ |,

| detMn(z)| ≍ n−ℓβ−r/2
n . (47)

inally, (44), (47), and ℓ < ℓ′ imply,

| det M̃ (z)| ≍ n−ℓβ−r/2 . (48)
n n

9
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hus, from (43)–(48), almost surely,

n−ℓ
√

βn sup
z∈γi,n

⏐⏐⏐⏐ d
dz det M̃n(z)

det M̃n(z)
−

d
dz detMn(z)

detMn(z)

⏐⏐⏐⏐ ≲ n−ℓ
√

βn

n−ℓβ
−r/2
n

(
n−ℓ′

β
−r/2
n

n−ℓβ
−r/2
n

· β−(r+1)/2
n + n−ℓ′′

β−(r+1)/2
n

)
≲ nℓ−ℓ′

+ n−ℓ′′

−→ 0 . (49)

This completes the proof of Claim (ii): almost surely eventually, there exist roots λ̃(1), . . . , λ̃(i0) respectively encircled
y γ1,n, . . . , γi0,n. Claim (iii)—that λ̃(1), . . . , λ̃(i0) are eigenvalues of S̃n—follows from Lemma 1 and the fact that M̃n(z) is
nvertible for z ̸∈ R (Lemma A.1 of [9]).

It remains to prove Claim (iv): λ̃1 = λ̃(1), . . . , λ̃i0 = λ̃(i0). Suppose det M̃n(z) has a sequence of roots λ̃ ∈ [1 + (2 +

)
√

βn, C], for some η > 0, C > 1, such that infinitely often, |λ̃ − λ̄i| > n−ℓ
√

βn for all i ≤ i0. Let γn denote a sequence of
ircular contours of radius n−ℓ

√
βn centered at λ̃. Then, eventually,

1
2π i

∫
γn

d
dz det M̃n(z)

det M̃n(z)
dz = 1,

1
2π i

∫
γn

d
dz detMn(z)

detMn(z)
dz = 0 . (50)

ote that on γn, (44)–(47) hold while (48) becomes β
−r/2
n . Thus, similarly to (49), the left integral in (50) converges to

he right integral, a contradiction. Furthermore, eventually S̃n has no eigenvalues greater than C:

1
√
m

∥X̃n∥2 ≤

r∑
i=1

θi∥ui∥2∥vi∥2 +
1

√
m

∥Xn∥2 ≤ C,

the last inequality holding almost surely eventually. This establishes Claim (iv). We conclude that almost surely eventually,
the leading eigenvalues of S̃n satisfy

|λ̃i − λ̄i| ≤ n−ℓ
√

βn , i ≤ i0

which is (5) in the case εi,n = 0.
For general signal strengths θi = τβ

1/4
n (1 + εi,n), the above argument may be used to show that λ̃i localizes about

D
(−1)
n (θ−2

i ) and that Claim (iv) holds. Recalling that D
(−1)
n (t) = (t + 1)(βnt + 1)/t (Lemma 2), for i ≤ i0,⏐⏐D(−1)

n (θ−2
i ) − λ̄i

⏐⏐ =
⏐⏐D(−1)

n (θ−2
i ) − D

(−1)
n

(
(τiβ1/4

n )−2)⏐⏐ = (τ 2
i + τ−2

i (1 + εi,n)−2)|εi,n|(2 + εi,n)
√

βn

≲ |εi,n|
√

βn . (51)

hus, almost surely eventually,

|λ̃i − λ̄i| ≤
⏐⏐λ̃i − D

(−1)
n (θ−2

i )
⏐⏐ +

⏐⏐D(−1)
n (θ−2

i ) − λ̄i
⏐⏐ ≲ (n−ℓ

+ |εi,n|)
√

βn

stablishing (5). (2) is a consequence of (5) and Claim (iv). □

. Proof of singular vector results: (3) , (6), and (7)

We prove (6) and (7), from which (3) immediately follows. For notational lightness, this section assumes εi,n = 0. All
ounds are understood to hold only almost surely.

emma 10. Let i ≤ i0, j ≤ r, and ℓ < 1/4. Let ũi, ṽi be the singular vectors corresponding to σ̃i =

√
λ̃i. Almost surely,

|σ̄is̄n(λ̄i)θj⟨ṽi, vj⟩ + ⟨ũi, uj⟩| ≲ n−ℓ(β−1/4
n ∥V⊤

n ṽi∥1 + β1/4
n ) (52)

nd for i ̸= j,

|⟨ṽi, vj⟩| ≲ n−ℓ(|⟨ṽi, vi⟩| +
√

βn) . □ (53)

roof. Recall Lemma 3: the column vector[
ΘnV⊤

n ṽi
ΘnU⊤

n ũi

]
(54)

elongs to the kernel of M̃n(λ̃i). As (54) is orthogonal to the jth row of M̃n(λ̃i),
r∑

