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Abstract

Training data attribution (TDA) techniques find influential training data for the
model’s prediction on the test data of interest. They approximate the impact of
down- or up-weighting a particular training sample. While conceptually useful,
they are hardly applicable to deep models in practice, particularly because of their
sensitivity to different model initialisation. In this paper, we introduce a Bayesian
perspective on the TDA task, where the learned model is treated as a Bayesian
posterior and the TDA estimates as random variables. From this novel viewpoint,
we observe that the influence of an individual training sample is often overshadowed
by the noise stemming from model initialisation and SGD batch composition. Based
on this observation, we argue that TDA can only be reliably used for explaining
deep model predictions that are consistently influenced by certain training data,
independent of other noise factors. Our experiments demonstrate the rarity of
such noise-independent training-test data pairs but confirm their existence. We
recommend that future researchers and practitioners trust TDA estimates only in
such cases. Further, we find a disagreement between ground truth and estimated
TDA distributions and encourage future work to study this gap. Code is provided
athttps://github.com/ElisaNguyen/bayesian-tda.

1 Introduction

Understanding how machine learning models arrive at decisions is desirable for social, legal and
ethical reasons, particularly for opaque deep learning models [1]]. One approach to explanations is the
data-centric approach of training data attribution (TDA). As the name suggests, TDA finds attributing
training samples for a model decision, uncovering which part of the training data is relevant. The
attribution 7 of a training sample z; on another sample z is usually defined as the change of model
loss £ on z when the model is retrained without z; [2]]:

T(z5,2) == L(z; G\j) — L(2;6) (1)

where 6 is a model trained on the entire dataset D and 6\ ; is a model trained on the same set
without z;. Since the direct computation of Equation E] is expensive, various TDA techniques for
approximating the quantity have been proposed, such as influence functions [3]] or TraclIn [4]]. Their
approximations are often based on some form of inner product between the parameter gradients
VoL(z;0) and VgL(2;;0).

Knowing how training samples attribute to a model decision provides an actionable understanding
of the training data distribution, especially in cases of model error. TDA methods can identify the
training samples that are most relevant to an error and therefore enable users to understand why the
error occurred (e.g. due to domain mismatch of test and training data or wrongly labelled training
data) [3]. Additionally, TDA gives them the tool to address the errors by e.g. changing the model
directly through the training data. Even in non-erroneous cases, understanding the attributing training
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data may enable users affected by model decisions to contest the decisions if the attributing training
data is noisy or of low quality [5].

At the same time, TDA methods, especially influence functions [3]], have been criticised for their
fragility when applied to deep models [6, [7, [8]]. The main reasons are model complexity and the
stochasticity of deep model training. While the former poses a challenge specifically for influence
functions as they rely on strong convexity assumptions, the latter is a more general challenge [6} 9].
The randomness inherent to the training process does not only lead to variation in the learned model
parameters but also in TDA scores, which makes them untrustworthy. Hence, K & Sggaard [9]
recommend using expected TDA scores for increased stability.

We argue that solely considering the expectation is not sufficient to ensure the reliability of TDA but
requires inspecting the variance, too. We introduce a Bayesian perspective on the TDA task, noticing
that there is no deterministic mapping from a dataset D to the corresponding model 6 for deep neural
networks. The learned model depends on the initialisation and batch composition in the stochastic
gradient descent (SGD) optimiser. We capture the resulting randomness via Bayesian model posterior
p(0]D) over the parameter space [[10, 11} [12]. In turn, the TDA estimate (Equation is a random
variable that depends on two posteriors, p(6|D) and p(6\ ;| D\ ;).

This viewpoint leads to a few insights into the practical usage and evaluation of TDA techniques.
We confirm quantitatively that the ground-truth influence 7(z;, z) is often dominated by the noise:

Var(7) > E|7|. We argue that it is practically difficult to apply any TDA technique on pairs (z;, )
whose ground-truth attributions 7(z;, z) are noisy in the first place. Likewise, any evaluation of TDA
methods on such high-variance pairs would not be reliable.

Nonetheless, we are optimistic that TDA techniques are useful in practice, particularly for train-test
pairs with high signal-to-noise ratios: /Var(7) < E|r|. We observe that such pairs are rare but
consistently present in multiple experiments. We recommend that researchers and practitioners
confine their usage to scenarios where the signal-to-noise ratios are expected to be large enough.

Our contributions are as follows: (1) Bayesian formulation of the training data attribution (TDA)
task. (2) Observation that the ground-truth TDA values are often unreliable and highly variable.
(3) Recommendation for the community to use the TDA tools only when the expected noise level is
low. (4) Experimental analysis of the contributing factors to the variance of ground-truth TDA values.
(5) Observation that the TDA estimation methods capture local changes in the model with regard to
the counterfactual question of “retraining without training sample z;", while LOO retraining itself
results in a more global change through the training procedure.

2 Background

We cover the background materials for the paper, including the concept, method, and evaluation of
training data attribution (TDA) methods and Bayesian deep learning.

2.1 Training data attribution (TDA)

We introduce the TDA task, a few representative TDA methods, and existing evaluation strategies.

TDA task. Given a deep model fy parametrised by 6, a training set D := {z1,--- , zn}, and a test
sample z, one is interested in the impact of a training sample z; on the model’s behaviour on the test
sample z. In the TDA context, one is often interested in the counterfactual change in the loss value for
z after leave-one-out (LOO) training, when z; is excluded from the training set (Equation|[I)). TDA
has been considered in different use cases, such as understanding the bias in word embeddings [13]],
fact tracing in language model outputs [14] and measuring the robustness of model predictions [5].

