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Abstract

Training data attribution (TDA) techniques find influential training data for the
model’s prediction on the test data of interest. They approximate the impact of
down- or up-weighting a particular training sample. While conceptually useful,
they are hardly applicable to deep models in practice, particularly because of their
sensitivity to different model initialisation. In this paper, we introduce a Bayesian
perspective on the TDA task, where the learned model is treated as a Bayesian
posterior and the TDA estimates as random variables. From this novel viewpoint,
we observe that the influence of an individual training sample is often overshadowed
by the noise stemming from model initialisation and SGD batch composition. Based
on this observation, we argue that TDA can only be reliably used for explaining
deep model predictions that are consistently influenced by certain training data,
independent of other noise factors. Our experiments demonstrate the rarity of
such noise-independent training-test data pairs but confirm their existence. We
recommend that future researchers and practitioners trust TDA estimates only in
such cases. Further, we find a disagreement between ground truth and estimated
TDA distributions and encourage future work to study this gap. Code is provided
at https://github.com/ElisaNguyen/bayesian-tda.

1 Introduction

Understanding how machine learning models arrive at decisions is desirable for social, legal and
ethical reasons, particularly for opaque deep learning models [1]. One approach to explanations is the
data-centric approach of training data attribution (TDA). As the name suggests, TDA finds attributing
training samples for a model decision, uncovering which part of the training data is relevant. The
attribution τ of a training sample zj on another sample z is usually defined as the change of model
loss L on z when the model is retrained without zj [2]:

τ(zj , z) := L(z; θ\j)− L(z; θ) (1)

where θ is a model trained on the entire dataset D and θ\j is a model trained on the same set
without zj . Since the direct computation of Equation 1 is expensive, various TDA techniques for
approximating the quantity have been proposed, such as influence functions [3] or TracIn [4]. Their
approximations are often based on some form of inner product between the parameter gradients
∇θL(z; θ) and ∇θL(zj ; θ).
Knowing how training samples attribute to a model decision provides an actionable understanding
of the training data distribution, especially in cases of model error. TDA methods can identify the
training samples that are most relevant to an error and therefore enable users to understand why the
error occurred (e.g. due to domain mismatch of test and training data or wrongly labelled training
data) [3]. Additionally, TDA gives them the tool to address the errors by e.g. changing the model
directly through the training data. Even in non-erroneous cases, understanding the attributing training
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data may enable users affected by model decisions to contest the decisions if the attributing training
data is noisy or of low quality [5].

At the same time, TDA methods, especially influence functions [3], have been criticised for their
fragility when applied to deep models [6, 7, 8]. The main reasons are model complexity and the
stochasticity of deep model training. While the former poses a challenge specifically for influence
functions as they rely on strong convexity assumptions, the latter is a more general challenge [6, 9].
The randomness inherent to the training process does not only lead to variation in the learned model
parameters but also in TDA scores, which makes them untrustworthy. Hence, K & Søgaard [9]
recommend using expected TDA scores for increased stability.

We argue that solely considering the expectation is not sufficient to ensure the reliability of TDA but
requires inspecting the variance, too. We introduce a Bayesian perspective on the TDA task, noticing
that there is no deterministic mapping from a dataset D to the corresponding model θ for deep neural
networks. The learned model depends on the initialisation and batch composition in the stochastic
gradient descent (SGD) optimiser. We capture the resulting randomness via Bayesian model posterior
p(θ|D) over the parameter space [10, 11, 12]. In turn, the TDA estimate (Equation 1) is a random
variable that depends on two posteriors, p(θ|D) and p(θ\j |D\j).

This viewpoint leads to a few insights into the practical usage and evaluation of TDA techniques.
We confirm quantitatively that the ground-truth influence τ(zj , z) is often dominated by the noise:p

Var(τ) > E|τ |. We argue that it is practically difficult to apply any TDA technique on pairs (zj , z)
whose ground-truth attributions τ(zj , z) are noisy in the first place. Likewise, any evaluation of TDA
methods on such high-variance pairs would not be reliable.

Nonetheless, we are optimistic that TDA techniques are useful in practice, particularly for train-test
pairs with high signal-to-noise ratios:

p
Var(τ) ≪ E|τ |. We observe that such pairs are rare but

consistently present in multiple experiments. We recommend that researchers and practitioners
confine their usage to scenarios where the signal-to-noise ratios are expected to be large enough.