σ̃iu⊤

j (Sn − λ̃iIn)−1ukθk⟨ṽi, vk⟩ +

r∑(
θ−1
k 1{j=k} +

1
√
m

u⊤

j (Sn − λ̃iIn)−1Xnvk

)
θk⟨ũi, uk⟩ = 0.
k=1 k=1

10
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solating the jth term, by Lemma 6,

|σ̃iu⊤

j (Sn − λ̃iIn)−1ujθj⟨ṽi, vj⟩ + ⟨ũi, uj⟩| ≤ σ̃i

∑
k̸=j

θk|u⊤

j (Sn − λ̃iIn)−1uk||⟨ṽi, vk⟩| +
1

√
m

r∑
k=1

θk|u⊤

j (Sn − λ̃iIn)−1Xnvk|

≲ n−ℓβ−1/4
n

∑
k̸=j

|⟨ṽi, vk⟩| + n−ℓβ1/4
n (55)

|σ̃isn(λ̃i)θj⟨ṽi, vj⟩ + ⟨ũi, uj⟩| ≤ |σ̃iu⊤

j (Sn − λ̃iIn)−1ujθj⟨ṽi, vj⟩ + ⟨ũi, uj⟩| + σ̃iθj|u⊤

j (Sn − λ̃iIn)−1uj − sn(λ̃i)||⟨ṽi, vj⟩|

≲ n−ℓβ−1/4
n

r∑
k=1

|⟨ṽi, vk⟩| + n−ℓβ1/4
n . (56)

ote that eventually, |sn(λ̃i) − sn(λ̄i)| ≤
|λ̃i−λ̄i|

|λ̃i−λ1||λ̄i−λ1|
. By an application of (5) and Theorem 3,

|σ̃isn(λ̃i) − σ̄is̄n(λ̄i)| ≤ |σ̃i − σ̄i||sn(λ̃i)| + |σ̄i||sn(λ̃i) − sn(λ̄i)| + |σ̄i||sn(λ̄i) − s̄n(λ̄i)|

≲ n−ℓ
+ n−ℓβ−1/2

n + n−ℓβ−1/2
n . (57)

52) follows from (56) and (57). By a similar argument for row j + r of M̃n(λ̃i),⏐⏐⏐⟨ṽi, vj⟩ + σ̄i

(
βns̄n(λ̄i) −

1 − βn

λ̄i

)
θj⟨ũi, uj⟩

⏐⏐⏐ ≲ n−ℓ(β1/4
n ∥V⊤

n ṽi∥1 + β3/4
n ) . (58)

ubstitution of (52) into (58) yields⏐⏐⏐⟨ṽi, vj⟩ − λ̄is̄n(λ̄i)
(
βns̄n(λ̄i) −

1 − βn

λ̄i

)
θ2
j ⟨ṽi, vj⟩

⏐⏐⏐ ≲ n−ℓ(∥V⊤

n ṽi∥1 +
√

βn).

Recall that Dn(z) = βnzs̄n(z)2 − (1 − βn)s̄n(z) and λ̄i is defined by Dn(λ̄i) = θ−2
i . Thus, for j ̸= i,

|⟨ṽi, vj⟩| ≲ n−ℓ(∥V⊤

n ṽi∥1 +
√

βn) .

Rewriting this as (1 − Cn−ℓ)(∥V⊤
n ṽi∥1 − |⟨ṽi, vi⟩|) ≲ n−ℓ(|⟨ṽi, vi⟩| +

√
βn), we recover (53):

|⟨ṽi, vj⟩| ≲ n−ℓ(|⟨ṽi, vi⟩| +
√

βn) . □

Proof of (6) and (7). Let i ≤ i0 and ℓ < 1/8. By (15), an + bn + 2cn = 1 with

an = λ̃iṽ
⊤

i P⊤

n (Sn − λ̃i)−2Pnṽi = λ̃i

r∑
j,k=1

θjθk⟨ṽi, vj⟩⟨ṽi, vk⟩u⊤

j (Sn − λ̃iIn)−2uk ,

bn =
1
m

ũ⊤

i PnX
⊤

n (Sn − λ̃In)−2XnP⊤

n ũi =
1
m

r∑
j,k=1

θjθk⟨ũi, uj⟩⟨ũi, uk⟩v
⊤

j X⊤

n (Sn − λ̃iIn)−2Xnvk ,

cn =
σ̃i

√
m

ũ⊤

i PnX
⊤

n (Sn − λ̃In)−2Pnṽi =
σ̃i

√
m

r∑
j,k=1

θjθk⟨ũi, uj⟩⟨ṽi, vk⟩v
⊤

j X⊤

n (Sn − λ̃iIn)−2uk . (59)

y (5) and Corollary 1,⏐⏐⏐λ̃i
d
dz

sn(λ̃i) − λ̄i
d
dz

s̄n(λ̄i)
⏐⏐⏐ ≤ |λ̃i − λ̄i|

⏐⏐⏐ d
dz

sn(λ̃i)
⏐⏐⏐ + |λ̄i|

⏐⏐⏐ d
dz

(sn(λ̃i) − sn(λ̄i))
⏐⏐⏐ + |λ̄i|

⏐⏐⏐ d
dz

(sn(λ̄i) − s̄n(λ̄i))
⏐⏐⏐

≲ n−2ℓβ−1/2
n + n−2ℓβ−1

n + n−ℓβ−1
n .

ogether with (30) of Lemma 7,

an =

r∑
j,k=1

θjθk⟨ṽi, vj⟩⟨ṽi, vk⟩

(
δjkλ̄i

d
dz

s̄n(λ̄i) + O(n−ℓβ−1
n )

)
=

r∑
j=1

θ2
j |⟨ṽi, vj⟩|

2
λ̄i

d
dz

s̄n(λ̄i) + O(n−ℓβ−1/2
n ∥V⊤

n ṽi∥
2
1) . (60)

imilarly, using
1
tr(Sn − λ̃i)−2Sn =

1
tr

(
(Sn − λ̃iIn)−1

+ λ̃i(Sn − λ̃iIn)−2)
= βn

(
sn(λ̃i) + λ̃i

d
sn(λ̃i)

)
,

m m dz
11
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31), (33), and (34), it may be shown that

bn =

r∑
j,k=1

θjθk⟨ũi, uj⟩⟨ũi, uk⟩

(
δjkβn

(
s̄n(λ̄i) + λ̄i

d
dz

s̄n(λ̄i)
)