TDA methods. The conceptually most straightforward way to compute the difference due to LOO
training (Equation |1)) is to compute it directly. However, this is computationally expensive, as it
involves the learning algorithm for obtaining 6\ ; for every j. This gives rise to various TDA techniques
that find approximate estimates 7’(z;, z) of LOO. A prominent example of such approximation is
the influence function (IF) method [3] based on [[15]. Under strong smoothness assumptions, they



approximate Equation [T] by:

7/(2j,2) = —VoL(2,0) Hy'VoL(z;0) 2)
where Vo L(z;6) and VyL(z;;6) refer to the parameter gradients of fy for z and z; respectively.
Recognising the difficulty of scaling up the inverse Hessian computation H, ! and the high dimen-
sionality of operations in Equation [2] subsequent papers have proposed further approximations to
speed up the computation [16,|17]. Charpiat et al. [18] have analysed the influence of z; on z by
dropping the need to compute the Hessian and formulating influence as the loss change when an
additional training step (ATS) on z; is taken:

T(2j,2) = L(2;04;) — L(z;0) 3)
where 0 ; is a learned model parameter with D and an additional step on z;. They propose two
approximations:

Grad-Dot (GD):  7/(z;,2) := VoL(2;;0) " VoL(2;0) )

VoL(z;;0) T VoL(z6)

Grad-Cos (GC):  7'(2j,2) := J 5
GO T D TG, L 0] TVeLE0)] ®
This method is closely linked to TracIn [4] which computes the Grad-Dot not just at the end of the
training, but averages the regular Grad-Dot similarities throughout the model training iterations. We
note later in our analysis that within our Bayesian treatment of TDA, the TracIn method coincides
conceptually with the Grad-Dot method. In our analysis, we study the sensitivity of LOO and the
above TDA methods against noise.

TDA evaluation. The primal aim of TDA methods is to measure how well they approximate the
ground-truth LOO values. This is often done by measuring the correlation between the estimates from
each TDA method and the ground-truth LOO values (Equation 1)) [3, (6, [7,19]. They use either a linear
(Pearson) correlation or a rank (Spearman) correlation over a small number of train-test sample pairs
(zj, #) due to the computational burden of computing the actual LOO values, especially for larger
models. Usually, a few samples z are chosen for a comparison against LOO, e.g. Koh & Liang [3]
report results for one z and Guo et al. [16]] for 10 samples z. In some cases, the ground-truth LOO is
obtained by computing the change in loss after training further from the learned model parameters,
e.g. [3]. Some works have adopted indirect evaluation metrics such as the retrieval performance of
mislabelled or poisoned training data based on the TDA estimates [3,[19} (16} 9, [17]. In this work, we
adopt the Pearson and Spearman correlation metrics and discuss ways to extend them when the target
(LOO from same initialisation) and estimates (TDA) are both random variables.

2.2 Bayesian deep learning.

Bayesian machine learning treats the learned model as a posterior distribution over the parameter
space, rather than a single point:

p(0|D) = p(D|0)p(0)/p(D). (©)
Bayesian ML nicely captures the intuition that the mapping from a training set D to the learned model
p(0|D) is not a deterministic mapping, especially for non-convex models like deep neural networks
(DNNs). Depending on the initialisation, among other factors, DNN training almost always learns
vastly different parameters.

The estimation of the true posterior is indeed difficult for complex models like DNNs. The field of
Bayesian deep learning is dedicated to the interpretation of certain random elements in DNN training
as sources of randomness for the approximated Bayesian posteriors. For example, if Dropout [20]
is used for training a model, it may be used at test time to let users sample 6 from the posterior
distribution p(#|D) [21]]. More generally used components like stochastic gradient descent (SGD)
have also been interpreted as sources of randomness. The random walk induced by SGD iterations
in the parameter space can be viewed as a Markov Chain Monte-Carlo sampler from the posterior
distribution, after a slight modification of the optimisation algorithm (Stochastic Gradient Langevin
Dynamics [10]]). Similarly, the last few iterations of the vanilla SGD iterations may also be treated as
samples from the posterior, resulting in more widely applicable Bayesian methods like Stochastic
Weight Averaging (SWA) [12}22]. Finally, the random initialisation of DNNs has also been exploited
for modelling posterior randomness; training multiple versions of the same model with different
initial parameters may be interpreted as samples from the posterior [11]. We show in the next section
how the Bayesian viewpoint will help us model the sources of stochasticity for TDA estimates.
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Figure 1: A Bayesian interpretation of training data attribution (TDA).

3 A Bayesian perspective on training data attribution

Training data attribution (TDA) 7(z;, z) is defined as the attribution of one training sample z; to
another sample z in terms of how a target metric like the loss of a sample £(z, ) changes when
the model is trained without z; (Equation[T)). We note here that according to the definition, we are
interested in the impact of the change in the dataser from D to D\ ;, rather than the change in the
model parameter. From a Bayesian perspective, a change in the training dataset leads to a shift in the
posterior distribution, p(6|D) — p(6\ ;|D\ ;), leading to the definition of TDA as a random variable:

7(zj,2|D) := L(2;D\;) — L(2;D) = L(z;0\;|D\;) — L(z;0|D) @)

where 0 ~ p(0|D) and 6\; ~ p(6\;|D\;). This interpretation is more natural, given the non-
uniqueness of the mapping from a training dataset D to the optimal model parameter 6 for general,
non-convex models like DNNs. Alternatively, one could treat the model built from D as a fixed
variable rather than a posterior as TDA is applied to a specific model in practice. The change of
dataset from D to D\ j however still introduces ambiguity in 6\ j, which is captured in the Bayesian
posterior p(6\ j|D\ 7). In this study, we use the probabilistic formulation of TDA in Equation

