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Abstract

Benchmarks play a crucial role in the development and analysis of reinforcement
learning (RL) algorithms, with environment availability strongly impacting re-
search. One particularly underexplored intersection is continual learning (CL) in
cooperative multi-agent settings. To remedy this, we introduce MEAL (Multi-agent
Environments for Adaptive Learning), the first benchmark tailored for continual
multi-agent reinforcement learning (CMARL). Existing CL benchmarks run envi-
ronments on the CPU, leading to computational bottlenecks and limiting the length
of task sequences. MEAL leverages JAX for GPU acceleration, enabling continual
learning across sequences of 100 tasks on a standard desktop PC in a few hours.
We show that naïvely combining popular CL and MARL methods yields strong
performance on simple environments, but fails to scale to more complex settings
requiring sustained coordination and adaptation. Our ablation study identifies
architectural and algorithmic features critical for CMARL on MEAL.

1 Introduction

Continual RL has recently attracted growing interest [17, 9, 10, 14], but remains largely unexplored
in multi-agent settings [44, 45]. Combining the two introduces unique challenges. In cooperative
environments, agents must establish implicit conventions or roles for effective coordination [38]. As
tasks or dynamics shift, these conventions can break down, making continual MARL significantly
harder than its single-agent counterpart. Forgetting past partners or roles can cause the entire team
to fail, amplifying the impact of catastrophic forgetting through inter-agent dependencies. Unlike
traditional MARL, CMARL involves non-stationarity not only due to the presence of other learning
agents, but also from an unknown task distribution [45]. This dual pressure demands agents to
generalize, adapt, and transfer knowledge more robustly than in standard single-agent continual
or static multi-agent settings. This setting is prevalent in applications where agents must adapt to
evolving environments without forgetting prior coordination strategies. For instance, autonomous
vehicles must navigate unseen roads, adapt to new traffic regulations, and interact with unfamiliar
human drivers, while coordinating with other AVs. Similarly, warehouse robots deployed in a
new facility must quickly adapt to unseen layouts and workflows, while preserving established
collaborative behaviors.

To analyze how current methods handle the interplay between CL and MARL, and to drive progress
in this domain, we introduce MEAL, the first benchmark for CMARL. To the best of our knowledge,
MEAL1 is also the first continual RL library to leverage JAX for end-to-end GPU acceleration.
Traditional CPU-based benchmarks are limited to short sequences (5–15 tasks) due to low environment
throughput and task diversity [37, 32, 40], making them ill-suited for the computational demands

1The code and environments are accessible on GitHub.
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Table 1: Comparison of existing Reinforcement Learning benchmarks with MEAL.

Benchmark No. Tasks Difficulty
Levels

GPU-
accelerated

Action
Space

Multi-
Agent

Continual
Learning

CORA [32] 31 ✗ ✓ Mixed ✗ ✓
MPE [27] 7 ✗ ✗ Continuous ✓ ✗
SMAC [36] 14 ✓ ✗ Discrete ✓ ✗
Continual World [41] 10 ✗ ✗ Continuous ✗ ✓
Melting Pot [2] 49 ✗ ✗ Discrete ✓ ✗
Google Football [23] 14 ✓ ✓ Discrete ✓ ✗
JaxMARL [35] 33 ✗ ✓ Mixed ✓ ✗
COOM [40] 8 ✓ ✗ Discrete ✗ ✓

MEAL ∞ ✓ ✓ Discrete ✓ ✓

of CL across long task sequences. MEAL’s end-to-end JAX pipeline removes this barrier, enabling
training on up to 100 tasks within a few hours on a single desktop GPU. This unlocks new research
directions for scalable, cooperative continual learning in resource-constrained settings.

MEAL is built on Overcooked [7], a widely used cooperative MARL environment [19, 42, 38],
providing a strong foundation for benchmarking. Prior work has shown that agents tend to exploit
spurious correlations in fixed layouts, resulting in poor generalization even under minor modifica-
tions [22]. This makes Overcooked particularly well-suited for continual learning: even small layout
variations can present a significant challenge. To succeed across a sequence of such tasks, agents
must avoid overfitting to layout-specific behaviors and instead learn coordination strategies that are
robust and transferable.

The contributions of our work are three-fold. (1) We introduce MEAL, the first CMARL benchmark,
consisting of procedurally generated Overcooked environments spanning three difficulty levels. (2)
We leverage JAX to build the first end-to-end GPU-accelerated task sequences for continual RL,
enabling efficient training on low-budget setups. (3) We implement six popular CL methods in JAX
and evaluate them in MEAL, revealing key shortcomings in retaining cooperative behaviors and
adapting to shifting roles across tasks.

2 Related Work

Continual Reinforcement Learning (CRL) CRL studies how agents can learn sequentially from a
stream of tasks without forgetting previous knowledge. A wide range of methods have been adapted
from the CL literature to facilitate the RL setting, including regularization-based approaches such
as EWC [21], SI [46], and MAS [3]; architectural strategies such as PackNet [25]; and replay-
based methods like RePR [4]. More recent works focus on scalability [17], memory efficiency [10],
and stability during training [9]. However, these methods are almost exclusively developed for
single-agent settings, and their behavior under multi-agent coordination remains largely unexplored.

Multi-Agent Reinforcement Learning (MARL) In MARL, multiple agents learn to act in a shared
environment, often with partial observability and either cooperative or competitive goals [18, 29]. A
major focus has been on cooperative settings, where agents share a reward function and must learn to
coordinate [24, 15]. Popular algorithms include IPPO [11], VDN [39], QMIX [33], and MAPPO [43].
Many benchmarks assume a static environment and fixed task, making them unsuitable for studying
continual learning or transfer across environments.

Benchmarks Standard CRL benchmarks include Continual World [41], COOM [40], and
CORA [32]. While effective in single-agent settings, they either lack multi-agent capabilities or suffer
from slow CPU-bound environments. For MARL, environments like SMAC [36], MPE [27], and
Melting Pot [2] are widely used, but are not designed for continual evaluation. Overcooked [7] has
emerged as a useful domain for studying coordination, with recent implementations in JAX [35]. Our
benchmark builds on Overcooked and introduces procedural variation to create long task sequences
for continual MARL.

Overcooked The Overcooked environment [7] is a cooperative multi-agent benchmark inspired by
the popular video game of the same name. Agents control chefs in a grid-based kitchen, coordinating
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to prepare and deliver dishes through sequences of interactions with environment objects such as pots,
ingredient dispensers, plate stations, and delivery counters. The environment is designed to require
both motion and strategy coordination, making it a standard testbed for evaluating collaborative
behaviors. Compared to the large state spaces and high agent counts in benchmarks like Melting
Pot [2] and SMAC [36], Overcooked operates on small grid-based environments with only two
agents. However, its complexity arises not from scale but from credit assignment challenges due to
shared rewards, and the need for precise coordination, as agents must execute tightly coupled action
sequences to complete tasks successfully [18].