+ O(n−ℓ)
)

=

r∑
j=1

θ2
j |⟨ũi, uj⟩|

2
βn

(
s̄n(λ̄i) + λ̄i

d
dz

s̄n(λ̄i)
)

+ O(n−ℓ
√

βn)

|cn| ≲ n−ℓβ−1/2
n

r∑
j,k=1

θjθk|⟨ũi, uj⟩⟨ṽi, vk⟩| ≲ n−ℓ . (61)

hus,

r∑
j=1

θ2
j |⟨ṽi, vj⟩|

2
λ̄i

d
dz

s̄n(λ̄i) +

r∑
j=1

θ2
j |⟨ũi, uj⟩|

2
βn

(
s̄n(λ̄i) + λ̄i

d
dz

s̄n(λ̄i)
)

= 1 + O
(
n−ℓ(1 + β−1/2

n ∥V⊤

n ṽi∥
2
1)

)
. (62)

erms on the left-hand side with j ̸= i are negligible: by (53),⏐⏐⏐⏐∑
j̸=i

θ2
j |⟨ṽi, vj⟩|

2
λ̄i

d
dz

s̄n(λ̄i)
⏐⏐⏐⏐ ≲ n−4ℓ(β−1/2

n |⟨ṽi, vi⟩|
2
+

√
βn)⏐⏐⏐⏐∑

j̸=i

θ2
j |⟨ũi, uj⟩|

2
βn

(
s̄n(λ̄i) + λ̄i

d
dz

s̄n(λ̄i)
)⏐⏐⏐⏐ ≲ √

βn

mplying

θ2
i |⟨ṽi, vi⟩|

2
λ̄i

d
dz

s̄n(λ̄i) + θ2
i |⟨ũi, ui⟩|

2
βn

(
s̄n(λ̄i) + λ̄i

d
dz

s̄n(λ̄i)
)

= 1 + O
(
n−ℓ(1 + β−1/2

n ∥V⊤

n ṽi∥
2
1) +

√
βn

)
. (63)

Substitution of (52) into (63) yields

|⟨ṽi, vi⟩|
2
(
θ2
i λ̄i

d
dz

s̄n(λ̄i) + θ4
i λ̄is̄n(λ̄i)2βn

(
s̄n(λ̄i) + λ̄i

d
dz

s̄n(λ̄i)
))

= |⟨ṽi, vi⟩|
2
(

θ2
i

∫
λ̄i

(t − λ̄i)2
dF n(t) + θ4

i λ̄is̄n(λ̄i)2βn

∫
t

(t − λ̄i)2
dF n(t)

)
= 1 + O

(
n−ℓ(1 + β−1/2

n ∥V⊤

n ṽi∥
2
1) +

√
βn

)
. (64)

64) is included to facilitate comparison with Theorem 2.10 of [9]. In the regime where βn → β > 0 and θi > 1 is
onstant, the term multiplying |⟨ṽi, vi⟩|

2 converges to a positive limit, and |⟨ṽi, vi⟩|
2 converges to the limit’s inverse. Here,

ince ⏐⏐⏐θ2
i |⟨ũi, ui⟩|

2
βn

(
s̄n(λ̄i) + λ̄i

d
dz

s̄n(λ̄i)
)⏐⏐⏐ ≲ √

βn ,

(53) and (63) imply

θ2
i |⟨ṽi, vi⟩|

2
λ̄i

d
dz

s̄n(λ̄i) = 1 + O
(
n−ℓ(1 + β−1/2

n ∥V⊤

n ṽi∥
2
1) +

√
βn

)
. (65)

valuated at z = λ̄i, Lemma 5 is tight up to constants: λ̄i
d
dz s̄n(λ̄i) ≍ β−1

n . Thus, for j ̸= i,

(1 − Cn−ℓ)|⟨ṽi, vi⟩|
2 ≲

√
βn , |⟨ṽi, vi⟩| ≲ β1/4

n , |⟨ṽi, vj⟩| ≲ n−2ℓβ1/4
n . (66)

he third inequality follows from (53). We have established (7): right singular vectors asymptotically do not correlate
ith right signal vectors.
Now, by (52), (65), and (66), we obtain

|⟨ũi, ui⟩|
2

= (σ̄is̄n(λ̄i)θi⟨ṽi, vi⟩)2 + O(n−4ℓ) =
s̄n(λ̄i)2
d s̄n(λ̄i)

+ O(n−ℓ
+

√
βn) . (67)
dz

12
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Direct calculation yields

s̄n(λ̄i) =

−(τ 2
i + τ−2

i ) +

√
(τ 2

i + τ−2
i )2 − 4

2
√

βn
+ O(1)

d
dz

s̄n(λ̄i) = −
1

2βnλ̄i

(
1 −

τ 2
i + τ−2

i√
(τ 2

i + τ−2
i )2 − 4

)
+ O(β−1/2

n )

rom which we conclude (6):

|⟨ũi, ui⟩|
2

= 1 − τ 4
i + O(n−ℓ

+
√

βn) . (68)

herefore, |⟨ũi, ui⟩|
2 a.s.

