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Abstract
While attention-based models have demonstrated the remarkable ability of in-context learning
(ICL), the theoretical understanding of how these models acquired this ability through gradient de-
scent training is still preliminary. Towards answering this question, we study the gradient descent
dynamics of multi-head linear self-attention trained for in-context linear regression. We show that
the training dynamics has exponentially many fixed points and the loss exhibits saddle-to-saddle
dynamics, which we reduce to scalar ordinary differential equations. During training, the model
implements principal component regression in context with the number of principal components
increasing over training time. Overall, we provide a theoretical description of how ICL abilities
progressively improve during the gradient descent training of multi-head linear self-attention.

1. Introduction

Self-attention-based models, such as transformers [57], exhibit a remarkable ability known as in-
context learning [10]. That is, these models can solve unseen tasks based on exemplars in the context
of an input prompt. In-context learning (ICL) is critical to the flexibility of large language models,
allowing them to solve tasks not explicitly included in their training data. However, it remains
unclear how architectures like self-attention acquire this ability through gradient descent training.

Seminal work by Olsson et al. [42] identified an intriguing trait in the training dynamics of ICL:
the ICL ability often emerges abruptly, coinciding with an abrupt drop in loss during training. This
abrupt learning phase can reflect the formation of an induction head in the ICL setting [17, 42, 45,
51], and can also occur more broadly in transformer training dynamics [12, 24, 39]. Furthermore,
Singh et al. [50] found that ICL may often be a transient ability that the transformers acquire and
then lose over the course of long training time, a phenomenon that has since been reproduced in
many settings [5, 11, 23, 40, 44, 52]. These findings underscore the importance of understanding
not only the ICL ability in trained models, but its full training dynamics.

This work aims to provide a theoretical description of how the ICL ability evolves in gradient
descent training. To do so, we consider the increasingly common setup of linear self-attention [59]
trained on an in-context linear regression task [20]. The in-context linear regression task, in which
the model needs to perform linear regression on the data in context, is a canonical instantiation of
ICL [2, 4, 20, 59]. The linear attention model, which has been used in many prior studies [2, 16,
18, 19, 35–37, 48, 59, 61–63], reproduces key optimization properties of practical transformers [3]
and is more amenable to theoretical analysis. Importantly, despite its name, linear attention is a
nonlinear model, as it removes the softmax operation but is still a nonlinear function of the input.

We study the common parametrizations of multi-head linear attention with low-rank key and
query matrices. We specify the fixed points in the loss landscape, as well as how gradient descent
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training dynamics traverses the landscape. Our findings are summarized as follows: (i) We specify
exponentially many fixed points in the function space. (ii) We show saddle-to-saddle training dy-
namics in training from small initialization and reduce the high-dimensional training dynamics to
scalar ordinary differential equations through an ansatz. We demonstrate the rank of the key and
query weights affects the dynamics by shortening the duration of certain plateaus. (iii) We iden-
tify the in-context algorithm of the converged and early stopped models. When training early stops
during the (m+ 1)-th loss plateau, it approximately implements principal component regression in
context with the first m principal components.

2. Preliminaries

2.1. In-Context Linear Regression Task

We study a standard ICL task of predicting the next token. The input is a sequence {x1, y1,x2, y2, · · ·
xN , yN ,xq} and the desired output is yq. We refer to xq as the query token, {x1, y1,x2, y2, · · · ,xN ,
yN} as the context, and N as the context length. By convention [2, 13, 26, 63, 64], the input se-
quence is presented to the model as a matrix X , defined as

X =

[
x1 x2 · · · xN xq

y1 y2 · · · yN 0

]
∈ R(D+1)×(N+1), (1)

where x1, · · · ,xN ,xq ∈ RD and y1, · · · , yN ∈ R.
We are given a training dataset {Xµ, yµ,q}Pµ=1 consisting of P samples. All x tokens are

independently sampled from a D-dimensional zero-mean normal distribution with covariance Λ,
that is xµ,n,xµ,q ∼ N (0,Λ), n = 1, · · · , N, µ = 1, · · · , P . We consider the in-context lin-
ear regression task, where the yn in context and the target output yq are generated as a linear
map of the corresponding xn and xq [20]. For each sequence Xµ, we independently sample a
task vector wµ from a D-dimensional standard normal distribution, wµ ∼ N (0, I), and generate
yµ,n = w⊤

µ xµ,n, yµ,q = w⊤
µ xµ,q, n = 1, · · · , N, µ = 1, · · · , P . Note that the task vector wµ is

fixed for all tokens in one sample sequence but varies across different samples, and is independent
of the tokens xµ,1, · · · ,xµ,N ,xµ,q.

2.2. Multi-Head Linear Attention

The multi-head linear attention takes the matrix X as input and returns a matrix of the same size,

ATTN(X) = X +

H∑
i=1

1

N
W V

i XX⊤WK
i

⊤
WQ

i X

= X +
H∑
i=1

[
∗ ∗
v⊤
i vi

]
XX⊤

N

[
ki,1 · · · ki,R

ki,1 · · · ki,R

]q
⊤
i,1 ∗
...

...
q⊤i,R ∗

X

where H is the number of heads, and W V
i ,WK

i ,WQ
i are the trainable value, key, and query

matrices in the i-th head. We write the value, key, and query weights in block form, whose entries
have dimensionalities vi, ki,r ∈ R and vi,ki,r, qi,r ∈ RD (r = 1, · · · , R). Following [2, 26, 33, 63],
we initialize vi = 0, ki,r = 0 as they are not required for achieving global minimum loss in our
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setting. These weights remain zero throughout training (see Appendix F.1). With this initialization,
the multi-head linear attention computes

ŷq ≡ ATTN(X)D+1,N+1 =
H∑
i=1

R∑
r=1

viβ
⊤ki,rq

⊤
i,rxq, where β ≡ 1

N

N∑
n=1

ynxn. (2)

We only take the bottom right entry of the output matrix because it is the prediction for yq.
We train the multi-head linear attention model with gradient descent on mean square error loss,

that is L = E(yq − ŷq)
2. We analyze the gradient flow dynamics on the loss, given by τ dW

dt =

−1
2

∂L
∂W , where τ is the time constant.