3 Preliminaries

Cooperative Multi-Agent MDP We formulate the setting as a fully observable cooperative multi-
agent task, modeled as a Markov game defined by the tuple ⟨N,S,A, P,R, γ⟩, where N is the
number of agents, S is the state space, Ai is the action space of agent i with joint action space
A = A1 × · · · × AN , P : S × A× S → [0, 1] is the transition function, R : S × A× S → R is a
shared reward function, and γ ∈ [0, 1) is the discount factor. In the fully observable setting, each
agent receives the full state s ∈ S at every time step.

Continual MARL We consider a continual MARL setting in which a shared policy πθ = πi
θi∈N is

learned over a sequence of tasks T = M1, . . . ,MN , where each Mi = ⟨N,Si, A, Pi, Ri, γ⟩ is a
fully observable cooperative Markov game with consistent action and observation spaces. At training
phase i, agents interact exclusively with Mi for a fixed number of iterations ∆, collecting trajectories
τi,1, . . . , τi,∆ to update their policy. Past tasks are inaccessible, and no joint training is allowed. The
objective is to maximize performance on all tasks in the sequence.

4 MEAL

We introduce MEAL, the first benchmark for CMARL, built on the JaxMARL [35] version of
Overcooked. JAX [6] provides just-in-time compilation, automatic differentiation, and vectorization
through XLA, enabling high-performance and accelerator-agnostic computation.

4.1 Environment Specifications

Dynamics Agents act synchronously at each time step. Moves into walls or occupied tiles are
no-ops, and simultaneous swaps are disallowed (both agents remain in place). Agents can interact
with the tile they are facing, which deterministically updates the object’s state (pick/place, add onion,
plate, deliver). Pots initiate a fixed cook timer of ccook=20 steps when the third onion is added, and
the cooked soup can only be plated upon completion.

Observations Each agent receives a fully observable grid-based observation of shape (H,W, 26),
where H and W are the height and width of the environment, and the 26 channels encode entity
types (e.g., walls, agents, onions, plates, pots, delivery stations) and object states (e.g., cooking
progress, held item). To ensure compatibility across environments in a continual learning setting, we
fix Hmax and Wmax to the largest layout size and pad smaller layouts with walls. Observations are
then standardized to the shape (Hmax,Wmax, 26).

Action Space At each timestep, both agents select one of six discrete actions from a shared action
space A = {up, down, left, right, stay, interact}. Movement actions translate the agent
forward if the target tile is free (i.e., not a wall or occupied), while stay maintains the current
position. The interact action is context-dependent and allows agents to pick up or place items, add
ingredients to pots, serve completed dishes, or deliver them at the goal location. Importantly, there is
no built-in communication action; all coordination emerges from environment interactions.

Rewards Agents receive a shared team reward: rt = rdeliver + ronion · 1{onion_in_pot} + rplate ·
1{plate_pickup} + rsoup · 1{soup_pickup}, where rdeliver = 20 is the reward for delivering soup, and the
other terms provide shaped rewards for intermediate progress. We include two reward settings: in the
sparse setting, ronion = rplate = rsoup = 0; in the dense setting, ronion = rplate = 3, and rsoup = 5.
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(a) Empty grid drawn with
outer walls.

(b) Interactive stations sam-
pled at random locations.

(c) Grid filled with walls to
match obstacle density.

(d) Agents added and un-
reachable tiles pruned.

Figure 1: Procedural generation pipeline of a hard layout. Starting from an empty grid with outer
walls, the generator injects interactive stations, adds walls to match the desired obstacle density,
places agents, and finally prunes unreachable tiles.

4.2 MEAL Generator

Existing continual RL benchmarks only provide a fixed set of tasks [37, 32, 40]. To avoid over-fitting
to a fixed set of environments, we procedurally generate new Overcooked kitchens on the fly. The
generator G draws a random width and height from the specified range, places an outer wall, then
sequentially injects the interactive tiles (goal, pot, onion pile, plate pile), extra internal walls to match
the target obstacle density, and finally, the agents’ starting positions. Figure 1 depicts the steps in
the pipeline, and the process is described more in-depth in Appendix A.2. Each candidate grid is
accepted only if a built-in validation module confirms that both agents can complete at least one
cook–deliver cycle. This yields a continuous space of solvable, variable-sized kitchens that we can
learn continually. We bring further details about the validator in Appendix A.3. Our approach offers
a virtually infinite supply of tasks and evaluates true lifelong learning under continual exposure
to unseen configurations. To ensure reproducibility and a fair comparison between methods, the
generation process can be fully controlled via a user-specified random seed.

4.3 Layout Difficulty

We categorize environment difficulty based on procedurally generated layout characteristics. We vary
the (1) grid width, (2) grid height, and (3) obstacle density. This approach produces diverse spatial
configurations while maintaining consistent difficulty within each level. Figure 2 depicts layouts
of each difficulty. As grid size and the number of impassable tiles increase, agents must develop
more sophisticated coordination strategies. Higher difficulty layouts feature longer paths between key
items, tighter bottlenecks, and greater structural variability, all of which make exploration, retention,
and adaptation more challenging. Level 1 tasks are designed to be simple enough for existing methods
to achieve reasonably high scores, enabling better comparisons and behavioral analysis. Higher levels
are intended to challenge future methods. Although we currently include three difficulty levels, it is
straightforward to extend the framework. Although obstacle density has a practical upper bound, the
grid size can be increased arbitrarily to scale up environment complexity.

4.4 Task Sequences

MEAL provides discrete task sequences T = (M1, . . . ,MN ) rather than a continuous domain shift.
For a chosen difficulty level ℓ∈{1, 2, 3}, we sample N solvable layouts i.i.d. from the generator Gℓ

with a fixed seed. At task boundaries, we carry over the optimizer state and policy parameters, reset
rollout buffers, and advance the RNG. We explore three sequence regimes: (i) fixed-level, where all
tasks are drawn from the same difficulty level; (ii) curriculum, where sequences contain an equal
number of tasks in increasing difficulty level (see Appendix E), and (iii) repetition, where a fixed
sequence is repeated r times (used in the network plasticity study in Section 5.5).

4.5 Evaluation Metrics

We measure task performance as the number of soups successfully delivered during an episode.
Since MEAL layouts vary greatly in size, structure, number of interactive stations, and distances
between them, raw delivery counts are not directly comparable. To unify performance across tasks
and sequences for continual learning metrics, we divide the delivery count by an upper bound. We
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(a) Level 1 (Easy): 6 ≤ width/height
≤ 7, obstacle density ≈ 15%. Lay-
outs are compact, making exploration
easy. Interactable items are close to-
gether, making travel distances short.
Agents can often complete the task in-
dependently with no coordination.

(b) Level 2 (Medium): 8 ≤
width/height ≤ 9, obstacle density
≈ 25%. Exploration is harder as sta-
tions are more spread out. Layouts
often introduce chokepoints, requir-
ing agents to coordinate movement
and avoid congestion.

(c) Level 3 (Hard): 10 ≤
width/height ≤ 11, obstacle den-
sity ≈ 35%. Layouts are likely to
split the map into disjoint regions,
forcing agents to specialize. Solv-
ing the task requires deliberate co-
operation and division of labor.