Sampling TDA values. One could plug in various Bayesian DL techniques (§2.2) to compute
samples of p(4|D), which can be used to get the samples of 7(z;, z). In our work, we use the
Stochastic Weight Averaging (SWA) [12} 22] and Deep Ensemble (DE) [11] which are applicable to
a wide class of deep models. More specifically, we obtain 7" samples (1), .. 9(T) ~ p(0|D) either
by taking the last 7" model checkpoints of the SGD iterations (SWA) or by taking the last model
checkpoints from 7" different model initialisations (DE). The same is done for the counterfactual

posterior 9(;), s Qg) ~ p(6\;|D\ ;). This results in a mixture-of-Gaussian posterior, where DE

samples correspond to centroids of the distribution. Our sampling approach is thus a version of
stratified sampling, where the number of samples 7" from a centroid is fixed and sampled IID.

Statistical analysis on TDA. The simplest statistics for the TDA 7(z;, z) are the mean and variance:

E[r(zj,2 ZE (z; H(t L(z00) (8)
, 2
Varlr (5, 2)] = g 3 (£(2:6) — £(:0¢)) ~ Elr (25, 2)]) ©)
t,t’

Our main interest lies in whether the influence of the training data z; on the test data z is statistically
significant and not dominated by the inherent noise of deep model training. For this purpose, we
design a Student t-test [23] for quantifying the statistical significance. Our null and alternative
hypotheses are:

Hy:p=0 Hy:p#0. (10)
We consider the test statistic based on sample mean and variance:
—E[r

\/Vars 7(2j, 2 /T2

Vars refers to the sample variance where the denominator in Equation E] is T? — 1 instead. We report
the significance of the absolute TDA |7(z;, z)| for every train-test pair (z;, z) by computing the
p-value corresponding to the t-test statistic. The greater the p-value is, the greater the dominance of
noise is for the TDA estimate.
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Figure 2: Sources of randomness for Bayesian posteriors. In each case, the training starts from initialisation
0o. Depending on whether z; is included in the training data, one has either samples from the original posterior
p(0]D) or from the counterfactual posterior p(6\ ;| Dy ;). For deep ensemble [[I1]], the randomness stems either
from random initialisation (DE-Init) or from SGD batch composition (DE-Batch). For stochastic weight
averaging (SWA) [121122]], last few checkpoints of the training are treated as posterior samples.

TDA methods likewise estimate random quantities. Approximate TDA methods like influence
functions (IF), Grad-Dot, and Grad-Cos ( also predict random quantities 7/ (zj, z). For example,
IF predicts 7(2;,2) = 7'(2;,2) := —VoL(2;;0) T Hy ' VL(z;0), where one may sample 6 from
the posterior p(f|D). We note that IF suffers theoretical issues in its application to deep models, as
convexity assumptions are not met. In practice, estimation algorithms make use of a damping term
to ensure the positive definiteness of the inverse Hessian. Through a Bayesian lens, the damping
term could be seen as an isotropic Gaussian prior centred at the origin. Similar statistical analyses on
the TDA estimations can be performed as above, including the mean and variance computations and
statistical testing for the significance of influence.

Evaluating TDA as a random variable. Previously, the LOO-based TDA values 7(z;, z) and the
estimates from various approximate TDA methods 7'(z;, z) are compared via correlation measures
like Pearson or Spearman. Our treatment of those quantities as 1-D random variables poses a novel
challenge for evaluation because there exists no inborn notion of ordering among 1-D random
variables. We address the challenge by examining the approximation ability of TDA methods for both
the first and second moments of the true TDA values 7(z;, z). More specifically, we compute the
Pearson and Spearman correlation for both the mean (Equation [§) and variance (Equation [J) between
the ground-truth 7(z;, z) and estimated TDA 7/(z;, z) values across multiple train-test pairs (z;, z).

4 Experiments

We introduce our experimental settings, present analyses on factors contributing to the reliability of
TDA values, compare TDA methods, and draw suggestions on the evaluation practice of TDA.

4.1 Implementation details

We illustrate the specific details of our implementation. See the Appendix for further information.

TDA methods. We study different TDA methods from a Bayesian perspective. We test the methods
introduced in for estimating TDA: influence functions (IF) [3], Grad-Dot (GD) and Grad-Cos
(GC) [18]]. We use the PyTorch implementation of IF from Guo et al. [16] and modify it for our
models. As the ground-truth target, we consider Leave-one-out training (LOO) [3]]. For LOO,
we remove of z; from the training set D by zeroing out the weight for sample z; towards the loss.
Additionally, we include Charpiat et al.’s [[18] notion of TDA that a training data point z; attributes
more if an additional training step (ATS) on it changes the test loss more significantly.

Inducing randomness in posterior p(6|D). In we have introduced the interpretation of
various elements around model training as sources of randomness for Bayesian posterior. We
summarise our methods for inducing randomness in Figure 2] We use the notion of the Deep
Ensemble (DE) [L1] to sample from the posterior. In a variant of DE with the initialisation as

the source of randomness (DE-Init), we train each of Tpg randomly initialised parameters 0[()“ on
either D or D\ ;. The resulting parameter sets, 6™ and 9{?, are treated as samples from respective



Table 1: Stability of TDA estimates. We report p-values for the ground-truth TDA 7(z;, z) (LOO) and the
estimated TDA values 7'(2;, 2) (rest 4 columns). The p-values are averaged across all train-test pairs (z;, 2).
We use the CNN model throughout.