3. Multi-Head Linear Attention with Rank-One Key and Query

Because the multi-head linear attention with rank-one key and query captures most of the behaviors
of the general rank-R case, we focus on the rank-one case in this section and defer the rank-R case
to Appendix A. When R = 1, the model definition in Eq. (2) simplifies to ŷq =

∑H
i=1 viβ

⊤kiq
⊤
i xq.

3.1. Loss Landscape: Exponentially Many Fixed Points

The gradient flow training dynamics of linear attention with rank-one key and query is given
by Eq. (24) in Appendix E.2. The dynamics contains 2D fixed points in the function space of
ATTN(X)D+1,N+1. We specify them below.

Let λ1, · · · , λD be the eigenvalues of the covariance matrix Λ arranged in descending order,
and e1, · · · , eD be the corresponding normalized eigenvectors. We use M(Sm) to denote a set of
fixed points that correspond to learning m (m = 0, 1, · · · , D) out of the D eigenvectors,

M(Sm) =
{
(v,k, q)1:H

∣∣conditions (C1)-(C3)
}
, where Sm ⊆ {1, 2, · · · , D}, |Sm| = m. (3)

Here the set Sm specifies the indices of learned eigenvectors. The three conditions for Eq. (3) are:

(C1) The heads sum to fit the eigenvectors with indices in the set Sm

H∑
i=1

vikiq
⊤
i =

∑
d∈Sm

λ−1
d

(
1 +

1 + tr(Λ)/λd

N

)−1

ede
⊤
d . (4)

(C2) For a head with vi ̸= 0, both ki and qi lie in the span of {ed}d∈Sm .

(C3) For a head with vi = 0, at least one of ki or qi lies in the span of {ed}d∈Sm .

Since there are
(
D
m

)
possible ways of choosing m out of D indices to define Sm in Eq. (3), the total

number of possible choices summed over m = 0, · · · , D is
∑D

m=0

(
D
m

)
= 2D. Each choice cor-

responds to a different condition (C1) in Eq. (4) and thus a different function, ATTN(X)D+1,N+1.
Hence, the gradient flow dynamics in Eq. (24) has 2D fixed points in the function space.

3.2. Training Dynamics: Saddle-to-Saddle Dynamics

Building on the exponentially many fixed points we have identified, we now analyze which fixed
points are actually visited in gradient flow training and in what order. We find that starting from
small initialization, the model visits (D + 1) out of the 2D fixed points.
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Figure 1: Multi-head linear attention with rank-one key and query exhibits saddle-to-saddle dynam-
ics. (a) The loss curve has D abrupt drops, separated by plateaus (six runs from different random
initialization are plotted). The loss at each plateau matches our theoretical prediction in Eq. (5)
(dashed gray lines). (b) The value weight vi in each head for one of the runs in (a) is plotted in solid
blue curves. The numerical solutions of vi from Eq. (7) are plotted in dashed blue curves and match
the simulations well. The shades of blue distinguish different heads. (c) The key weights during
the loss plateau are plotted in color. When the model moves from one fixed point to the next, the
key weight in a head, ki, aligns with a new eigenvector of the input token covariance Λ. The key
weights k1:4 and the eigenvectors e1:4 are rows in the heatmaps. Here D = 4, N = 31, H = 4, and
Λ has eigenvalues 0.4, 0.3, 0.2, 0.1 and eigenvectors as plotted in (c).

With small initialization, the model is initially near the unstable zero fixed point, M0 = M(∅).
As training progresses, the model sequentially visits the fixed points in M1,M2, · · · ,MD, where
Mm = M({1, 2, · · · ,m}). That is, the model trained from small initialization sequentially learns
to fit the first eigenvector (the eigenvector of Λ with the largest eigenvalue), the second eigenvector,
and so on. As shown in Fig. 1(a), the loss goes through D abrupt drops in training, each corre-
sponding to the transition from one fixed point to the next. The abrupt drops of loss are separated
by plateaus, during which the model lingers near an unstable fixed point. Because the time required
for a head to learn the eigenvector em from small initialization scales with λ−2

m (see Appendix E.6),
eigenvectors associated with larger eigenvalues are learned faster. This explains why the model
learns to fit the eigenvectors sequentially in descending order of the eigenvalues, as well as why we
empirically see the later plateaus last longer in Fig. 1(a).

When the model is at a fixed point in Mm, we compute the loss in Appendix E.4 and obtain

L(Mm) = tr(Λ)−
m∑
d=1

λd

(
1 +

1 + tr(Λ)/λd

N

)−1

. (5)

In the limit of a large sequence length N , Eq. (5) is highly interpretable: it is the sum of the eigen-
values associated with the remaining unlearned eigenvectors, limN→∞ L(Mm) =

∑D
d=m+1 λd.

Thus, the loss decreases by approximately λm during the m-th abrupt loss drop. We plot Eq. (5) as
dashed gray lines in Fig. 1(a) and find they match the plateaus of simulated loss trajectories well.