−→ 1 − τ−4
i . For j ̸= i, |⟨ũi, uj⟩| ≲ n−2ℓ follows from (52). □

. Convergence rate of the Stieltjes transform

This section develops bounds on |sn(z) − s̄n(z)| and |
d
dz (sn(z) − s̄n(z))| based on the work of Zhidong Bai, Jack Silverstein,

iang Hu, and Wang Zhou, in particular, Section 4.1 of [2] and Section 8 of [4].

heorem 3. Let η > 0 and un ≥ 1 + (2 + η)
√

βn be a bounded sequence. For any ℓ < 1/4, almost surely,

sup
|z−un|≤n−1/4√

βn

|sn(z) − s̄n(z)| ≲ n−ℓβ−1/2
n . (69)

Corollary 1. Let η > 0 and un ≥ 1 + (2 + η)
√

βn be a bounded sequence. For any ℓ < 1/8, almost surely,

sup
|z−un|≤n−1/8√

βn

⏐⏐⏐ d
dz

(
sn(z) − s̄n(z)

)⏐⏐⏐ ≲ n−ℓβ−1
n . (70)

These bounds are novel in that (1) dependence on βn is more carefully tracked and (2) the bound applies to
z ≥ 1 + (2 + η)

√
βn (rather than to z with ℑ(z) > 1/

√
m). (2) is critical since the proof of Theorem 2 requires

ounding |sn(z) − s̄n(z)| and |
d
dz (sn(z) − s̄n(z))| along a contour centered on the real line. Furthermore, (2) above enables

improvement of previous bounds using the concentration of the maximum eigenvalue of Sn. For example, in place of
deterministic bounds such as

1
n
tr(Sn − zIn)−1(Sn − z̄In)−1

≤ ℑ(z)−2

we will argue using Lemma 15 that 1
n tr(Sn − zIn)−1(Sn − z̄In)−1 ≲ β−1

n with high probability. As set forth in Section 2.2, the
entries of Xn are assumed truncated and normalized as in Lemma 15. For sake of completeness, we note that Theorem 3
and Corollary 1 hold for non-truncated noise as well; the effects of truncation and normalization may be shown to be
negligible using Lemma 16.

Let x⊤

k denote the kth-row of Xn, Xnk consist of the remaining n− 1 rows, and Ek(·) denote the conditional expectation
given {xij, i ≤ k, j ≤ m}. Additionally, we define

skk =
1
m

m∑
j=1

|xkj|2 Snk =
1
m

XnkX⊤

nk ,

αk = Xnkxk σk = tr(Sn − zIn)−1
− tr(Snk − zIn−1)−1 ,

γk = (Ek − Ek−1)σk bk =
1

1 − z − βn −
z
m tr(Snk − zIn−1)−1 ,

b̃k =
1

skk − z −
1
m2 α⊤

k (Snk − zIn−1)−1αk
b̄n =

1
1 − z − βn − βnzEsn(z)

,

ϵk = skk − 1 −
1
m2 α⊤

k (Snk − zIn−1)−1αk +
1
m

tr(Snk − zIn−1)−1Snk +
1
m

,

ϵ̄k = skk − 1 + βn + βnzEsn(z) −
1
m2 α⊤

k (Snk − zIn−1)−1αk . (71)

tandard properties of these definitions are stated below (see Theorem A.5, Lemma 8.18, and (8.4.19) of [4]).
13
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emma 11. For z ∈ C+,

σk =
1 +

1
m2 α⊤

k (Snk − zIn−1)−2αk

skk − z −
1
m2 α⊤

k (Snk − zIn−1)−1αk
|σk| ≤

1
ℑ(z)

|b̃k| ≤
1

ℑ(z)
|b̄n| ≤

1
√

βn|z|
.

Furthermore, for ℑ(z) ≥
1

√
m , |bk| ≲ (βn|z|)−1/2.

In the following lemmas, we will use un and vn to refer to the real and imaginary parts of a complex sequence zn.
he subscripts will be suppressed for notational lightness. Lemmas 12 and 13 respectively bound |sn(z) − Es̄n(z)| and
Esn(z) − s̄n(z)| for z with imaginary part at least 1/

√
m. The proof of Theorem 3 extends the bound to the real axis.

Lemma 12. Let z = u + iv be a bounded sequence where u ≥ 1 + (2 + η)
√

βn and v ≥ 1/
√
m. Then,

E|sn(z) − Esn(z)|2 ≲
1
n2

( 1
βn

+
1
v2

)
.

Proof. Begin with a standard decomposition of sn(z) − Esn(z):

sn(z) − Esn(z) =
1
n

n∑
k=1

(Ek − Ek−1)
(
tr(Sn − zIn)−1

− tr(Snk − zIn−1)−1)
=

1
n

n∑
k=1

γk .

As {γk}
n
k=1 forms a martingale difference sequence, the Burkholder inequality (Lemma 2.12 of [4]) yields

E|sn(z) − Esn(z)|2 ≲
1
n2

n∑
k=1

E|γk|
2 .

This martingale decomposition, together with the bound |γk| ≤ 2/v, appear in proofs of convergence to the Marchenko–
astur distribution as βn → β > 0 [1,5]. Such proofs consider z fixed. Here and in [2,4], as v may decay rapidly, a tighter
ound on the moments of γk is needed. Using the identity

Snk(Snk − zIn−1)−1
= (Snk − zIn−1)−1Snk = In−1 + z(Snk − zIn−1)−1 , (72)

e obtain

b̃−1
k − b−1

k = ϵk b̃k =
bk

1 + bkϵk
.