Figure 2: Representative Overcooked layouts generated at each difficulty level. Increasing grid size
and obstacle density lead to longer travel distances, harder exploration, and greater coordination
demands.

calculate this bound for each layout by finding the optimal cook-deliver cycle for a single agent (see
Appendix A.1), accounting for the shortest paths between onion piles, pots, plate piles, and delivery
counters, the fixed cooking time, and pickup/drop interactions. Repeating this cycle over the length of
the episode yields a soup-total count. A normalized score of 1 indicates that the agent(s) achieved the
optimal performance possible for a single agent, while values above 1 reflect effective cooperation
that exceeds solo efficiency. Let si(t) denote this normalized delivery score on task i at timestep
t. Suppose that the training sequence consists of N tasks, each lasting ∆ steps, resulting in a total
of T = N ·∆ timesteps. The i-th task is therefore trained during the interval t ∈ [(i − 1)∆, i∆].
Following prior work [41, 40], MEAL measures performance in three continual learning metrics:

Average Normalized Score To capture the balance between stability and plasticity, we report the
mean score across all tasks at the end of training:

A =
1

N

N∑
i=1

si(T ) (1)

Forgetting Forgetting quantifies the degradation in performance on past tasks due to interference
from training on later ones. We exclude the final task, as no forgetting can occur without further
training. For each task i < N , we compute the difference between the average score over the final k
steps after training on task i and the average over the final k steps of the full sequence T :

F =
1

N − 1

N−1∑
i=1

(
1

k

i∆−1∑
t=i∆−k

si(t)−
1

k

T−1∑
t=T−k

si(t)

)
(2)

Forward Transfer Forward transfer measures how prior experience accelerates learning of new
tasks. Rather than evaluating final performance, it captures how quickly each task is learned relative
to a single-task baseline. We first compute the normalized area under the learning curves (AUC) for
both the agent and the baseline:

AUCi =
1

∆

∫ i∆

(i−1)∆

si(t) dt, AUCb
i =

1

∆

∫ ∆

0

sbi (t) dt. (3)

Forward transfer for task i is the area between these curves, positive when prior training helps, and
negative when it hinders. We report the average forward transfer across the whole sequence:

FT i =
AUCi −AUCb

i

1−AUCb
i

, FT =
1

N

N∑
i=1

FTi. (4)
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Figure 3: Top: The average normalized score evaluation curves on Level 1 tasks show a notable
performance gap across baselines. Middle: Per-task evaluation scores for EWC on Level 1 indicate
near-perfect retention. Bottom: EWC manages to outperform the standard IPPO baseline by transfer-
ring knowledge forward on most Level 2 tasks, while under-performing in others. The green area
between the curves indicates positive forward transfer, while red represents the negative counterpart.

5 Experiments

5.1 Setup

The agent is trained on each task Ti for ∆ = 107 environment steps on-policy with the dense reward
setting, repeated over five seeds. In our experiments, we adopt the task-incremental continual
learning paradigm, in which the task identity is known during both training and evaluation. During
training, we evaluate the policy after every 100 updates by running 10 evaluation episodes on all
tasks in the sequence. The results are displayed with 95% confidence intervals. We leverage JAX to
reduce the wall-clock time for training on a single task to around 5 minutes. Out experiments are
conducted on a dedicated compute node with a 72-core 3.2 GHz AMD EPYC 7F72 CPU and a single
NVIDIA A100 GPU. We adopt many of JaxMARL’s default settings for our network configuration,
IPPO setup, and training processes. For exact hyperparameters please refer to Appendix B.2.

5.2 Baseline Comparison

We evaluate popular CL methods. Fine-Tuning (FT) is a naive baseline where the policy is trained
sequentially across tasks without any mechanism to prevent forgetting. L2-Regularization [21]
adds a penalty on parameter changes to promote stability. EWC [21] penalizes changes to important
parameters, with importance measured using the Fisher Information Matrix. Online EWC is a variant
that maintains a running estimate of parameter importance. MAS [3] computes importance based
on how parameters influence the policy’s output, rather than gradients. AGEM [8] is a replay-based
method that projects the current gradient update to avoid interference with past tasks, using a memory
buffer of stored experiences. As the default MARL algorithm, we opt for IPPO [11]. It is a natural
choice as it can be seamlessly integrated with all model-free CL methods. Moreover, it has been
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Figure 4: Jointly visualizing forward transfer and for-
getting results on Level 1 reveals the classic stabil-
ity–plasticity trade-off in continual learning.
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Figure 5: EWC’s performance notably de-
clines as layout complexity increases. Most
high-level tasks remain unsolved.

Table 2: Baseline comparison results across three difficulty levels. The confidence intervals are
omitted for brevity, see Appendix J for the full results.

Method
Level 1 Level 2 Level 3

A↑ F ↓ FT ↑ A↑ F ↓ FT ↑ A↑ F ↓ FT ↑
FT 0.048 0.899 0.201 0.041 0.790 0.065 0.010 0.519 -0.157
EWC 0.839 0.031 0.055 0.604 0.061 -0.086 0.178 0.053 -0.650
Online EWC 0.769 0.150 0.208 0.585 0.211 0.152 0.306 0.168 -0.149
MAS 0.281 0.501 -0.233 0.155 0.423 -0.355 0.034 0.245 -0.542
L2 0.753 0.031 -0.199 0.496 0.106 -0.527 0.127 0.052 -0.827
AGEM 0.204 0.761 0.125 0.117 0.625 -0.083 0.037 0.457 -0.169

shown to outperform other MARL approaches on SMAC [11] and Overcooked [35], making it a
strong candidate for evaluating CMARL in MEAL.

Figure 3 (top) compares our baselines on Level 1, and Table 2 reports the exact metrics for all
levels. Fine-Tuning (FT) and AGEM show higher forward transfer, but catastrophically fail at
retention: once a task is left behind, performance rapidly collapses. EWC and L2 exhibit near-perfect
knowledge retention on all levels, with EWC also ranking highest in average score on lower levels.
Figure 3 (middle) visualizes EWC’s per-task stability. EWC locks parameters to all past tasks via
a cumulative Fisher penalty, which pays off on Levels 1–2, where layouts are small. However, on
Level 3, that rigidity bites, as harder layouts demand larger representation shifts, causing EWC to
underfit. By contrast, Online EWC uses a decayed Fisher that down-weights older tasks and manages
to keep enough plasticity to learn the new layouts (higher A and FT ). See Appendix C for a deeper
analysis of this comparison. MAS performs poorly in all metrics, although outperforming FT and
AGEM. Notably, the simplistic difficulty level design of MEAL presents notable challenges, as
EWC’s score diminishes with increasing difficulty (Figure 5). Figure 4 illustrates the fundamental
stability-plasticity trade-off in CL. L2 achieves excellent retention but limited forward transfer, while
Fine-Tuning and AGEM demonstrate high plasticity with severe forgetting. EWC and its online
version provide a middle ground, balancing both objectives more effectively than other approaches.

5.3 Ablation Study

To determine which components are crucial for CMARL on MEAL, we ablate five components in
our default IPPO learning setup: multi-head architectures, task identity inputs, critic regularization,
layer normalization, and replacing the MLP with a CNN encoder. The results in Figure 6 reveal
that multi-head outputs are most critical for MEAL task sequences. Removing them consistently
devastates performance across all methods, likely due to uncontrolled interference between tasks
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Table 3: Comparison of EWC with PPO/IPPO across 1–3 agent task sequences. Two agents yield the
best results due to parallelism and cooperative potential. Adding a third agent introduces instability,
non-stationarity, and coordination challenges that hurt performance.