Our contributions are as follows: (1) Bayesian formulation of the training data attribution (TDA)
task. (2) Observation that the ground-truth TDA values are often unreliable and highly variable.
(3) Recommendation for the community to use the TDA tools only when the expected noise level is
low. (4) Experimental analysis of the contributing factors to the variance of ground-truth TDA values.
(5) Observation that the TDA estimation methods capture local changes in the model with regard to
the counterfactual question of “retraining without training sample zj", while LOO retraining itself
results in a more global change through the training procedure.

2 Background

We cover the background materials for the paper, including the concept, method, and evaluation of
training data attribution (TDA) methods and Bayesian deep learning.

2.1 Training data attribution (TDA)

We introduce the TDA task, a few representative TDA methods, and existing evaluation strategies.

TDA task. Given a deep model fθ parametrised by θ, a training set D := {z1, · · · , zN}, and a test
sample z, one is interested in the impact of a training sample zj on the model’s behaviour on the test
sample z. In the TDA context, one is often interested in the counterfactual change in the loss value for
z after leave-one-out (LOO) training, when zj is excluded from the training set (Equation 1). TDA
has been considered in different use cases, such as understanding the bias in word embeddings [13],
fact tracing in language model outputs [14] and measuring the robustness of model predictions [5].

TDA methods. The conceptually most straightforward way to compute the difference due to LOO
training (Equation 1) is to compute it directly. However, this is computationally expensive, as it
involves the learning algorithm for obtaining θ\j for every j. This gives rise to various TDA techniques
that find approximate estimates τ ′(zj , z) of LOO. A prominent example of such approximation is
the influence function (IF) method [3] based on [15]. Under strong smoothness assumptions, they
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approximate Equation 1 by:

� 0(zj ; z) := �r � L (z; � )> H � 1
� r � L (zj ; � ) (2)

wherer � L (z; � ) andr � L (zj ; � ) refer to the parameter gradients off � for z andzj respectively.
Recognising the dif�culty of scaling up the inverse Hessian computationH � 1

� and the high dimen-
sionality of operations in Equation 2, subsequent papers have proposed further approximations to
speed up the computation [16, 17]. Charpiatet al. [18] have analysed the in�uence ofzj on z by
dropping the need to compute the Hessian and formulating in�uence as the loss change when an
additional training step (ATS) onzj is taken:

� (zj ; z) := L (z; � + j ) � L (z; � ) (3)
where� + j is a learned model parameter withD and an additional step onzj . They propose two
approximations:

Grad-Dot (GD): � 0(zj ; z) := r � L (zj ; � )> r � L (z; � ) (4)

Grad-Cos (GC): � 0(zj ; z) :=
r � L (zj ; � )

kr � L (zj ; � )k

> r � L (z; � )
kr � L (z; � )k

(5)

This method is closely linked toTracIn [4] which computes the Grad-Dot not just at the end of the
training, but averages the regular Grad-Dot similarities throughout the model training iterations. We
note later in our analysis that within our Bayesian treatment of TDA, the TracIn method coincides
conceptually with the Grad-Dot method. In our analysis, we study the sensitivity of LOO and the
above TDA methods against noise.

TDA evaluation. The primal aim of TDA methods is to measure how well they approximate the
ground-truth LOO values. This is often done by measuring the correlation between the estimates from
each TDA method and the ground-truth LOO values (Equation 1) [3, 6, 7, 9]. They use either a linear
(Pearson) correlation or a rank (Spearman) correlation overa small numberof train-test sample pairs
(zj ; z) due to the computational burden of computing the actual LOO values, especially for larger
models. Usually, a few samplesz are chosen for a comparison against LOO, e.g. Koh & Liang [3]
report results for onez and Guoet al. [16] for 10 samplesz. In some cases, the ground-truth LOO is
obtained by computing the change in loss after training further from the learned model parameters,
e.g. [3]. Some works have adopted indirect evaluation metrics such as the retrieval performance of
mislabelled or poisoned training data based on the TDA estimates [3, 19, 16, 9, 17]. In this work, we
adopt the Pearson and Spearman correlation metrics and discuss ways to extend them when the target
(LOO from same initialisation) and estimates (TDA) are both random variables.