Thus,

σk =
bk

1 + bkϵk

(
1 +

1
m2 α⊤

k (Snk − zIn−1)−2αk

)
= −σkbkϵk + bk

(
1 +

1
m2 α⊤

k (Snk − zIn−1)−2αk

)
and

γk = −(Ek − Ek−1)σkbkϵk +
1
m2 (Ek − Ek−1)bkα⊤

k (Snk − zIn−1)−2αk

= −(Ek − Ek−1)σkbkϵk +
1
m2 Ekbk

[
α⊤

k (Snk − zIn−1)−2αk − tr(X⊤

nk(Snk − zIn−1)−2Xnk)
]
. (73)

Here, we have used that bk does not depend on xk, so (Ek − Ek−1)bk = 0. By Lemmas 11 and 17,

1
m4 Eb

2
k

⏐⏐αk
⊤(Snk − zIn−1)−2αk − tr(X⊤

nk(Snk − zIn−1)−2Xnk)
⏐⏐2 ≲

1
m4βn

Etr X⊤

nk(Snk − zIn−1)−2Xnk(X⊤

nk(Snk − z̄In−1)−2Xnk)⊤

=
1
nm

Etr Snk(Snk − zIn−1)−2Snk(Snk − z̄In−1)−2
=

1
m

E
(
1
n

n−1∑
i=1

λ2
k,i

|λk,i − z|4

)
, (74)

where λk,1 ≥ · · · ≥ λk,n−1 denote the eigenvalues of Snk. By (16) and a union bound,

Pr
(
λk,1 ≥ 1 + (2 + η/2)

√
βn for some k

)
≲

1
n
.

On the complement of this event, the integrand of (74) is bounded by 16|z|/(η
√

βn)4. In addition,

λ2
k,i

2 ≤ 1 +
u2

2

λ2
k,i

4 ≤
|z|2

4 .

|λk,i − z| v |λk,i − z| v

14
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herefore,
1
m4 Eb

2
k

⏐⏐α⊤

k (Snk − zIn−1)−2αk − tr(X⊤

nk(Snk − zIn−1)−2Xnk)
⏐⏐2 ≲

1
m

( 1
β2
n

+
1

nv4

)
. (75)

ote that [4] bounds terms such as (74) deterministically. Similarly,

E|ϵk|2 ≲ E|skk − 1|2 +
1
m2 +

1
m4 E|α

⊤

k (Snk − zIn−1)−1αk − tr(X⊤

nk(Snk − zIn−1)−1Xnk)|
2

≲
1
m

+
1
m2 Etr Snk(Snk − zIn−1)−1Snk(Snk − z̄In−1)−1 ≲

1
m

(
1 +

1
mv2

)
. (76)

By Lemma 11 and (76),

E|σkbkϵk|2 ≲
1

v2βn
E|ϵk|2 ≲

1
nv2 . (77)

hus, using (73)–(77) and v ≥ 1/
√
m,

E|sn(z) − Esn(z)|2 ≲
1
n2

n∑
k=1

E|γk|
2 ≲

1
n2

( 1
βn

+
1
v2

)
. □

emma 13. Let z = u + iv be a bounded sequence where u ≥ 1 + (2 + η)
√

βn and v ≥ 1/
√
m. Then,

|Esn(z) − s̄n(z)| ≲
1
nv

.

roof. Recall definitions (71). We have

b̃−1
k − b̄−1

n = ϵ̄k b̃k − b̄n = −b̄2nϵ̄k + b̄2nb̃kϵ̄
2
k .

Together with Theorem A.4 of [4], this leads to the following decomposition of sn(z):

sn(z) =
1
n

n∑
k=1

b̃k = b̄n +
1
n

n∑
k=1

(−b̄2nϵ̄k + b̄2nb̃kϵ̄
2
k ) . (78)

(8.3.12) of [4] proves the moment bound |Eϵ̄k| ≤ 1/(mv). The second moment of ϵ̄k is bounded as follows:

E|ϵ̄k|2 ≲ E|ϵ̄k − E(ϵ̄k|Xnk)|2 + E|E(ϵ̄k|Xnk) − Eϵ̄k|2 + |Eϵ̄k|2 (79)

A bound on E|ϵ̄k − E(ϵ̄k|Xnk)|2 = E|ϵk − m−1
|
2

≤ 2(E|ϵk|2 + m−2) is given by (76). By (72) and Lemma 11,

E|E(ϵ̄k|Xnk) − Eϵ̄k|2 =
1
m2 E

⏐⏐tr(Snk − zIn−1)−1Snk − Etr(Snk − zIn−1)−1Snk
⏐⏐2 =

|z|2

m2 E
⏐⏐tr(Snk − zIn−1)−1

− Etr(Snk − zIn−1)−1
⏐⏐2

≤ |z|2β2
nE|sn(z) − Esn(z)|2 +

2|z|2

m2v2 . (80)

y (78)–(80) and Lemma 12,

|Esn(z) − b̄n| ≲
1

nβn

n∑
k=1

|Eϵ̄k| +
1

nvβn

n∑
k=1

E|ϵ̄k|2 ≲
1
nv

+
1

vβn

( 1
m

+
1

m2v2 + β2
nE|sn(z) − Esn(z)|2

)
≲

1
nv

. (81)

he above bound describes an equation that is quadratic in Esn(z):

Esn(z) −
1

1 − z − βn − βnzEsn(z)
= δn (82)

here δn := Esn(z) − b̄n obeys |δn| ≲ 1/(nv) ≤ 1/
√
nβn (note that s̄n(z) is a solution of the related equation

= (1 − z − βnzs)−1). By (3.3.8)-(3.3.13) of [4], the unique solution satisfying the requirement that ℑ(Esn(z)) > 0 (recall
hat z ∈ C+) is given by

Esn(z) =
1

2βnz

(
1 − z − βn + βnzδn +

√
(z + βn − 1 + βnzδn)2 − 4βnz

)
.