Data Randomness LOO ATS IF GD GC

MNIST3 SWA+DE-Init 0.331 0.254 0352 0.363 0.003
SWA+DE-Batch  0.025 0.039 0.000 0.000 0.000

CIFARI0 SWA+DE-Init 0.692 0437 0575 0.587 0.356

SWA+DE-Batch  0.487 0.296 0.484 0517 0.236
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Figure 3: Stability of TDA estimates per train-test pair. Distribution of p-values for ground-truth TDA (LOO)
for different experiments.

posteriors. We also consider the batch composition in stochastic gradient descent (SGD) as the
source of randomness (DE-Batch). In this case, we train from one initial parameter 6y with Tpg
different random shuffles 7(*) of the training sets D and D, ;. This results in two sets of samples
from the original and counterfactual posteriors. We increase the number of samples by taking the last
Tswa checkpoints as the Stochastic Weight Averaging (SWA) samples [22]]. For Grad-Dot, this
coincides with the definition of TracIn [4] as we average the dot products across checkpoints. In total,
we take 7' = Tpg X Tswa = 10 x 5 samples from p(6|D) and p(6\ ;| D\ ;) to estimate 7(z;, 2).

Datasets D. To enable an exhaustive analysis of every train-test pair (z;, z), we define smaller
datasets. We use variants of MNIST [24] limited to three classes (MNIST3), and CIFAR10 [23]]. For
MNIST3, we sample a training set of size 150 and a test set of size 900, i.e. 135,000 train-test pairs.
For CIFAR10, we define the training and test set at size 500, i.e. 250,000 train-test pairs.

Models. We consider two types of image classifiers, visual transformers (ViT, [26]) and convo-
lutional neural networks [27], where we primarily study a two-layer (CNN2-L). We also include a
three-layer version (CNN3-L) to study the factor of model complexity. For ViT variants, instead of
full finetuning, we use LoRA adapter layers [28]] to minimise the number of parameters being tuned.
The number of trainable parameters of ViT+LoRA (597,514) is comparable to CNN3-L (620,362).

4.2 Reliability of TDA evaluation

We assess the reliability of TDA evaluation by measuring the degrees of noise in both the ground-truth
TDA (LOO) 7(z;, z) and the estimated TDA 7'(z;, z). The noise level is measured with the p-value
of the Student-t hypothesis testing to determine if the absolute TDA values are significantly greater
than the sample noise (§3).

We report the results in Table[I} Generally, we observe many TDA measurements, ground-truth and
estimations likewise, are unstable with non-significant p-values (> 0.05). In particular, even the
ground-truth LOO shows p-values of 0.331 on MNIST3 and 0.692 for CIFAR10 (SWA+DE-Init). In
these cases, the noise effectively dominates the signal and any evaluation that does not consider the
variance in the posterior p(6|D) is likely to be misleading. This confirms the reports in [9] that TDA
values are sensitive to model initialisation.

TDA methods often show similar levels of instability. For example, the IF attains p-values 0.352
and 0.575 on MNIST3 and CIFAR10, respectively, roughly matching the LOO case. Grad-Cos is an
exception: it attains lower p-values than the other TDA methods (0.003 and 0.356 for MNIST3 and
CIFARI10, respectively). We interpret this as an overconfident TDA estimation. Practitioners shall be
wary of using TDA methods that are unreasonably stable when the ground-truth TDA itself is not.
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Figure 4: Impact of training data size. Mean p-values of TDA methods with randomness induced by SWA+DE-
Init.

Table 2: Impact of model complexity. Mean p-values of the ground-truth TDA 7(z;, z) (LOO) and estimated
TDA values 7'(2;, 2) (the other 4 columns) with randomness induced by SWA+DE-Batch for MNIST3 and
DE-Batch for CIFAR10.

Model Data LOO  ATS IF GD GC

CNN2-L MNIST3  0.025 0.039 0.000 0.000 0.000
CNN3-L MNIST3 0370 0368 0.464 0470 0.005
ViT+LoRA  MNIST3  0.786 0.573 0.369 0.365 0.093

CNN2-L CIFAR10 0.623 0374 0.535 0.534 0314
CNN3-L CIFARIO 0.687 0432 0.579 0.581 0.365
ViT+LoRA  CIFAR10 0.777 0.766 0.686 0.686 0.522

4.3 Factors influencing the variability of TDA

Based on the observation in §4.2] that TDA values are often dominated by noise, we delve into
the factors that lead to the instability of data attributions. We inspect the contribution of model
initialisation, training set size and model complexity.

Source of randomness. From a Bayesian ML perspective, the stochasticity of TDA stems from the
inherent uncertainty of the learned model posterior p(6|D). We consider two sources of randomness,
model initialisation (DE-Init) and SGD batch composition (DE-Batch). Results are reported in
Table [T} For MNIST3 and CIFAR10, we observe that DE-Batch introduces lower levels of noise in
the TDA estimates (lower p-values). Particularly on MNIST3, both LOO and other TDA methods
result in statistically significant p-values (< 0.005). This implies that almost every training data z; is
influencing every test data z consistently across various batch compositions. We conclude that the
greater source of variations for the TDA estimates is the model initialisation.

Training set size. We study how training set size is a source of noise (cf. Figure d). We train
the CNN2-L with different-size datasets of MNIST3 and CIFAR10, where we vary the number of
samples per class. Batches are composed differently depending on the dataset size, meaning that
parameter updates are made after processing different data. In addition, we train a CNN2-L on the
complete MNIST dataset and use a subset of the training data for our experiments (cf. Appendix [B.4).
The results show a tendency for high variation in TDA scores with larger datasets first after which a
decrease in variation is observed. The initial increase makes sense as the number of combinations
for batch composition increases with dataset size. As the batching is initialised randomly during
training, batches are likely to be composed of different data for larger datasets. This leads to variation
in the learned model parameters, in turn affecting the reliability of TDA. At the point of decrease, the
TDA scores are rather small for all train-test pairs. The attribution of individual training samples to a
model prediction is overall small in larger datasets, which leads to a decrease in variance.