When the model reaches Mm from small initialization, its weights take on a highly structured
form, which is a specific instance of the general definition in Eq. (3). As shown in Fig. 1(c), the
key and query weights in a head grow in scale and align with a new eigenvector of the input token
covariance Λ during each abrupt loss drop. Based on simulations in Fig. 1 and derivations in
Appendices E.5 and E.6, we propose an ansatz that during the (m + 1)-th plateau (0 ≤ m < D)
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and the subsequent abrupt drop of loss, the weights are approximately given by

ki = qi = viei, vi = λ
− 1

3
i

(
1 +

1 + tr(Λ)/λi

N

)− 1
3

, 1 ≤ i ≤ m, (6a)

ki = qi = vi(t)em+1, i = m+ 1, (6b)

ki = qi = 0, vi = 0, m+ 2 ≤ i ≤ H, (6c)

where vm+1(t) is small during the (m+ 1)-th loss plateau and grows during the (m+ 1)-th abrupt
loss drop. Eq. (6) implies that the ℓ2 norms of vi,ki, qi in a head are equal, which is a conse-
quence of small initialization and the conservation law in Appendix E.7. With this ansatz, the
high-dimensional training dynamics during the (m + 1)-th plateau and the subsequent abrupt drop
of loss reduces to an ordinary differential equation about vi(t), i = m+ 1:

τ v̇i = λ2
m+1v

2
i − λ3

m+1

(
1 +

1 + tr(Λ)/λm+1

N

)
v5i . (7)

Eq. (7) is a separable differential equation but does not admit a general analytical solution of
vm+1(t) in terms of t (see Eq. (37)). Nonetheless, it greatly simplifies the high-dimensional dy-
namics in Eq. (24) and provides a good approximation of the true dynamics: during each plateau
and the subsequent abrupt loss drop, weights in one of the heads grow in scale with the key and
query weights aligning with the next eigenvector, while the rest of the heads remain approximately
unchanged. In Fig. 1(b), we compare the numerical solution of Eq. (7) with the value weights
trajectories in the simulation and find excellent agreement.

In summary, the loss trajectory of linear attention with rank-one key and query trained from
small initialization exhibits D abrupt drops, each followed by a plateau. The amount of the m-th
abrupt loss drop (1 ≤ m ≤ D) is approximately the eigenvalue λm, during which the key and query
weights in an attention head grow in scale and align with the eigenvector em.

3.3. ICL Algorithm: Principal Component Regression

When the linear attention model is at a fixed point in Mm, based on Eq. (4), the model implements

ATTN(X)D+1,N+1 = β⊤
m∑
d=1

λ−1
d

(
1 +

1 + tr(Λ)/λd

N

)−1

ede
⊤
d xq. (8)

In the limit of a large sequence length N , Eq. (8) simplifies and can be interpreted as principal
component regression in context with m principal components

lim
N→∞

ATTN(X)D+1,N+1 = w⊤
m∑
d=1

ede
⊤
d xq.

Here w is the task vector for the sequence X , and
∑m

d=1 ede
⊤
d xq is query input xq projected onto

the first m principal components. Hence, if training stops during the (m+ 1)-th plateau, the linear
attention approximately implements the principal component regression algorithm in context with
m principal components. After the model has undergone D plateaus, it converges to the global min-
imum fixed point, MD, and approximately implements principal component regression in context
with all D components, which is least squares linear regression in context.
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Figure 2: Multi-head linear attention with low-rank key and query exhibits saddle-to-saddle dynam-
ics, with the duration of plateaus depending on the rank R. Solid black curves are loss trajectories
from six random initializations. Dashed gray lines mark the loss values predicted by Eq. (5) at nine
fixed points, which are L(M0),L(M1), · · · ,L(M8) from top to bottom. The four panels differ
only in the rank of the key and query weights. Here D = 8, N = 31, H = 9, Λ has trace 1 and
eigenvalues λd ∝ d−1.

Appendix A. Linear Attention with Low-Rank Key and Query

The linear attention model with rank-R key and query shares many behaviors with its rank-one
counterpart. For loss landscape, linear attention with rank-R key and query has the same 2D fixed
points in the function space as its rank-one counterpart, corresponding to the model implement-
ing in-context principal component regression with a subset of all D principal components (see
Appendix F.3).

For training dynamics, the loss trajectories differ slightly, depending on the rank R. We plot
the loss trajectories with input token dimension D = 8 and different ranks R = 1, 2, 4, 8 in Fig. 2
(see Fig. 8 for R = 3, 5, 6, 7). For R = 1, the loss exhibits plateaus at eight values L(Mm) (m =
0, 1, · · · , 7). For R = 2, the loss exhibits plateaus at four values L(Mm) (m = 0, 2, 4, 6), and
either brief plateaus or no plateau at the other four values. For R = 4, the loss exhibits conspicuous
plateaus at only two values L(Mm) (m = 0, 4). To summarize, with rank-R key and query, the
loss trajectory exhibits conspicuous plateaus at value L(Mm) for m that divides R.

The difference in the loss trajectories arises from the structure of the model defined in Eq. (2).
Each attention head has a single value weight vi that is associated with all R pairs of key and query
weights in that head, ki,r, qi,r (r = 1, · · · , R). During a conspicuous plateau, a new value weight
escapes from the unstable zero fixed point and grows in scale. Once the value weight has grown,
it leads to larger gradient updates for all the key and query weights in that head, speeding up their
escape from the zero fixed point. Hence, in the rank-R case, a conspicuous plateau occurs when
m divides R, corresponding to learning a new head from small initialization. Brief or no plateau
occurs when m does not divide R, corresponding to learning a new pair of key and query weights
in a head whose value weight has already grown, as shown in Fig. 7. See Appendix F.4 for further
details.