Agents
Level 1 Level 2 Level 3

A↑ F ↓ FT ↑ A↑ F ↓ FT ↑ A↑ F ↓ FT ↑
1 Agent 0.622 0.046 -0.045 0.343 0.071 -0.458 0.285 0.159 -0.531
2 Agents 0.839 0.031 0.055 0.604 0.061 -0.086 0.178 0.053 -0.650
3 Agents 0.476 0.125 -0.676 0.277 0.132 -0.896 0.117 0.094 -0.978
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Figure 6: Ablation results on Level 1 10-task sequences. Removing the multi-head architecture
leads to severe performance degradation across all methods. Including the task ID and critic reg-
ularization has a negligible effect. Layer normalization has little impact on EWC or MAS, but
significantly improves L2. A CNN encoder yields worse results than a simple MLP variant.

in the shared output head. In contrast, not providing the model with the one-hot encoded task ID
vector has a negligible effect. Prior continual RL studies [41, 40] report that it is beneficial to only
regularize the actor and let the critic adapt freely. In our experiments, however, we find that this has
little effect. Layer normalization shows method-specific sensitivity: while it makes little difference
for EWC and MAS, it more than doubles the performance of L2 regularization. This is likely because
L2 penalizes absolute weight magnitudes, and layer norm helps stabilize activations across tasks,
mitigating harmful scale drift. Finally, swapping to a CNN encoder substantially hurts performance
for all methods. Given the small layouts in Level 1 tasks (6×6 to 7×7), CNNs struggle to extract
meaningful features and add unnecessary parameter overhead, making simple MLPs the better fit in
this setting.

5.4 N -Agent MEAL

To better analyze the multi-agent dimension of CMARL, we extend MEAL to support an N -agent
setting, allowing us to systematically study how the number of cooperating agents affects continual
learning. We run EWC combined with PPO for the single-agent case, and IPPO for 2 and 3 agents.

A single agent delivers less soup than two because it cannot parallelize tasks: while one agent delivers
soup, the other can already load the pot with onions. However, in Level 3, the single-agent PPO
outperforms the two-agent IPPO. We observed that, under the CL setting, the two-agent setup solved
fewer tasks due to the larger grid size in harder layouts: increasing both the observation space and the
number of agents makes the learning problem more complex for IPPO, which struggles to learn a
good policy.

Adding a third agent further hurts performance for similar reasons. IPPO trains independent policies
while the environment remains a joint MDP, where transitions and rewards depend on the combined
actions of all agents. Moving from 2→3 agents expands the joint action space and interaction patterns,
amplifies non-stationarity (as two teammates’ policies change simultaneously), and makes credit
assignment more difficult (since the reward is shared, IPPO does not know which agent made a good
action). Without explicit communication or role allocation, IPPO struggles to learn continually as the
team and layout size grow. We explore common pitfalls of agent behaviour in Appendix I.
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Table 4: Averaged plasticity metrics for FT
on Level 1 task sequences.

Repeats AUCL ↓ FPR ↑ RAUC ↑
1 0.000 1.000 1.000
3 0.154 0.906 0.905
10 0.215 0.866 0.846

Table 5: Effect of reward design on EWC over 20-task
Level-1 sequences.

Rewards A↑ F ↓ FT ↑
Shared 0.90 ± 0.04 0.01 ± 0.01 0.20 ± 0.08
Individual 0.84 ± 0.08 0.08 ± 0.07 0.12 ± 0.06

Sparse 0.19 ± 0.04 0.02 ± 0.01 −0.79 ± 0.10
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Figure 7: Plasticity loss in MEAL under fine-tuning (FT). We measure capacity loss (left), final-
performance ratio (middle), and raw-AUC ratio (right) over 10-task Level 1 sequences. Increasing the
repetition count from 3 to 10 amplifies degradation across all metrics, indicating reduced plasticity as
learning progresses. The high error bars stem from the agent learning a task during one repetition but
performing poorly during another. This effect is more pronounced at lower repetitions.

5.5 Network Plasticity

A well-documented pitfall in continual RL is the gradual loss of plasticity, an agent’s ability to fit
new data after many tasks [1, 12]. To test whether MEAL exhibits the same pathology, we repeat a
Level 1 10-task sequence multiple times and compare performance between repetitions. We evaluate
fine-tuning (FT), as it is the simplest and most cost-effective baseline ranking high in plasticity
(Figure 4). We track three standard metrics, each normalized to the initial repetition: (i) AUC-loss ↓
captures capacity drop, (ii) Final-performance ratio (FPR) ↑ compares the final plateau to the first
repetition, and (iii) Raw-AUC ratio (RAUC) ↑ measures total reward accumulated during the repeat.
For formal definitions of the metrics and training curves, see Appendix G.

We observe that all metrics deteriorate with longer training (Table 4 and Figure 7), confirming that
loss of plasticity also appears in the multi-agent setting. Notably, the larger drop in performance
occurs between 1 and 3 repetitions, suggesting that early degradation is more severe. AUC-loss
increases by roughly 40% when going from 3→10 repetitions. Despite our setting spanning over
1B environment steps, well beyond the scale of prior studies [1, 12], those works report a much
stronger loss of plasticity than observed in MEAL. We hypothesize that this difference stems from
our experiments using multiple output heads, which isolate task-specific outputs, reduce gradient
interference, and preserve prior policies while allowing the backbone to learn transferable features.

5.6 Reward Design

By default, Overcooked agents receive shared rewards. We compare this with an individual reward
mode, where each agent is rewarded solely for its own actions, often leading to greedier behavior
and weaker coordination [30, 16, 20]. We also evaluate the sparse shared reward setting described in
Section 4.1, assessing all three using EWC on 20-task Level 1 sequences.

As shown in Table 5, shared rewards lead to the best performance, although on some tasks, the
individual reward setting allows the agents to find a better global solution due to the inherent
competitiveness. Agents are motivated to use different onion piles and pots to maximize their own
rewards, which often leads to a more efficient solution. However, this competitive drive occasionally
prevents them from converging on a stable solution. The sparse reward setting grants rewards only for
successful deliveries. Without a targeted exploration mechanism, agents are unlikely to discover a full
delivery sequence through random actions even on Level 1 layouts, leading to worse performance.
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5.7 Partial Observability
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Figure 8: Performance of EWC under full (FO) and
partial observability (PO) on 20-task Level 1 sequences.
FO yields the best results overall. MAPPO underper-
forms in the continual learning setting.

Although Overcooked is fully observable
by design, we introduce a partially observ-
able variant to better reflect real-world sens-
ing constraints (limited field of view, occlu-
sions). Following popular MARL environ-
ments [34, 26, 2, 13], each agent receives
an egocentric, direction-aware observation
window with all outside tiles masked. The
specification and difficulty scaling of this
window are detailed in Appendix D.