Model complexity. We study how model complexity is linked to the reliability of TDA estimates.
See Table E} We observe that, compared to the CNN models, a large ViT model trained with LoRA
results in dramatically greater p-values. For example, for LOO on MNIST3, the p-value increases
from 0.025 (CNN2-L) to 0.786. A similar trend is observed for other TDA methods. A less dramatic
increase in p-values can also be observed with the addition of another layer to the CNN (i.e. from
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Figure 5: Correlation of TDA methods. Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and
TDA p-values. All results are based on the setting: CNN2-L, MNIST3, SWA+DE-Init.

CNN2-L to CNN3-L). This implies that the reliability of TDA estimates decreases with increasing
model complexity. While we limit the number of trainable parameters in our ViT by using LoRA
to be comparable to CNN3-L, the p-values computed from TDA estimates are significantly larger.
Larger models exhibit a larger parameter space so that noise stemming from model initialisation
or batch composition is amplified. While we fix the model initialisation and dataset size, the batch
composition still varies across the model parameters 6 sampled from the posterior p(6|D) per model.
As both the CNNs and ViT are trained with the same sampled batch compositions, we attribute the
strong increase of p-value to the model complexity.

4.4 (Dis)agreement between TDA methods

We test the reliability of different TDA methods. Ideally, all methods approximate the ground-truth
TDA (LOO). Yet the results suggest that there are substantial differences among the methods. For
example, Grad-Cos is much more stable than all others. Hence, we study TDA methods with respect
to both their correlation with LOO and among each other using Pearson and Spearman correlation of
mean and variance of the TDA distributions, as proposed in §3}]

Figure 5| shows the correlation matrices for one experiment (all experimental results in the Appendix).
The results show that viewing TDA scores as distributions gives insights into the reliability of TDA
methods: None of the tested TDA method’s expected values /i correlates with LOO. This implies that
none of the TDA methods is a good approximation when the random factors are considered. The
poor correlation of p-values of LOO indicates a disagreement in the train-test pairs considered low
noise. We conclude that none of the tested methods reliably capture ground-truth TDA distributions.

Interestingly, we notice a stronger correlation between all other methods particularly when looking at
the correlations of p-values. We identify two groups based on positive correlation, i.e. ATS with IF
and GD with GC. Among the two groups, there is a negative correlation which indicates that methods
interpret the sign of the attribution differently. Between IF, GD and GC this makes sense, as there is a
negative sign in the definition of IF (Equation[2) which is not present in GD and GC. Considering
absolute correlation, IF and GD are strongly correlated which shows that the dot product is a valid
alternative for IF as they produce similar score distributions. The correlation between GD and GC
indicates that the normalisation of gradients does not have a strong impact on the estimated TDA.

IF, GD and GC correlate considerably with ATS, which measures how the loss of a model on z
changes after doing one additional training step on z;. Practically, ATS represents the gradient update
after z;, which is the same as the gradient z; itself. Therefore, it makes sense that the gradient-based
approximation methods are close to ATS. We recognise a difference in the scope LOO and ATS



address. LOO looks at TDA globally and encapsulates the whole training, whereas ATS considers a
local scope with a small model change. As IF, GD and GC correlate with ATS, we observe that they
also correspond to a local change in the model, which underlines and extends the argument of [7]:
There is a gap between LOO and IF, and more generally between the global and local view on TDA.

The TDA variance & is noticeably well-correlated for TDA estimators and LOO, except for GC. This
implies the existence of a consistent ranking of train-test pairs with stable attribution relationships. In
particular, stable train-test pairs predicted by LOO are also likely to be stable pairs for TDA methods
like ATS, IF, and GD. This motivates our final analysis and recommendation for evaluation in @

4.5 Considerations on TDA evaluation from a Bayesian perspective

Our analysis shows that both TDA estimates and ground-truth TDA values are affected by the noise
stemming from the stochastic nature of deep model training. Hence, the practice of comparing against
such a ground truth is destined to result in fragile estimates. We propose to treat TDA estimates
as random variables which allows us to look at the evaluation from a Bayesian perspective: The
comparison of TDA estimates against target TDA values is a comparison of two random variables.
Since it is impossible to get rid of noise, it is better to compare distributions rather than point estimates.
This provides an understanding of how well methods approximate the ground-truth distribution.

We observe that p-values vary between individual train-test sample pairs (z;, z); not all TDA estimates
are equally affected by stochasticity. Interestingly, the presence of low-noise pairs is consistent across
the majority of our experiments (cf. Figure[3)), with varying sizes of the low-noise fraction. We find
that fixing model initialisation and a small dataset size gives rise to a larger number of low-noise pairs.
We propose to focus on such low-noise pairs in TDA evaluation as their estimates are low in
variance, leading to a more reliable evaluation. Identifying such pairs requires an analysis similar
to this work: treating TDA values as distributions and sampling multiple times from the posterior to
get an estimate of the noise. It is crucial to find low-noise pairs to base evaluations on and understand
when TDA is applicable. If no low-variance pairs exist, TDA cannot be used.