15



TRAINING DYNAMICS OF IN-CONTEXT LEARNING IN LINEAR ATTENTION

Appendix B. Related Work

B.1. Theory of Linear Attention

Recent theoretical research on linear attention has investigated its expressivity [21, 58], learnability
[62], loss landscape [35, 37], convergence [19, 46, 63, 64], and generalization [1, 16, 18, 36, 37,
61]. The seminal work by Zhang et al. [63] analyzed the gradient flow training dynamics of linear
attention to prove convergence guarantees, showing what the model converges to at the end of
training. Our work also analyzes the gradient flow training dynamics but goes beyond existing
convergence results to describe the entire training dynamics.

B.2. Theory of Training Dynamics In Attention Models

A line of recent research on the training dynamics of softmax attention models has shown stage-
wise dynamics. Due to the intractability of softmax attention training dynamics in general, many of
these studies made strong assumptions to enable theoretical analyses, including a simplified layer-
wise training algorithm in place of standard gradient descent [14, 41, 55, 60], restricted weights
[8, 13, 17, 47], and specifically chosen datasets [26]. In comparison, our work leverages the linear
attention model without the softmax operation, enabling us to study in fine detail the dynamics of
standard gradient descent training without restrictions on weights.

We note a concurrent work by Geshkovski et al. [22] that studies saddle-to-saddle-like dynamics
in softmax self-attention models following a mathematical framework for slow motion of gradient
flows [43].

A broader body of theoretical literature have explored the transformers training dynamics but
addressed different problem from ours, such as the effect of initialization [38], convergence results
[25, 53], sample complexity guarantees [28], scaling limits [9], and implicit regularization [6, 32, 49,
54, 56]. Other studies considered special training regimes, such as the neural tangent kernel regime
[29] and the mean-field regime [33]. A few works focused on vision transformers [27, 30, 31].
In contrast, our works focuses on characterizing the process of training and the development of
in-context learning abilities over time.

Appendix C. Discussion

We study the gradient flow training dynamics of multi-head linear attention and demonstrated how
it acquires ICL abilities in training. We find that the loss exhibits saddle-to-saddle dynamics with
multiple abrupt drops. The ICL ability evolves progressively, manifesting as implementing principal
component regression in context, with the number of principal components increasing over training
time. Building on prior findings showing that transformers can implement different forms of ICL
[7, 34], we show that different forms of ICL can indeed emerge in gradient descent training. We
thus characterize how the linear attention model develops increasingly sophisticated ICL abilities in
gradient descent training.

C.1. Softmax Attention

We empirically find that the training dynamics of linear attention also occur in their softmax coun-
terparts. Fig. 3 follows the same setup as Fig. 1 for linear attention, with the only difference being
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Figure 3: Loss trajectories of softmax attention with rank-one key and query. Six runs from different
random initialization are plotted. Similar to the linear attention case, softmax attention exhibits
multiple loss drops. The dataset and model setup are the same as Fig. 1 except adding the softmax
activation function.
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Figure 4: Loss trajectories of linear attention with varying initialization scales. The colors indicate
the initialization scale. Increasing the initialization scale shortens the plateaus. With small initializa-
tion, the models are in the rich feature learning regime, exhibiting abrupt sigmoid-shaped dynamics.
With large initialization, they are in the lazy learning regime, exhibiting exponential-shaped loss de-
cay. The loss curve from intermediate initialization seems like a mix of the exponential-shaped and
sigmoid-shaped curves. Such mixed curves are often seen in practice, such as in induction head
emergence in natural language settings [42, Argument 1].
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Figure 5: Loss trajectories of linear attention trained with next token prediction loss in Eq. (9). In
this case, the models are trained on sequences of varying lengths, which they can handle due to the
1/N scaling factor in Eq. (2).
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adding the softmax activation function for the attention calculation. We observe that softmax atten-
tion with rank-one key and query undergoes multiple loss drops, separated by phases of conspic-
uously slower training. This suggests that our findings and theoretical intuition are not unique to
linear attention but may also extend to softmax attention.

C.2. Effect of Initialization

Having analyzed the small initialization case, we now examine how the initialization scale affects
training dynamics. We vary the initialization scale of the linear attention models and plot their
loss trajectories in Fig. 4. We see that increasing initialization shortens all plateaus between suc-
cessive abrupt loss drops. At the largest initialization, the model exhibits an exponential-shaped
loss decay – a hallmark of lazy learning [15]. In contrast, rich learning typically exhibits abrupt
sigmoid-shaped loss curves as seen in our main result. Theory typically focuses on either the lazy
or rich regime, while practical initializations often fall in between. In Fig. 4, dynamics from the
intermediate initialization seems like a mix of the exponential-shaped and sigmoid-shaped curves,
which are often seen in practice, e.g. in induction head emergence in natural language settings [42,
Argument 1]. Our analysis focuses on the rich learning regime and provides analytical insight into
such phenomena, which we believe is a first step toward understanding dynamics in naturalistic
settings.

C.3. Varying Context Lengths

In our main results, we consider a fixed context length N , since our training sequences have the
same length and the loss is computed only for the last query token, L = E(yq − ŷq)

2. In practice,
however, the training sequences may have varying lengths, and the loss can be computed for every
token in the sequence, that is

Lntp = E

[
1

N

N+1∑
n=2

(yn − ŷn)
2

]
, (9)

where yN+1 = yq, and ŷn is the attention model’s prediction for yn when given only the first n
columns of X as input.

We demonstrate how our results apply to the case of varying context lengths. Specifically, the
distribution of the context lengths only influence our results through a statistic, E(1/N).