In this setting, MAPPO [43] is known
to outperform IPPO, since its centralized
critic can 1) more accurately estimate in-
dividual contributions to shared rewards
under partial observability, and 2) reduce
non-stationarity by conditioning value estimates on the joint actions of all agents, leading to more
stable and coordinated policy updates. We investigate this by running a 20-task sequence under
partial observability (PO) with EWC and compare the results with the fully observable (FO) baseline.

Across all levels, IPPO under full observability (FO) clearly dominates the partial setting (PO), and
both outperform MAPPO in our CL regime (Figure 8). The gap between IPPO(FO) and IPPO(PO)
stems from full state information simplifying credit assignment and stabilizing value targets. Partial
observability thus increases task difficulty. Contrary to expectation, MAPPO underperforms IPPO. A
plausible cause is a mismatch between MAPPO’s centralized critic and the CL regime. Conditioning
on joint observations and actions drifts substantially across tasks, yielding noisier targets and stronger
cross-task interference, while IPPO’s independent critics learn simpler task-local value functions that
transfer more stably. These results motivate including PO variants in MEAL to stress coordination
under incomplete information for more realistic continual MARL benchmarking.

6 Conclusion

We introduced MEAL, a scalable benchmark for continual multi-agent RL, built on JAX for efficient
GPU training. The on-demand creation of procedurally generated Overcooked layouts enables
long-horizon CMARL studies with controlled difficulty, observability, and agent count. We evaluated
combinations of popular CL methods and MARL algorithms, revealing that existing techniques
struggle to retain cooperative behaviors while maintaining adaptability to new tasks. The N -agent
extension increases coordination demands and exacerbates interference, yielding a harder, more
variable task distribution. Partial observability compounds this difficulty, as centralized critics exhibit
stronger cross-task drift and interference. Individual rewards weaken coordination and induce negative
transfer. A simple curriculum boosts performance on complex layouts under an equal data budget.
Training on long task sequences degrades network plasticity in MARL, while multi-head architectures
yield the largest structural gains for performance. Our findings suggest that MEAL exposes the dual
challenge of cooperation and non-stationarity in CMARL. We see immediate headroom for methods
that (i) are purpose-built for CMARL, jointly handling partner and environment-level non-stationarity,
(ii) stabilize credit assignment under partial observability across task sequences, and (iii) drive
structured exploration and robust coordination in diverse, long-horizon settings. We hope MEAL
serves as a solid foundation for pushing this line of work forward.

7 Limitations

While MEAL provides a scalable and diverse testbed for CMARL, several limitations remain. First,
MEAL is restricted to discrete action spaces, limiting its applicability. Second, while layout diversity
is high, the domain itself is narrow. Overcooked dynamics do not capture the full complexity of
real-world multi-agent interactions involving language, negotiation, or long-horizon planning. Third,
our benchmark only evaluates task-incremental learning by changing layouts. Future work could
extend MEAL to other CL settings. Finally, we only consider CL in settings where the environment
layout changes across tasks, but not the partner agent nor environment dynamics.
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A Implementation Details

A.1 Maximum Soup Delivery Calculator

Let a kitchen layout L be defined by four disjoint sets of tiles (onion piles O, plate piles P , pots K,
delivery counters G) and a set of walls W . A tile (x, y) is walkable if (x, y) /∈ W .

Neighbourhood of an object family. We denote the set of walkable tiles adjacent (in the 4-
neighbour sense) to any object in S as:

N (S) =
{
(x′, y′) | (x, y) ∈ S, ∥(x′, y′)− (x, y)∥1 = 1, (x′, y′) /∈ W

}
Shortest obstacle-aware distance. Given two tile sets A,B ⊆ Z2, we define

d(A,B) = min
a∈A, b∈B

distGL
manhattan(a, b),

where GL is the grid graph induced by walkable tiles. We realize this via a breadth-first search (BFS).

Single-agent cook–deliver cycle. A soup requires three onions, one plate pick-up, one soup pick-up,
and one delivery. Let

donion = d
(
N (O),N (K)

)
, dplate = d

(
N (P),N (K)

)
, dgoal = d

(
N (K),N (G)

)
.

The optimistic movement cost for one cycle is

cmove = 3 donion + dplate + 1 + dgoal + 3.

Interaction overhead. Every pick-up or drop is assumed to take a constant cact = 2 steps (turn +
interact). With nint = 3×2+1+1+1 = 9 interactions per cycle, the overhead is cover = nint cact = 18.

Cycle time and upper bound. Including the fixed cooking time ccook = 20 steps, the single-agent
cycle time is

Tcycle = cmove + ccook + cover.

For an episode horizon H , we upper-bound the number of soups by

Nmax(L, H) =
⌊
H/Tcycle

⌋
,

and convert it to reward with rdeliver = 20:

Rmax(L, H) = 20Nmax(L, H).

The bound assumes a single agent acting optimally. It ignores multi–agent collaboration and therefore
underestimates throughput in layouts where multiple agents can parallelize the workflow. Listing 1
contains the exact implementation.

A.2 Procedural Kitchen Generator

Objective. Given a random seed and user-selectable parameters (number of agents na, layout
height range [hmin, hmax], layout width range [wmin, wmax], and wall-density ρ), the goal is to emit
a solvable grid string G representing the Overcooked environment.

A.2.1 Notation

Let h, w ∼ UniformInt(hmin, hmax), UniformInt(wmin, wmax), and denote by C = {(i, j) | 1 ≤
i ≤ h − 2, 1 ≤ j ≤ w − 2} the set of internal cells (outer walls excluded). Its cardinality is
Nint = (h− 2)(w − 2). An unpassable cell contains either a hard wall (#) or an interactive tile; we
write Nunpass(G) for the number of such cells in G.
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Listing 1 Heuristic upper bound (calculate_max_soup).

# overcooked_upper_bound.py (excerpt)
COOK_TIME = 20
ACTION_OVERHEAD = 2
INTERACTIONS_PER_CYCLE = 3 * 2 + 1 + 1 + 1
OVERHEAD_PER_CYCLE = INTERACTIONS_PER_CYCLE * ACTION_OVERHEAD

def calculate_cycle_time(layout, n_agents=2):
...
move_cost = 3 * d_onion + d_plate + 1 + d_goal + 3
return move_cost + COOK_TIME + OVERHEAD_PER_CYCLE

def calculate_max_soup(layout, episode_len, n_agents=2):
cyc = calculate_cycle_time(layout, n_agents)
soups = episode_len // cyc
return int(soups)

A.2.2 Algorithm

The generator performs the following loop until a valid grid is produced (Listing 2):

1. Draw size. Sample h,w and create an h×w matrix initialised to FLOOR tiles, then overwrite
the border with WALL.

2. Place interactive tiles. For each symbol in {GOAL, POT, ONION_PILE, PLATE_PILE}
choose a random multiplicity m ∈ {1, 2} and stamp the symbol onto m uniformly chosen
floor cells.

3. Inject extra walls. Let ntarget =
⌈
ρNint

⌉
and nadd = max

(
0, ntarget −Nunpass(G)

)
. Place

nadd additional walls on random floor cells.