2.2 Bayesian deep learning.

Bayesian machine learning treats the learned model as a posterior distribution over the parameter
space, rather than a single point:

p(� jD ) = p(Dj � )p(� )=p(D): (6)
Bayesian ML nicely captures the intuition that the mapping from a training setD to the learned model
p(� jD ) is not a deterministic mapping, especially for non-convex models like deep neural networks
(DNNs). Depending on the initialisation, among other factors, DNN training almost always learns
vastly different parameters.

The estimation of the true posterior is indeed dif�cult for complex models like DNNs. The �eld of
Bayesian deep learning is dedicated to the interpretation of certain random elements in DNN training
as sources of randomness for the approximated Bayesian posteriors. For example, if Dropout [20]
is used for training a model, it may be used at test time to let users sample� from the posterior
distributionp(� jD ) [21]. More generally used components like stochastic gradient descent (SGD)
have also been interpreted as sources of randomness. The random walk induced by SGD iterations
in the parameter space can be viewed as a Markov Chain Monte-Carlo sampler from the posterior
distribution, after a slight modi�cation of the optimisation algorithm (Stochastic Gradient Langevin
Dynamics [10]). Similarly, the last few iterations of the vanilla SGD iterations may also be treated as
samples from the posterior, resulting in more widely applicable Bayesian methods like Stochastic
Weight Averaging (SWA) [12, 22]. Finally, the random initialisation of DNNs has also been exploited
for modelling posterior randomness; training multiple versions of the same model with different
initial parameters may be interpreted as samples from the posterior [11]. We show in the next section
how the Bayesian viewpoint will help us model the sources of stochasticity for TDA estimates.
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Figure 1:A Bayesian interpretation of training data attribution (TDA).

3 A Bayesian perspective on training data attribution

Training data attribution (TDA)� (zj ; z) is de�ned as the attribution of one training samplezj to
another samplez in terms of how a target metric like the loss of a sampleL (z; � ) changes when
the model is trained withoutzj (Equation 1). We note here that according to the de�nition, we are
interested in the impact of the change in thedatasetfrom D to Dnj , rather than the change in the
model parameter. From a Bayesian perspective, a change in the training dataset leads to a shift in the
posterior distribution,p(� jD ) ! p(� nj jDnj ), leading to the de�nition of TDA as a random variable:

� (zj ; zjD ) := L (z; Dnj ) � L (z; D) = L (z; � nj jDnj ) � L (z; � jD ) (7)

where� � p(� jD ) and � nj � p(� nj jDnj ). This interpretation is more natural, given the non-
uniqueness of the mapping from a training datasetD to the optimal model parameter� for general,
non-convex models like DNNs. Alternatively, one could treat the model built fromD as a �xed
variable rather than a posterior as TDA is applied to a speci�c model in practice. The change of
dataset fromD to Dn j however still introduces ambiguity in� n j , which is captured in the Bayesian
posteriorp(� n j jDn j ). In this study, we use the probabilistic formulation of TDA in Equation 7.

Sampling TDA values. One could plug in various Bayesian DL techniques (§2.2) to compute
samples ofp(� jD ), which can be used to get the samples of� (zj ; z). In our work, we use the
Stochastic Weight Averaging (SWA) [12, 22] and Deep Ensemble (DE) [11] which are applicable to
a wide class of deep models. More speci�cally, we obtainT samples� (1) ; � � � ; � (T ) � p(� jD ) either
by taking the lastT model checkpoints of the SGD iterations (SWA) or by taking the last model
checkpoints fromT different model initialisations (DE). The same is done for the counterfactual
posterior� (1)

nj ; � � � ; � (T )
nj � p(� nj jDnj ). This results in a mixture-of-Gaussian posterior, where DE

samples correspond to centroids of the distribution. Our sampling approach is thus a version of
strati�ed sampling, where the number of samplesT from a centroid is �xed and sampled IID.