Derivations in Appendix E.3 show that the converged model implements

ATTN(X)D+1,N+1 = β⊤Λ

[
E
(

1

N
xnx

⊤
n

)2
]−1

xq. (10)

Substituting Eq. (16) into Eq. (10), we obtain

ATTN(X)D+1,N+1 = β⊤
[
Λ+ E

(
1

N

)
(Λ+ tr(Λ)I)

]−1

xq. (11)

The distribution of context lengths only influences Eq. (11) through the expectation E(1/N). For a
fixed context length, E(1/N) = 1/N . For the next token prediction loss, the distribution of context
lengths, p(N), follows a uniform distribution over {1, 2, · · · , Nmax}. The expectation E(1/N) is
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the harmonic number divided by Nmax, which doesn’t have a closed-form expression but can be
easily computed for a specific finite Nmax.

Similarly, the fixed point condition (C1) takes the form

H∑
i=1

vikiq
⊤
i =

∑
d∈Sm

λ−1
d

[
1 + E

(
1

N

)
(1 + tr(Λ)/λd)

]−1

ede
⊤
d ,

where the expectation E(1/N) reduces to 1/N in the fixed context length case as in Eq. (4). Con-
sequently, when the model is at a fixed point in Mm, the loss value is

L(Mm) = tr(Λ)−
m∑
d=1

λd

[
1 + E

(
1

N

)
(1 + tr(Λ)/λd)

]−1

, (12)

which reduces to Eq. (5) when E(1/N) = 1/N .
We train the linear attention model with the next token prediction loss as in Eq. (9) and plot the

loss trajectories in Fig. 5. The loss trajectories are qualitatively similar to those in Fig. 1(a), except
for the different loss values during the plateaus. We plot the loss values computed from Eq. (12) as
dashed gray lines and find they match the plateaus of the simulated loss trajectories well.

Appendix D. Additional Preliminaries

D.1. Data Statistics

Recall that we use β to denote the in-context correlation between xn and yn in a sequence X , as
defined in Eq. (2). We additionally denote the in-context covariance of xn in a sequence as Λ̂

Λ̂ ≡ 1

N

N∑
n=1

xnx
⊤
n . (13)

We can thus write XX⊤/N as a block matrix

1

N
XX⊤ =

[
1
N

(
xqx

⊤
q +

∑
n xnx

⊤
n

)
1
N

∑
n xnyn

1
N

∑
n ynx

⊤ 1
N

∑
n y

2
n

]
=

[
1
Nxqx

⊤
q + Λ̂ β

β⊤ w⊤Λ̂w

]
. (14)

Due to the definition of the in-context linear regression task, we have that

β = Λ̂w. (15)
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We will need a statistic, E
(
Λ̂2
)

. Let p(N) denote the distribution of context lengths, and recall
that xn ∼ N (0,Λ). We obtain:

E
(
Λ̂2
)
≡ E

(
1

N

N∑
n=1

xnx
⊤
n

)2

= E

N2 −N

N2

∑
n̸=n′

xnx
⊤
nxn′x⊤

n′ +
N

N2

N∑
n=1

xnx
⊤
nxnx

⊤
n


= EN

(
N − 1

N

)
Ex

(
xnx

⊤
n

)
Ex

(
xn′x⊤

n′

)
+ EN

(
1

N

)
Ex

(
xnx

⊤
nxnx

⊤
n

)
=

(
1− E

(
1

N

))
Λ2 + E

(
1

N

)(
2Λ2 + tr(Λ)Λ

)
= Λ2 + E

(
1

N

)
(Λ+ tr(Λ)I)Λ. (16)

For our main results, we use a fixed context length, that is p(N) is a point mass distribution and
E(1/N) = 1/N . In this case, Eq. (16) simplifies to

E
(
Λ̂2
)
= Λ2 +

Λ+ tr(Λ)I

N
Λ. (17)

We note that the eigenvectors of E
(
Λ̂2
)

are the same as those of Λ, which are e1, · · · , eD,

E
(
Λ̂2
)
ed =

(
1 +

1

N

)
Λ2ed +

tr(Λ)

N
Λed =

[(
1 +

1

N

)
λ2
d +

tr(Λ)

N
λd

]
ed.

We denote the eigenvalues of E(Λ̂2) corresponding to eigenvectors e1, · · · , eD as a1, · · · , aD.
These eigenvalues are given by

ad =

[(
1 +

1

N

)
λ2
d +

tr(Λ)

N
λd

]
= λ2

d

(
1 +

1 + tr(Λ)/λd

N

)
. (18)

The matrix E(Λ̂2) can be expressed through its eigen-decomposition, which will be useful in later
derivations:

E
(
Λ̂2
)
=

D∑
d=1

adede
⊤
d . (19)

D.2. Initialization

For linear attention with rank-R key and query, we initialize the entries of the value, key, and query
weights as

vi ∼ N (0, w2
init/H), kdi,r ∼ N (0, w2

init/HRD), qdi,r ∼ N (0, w2
init/HRD). (20)

At initialization, the following ℓ2 norms are√√√√ H∑
i=1

v2i ,

√√√√ H∑
i=1

R∑
r=1

∥ki,r∥2,

√√√√ H∑
i=1

R∑
r=1

∥qi,r∥2 ∼ O(winit). (21)
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Appendix E. Linear Attention with Rank-One Key and Query

E.1. Justification for Zero Blocks Assumption

This is a special case of linear attention with rank-R key and query. The proof for the more general
rank-R case can be found in Appendix F.1.

E.2. Gradient Flow Equations

We here derive the gradient flow dynamics for linear attention with rank-one key and query intro-
duced in Eq. (24).