4. Place agents. Stamp na AGENT symbols on random remaining floor cells.

5. Validate. Run the deterministic evaluate_grid solver; if it returns True, terminate and
return (G), otherwise restart.

6. Cleanup. Remove any interactive elements and tiles that are unreachable from all agent
positions.

7. Return. Output the final grid.

Solvability criterion. The validator (Appendix A.3) checks (i) path connectivity between every
agent and each interactive tile family, (ii) at least one pot reachable from an onion pile and a plate
pile, and (iii) at least one goal reachable from a pot. This is implemented via multiple breadth-first
searches. Appendix A.3 further details the evaluator logic.

Wall-density effect. Because interactive tiles themselves count as obstacles, the algorithm first
places them, then only as many extra walls as needed to reach the prescribed obstacle ratio ρ. This
keeps difficulty roughly constant even when two copies of every station are spawned.

Failure handling. If any placement stage exhausts the pool of empty cells, or the validator rejects the
grid, the attempt is aborted and restarted with a fresh h,w sample. We cap retries at max_attempts
(default 2000); empirically fewer than five attempts suffice for ρ≤0.3.

Complexity. All placement operations are O(hw) in the worst case (linear scans to collect empty
cells), while validation runs a constant number of BFS passes, each O(hw). Hence one successful
attempt is O(hw).
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Listing 2 Overcooked Layout Generator

def generate_random_layout(seed, params):
rng = random.Random(seed)
for attempt in range(params.max_attempts):

h = rng.randint(*params.h_range)
w = rng.randint(*params.w_range)
grid = init_floor_with_border(h, w)

# 1. Interactive tiles
for sym in [GOAL, POT, ONION_PILE, PLATE_PILE]:

if not place_random(grid, sym, rng.randint(1, 2), rng):
break # restart

# 2. Extra walls to hit density
n_target = round(params.wall_density * (h-2)*(w-2))
n_add = n_target - count_unpassable(grid)
if not place_random(grid, WALL, n_add, rng):

continue # restart

# 3. Agents
if not place_random(grid, AGENT, params.n_agents, rng):

continue

# 4. Validate
if evaluate_grid(to_string(grid)):

return to_string(grid)

A.3 Layout Validator

We guarantee that every procedurally generated kitchen is playable by running a deterministic
validator before training begins. The validator implements ten checks, ranging from basic grid sanity
to cooperative reachability. A grid is accepted only if all checks pass.

Notation. Let G be an h× w character matrix with symbols {W, X, O, B, P, A, } for walls, delivery,
onion pile, plate pile, pot, agent, and floor. Interactive tiles are I = {X, O, B, P}, and unpassable tiles
U = I ∪ {W}.

Validation rules.

R1 Rectangularity – all rows have equal length.

R2 Required symbols – each of W,X,O,B,P,A appears at least once.

R3 Border integrity – every outer-row/column tile is in {W} ∪ I.

R4 Interactivity access – every tile in I ∪ {A} has at least one 4-neighbour that is A or floor.

R5 Reachable onions – at least one onion pile is reachable by some agent.

R6 Usable pots – at least one pot is reachable and lies in the same connected component as a
reachable onion.

R7 Usable delivery – at least one delivery tile is reachable and lies in a component with a usable pot.

R8 Agent usefulness – each agent can either interact with an object directly or participate in a
hand-off (adjacent wall shared with the other agent’s region).

R9 Coverage – the union of agents’ reachable regions touches every object family in I.

R10 Handoff counter – if one agent cannot reach all families, a wall tile adjacent to both regions
exists, enabling item transfer.

Rules R5–R10 rely on two depth-first searches (DFS) from the agent positions. The DFS explores
floor and agent tiles only; whenever it touches an interactive tile, that family is marked as “found.”
Let Reachk ⊆ [h]× [w] denote tiles reached from agent k (k ∈ {1, 2}).
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Algorithmic outline. Listing 3 shows a condensed version of the validator.

Listing 3 Condensed Layout Validator.

def validate(grid_str):
g = [list(r) for r in grid_str.splitlines()]
h, w = len(g), len(g[0])

# R1–R3 omitted for brevity ...

# Depth-first search from a start cell
def dfs(i, j, seen):

if (i, j) in seen or g[i][j] in UNPASSABLE_TILES - {AGENT}:
return

seen.add((i, j))
for di, dj in ((1,0),(-1,0),(0,1),(0,-1)):

dfs(i+di, j+dj, seen)

# Agents and family reachability
a1, a2 = [(i, j) for i,r in enumerate(g)

for j,c in enumerate(r) if c == AGENT]
reach1, reach2 = set(), set()
dfs(*a1, reach1); dfs(*a2, reach2)

# Helper: reachable(\mathcal{S}, reach)
def any_reach(symbols, reach):

return any(g[i][j] in symbols for i,j in reach)

# R5–R7
if not any_reach({ONION_PILE}, reach1|reach2): return False
if not any_reach({POT}, reach1|reach2): return False
if not any_reach({GOAL}, reach1|reach2): return False

# R8–R10 (usefulness & hand-off)
def useful(reach_me, reach_other):

# direct or shared-wall hand-off
for i,j in reach_me:

if g[i][j] in INTERACTIVE_TILES: return True
if g[i][j] == FLOOR and any(

(abs(i-i2)+abs(j-j2) == 1 and g[i2][j2] == WALL)
for i2,j2 in reach_other):
return True

return False

if not useful(reach1, reach2): return False
if not useful(reach2, reach1): return False
return True

Complexity. All checks are O(hw) and require only two DFS traversals, thus one validation runs
in time linear to the grid area and is negligible compared with policy learning.

Practical impact. In practice, fewer than 1% of generator attempts fail validation when wall-density
ρ≤0.15 and kitchen size ≥ 8× 8. We therefore cap retries at 2000 without noticeable overhead.

B Experimental Setup

B.1 Network Architecture

All agents share the same actor–critic backbone, implemented in Flax. Two encoder variants are
provided:
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• MLP (default) : observation tensor is flattened to a vector and passed through 2 fully-connected
layers of width 128.

• CNN : three 32-channel convolutions with kernel sizes 5×5, 3×3, 3×3 feed a 64-unit projection,
followed by a single 128-unit dense layer.

Common design knobs (controlled from the CLI) are:

• Activation (relu vs. tanh).
• LayerNorm : applied after every hidden layer when use_layer_norm is enabled.
• Shared vs. Separate encoder : with shared_backbone the two heads operate on a common

representation; otherwise actor and critic keep independent trunks.
• Multi-head outputs : if use_multihead is set, each head holds a distinct slice of logits/values

for every task (num_tasks = |T |). The correct slice is selected with the cheap tensor reshape in
choose_head.

• Task-one-hot conditioning : setting use_task_id concatenates a one-hot vector of length |T |
before the actor/critic heads, mimicking “oracle” task identifiers used in many CL papers.

All linear/conv layers use orthogonal weight initialisation with gain
√
2 (or 0.01 for policy logits)

and zero biases. The policy outputs a distrax.Categorical; the critic outputs a scalar.

B.2 Hyperparameters

Table 6 lists settings that are constant across every experiment unless stated otherwise. Values match
the Config dataclass in the training script.