5 Related work

We study the reliability of TDA methods and add to the existing body of work on the fragility of
TDA methods. Previous studies focused primarily on IF [29, |6, 8} 9l [7]. We extend the analysis
by additionally studying other TDA methods. While IFs are theoretically grounded in robust
statistics [15], they are based on two assumptions which are not always fulfilled in the context
of deep learning: Twice-differentiability and strict convexity of the loss [3]]. Zhang & Zhang [29]
and Basu et al. [6] point to the fragility of the influence scores due to the non-convexity of deep
learning. Particularly increasing model size is connected to increased model curvature, which means
that influence estimates are more fragile with larger models. They find that strong regularisation is
needed to improve estimation quality. Our experiments verify the observation that fragility increases
with model size, which we observe across methods. We add that sources of randomness in the
training process attribute to the fragility of TDA methods with increasing model size. Furthermore,
related work found that the size of the training set contributes to the fragility of influence estimates.
The attribution of one sample in a large training set is marginal so both influence estimates and
ground-truth influence scores (i.e., from retraining the model) are noisy [6} 8, 9]]. Through a Bayesian
lens, we connect the increased fragility with increasing dataset size to batch composition as well.
Not only is the attribution of a single sample in a large dataset marginal [6] but batches have vastly
different compositions in larger datasets, introducing noise. A recent work [7] states that influence
functions in deep learning do not correspond to LOO and quantify gaps in the estimation stemming
from model non-linearity. A different approach in TDA [30, 31]] aims at predicting the expected
model output given a set of data points, directly considering randomness stemming from model
initialisation. K & Sggaard [9] recommend reporting expected TDA scores to increase estimation
stability. This approach is closest to our work but misses the consideration of variance in TDA
estimates which we include by taking a Bayesian viewpoint.

In contrast to related work, we treat TDA values as distributions, which enables a novel perspective
on the TDA task for deep models. We highlight the importance of considering the variance when
studying reliability.



6 Conclusion

We adopt a Bayesian perspective on the training data attribution (TDA) methods to study their
reliability when applied to deep models, given the stochastic nature of deep model training. By
modelling TDA scores as distributions, we find that randomness in the training process, particularly
due to parameter initialisation and batch composition, translates to variation in ground-truth TDA.
We empirically observe that current estimation methods, such as influence functions, model a local
change in the model whereas the ground truth attribution considers a global model change. Therefore,
TDA is subject to inherent variance, leading us to suggest to the community: (1) When proposing a
novel TDA method, one should view TDA from a Bayesian perspective and study the TDA estimates
as distributions. (2) When using TDA, one should consider the variance to understand when the
estimate can be trusted.

Limitations. We perform an exhaustive analysis of TDA values 7 and the estimates 7’ for all train-
test pairs (z;, z). Because of considerable computational costs, we have subsampled the datasets. In
practice, datasets are considerably larger. Moreover, we choose simple tasks to eliminate the need
for an additional hyperparameter search for model training, as the principal focus is on studying
TDA methods. We choose gradient-based TDA methods but acknowledge that there exist many more,
that we do not address. Hence, we encourage further study of TDA methods to fill these gaps and
recommend investigating TDA from a Bayesian perspective, particularly in the low-data regime.

Broader impact. This paper contributes to the field of data-driven XAI which aims at helping
humans understand the inner workings of opaque models through data-centric approaches. Our work
contributes to understanding the reliability of TDA methods and rethinking their evaluation against a
noisy ground truth, which could help assess when TDA is appropriate and reliable.
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A Model training details

We provide the source code athttps://github.com/ElisaNguyen/bayesian-tdal All experi-
ments were run on a single Nvidia 2080ti GPU.

A.1 Data sampling

We use subsampled versions of the openly available MNIST [24] and CIFAR10 [25] datasets. For
this, we first add an index which we use for randomly sampling a fixed number of images from each
class. Table[3]includes the dataset sizes of the different experiments.

A.2 Model training

CNN2-L has two convolutional layers followed by two fully connected linear layers, with GeLU
activation. We use the Adam optimizer with a learning rate of 0.001 and a weight decay of 0.005.
We use the cross-entropy loss and train the model for 15 epochs on MNIST3 and for 30 epochs
on CIFARI10 with a batch size of 32. CNN3-L has 3 convolutional layers followed by two fully
connected linear layers with GeLU activation. The hyperparameters are the same as for CNN2-L. For
training the ViT with LoRA, we use the peft [32] and HuggingFace transformers library [33].
We start from the pretrained model checkpoint of [34] and finetune the LoORA model with the same
hyperparameters as the CNN.

An overview of the predictive performance measured in accuracy on the subsampled training and test
sets is provided in Table

Hint for reproducibility. In particular, we use CrossEntropyLoss (reduction=‘none’) during
model training and also update this in the ViT training script modeling_vit.py. This is important
for the LOO experiments, where we exclude a sample z; from contributing to the training by zeroing

out the loss.

Table 3: Predictive performance at 95% CI across 10 runs (computed as 1.96*SE)