Based on the gradient flow training rule, τ dW
dt = −1

2
∂L
∂W , the gradient flow dynamics for the

value, key, and query weights in the i-th head are

τ v̇i = k⊤
i E
(
β(yq − ŷq)x

⊤
q

)
qi, (22a)

τ k̇i = viE
(
β(yq − ŷq)x

⊤
q

)
qi, (22b)

τ q̇i = viE
(
xq(yq − ŷq)β

⊤
)
ki. (22c)

We calculate the common term in Eq. (22), that is

E
(
β(yq − ŷq)x

⊤
q

)
= E

[
β

(
w⊤xq −

H∑
i=1

viβ
⊤kiq

⊤
i xq

)
x⊤
q

]

= E

[
Λ̂ww⊤

(
I −

H∑
i=1

viΛ̂kiq
⊤
i

)
xqx

⊤
q

]

= E
(
Λ̂
)
Ew

(
ww⊤

)
Exq

(
xqx

⊤
q

)
− E

(
Λ̂ww⊤Λ̂

) H∑
i=1

vikiq
⊤
i Exq

(
xqx

⊤
q

)
= Λ2 − E

(
Λ̂2
) H∑

i=1

vikiq
⊤
i Λ (23)

Substituting Eq. (23) into Eq. (22), we arrive at the same equations as Eq. (24) in the main text

τ v̇i = k⊤
i

(
Λ2 − E

(
Λ̂2
) H∑

i′=1

vi′ki′q
⊤
i′ Λ

)
qi, (24a)

τ k̇i = vi

(
Λ2 − E

(
Λ̂2
) H∑

i′=1

vi′ki′q
⊤
i′ Λ

)
qi, (24b)

τ q̇i = vi

(
Λ2 −Λ

H∑
i′=1

vi′ki′q
⊤
i′ E
(
Λ̂2
))

ki. (24c)

where the data statistics E
(
Λ̂2
)

is calculated in Eq. (17).
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E.3. Fixed Points

We prove that the fixed points given in Eq. (3) are valid.
Proof When the model is at a fixed point in set M(Sm), it satisfies Eq. (4). Eq. (4) can be rewritten
using ad (defined in Eq. (18)) as

H∑
i=1

vikiq
⊤
i =

∑
d∈Sm

λd

ad
ede

⊤
d . (25)

Using Eqs. (19) and (25), we can simplify a common term in the gradient descent dynamics in
Eq. (24) to

Λ2 − E
(
Λ̂2
) H∑

i=1

vikiq
⊤
i Λ =

D∑
d=1

λ2
dede

⊤
d −

D∑
d′=1

ad′ed′e
⊤
d′

∑
d∈Sm

λd

ad
ede

⊤
d Λ

=

D∑
d=1

λ2
dede

⊤
d −

∑
d∈Sm

λdede
⊤
d Λ

=
∑
d/∈Sm

λ2
dede

⊤
d . (26)

Substituting Eq. (26) into Eq. (24), we obtain the gradient flow dynamics when the model is at a
fixed point in M(Sm)

τ v̇i = k⊤
i

∑
d/∈Sm

λ2
dede

⊤
d

 qi, (27a)

τ k̇i = vi

∑
d/∈Sm

λ2
dede

⊤
d

 qi, (27b)

τ q̇i = vi

∑
d/∈Sm

λ2
dede

⊤
d

ki. (27c)

(i) For the heads with a nonzero value weight, vi ̸= 0, the key and query weights at a fixed
point satisfy condition (C2) for Eq. (3), that is the key and query weights lie in the span of
{ed}d∈Sm and thus can be written as

ki =
∑
d∈Sm

bded, bd ∈ R, (28a)

qi =
∑
d∈Sm

cded, cd ∈ R. (28b)
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Substituting Eq. (28) into the gradient flow dynamics given in Eq. (27), we obtain

τ v̇i = k⊤
i

∑
d/∈Sm

λ2
dede

⊤
d

 ∑
d′∈Sm

cd′ed′ = 0,

τ k̇i = vi

∑
d/∈Sm

λ2
dede

⊤
d

 ∑
d′∈Sm

cd′ed′ = 0,

τ q̇i = vi

∑
d/∈Sm

λ2
dede

⊤
d

 ∑
d′∈Sm

bd′ed′ = 0,

where we have used the fact that e⊤d ed′ = 0 if d ̸= d′, because eigenvectors of the covariance
matrix Λ are orthogonal.

(ii) For the heads with a zero value weight, vi = 0, the gradients of the key and query weights
in Eqs. (27b) and (27c) contain vi and are thus zero, k̇i = 0, q̇i = 0. Further, the key and
query weights of a head with a zero value weight satisfy condition (C3) for Eq. (3). Without
loss of generality, suppose that qi lies in the span of {ed}d∈Sm , that is qi satisfies Eq. (28b).
Substituting Eq. (28b) into the gradient of vi given in Eq. (27a), we obtain

v̇i = k⊤
i

∑
d/∈Sm

λ2
dede

⊤
d

 ∑
d′∈Sm

cd′ed′ = 0,

where we have again used the fact that eigenvectors of Λ are orthogonal.

Hence, when the model has weights specified in Eq. (3), the gradients of the weights are zero,
meaning that the fixed points are valid.