Table 6: Fixed hyper-parameters. All experiments use dense reward shaping, two agents, and IPPO
unless noted. CL coefficients λ refer to the regularization strength passed to each method.

Parameter Value

Optimization (IPPO)

Activation ReLU
Optimizer Adam (Optax)
Adam (β1, β2) (0.9, 0.999)
Adam ϵ 10−5

Weight decay none
Learning rate η 3× 10−4

LR annealing linear (3× 10−4 → 0)
Env. steps per task ∆ 107

Parallel envs 16
Rollout length T 128
Update epochs 8
Minibatches / update 8
Effective batch size 16× 128 = 2048
Discount γ 0.99
GAE λ 0.957
PPO clip ϵ 0.2
Entropy coef. αent 0.01
Value-loss coef. αvf 0.5
Max grad-norm 0.5

Continual-learning specifics

Sequence length |T | 20 (base sequence), repeated r times
Reg. coefficient λ 1011 (EWC), 109 (MAS), 107 (L2)
EWC decay 0.9
Importance episodes / steps 5 / 500
Regularize critic / heads No / No
AGEM Memory size 100 000 transitions
AGEM Sample size (per proj.) 1024

Miscellaneous

Reward shaping horizon 2.5× 106 steps (linear to 0)
Evaluation interval every 100 updates (10 episodes)
Random seeds {1 .. 5}
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Figure 9: Comparison of EWC and Online EWC across all difficulty levels in terms of forward
transfer and forgetting. Each point denotes a method’s performance at a given level. Online EWC
consistently exhibits higher plasticity (less-negative or positive, particularly at Level 3, while EWC
achieves notably lower forgetting on all levels.

C EWC vs. Online EWC

EWC accumulates importance over all past tasks and penalizes drift along high-Fisher directions
with a fixed quadratic. Online EWC maintains a running, exponentially decayed Fisher, emphasizing
recent tasks and relaxing old constraints. Both use the same heads, meaning that the penalty acts on
the shared trunk. When layouts are small, not only are the tasks easier to learn, but the same features
are more likely to work across tasks. Strong anchoring preserves those features, curbing forgetting
and yielding a higher average score. The stability–plasticity trade-off is favorable because plasticity
demands are modest. This trade-off is visualized in Figure 9, where Online EWC demonstrates higher
plasticity at the cost of increased forgetting, while EWC excels in stability but struggles to adapt
on Level 3. Level 3 forces longer paths, bottlenecks, and role specialization, which require larger
representational updates. EWC’s cumulative constraints over-tighten the trunk and slow adaptation,
while Online EWC’s decay frees capacity for those shifts, so it learns the hard tasks more effectively.
The multiple output heads alone are not enough. They isolate outputs, but the penalty sits on the
shared backbone. When the trunk needs to be to rewired for new Level 3 tasks, EWC resists too
much, while Online EWC allows it more. Moreover, credit assignment is noisier on Level 3 due to
sparser effective signals and longer horizons. A single, stale Fisher snapshot can misdirect EWC’s
penalty. The rolling estimate in Online EWC smooths that noise and tracks the current regime more
closely.

D Partially Observable MEALs

To more closely mimic the constraints faced by real-world agents, we introduce a direction-aware
egocentric observation setting. Each agent perceives a rectangular window centered on itself, with
tiles outside this window masked. The window is anisotropic with respect to the agent’s heading:
we separate forward, side, and rear extents, which increase with difficulty (Table 7). This scaling
is intentionally balanced with the overall environment design: as the grid size grows with diffi-
culty, the perceptual window also expands to maintain a comparable challenge-to-information ratio.
Consequently, the tasks become POMDPs, where exploration, memory (e.g., recurrent state), and
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Table 7: Field-of-view specification for the partially observable MEAL variant. Window size and
directional extents scale with difficulty.

Difficulty Grid Size Forward View Side View Rear View Obs Window (H×W)
Easy 6–7 1 1 0 2×3
Medium 8–9 2 1 0 3×3
Hard 10–11 3 2 1 3×5

(a) Level 1: 2×3 window. (b) Level 2: 3×3 window. (c) Level 3: 3×5 window.

Figure 10: Egocentric observation windows by difficulty. Visibility grows with difficulty but remains
partial, preserving the need for exploration and memory.

implicit/explicit coordination provide tangible benefits. In particular, Level 1 removes rear context
entirely, Level 2 extends the look-ahead by one tile, and Level 3 adds both longer look-ahead and
rear visibility, reducing blind spots while preserving partial observability (Figure 10).

E Curriculum Learning

In all training settings, agents consistently struggle on Level 3 tasks with large grids. Curriculum
learning has been shown to improve final performance on difficult tasks by gradually increasing task
complexity [5, 28, 31]. We investigate whether a simple difficulty-based curriculum can help agents
better learn harder MEAL tasks under the same data budget. To this end, we design a curriculum
sequence where each difficulty level contributes an equal number of tasks. Specifically, we sample
5 layouts each from Level 1 (easy), Level 2 (medium), and Level 3 (hard), and present them in
ascending order of difficulty (layouts 1–5, then 6–10, then 11–15). As a baseline, we compare with a
default sequence that trains on 15 hard (Level 3) layouts without any prior exposure to easier tasks.
Performance is evaluated based on the normalized average score over the 5 tasks in the sequence of
the respective difficulty.

Table 8: Curriculum vs. default training under an
equal data budget. We report the average score over
the task windows of the respective difficulty.

Strategy Medium (6–10) Hard (11–15)

Default 0.693 ± 0.147 0.328 ± 0.238
Curriculum 0.668 ± 0.152 0.653 ± 0.181

The results in Table 8 show no statistically sig-
nificant difference between the two strategies
on Level 2, given the high variance. However,
on Level 3, the curriculum strategy nearly dou-
bles performance. A plausible explanation is
that, under curriculum training, the agent first
experiences 5 easy and 5 medium tasks, where
it receives denser reward signals and more fre-
quent successes. This exposure likely builds useful priors and stabilizes learning, improving adapta-
tion to harder tasks later. In contrast, the default strategy trains only on hard tasks throughout the
sequence, where exploration is more challenging and initial rewards are more difficult to obtain,
leading to weaker performance overall.
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Figure 11: Average Normalized Score over the course of training EWC on a sequence of 20
randomly generated tasks per difficulty level. Shaded regions indicate 95% confidence intervals
across 5 seeds.

F Difficulty Levels

Higher difficulty levels pose greater challenges for both learning and retention. As the grid size and
obstacle density increase, the environment becomes more complex: interactable items are farther
apart, and navigation paths are longer and more convoluted. This increases the number of steps
required to complete a recipe, making the overall task harder to memorize and reproduce. Higher-
level layouts also add demands for plasticity and transfer. The larger layout space introduces greater
variability between tasks, making it harder to reuse learned behavior. These factors collectively lead
to lower performance as difficulty increases, as shown in Figure 11. EWC performs reliably on Level
1, successfully learning new tasks while retaining performance on learned ones. On Level 2, learning
remains effective up to around the midpoint of the sequence, after which progress slows and variance
across runs increases markedly. In Level 3, EWC struggles from the outset, as performance is poor
even on early tasks, and learning new tasks stalls entirely after the 15th task in the sequence.