hus,

|Esn(z) − s̄n(z)| =
1
2

⏐⏐⏐⏐δn +
2(z + βn − 1)δn + βnzδ2n√

(z + βn − 1)2 − 4βnz +
√
(z + βn − 1 + βnzδn)2 − 4βnz

⏐⏐⏐⏐
≤

|δn|
(
1 +

|2(z + βn − 1) + βnzδn|√
2

√
2

)
≲

1
. □ (83)
2 | (z + βn − 1) − 4βnz + (z + βn − 1 + βnzδn) − 4βnz| nv

15
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P

a

P

a

N

F

roof of Theorem 3. Let z satisfy |z − u| ≤ n−1/4√βn and z ′
= u + in−1/4√βn. We will decompose |sn(z) − s̄n(z)| as

|sn(z) − s̄n(z)| ≤ |sn(z) − sn(z ′)| + |sn(z ′) − s̄n(z ′)| + |s̄n(z) − s̄n(z ′)|.

and bound each term. |sn(z) − sn(z ′)| is bounded in the proof of Lemma 6. By Lemmas 12 and 13,

|sn(z ′) − s̄n(z ′)| ≲
1

nℓ
√

βn
, (84)

lmost surely. As u is bounded away from the support of F n by a constant multiple of
√

βn(17),

|s̄n(z) − s̄n(z ′)| ≤

∫ ⏐⏐⏐ 1
λ − z

−
1

λ − z ′

⏐⏐⏐dF n(λ) =

∫
|z − z ′

|

|λ − z||λ − z ′|
dF n(λ)

≲
1

n1/4
√

βn
. □ (85)

roof of Corollary 1. Consider z satisfying |z − u| ≤ n−1/8√βn. Let v = n−1/8√βn and z ′
= u + iv. We will decompose

|
d
dz (sn(z) − s̄n(z))| as⏐⏐⏐ d

dz

(
sn(z) − s̄n(z)

)⏐⏐⏐ ≤

⏐⏐⏐ d
dz

(
sn(z) − sn(z ′)

)⏐⏐⏐ +

⏐⏐⏐ d
dz

(
sn(z ′) − s̄n(z ′)

)⏐⏐⏐ +

⏐⏐⏐ d
dz

(
s̄n(z) − s̄n(z ′)

)⏐⏐⏐
nd bound each term. For 1 ≤ α ≤ n, by the spacing bound (18),⏐⏐⏐⏐ 1

(λα − z)2
−

1
(λα − z ′)2

⏐⏐⏐⏐ =
|z − z ′

||2λα − z − z ′
|

|λα − z|2|λα − z ′|
2 ≤

32
η3n1/8βn

.

Thus, almost surely,⏐⏐⏐ d
dz

(
sn(z) − sn(z ′)

)⏐⏐⏐ ≤
1
n

n∑
α=1

⏐⏐⏐⏐ 1
(λα − z)2

−
1

(λα − z ′)2

⏐⏐⏐⏐ ≲ 1
n1/8βn

. (86)

ote that⏐⏐⏐⏐ 1
(λ − z ′)2

−
1

(λ − u)2 + v2

⏐⏐⏐⏐ ≤
2v

|λ − u|3
,

1
(λ − u)2 + v2 = ℑ

( 1
v(λ − z)

)
.

Hence,⏐⏐⏐ d
dz

(
sn(z ′) − s̄n(z ′)

)⏐⏐⏐ =

⏐⏐⏐⏐ ∫ 1
(λ − z ′)2

dFn(λ) −

∫
1

(λ − z ′)2
dF n(λ)

⏐⏐⏐⏐
≤

⏐⏐⏐⏐ ∫ 1
(λ − z ′)2

−
1

(λ − u)2 + v2 (dFn − dF n)(λ)
⏐⏐⏐⏐ +

1
v

⏐⏐⏐⏐ ∫ 1
λ − z ′

(dFn − dF n)(λ)
⏐⏐⏐⏐

≤ 2v
∫

1
|λ − u|3

(dFn + dF n)(λ) +
1
v
|sn(z ′) − s̄n(z ′)| .

We bound the first term above as in Lemma 5 and the second using Theorem 3: almost surely,⏐⏐⏐ d
dz

(
sn(z ′) − s̄n(z ′)

)⏐⏐⏐ ≲ v

β
3/2
n

+
1

nℓ+1/8v
√

βn
. (87)

inally, by (17),⏐⏐⏐ d
dz

(
s̄n(z) − s̄n(z ′)

)⏐⏐⏐ ≤

∫ ⏐⏐⏐⏐ 1
(λ − z)2

−
1

(λ − z ′)2

⏐⏐⏐⏐dF n(λ) ≲
1

n1/8βn
. □ (88)
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emma 14 (Theorem 1 of [11]). Let Xn = (xij : 1 ≤ i ≤ n, 1 ≤ j ≤ m) be an array of i.i.d. real-valued random variables with
Ex11 = 0, Ex211 = 1, and Ex411 < ∞. Suppose that as n → ∞, βn = n/mn → 0. Define

An =
1

2
√

βn

( 1
m

XnX⊤

n − In
)

.

Then,

λmax(An)
a.s.
−→ 1,

where λmax(An) represents the largest eigenvalue of An.

emma 15 (Theorem 2 of [11]). In the setting of Lemma 14, let X̂n = (x̂ij : 1 ≤ i ≤ n, 1 ≤ j ≤ m) and Yn = (yij : 1 ≤ i ≤

n, 1 ≤ j ≤ m) denote Xn after truncation and normalization, respectively:

x̂ij = xijI(|xij| ≤ δn(nm)1/4) , yij =
x̂ij − Ex̂11

ν
,

here ν2
= E(x̂11 −Ex̂11)2 and δn is a sequence constructed in Section 2 of [11], satisfying δn → 0 and δn(nm)1/4 → ∞. Define

Ãn =
1

2
√

βn

( 1
m

YnY⊤

n − In
)

.