E.4. Loss Value at A Fixed Point

We derive the loss when the model is at a fixed point in set M(Sm), where the loss is given by

L(M(Sm)) = tr(Λ)−
∑
d∈Sm

λd

(
1 +

1 + tr(Λ)/λd

N

)−1

. (29)

Eq. (5) in the main text follows directly from Eq. (29) when taking Sm = {1, 2, · · · ,m}.
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Proof We substitute Eqs. (19) and (25) into the mean square loss and obtain

L(M(Sm)) = E(yq − ŷq)
2

= E

w⊤xq −
∑
d∈Sm

λd

ad
w⊤Λ̂ede

⊤
d xq

2

= E

x⊤
q

I −
∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

Ew(ww⊤)

I −
∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

xq


= E

x⊤
q

I −
∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

I −
∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

xq


= E

x⊤
q

I − 2
∑
d∈Sm

λd

ad
Λ̂ede

⊤
d +

∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

2xq

 . (30)

Since Λ̂ is independent of xq, we can calculate the expectation of the purple and teal terms first,

E

∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

 =
∑
d∈Sm

λd

ad
Λede

⊤
d =

∑
d∈Sm

λ2
d

ad
ede

⊤
d ,

E

∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

2 = E

∑
d∈Sm

λ2
d

a2d
ede

⊤
d Λ̂Λ̂ede

⊤
d +

∑
d,d′∈Sm,d ̸=d′

λdλd′

adad′
Λ̂ede

⊤
d ed′e

⊤
d′Λ̂


=
∑
d∈Sm

λ2
d

a2d
ede

⊤
d E
(
Λ̂Λ̂

)
ede

⊤
d + 0

=
∑
d∈Sm

λ2
d

a2d
ede

⊤
d

D∑
d′=1

ad′ed′e
⊤
d′ede

⊤
d

=
∑
d∈Sm

λ2
d

ad
ede

⊤
d .
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Substituting them back into Eq. (30), we get

L(M(Sm)) = E

x⊤
q

I − 2
∑
d∈Sm

λ2
d

ad
ede

⊤
d +

∑
d∈Sm

λ2
d

ad
ede

⊤
d

xq


= E

x⊤
q

I −
∑
d∈Sm

λ2
d

ad
ede

⊤
d

xq


= E

(
x⊤
q xq

)
−
∑
d∈Sm

λ2
d

ad
E
(
x⊤
q ede

⊤
d xq

)
= tr(Λ)−

∑
d∈Sm

λ2
d

ad
e⊤d Λed

= tr(Λ)−
∑
d∈Sm

λ3
d

ad

We plug in the definition of ad in Eq. (18) and arrive at the desired result:

L(M(Sm)) = tr(Λ)−
∑
d∈Sm

λ3
d

1

λ2
d

(
1 +

1 + tr(Λ)/λd

N

)−1

= tr(Λ)−
∑
d∈Sm

λd

(
1 +

1 + tr(Λ)/λd

N

)−1

.

E.5. Saddle-to-Saddle Dynamics: From M0 to M1

We denote the time at which the loss has just undergone the d-th abrupt drop as td (d = 1, . . . , D),
as illustrated in Fig. 6.

t1t2 t3 t4 10000
Training steps t

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Simulation Theory

L(M0)

L(M1)

L(M2)

L(M3)L(M4)

Figure 6: Illustration of t1, · · · , tD. The loss trajectory plotted is one of the trajectories of linear
attention with rank-one key and query in Fig. 1(a). The time td (d = 1, . . . , D) denotes the time
when the loss has just undergone the d-th abrupt drop.
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E.5.1. ALIGNMENT DURING THE PLATEAU.

In the initial loss plateau, the weights have not moved much away from their small initialization and
thus the training dynamics are mainly driven by the first terms in Eq. (24), which are

τ v̇i = k⊤
i Λ

2qi +O(w5
init), (31a)

τ k̇i = viΛ
2qi +O(w5

init), (31b)

τ q̇i = viΛ
2ki +O(w5

init). (31c)

With a small initialization scale winit, the key and query weights in a head evolve approximately as

τ
d

dt

[
ki

qi

]
= vi

[
0 Λ2

Λ2 0

] [
ki

qi

]
. (32)

The matrix
[
0 Λ2

Λ2 0

]
∈ R2D×2D has eigenvalues

{
λ2
d,−λ2

d

}D
d=1

, corresponding to eigenvectors

[
0 Λ2

Λ2 0

] [
ed
ed

]
= λ2

d

[
ed
ed

]
,

[
0 Λ2

Λ2 0

] [
ed
−ed

]
= −λ2

d

[
ed
−ed

]
, d = 1, · · · , D.

where recall that λd, ed(d = 1, · · · , D) are eigenvalues and eigenvectors of Λ. Hence, the solution
to Eq. (32) takes the following form[

ki(t)
qi(t)

]
=

1

2

D∑
d=1

e⊤d (ki(0) + qi(0)) exp

(
λ2
d

τ

∫ t

0
vi(t

′)dt′
)[

ed
ed

]

+
1

2

D∑
d=1

e⊤d (ki(0)− qi(0)) exp

(
−
λ2
d

τ

∫ t

0
vi(t

′)dt′
)[

ed
−ed

]
.

(33)

If vi > 0, the first summation term in Eq. (33) grows and the second summation term decays.
The key and query weights ki, qi both grow in size along the directions of the eigenvectors ed. If
vi < 0, the first summation term in Eq. (33) decays and the second summation term grows. The key
and query weights ki, qi grow in opposite directions, ed and −ed respectively. In either case, the
multiplication vikiq

⊤
i grows along ede

⊤
d .

E.5.2. REDUCTION TO SCALAR DYNAMICS WITH AN ALIGNMENT ANSATZ.