Experiment
Model Data Randomness [Diain] | Drest]  Accuracygain  Accuracyies
CNN2-L MNIST3  SWA+DE-Init 30 900 0.987+0.010 0.95340.003
CNN2-L MNIST3  SWA+DE-Init 60 900 0.985+£0.007 0.97040.004
CNN2-L MNIST3  SWA+DE-Init 90 900 0.995+0.003  0.93940.005
CNN2-L MNIST3  SWA+DE-Init 120 900 0.999+0.001  0.9414+0.008
CNN2-L MNIST3  SWA+DE-Init 150 900 0.998+0.004 0.97040.003
CNN2-L MNIST3  SWA+DE-Init 180 900 1.000 £0.000 0.985+0.001
CNN2-L CIFAR10 SWA+DE-Init 100 500 0.989+0.020 0.260+0.010
CNN2-L CIFAR10 SWA+DE-Init 200 500 1.000+0.000  0.328+0.007
CNN2-L CIFAR10 SWA+DE-Init 300 500 1.000+0.000  0.360+0.005
CNN2-L CIFAR10 SWA+DE-Init 400 500 0.983+0.020 0.362+0.011
CNN2-L CIFAR10 SWA+DE-Init 500 500 0.992+0.014 0.3774+0.012
CNN2-L CIFAR10 SWA+DE-Init 600 500 0.994+0.005 0.394+0.011
CNN2-L MNIST3 SWA+DE-Batch 150 900 0.993+0.002 0.9754+0.002
CNN2-L CIFAR10 SWA+DE-Batch 500 500 0.991+0.010 0.3644+0.003
CNN3-L MNIST3  SWA+DE-Init 150 900 0.994+0.005 0.9714+0.008
CNN3-L CIFAR10 SWA+DE-Init 500 500 0.989+0.008 0.3634+0.011
ViT+LoRA MNIST3 SWA+DE-Batch 150 900 0.945+£0.008  0.9354+0.005
ViT+LoRA CIFAR10 SWA+DE-Batch 500 500 0.934+0.006 0.8924+0.008

B Additional experimental results

We study the reliability of TDA estimates and values through a hypothesis test, where we report the
p-values as an indication of the statistical significance of the TDA estimate. In this appendix, we
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Figure 6: P-values of ground-truth TDA (LOO) with increasing number of SWA samples (i.e., number of model
checkpoints used as samples of 0) for the CNN trained on MNIST3 and CIFAR10.

provide a complete overview of the analyses of p-values and correlations between different TDA
methods.

B.1 DE vs. DE+SWA

In our work, we sample trained models 6 sampled from the posterior p(6|D). Concretely, we train the
model across 10 different random seeds and record the checkpoints after each of the last five epochs
of training. Each of these models represents a sample. We test how the stability of the TDA values
7(zj, z) (LOO) behaves when we ensemble different numbers of checkpoints by investigating the
mean p-values across all train-test pairs (z;, z). Figure|§| shows that higher numbers of samples 6
increase stability, therefore we use all available samples in our subsequent analyses.

B.2 Correlation analysis on low-noise pairs
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Figure 7: Correlation analysis of low-noise train-test pairs Spearman rank correlation coefficients for TDA
scores with p < 0.05 of LOO retraining of the 2-layer CNN models trained on the respective datasets.

We analyse the Spearman correlation between the TDA approximation methods and ground-truth
TDA (LOO) for low-noise train test pairs (i.e. where p-value of LOO scores is < 0.05). The
correlation matrices are shown in Figure [7] Within the subset of low-noise train-test pairs, the
Spearman correlation of the mean between LOO and the approximation methods is higher than
when considering the whole dataset for both MNIST3 and CIFAR10. The correlation of 6 of the
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low-noise analysis is similar to the results found in the correlation analysis of the whole dataset (cf.
Figures[I2] [T5). Therefore, we observe similar trends when considering only the low-noise train test
pairs to the complete dataset: There is a weak correlation between the TDA approximation methods
and LOO, while the TDA approximation methods correlate strongly among themselves. This reflects
the difference between the global change of retraining and the local approximations.

B.3 Mislabel identification
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Figure 8: Fractions of mislabeled samples discovered with the deterministic definition of TDA (left,
Equation|[T) vs. a probabilistic definition of TDA (right, Equation [7).

A common way of evaluating TDA methods is through the auxiliary task of mislabel identification.
We perform an this experiment with CNN2-L trained on MNIST3 (|D| = 150) and CIFAR10
(D = 500). We follow the procedure from Koh & Liang [3]]: First, a random 10% of the datasets
are mislabeled by the highest scoring incorrect label. We train the model using these mislabeled
datasets (sample 7" = 50 times from the posterior). Then, we compute self-influence, which is the
attribution of a sample to itself, with each TDA method. The mislabeled dataset is ranked according to
self-influence and the quantity of interest is the fraction of mislabeled samples found when inspecting
the top x% of the ranked dataset. In the analysis, we inspect (1) the range of mislabeled fractions
discovered if we treat TDA deterministically, i.e. we compute the discovered fraction per ¢t € 1" and
report the range (cf. Figure[§]left); (2) the fraction of mislabeled samples discovered when we use the
mean over the TDA scores of our posterior samples (cf. Figure [§]right). We find that deterministic
TDA results in a large range of possible outcomes for identifying mislabeled samples. This means
that it is harder to reliably identify mislabels when TDA is treated as point estimates.

B.4 Experiments on MNIST (IDI=60,000)

Table 4: Mean p-values of ground-truth TDA (LOO) and estimated TDA values of with randomness included by
SWA+DE-Init for CNN2-L trained on the complete MNIST dataset.

LOO ATS IF GD GC
0.761 0362 0.464 0475 0.247

In addition to our main experiments, we conduct a statistical test on the TDA scores obtained from
a CNN2-L model trained on the complete MNIST (|D| = 60, 000) dataset (cf. Figure . We base
the analysis on 7' = 50 samples from the model posterior (10 random seeds x 5 checkpoints) and a
small random subsample of data (100 training samples x 10 test samples = 1000 train-test pairs)
due to the high computational cost of retraining. We find high (p>0.05) variance in ground-truth TDA
as well as TDA estimates, in line with findings from raining set size.
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The results show that TDA estimates vary strongly for the small subset of train-test pairs (high
p-values). We identify two main reasons: (1) MNIST is larger in training set size than the initial sets
we used. The attribution of one sample to model behaviour is likely to be marginal and unstable. (2)
Low-noise samples exist, but they are in the minority. This experiment shows that LOO is affected by
the stochasticity of deep model training and TDA approximation methods fail to capture this.