Then, for any η, ℓ > 0,

Pr(λmax (̃An) ≥ 1 + η) = o(n−ℓ) .

Furthermore, Pr(Xn ̸= X̂n i.o.) = 0,

|Ex̂11| ≲
1

(nm)3/4
, |ν2

− 1| = o
( 1

√
nm

)
.

emma 16. In the setting of Lemma 15, let Pn ∈ Rn×m have bounded operator norm and consider the singular value
decompositions

Pn +
1

√
m

Xn = UΛV⊤ Pn +
1

√
m

Yn = ŨΛ̃Ṽ⊤

here Λ = diag(σ1, . . . , σn) and Λ̃ = diag(σ̃1, . . . , σ̃n). Almost surely,

sup
1≤i≤n

|σ 2
i − σ̃ 2

i | ≲
1

√
nm

.

oreover, for fixed i ≤ n, if min(σ 2
i − σ 2

i−1, σ
2
i − σ 2

i+1) ≍
√

βn, where σ0 := ∞ and σn := −∞, then

1 − |(U⊤Ũ)ii| ≲
1
n2 1 − |(V⊤Ṽ )ii| ≲

1
n2 .

Proof. By Lemmas 14 and 15, almost surely eventually, ∥Xn∥2 ≤ 2
√
m, ∥Yn∥2 ≤ 2

√
m, and

1
√
m

∥Xn − Yn∥2 =
1

√
m

∥X̂n − Yn∥2 =
1

√
m

∥X̂n − νYn − (1 − ν)Yn∥2

≤
1

√
m

∥(Ex̂11)1n1⊤

m∥2 +
ν − 1
√
m

∥Yn∥2 ≲
1

√
nm

. (89)

he first claim of the lemma follows from (89) and Weyl’s inequality:

|σ 2
i − σ̃ 2

i | = |σi − σ̃i||σi + σ̃i| ≤
1

√
m

∥Xn − Yn∥2|σ1 + σ̃1|.

he second claim follows from the Davis–Kahan theorem (Corollary 3 of [18]). □

emma 17 (Lemma 2.7 of [3]). Let A be an n×n nonrandom matrix and x = (x1, . . . , xn)⊤ be a random vector of independent
ntries. Assume that Exi = 0, E|xi|2 = 1, and E|xj|ℓ ≤ νℓ. Then, for any ℓ ≥ 1,

E|x∗Ax − trA|
ℓ
≲ (ν trA∗A)ℓ/2 + ν tr(A∗A)ℓ/2.
ℓ 4 2ℓ

17
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emma 18. Let A be an n×m nonrandom matrix and x ∈ Cn, y ∈ Cm random vectors. Assume x and y are independent with
ntries satisfying the moment conditions of Lemma 17. Then, for any ℓ ≥ 2,

E|x∗Ay|ℓ ≲ℓ (1 + ν
ℓ/4
4 + νℓ)

(
(ν4tr(A∗A)2)ℓ/4 + νℓtr(A∗A)ℓ/2 + (trA∗A)ℓ/2

)
.

roof. Condition on y and apply Lemma 17. □

Lemmas 19 and 20 are elementary, following from the Leibniz determinant formula.

Lemma 19. For any n × n matrices A and B,

| det A − det B| ≲n (∥A∥∞ + ∥B∥∞)n−1
∥A − B∥∞.

Lemma 20. For any n × n matrices A(z) and B(z),⏐⏐⏐ d
dz

(det A − det B)
⏐⏐⏐ ≲n ∥A∥

n−1
∞

 d
dz

(A − B)


∞

+ (∥A∥∞ + ∥B∥∞)n−2
 d
dz

B


∞

∥A − B∥∞,

here d
dz B denotes the entrywise derivative of the matrix. Additionally,⏐⏐⏐ d
dz

det A
⏐⏐⏐ ≲n ∥A∥

n−1
∞

 d
dz

A


∞

.

The remaining lemmas pertain to the right singular vectors of the noise matrix. Consider an array Xn satisfying
assumption A1 and a vector v satisfying assumptions A2 places on right signal vectors. Let W be a matrix containing
as columns the first n (normalized) eigenvectors of X⊤

n Xn.

Lemma 21. Let Sn =
1
mXnX⊤

n and An =
1
mX⊤

n S−1
n Xn = WW⊤. Almost surely,

v⊤Anv = ∥W⊤v∥
2
2 ≲ βn log(n) .

The proof requires the following two lemmas:

emma 22. Let n/m ≤ β for some β ∈ (0, 1]. There exist constants c0, c1, c2 depending only on Ex411 such that with probability
at least 1 − c0 log(e/β) exp(−c1βm),

1
√
m

σmin(Xn) ≥ 1 − c2
√

β.

Proof. This is one case of Theorem 1.3 of [13]. □

emma 23. Let Ãn =
1
mX⊤

n (Sn +
1
m In)−1Xn. The fourth moment condition on the entries of

√
mv implies

E(v⊤Ãnv) ≤ βn Var(v⊤Ãnv) ≲
β2
n

n
.