G Network Plasticity

G.1 Metrics

We follow Abbas et al. [1], Dohare et al. [12] and quantify plasticity, the ability to fit fresh data after
many tasks, by three complementary metrics computed from the training reward.

Notation. For a single task let rt be the online reward at step t ≤ T . A repetition experiment
presents the same task R times, so the trace splits into R contiguous segments of equal length
L = T/R. We smooth rt with a Gaussian kernel (bandwidth σ) and define the cumulative average

r̄(t) =
1

t

t∑
i=1

ri, t = 1, . . . , L.

All metrics compare a later repetition j > 0 with the baseline repetition j = 0.

AUC–loss. Let AUCj =
∫ L

0
r̄j(t) dt. The capacity drop for repetition j is

lossj = 1− AUCj

AUC0
, j = 1, . . . , R− 1, (5)

where 0 indicates perfect retention. We report the mean of Eq. (5) over repetitions and seeds.

Final-Performance Ratio (FPR). With pj = r̄j(L− 1) the plateau reward of repetition j,

FPRj =
pj
p0

, j = 1, . . . , R− 1, (6)

so FPRj > 1 implies no loss, FPRj < 1 indicates degraded plateau performance.
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Figure 12: Training curves of FT across a Level 1 10-task sequence repeated ten times over 5 seeds.

Table 9: Homogeneous vs. heterogeneous (designated roles) 2-agent training results over Level 1
20-task generated sequences using shared rewards and IPPO in combination with EWC.

Setting A↑ F ↓ FT ↑
Homogeneous 0.90 ± 0.04 0.01 ± 0.01 0.20 ± 0.08
Heterogeneous 0.68 ± 0.09 0.03 ± 0.02 −0.05 ± 0.09

Raw-AUC Ratio (RAUC). Using the unsmoothed running reward,

RAUCj =
AUCraw

j

AUCraw
0

, j = 1, . . . , R− 1, (7)

which captures the total reward accumulated during learning. Higher values in Eq. (6)–Eq. (7) are
better.

Sequence-level aggregation. For a task sequence of length |T | we compute the per-task means of
(5)–(7) and average across tasks, yielding a single global score per repetition count R.

G.2 Training Curves

Figure 12 plots the mean normalized score of the fine-tuning (FT) baseline over ten repetitions.
Performance on Tasks 8 and 9 remains virtually unchanged, indicating little to no plasticity loss. In
contrast, Tasks 1, 2, 6, and 10 show a clear degradation: the agent fails to recover the score achieved
during the first repetition, illustrating a pronounced loss of plasticity.

H Designated Roles

In Overcooked, agents are identical in their capabilities and attributes. However, in many real-world
scenarios, autonomous agents either 1) possess different physical properties or 2) are functionally
identical but are expected to fulfill distinct, complementary roles to cooperate effectively for a
common goal. To capture this dimension in MEAL, we design a heterogeneous agent setting with
designated roles.

In this variant, two agents are randomly assigned one of the two predefined roles at the start of each
task: chef and waiter. The chef is responsible for preparing the soup by loading onions into the pot,
but cannot pick up plates. The waiter handles dish delivery but cannot pick up onions. This enforces
complementary capabilities, meaning neither agent can complete the full recipe alone, meaning
that successful catering requires coordinated role execution and adaptation. Note that the roles are
sampled per task and may switch across tasks, making continual learning essential.

We evaluate this setting over 20-task Level 1 sequences using EWC with IPPO under shared rewards.
Table 9 compares the heterogeneous setup to the default homogeneous setting. We observe a clear
performance drop in the role-restricted setting, as throughput decreases when agents are limited to
certain actions and cannot flexibly switch between tasks. Another factor is asymmetric step costs:
in many layouts, loading the pot with 3 onions takes more steps than a single plate-and-deliver trip,

23



(a) Single-pot fixation. All agents are
clustered around a single pot, waiting
for it to finish cooking, while ignoring
a ready soup in the bottom pot.

(b) Deadlock. The red agent tries
to place an onion into the pot, but
is blocked by the blue agent, who
cannot move aside.

(c) Role collapse. One agent com-
pletes the pipeline solo while the
other wanders or idles. The policy
settles on a local minimum.

Figure 13: Qualitative failure modes observed in Overcooked. All behaviors stem from inadequate
coordination, limited exploration, or insufficient role allocation.

making the chef the throughput bottleneck. Generalization also suffers as agents struggle to transfer
knowledge when their roles change across tasks, since skills learned in one role do not apply to
the other. This role-switching dynamic further exacerbates forward transfer challenges in continual
learning.

I Common Pitfalls

Despite shared rewards and simple layouts, learned policies frequently fall into recurring failure
modes that throttle throughput and coordination. Figure 13 illustrates three such patterns we observe
consistently across layouts and levels.

J Extended Results

In this section, we provide additional experimental results. Tables 10, 11, 12 add 95% confidence
intervals to the main baseline results. Figure 16 depicts the per-task evaluation curves of Level 1.
Figure illustrates forward transfer.
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Figure 14: Average Normalized Score curves on Level 2.
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Figure 15: Average Normalized Score curves on Level 3.

Table 10: Level 1 baseline results with confidence intervals.
Method A↑ F ↓ FT ↑
FT 0.048±0.00 0.899±0.01 0.201±0.03

EWC 0.839±0.03 0.031±0.03 0.055±0.06

Online EWC 0.769±0.09 0.150±0.09 0.208±0.03

MAS 0.281±0.07 0.501±0.06 -0.233±0.03

L2 0.753±0.02 0.031±0.00 -0.199±0.09

AGEM 0.204±0.05 0.761±0.07 0.125±0.10

Table 11: Level 2 baseline results with confidence intervals.
Method A↑ F ↓ FT ↑
FT 0.041±0.01 0.790±0.01 0.065±0.02

EWC 0.604±0.21 0.061±0.01 -0.086±0.34

Online EWC 0.585±0.03 0.211±0.03 0.152±0.05

MAS 0.155±0.09 0.423±0.07 -0.355±0.06

L2 0.496±0.02 0.106±0.01 -0.527±0.04

AGEM 0.117±0.01 0.625±0.07 -0.083±0.07

Table 12: Level 3 baseline results with confidence intervals.
Method A↑ F ↓ FT ↑
FT 0.010±0.02 0.519±0.08 -0.157±0.20

EWC 0.178±0.02 0.053±0.06 -0.650±0.13

Online EWC 0.306±0.00 0.168±0.02 -0.149±0.15

MAS 0.034±0.01 0.245±0.07 -0.542±0.20

L2 0.127±0.03 0.052±0.00 -0.827±0.04

AGEM 0.037±0.02 0.457±0.05 -0.169±0.18
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Figure 16: The evaluation curves of Level 1 illustrate the extent of forgetting across tasks. FT
suffers from clear catastrophic forgetting: once the agent transitions to a new task, performance on
the previous task collapses immediately. EWC and L2 display near-perfect retention.
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Figure 17: Forward transfer on Level 1. The green shaded areas depict positive transfer compared
to the IPPO baseline, and the red shaded areas show negative transfer.
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