B.5 All results: Stability of TDA values and estimates

Table [5] presents the complete table of p-values of all tested TDA methods across all experiments
of our work except for the experiments detailed in Appendices [B.3] and Below, we display
the histograms of p-values per experiment corresponding to each line in the table captioned with
the experiment ID. The histograms show that low-noise train-test pairs (z;, z) are present in all
experiments involving the CNN model (i.e., experiments 1-8), where the number of pairs varies.
Generally, we observe that there is no connection between the size of the dataset and the distribution
of p-values. Furthermore, we notice that fixing the model initialisation (i.e., randomness induced by
SWA+DE-Batch) increases the number of stable train-test pairs (cf. experiment 5 to 13, 11 to 14).
However, in the case of the ViT experiments, stable train-test pairs are practically non-existent which
shows that model complexity affects the stability of TDA.

Table 5: Complete list of mean p-values of TDA values for all experiments.

Experiment
ID Model Data Randomness |Duain] LOO  ATS IF GD GC
1 CNN2-L MNIST3 SWA+DE-Init 30 0.058 0.088 0.111 0.110 0.020
2  CNN2-L MNIST3  SWA+DE-Init 60 0421 0.148 0.251 0.253 0.002
3 CNN2-L MNIST3  SWA+DE-Init 90 0.714 0.355 0.466 0470 0.209
4 CNN2-L MNIST3  SWA+DE-Init 120 0.675 0.346 0469 0472 0.218
5 CNN2-L MNIST3  SWA+DE-Init 150 0.331 0.254 0352 0363 0.003
6 CNN2-L MNIST3  SWA+DE-Init 180 0.374 0.254 0355 0.356 0.001
7 CNN2-L CIFARIO SWA+DE-Init 100 0.665 0.424 0.607 0.608 0.352
8 CNN2-L CIFARIO SWA+DE-Init 200 0.552 0.397 0450 0.452 0.399
9 CNN2-L CIFARIO SWA+DE-Init 300 0.543 0.389 0456 0456 0.313
10 CNN2-L CIFARIO SWA+DE-Init 400 0.619 0418 0562 0.568 0.344
11 CNN2-L CIFARIO SWA+DE-Init 500 0.692 0.438 0575 0.587 0.356
12 CNN2-L CIFARIO SWA+DE-Init 600 0.665 0.447 0575 0.579 0.358

13 CNN2-L MNIST3  SWA+DE-Batch 150 0.025 0.039 0.000 0.000 0.000
14 CNN2-L CIFAR10 SWA+DE-Batch 500 0.623 0.374 0535 0534 0314
15 CNN3-L MNIST3  SWA+DE-Init 150 0370 0.368 0.464 0479 0.005
16 CNN3-L CIFAR10 SWA+DE-Init 500 0.687 0432 0579 0.581 0.365
17 ViT+LoRA MNIST3  SWA+DE-Batch 150 0.786 0.573 0369 0.365 0.093
18 ViT+LoRA CIFAR10 SWA+DE-Batch 500 0.777 0.766 0.686 0.686 0.522

B.6 All results: Correlation analysis

In the main body of this paper, we report the Pearson and Spearman correlation matrices for ex-
periment 3 (CNN2-L trained on MNIST3 with 50 samples per class and randomness induced by
SWA+DE-Init). This section presents the complete overview of correlations between TDA methods
across all experiments in Figures [I0]- We note that the observations and analyses in the main
paper hold across experiments.
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Figure 9: Distribution of p-values for ground-truth TDA (LOO) for all experiments (IDs corresponding to IDs in
Table[3).
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Pearson’s r
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Figure 10: Experiment 1 (cf. Table EI): Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and

TDA p-values.

Pearson’s r

Spearman’s p

Figure 11: Experiment 2 (cf. Table : Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and

TDA p-values.
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Pearson’s r

Spearman’s p

Figure 12: Experiment 3 (cf. Table EI): Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and

TDA p-values.
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Figure 13: Experiment 4 (cf. Table : Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and

TDA p-values.
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Figure 14: Experiment 5 (cf. Table EI): Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and
TDA p-values.
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Figure 15: Experiment 6 (cf. Table : Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and
TDA p-values.
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Figure 16: Experiment 7 (cf. Table EI): Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean i, TDA standard deviation &, and
TDA p-values.
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Figure 17: Experiment 8 (cf. Table : Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and
TDA p-values.
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Figure 18: Experiment 9 (cf. Table EI): Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean i, TDA standard deviation &, and

TDA p-values.
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Figure 19: Experiment 10 (cf. TableEI): Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and
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Figure 20: Experiment 11 (cf. TableEI): Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and

TDA p-values.
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Figure 21: Experiment 12 (cf. TableEI): Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and

TDA p-values.
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Figure 22: Experiment 13 (cf. TableEI): Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and

TDA p-values.
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Figure 23: Experiment 14 (cf. TableEI): Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and

TDA p-values.
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Figure 24: Experiment 15 (cf. TableEI): Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and
TDA p-values.
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Figure 25: Experiment 16 (cf. TableEI): Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and
TDA p-values.
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Figure 26: Experiment 17 (cf. TableEI): Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and
TDA p-values.
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Figure 27: Experiment 18 (cf. TableEI): Pearson and Spearman correlation coefficients among ground-truth
TDA and approximate TDA methods. We show correlations for TDA mean /i, TDA standard deviation &, and
TDA p-values.
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