Proof of Lemma 21. Let SD denote standard deviation. By Lemma 23, eventually,

Pr(v⊤Ãnv ≥ βn log(n)) ≤ Pr
(
v⊤Ãnv ≥ E(v⊤Ãnv) +

√
n log(n) · SD(v⊤Ãnv)

)
≤

1
n log2(n)

.

ummability of the right-hand-side gives v⊤Ãnv ≤ βn log(n) almost surely eventually.
Let λ1 ≥ · · · ≥ λn denote the eigenvalues of Sn and Λ = diag(λ1, . . . , λn). Observe that the eigenvalues of

n = WΛ1/2(Λ +
1
m In)−1Λ1/2W⊤ are λj/(λj +

1
m ), j = 1, . . . , n, joined by a zero eigenvalue with multiplicity m − n.

first consequence of Lemma 22 is λn ≳ 1 almost surely. Hence,

v⊤Anv ≤ v⊤Ãnv + ∥v∥
2
2λmax(An − Ãn) ≤ v⊤Ãnv +

∥v∥
2
2

1 + mλn

≲ βn log(n)

lmost surely. □

roof of Lemma 23. As Xn and v are independent,

E(v⊤Ãnv)2 =

m∑
E(vj1vj2vj3vj4 )E(̃Aj1j2 Ãj3j4 ) . (90)
j1,j2,j3,j4=1

18
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A

w

w
λ

N

A

V

ny term E(vj1vj2vj3vj4 ) containing a singleton index vanishes, leaving the following terms:

j1 = j2 = j3 = j4 :
ν4

m2

∑
j

ẼA2
jj

j1 = j2, j3 = j4, j1 ̸= j3 :
1
m2

∑
j1,j3

E(̃Aj1j1 Ãj3j3 ) ,

j1 = j3, j2 = j4, j1 ̸= j2 :
1
m2

∑
j1,j2

ẼA2
j1j2 ,

j1 = j4, j2 = j3, j1 ̸= j2 :
1
m2

∑
j1,j2

ẼA2
j1j2 ,

(91)

here ν4 = m2Ev4
1 < ∞. Let xj denote the jth column of Xn and Bj = Sn +

1
m (In −xjx⊤

j ). By the Sherman–Morrison formula,

ẼA2
jj =

1
m2 E

(
x⊤

j (Sn +
1
m In)−1xj

)2
=

1
m2 E

(
x⊤

j B
−1
j xj −

(x⊤

j B
−1
j xj)2

m + x⊤

j B
−1
j xj

)2

=
1
m2 E

( x⊤

j B
−1
j xj

1 +
1
mx⊤

j B
−1
j xj

)2

≤
1
m2 E(x

⊤

j B
−1
j xj)2 ≤

1
m2 E∥xj∥

4
2 Eλmax(B−1

j )2

here the final inequality follows from the independence of xj and Bj. Lemma 22 and the almost-sure lower bound
min(Bj) ≥ 1/m imply Eλmax(B−1

j )2 ≲ 1. Moreover, E∥xj∥4
2 = nν4 + (n2

− n)ν2
2 . Thus,

E|̃Ajj|
2
≲ β2

n . (92)

ext, consider terms of the third and fourth types. Let Bj1,j2 = Sn +
1
m (In − xj1x

⊤

j1
− xj2x

⊤

j2
). By the Woodbury formula,

ẼA2
j1,j2 =

1
m2 E

(
x⊤

j1 (Sn +
1
m In)−1xj2

)2
=

1
m2 E

( x⊤

j1
B−1
j1,j2

xj2
(1 +

1
mx⊤

j1
B−1
j1,j2

xj1 )(1 +
1
mx⊤

j2
B−1
j1,j2

xj2 ) − ( 1
mx⊤

j1
B−1
j1,j2

xj2 )2

)2

≤
1
m2 E(x

⊤

j1B
−1
j1,j2

xj2 )
2

≤
1
m2 E⟨xj1 , xj2⟩

2Eλmax(B−1
j1,j2

)2 .

The second-to-last inequality follows from the Cauchy–Schwarz inequality. The final step uses the independence of Bj1,j2
from xj1 and xj2 . We have that Eλmax(B−1

j1,j2
)2 ≲ 1 and E⟨xj1 , xj2⟩

2
= n. Therefore,

ẼA2
j1,j2 ≲

βn

m
. (93)

s the non-zero eigenvalues of Ãn = WΛ1/2(Λ +
1
m In)−1Λ1/2W⊤ are λj/(λj +

1
m ), j ∈ {1, . . . , n},

E(v⊤Ãnv) =
1
m

Etr̃An =
1
m

n∑
j=1

E
( λj

λj +
1
m

)
≤ βn , E|tr̃An − n| ≤

n∑
j=1

E
⏐⏐⏐ 1
1 + mλj

⏐⏐⏐ ≲ βn

E
⏐⏐(tr̃An)2 − n2

⏐⏐ ≤

n∑
j1,j2=1

E
⏐⏐⏐ 1 + m(λj1 + λj2 )
(1 + mλj1 )(1 + mλj2 )

⏐⏐⏐ ≲ nβn .

We have used that by Lemma 22, there exists c > 0 such that with high probability, λn ≥ c . On this event,⏐⏐⏐ 1 + m(λj1 + λj2 )
(1 + mλj1 )(1 + mλj2 )

⏐⏐⏐ =
λ−1
j1

λ−1
j2

+ m(λ−1
j1

+ λ−1
j2

)

λ−1
j1

λ−1
j2

+ m(λ−1
j1

+ λ−1
j2

) + m2
≤

c−2
+ 2c−1m

c−2 + 2c−1m + m2 .

Thus, ⏐⏐⏐⏐ 1
m2

∑
j1,j3

E(̃Aj1j1 Ãj3j3 ) − (Ev⊤Ãnv)2
⏐⏐⏐⏐ =

Var(tr̃An)
m2 ≤

1
m2 |E(tr̃An)2 − n2

| +
1
m2 |(Etr̃An)2 − n2

| ≲
β2
n

m
. (94)

ar(v⊤Ãnv) ≲ n−1β2
n follows from (90)–(94). □
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