Statistical analysis on TDA. The simplest statistics for the TDA� (zj ; z) are the mean and variance:

E[� (zj ; z)] =
1
T

X

t

L (z; � ( t )
nj ) � L (z; � ( t ) ) (8)

Var[� (zj ; z)] =
1

T2

X

t;t 0

�
L (z; � ( t )

nj ) � L (z; � ( t 0) ) � E[� (zj ; z)]
� 2

(9)

Our main interest lies in whether the in�uence of the training datazj on the test dataz is statistically
signi�cant and not dominated by the inherent noise of deep model training. For this purpose, we
design a Student t-test [23] for quantifying the statistical signi�cance. Our null and alternative
hypotheses are:

H0 : � = 0 H1 : � 6= 0 : (10)
We consider the test statistic based on sample mean and variance:

t =
� � E[� (zj ; z)]

p
Vars[� (zj ; z)]=T2

: (11)

Vars refers to the sample variance where the denominator in Equation 9 isT2 � 1 instead. We report
the signi�cance of the absolute TDAj� (zj ; z)j for every train-test pair(zj ; z) by computing the
p-value corresponding to the t-test statistic. The greater the p-value is, the greater the dominance of
noise is for the TDA estimate.
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Figure 2:Sources of randomness for Bayesian posteriors.In each case, the training starts from initialisation
� 0 . Depending on whetherzj is included in the training data, one has either samples from the original posterior
p(� jD ) or from the counterfactual posteriorp(� nj jD nj ). For deep ensemble [11], the randomness stems either
from random initialisation (DE-Init) or from SGD batch composition (DE-Batch). For stochastic weight
averaging (SWA) [12, 22], last few checkpoints of the training are treated as posterior samples.

TDA methods likewise estimate random quantities. Approximate TDA methods like in�uence
functions (IF), Grad-Dot, and Grad-Cos (§2.1) also predict random quantities� 0(zj ; z). For example,
IF predicts� (zj ; z) � � 0(zj ; z) := �r � L (zj ; � )> H � 1

� r � L (z; � ), where one may sample� from
the posteriorp(� jD ). We note that IF suffers theoretical issues in its application to deep models, as
convexity assumptions are not met. In practice, estimation algorithms make use of a damping term
to ensure the positive de�niteness of the inverse Hessian. Through a Bayesian lens, the damping
term could be seen as an isotropic Gaussian prior centred at the origin. Similar statistical analyses on
the TDA estimations can be performed as above, including the mean and variance computations and
statistical testing for the signi�cance of in�uence.

Evaluating TDA as a random variable. Previously, the LOO-based TDA values� (zj ; z) and the
estimates from various approximate TDA methods� 0(zj ; z) are compared via correlation measures
like Pearson or Spearman. Our treatment of those quantities as 1-D random variables poses a novel
challenge for evaluation because there exists no inborn notion of ordering among 1-D random
variables. We address the challenge by examining the approximation ability of TDA methods for both
the �rst and second moments of the true TDA values� (zj ; z). More speci�cally, we compute the
Pearson and Spearman correlation for both the mean (Equation 8) and variance (Equation 9) between
the ground-truth� (zj ; z) and estimated TDA� 0(zj ; z) values across multiple train-test pairs(zj ; z).

4 Experiments

We introduce our experimental settings, present analyses on factors contributing to the reliability of
TDA values, compare TDA methods, and draw suggestions on the evaluation practice of TDA.

4.1 Implementation details

We illustrate the speci�c details of our implementation. See the Appendix for further information.

TDA methods. We study different TDA methods from a Bayesian perspective. We test the methods
introduced in §2.1 for estimating TDA:in�uence functions (IF) [3], Grad-Dot (GD) andGrad-Cos
(GC) [18]. We use the PyTorch implementation of IF from Guoet al. [16] and modify it for our
models. As the ground-truth target, we considerLeave-one-out training (LOO) [3]. For LOO,
we remove ofzj from the training setD by zeroing out the weight for samplezj towards the loss.
Additionally, we include Charpiatet al.'s [18] notion of TDA that a training data pointzj attributes
more if anadditional training step (ATS) on it changes the test loss more signi�cantly.

Inducing randomness in posteriorp(� jD ). In §2.2, we have introduced the interpretation of
various elements around model training as sources of randomness for Bayesian posterior. We
summarise our methods for inducing randomness in Figure 2. We use the notion of the Deep
Ensemble (DE) [11] to sample from the posterior. In a variant of DE with the initialisation as
the source of randomness (DE-Init ), we train each ofTDE randomly initialised parameters� ( t )

0 on
eitherD or Dnj . The resulting parameter sets,� ( t ) and� ( t )

nj , are treated as samples from respective
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