The dominating term in Eq. (33) is the term with the largest positive eigenvalue. In other words, the
key and query weights grow the fastest along the first eigenvector e1 and thus are approximately
aligned with e1. Motivated by this insight, we make an ansatz that the key and query weights in a
head are exactly aligned with e1 and the rest of the heads are zero1:

k1 = q1 = v1e1, (34a)

ki = qi = 0, vi = 0, i = 2, · · · , H. (34b)

Note that Eq. (34) also assumes that the ℓ2 norms of k1, q1, v1 are equal, which is true under van-
ishing initialization due to the conservation law in Eq. (44). This ansatz can greatly simplify the

1. We trivially let the head aligned with e1 to have index 1.
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training dynamics and provide a good approximation of the true dynamics, where weights in one of
the heads grow in scale with the key and query weights aligning with e1, while the rest of the heads
remain near zero from time 0 to t1.

We substitute the ansatz into the training dynamics in Eq. (24) to reduce the high-dimensional
dynamics to a one-dimensional ordinary differential equation. To do that, we first calculate the
common expectation term in the training dynamics with the ansatz,

Λ2 − E
(
Λ̂2
) H∑

i=1

vikiq
⊤
i Λ = Λ2 −

D∑
d=1

adede
⊤
d v

3
1e1e

⊤
1 Λ = Λ2 − λ1a1e1e

⊤
1 v

3
1 (35)

where a1 is the first eigenvalue of E(Λ̂2) defined in Eq. (18). Substituting Eqs. (34) and (35) into
Eq. (24), we find that the training dynamics of the first head simplify and the dynamics of the rest
of the heads are zero

τ v̇1 = v21e
⊤
1

(
Λ2 − λ1a1e1e

⊤
1 v

3
1

)
e1 = λ2

1v
2
1 − λ1a1v

5
1,

τ k̇1 = v21

(
Λ2 − λ1a1e1e

⊤
1 v

3
1

)
e1 = λ2

1v
2
1e1 − λ1a1v

5
1e1,

τ q̇1 = v21

(
Λ2 − λ1a1e1e

⊤
1 v

3
1

)
e1 = λ2

1v
2
1e1 − λ1a1v

5
1e1,

v̇i = 0, k̇i = 0, q̇i = 0, i = 2, · · · , H.

We further substitute in k̇1 = v̇1e1, q̇1 = v̇1e1 and find that the high-dimensional training dynamics
reduce to one-dimensional dynamics about v1(t)

τ v̇1 = λ2
1v

2
1 − λ1a1v

5
1

τ v̇1e1 = λ2
1v

2
1e1 − λ1a1v

5
1e1

τ v̇1e1 = λ2
1v

2
1e1 − λ1a1v

5
1e1

⇒ τ v̇1 = λ2
1v

2
1 − λ1a1v

5
1 (36)

Eq. (36) is a separable ordinary differential equation. By separating variables and integrating both
sides, we can solve t in terms of v1

λ2
1

τ
t =

∫
1

v21 −
a1
λ1
v21

dv1

=

3

√
a1
λ1

6

ln


3

√
a21
λ2
1
v21 +

3

√
a1
λ1
v1 + 1

3

√
a21
λ2
1
v21 − 2 3

√
a1
λ1
v1 + 1

− 2
√
3 tan−1

2 3

√
a1
λ1
v1 + 1

√
3


− 1

v1
. (37)

Since Eq. (37) does not have a straight-forward inverse, we cannot obtain a general analytical so-
lution of v1(t) in terms of t. Nonetheless, we can readily generate numerical solutions and obtain
approximate analytical solutions when v1 is near its small initialization to estimate the duration of
the first loss plateau.

When v1 is small, the dominating term in Eq. (36) is λ2
1v

2
1 and thus the dynamics can be approx-

imated by

τ v̇i = λ2
1v

2
i ⇒ t =

τ

λ2
1

(
1

vi(0)
− 1

vi(t)

)
.
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At the end of the plateau, v1(t) has grown to be much larger than v1(0). Hence, the duration of the
first loss plateau, t1, is

t1 ≈
τ

λ2
1v1(0)

. (38)

E.6. Saddle-to-Saddle Dynamics: From Mm to Mm+1

In Appendix E.5, we have analyzed the training dynamics from time 0 to t1, during which the model
moves from saddle M0 to saddle M1. We now analyze the general saddle-to-saddle dynamics from
time tm to tm+1 (m = 0, · · · , D − 1), during which the model moves from Mm to Mm+1.

E.6.1. ALIGNMENT DURING THE PLATEAU.

Based on our dynamics analysis from time 0 to t1 and by induction, the weights during the m-th
plateau are approximately described by Eq. (6). Namely, there are m heads whose key and query
weights have grown and become aligned with the first m eigenvectors while weights in the rest of
the heads have not moved much from their small initialization. Thus, similarly to Eq. (27), the heads
that are near small initialization have the following training dynamics

τ v̇i = k⊤
i

(
D∑

d=m+1

λ2
dede

⊤
d

)
qi +O(w5

init),

τ k̇i = vi

(
D∑

d=m+1

λ2
dede

⊤
d

)
qi +O(w5

init),

τ q̇i = vi

(
D∑

d=m+1

λ2
dede

⊤
d

)
ki +O(w5

init).

With a small initialization scale winit, the key and query weights in this head evolve approximately
as

τ
d

dt

[
ki

qi

]
= vi

[
0 Ω
Ω 0

] [
ki

qi

]
, where Ω =

D∑
d=m+1

λ2
dede

⊤
d . (39)

The matrix
[
0 Ω
Ω 0

]
∈ R2D×2D has 2m zero eigenvalues and (2D − 2m) nonzero eigenvalues,

which are
{
λ2
d,−λ2

d

}D
d=m+1

. The nonzero eigenvalues correspond to eigenvectors[
0 Ω
Ω 0

] [
ed
ed

]
= λ2

d

[
ed
ed

]
,

[
0 Ω
Ω 0

] [
ed
−ed

]
= −λ2

d

[
ed
−ed

]
, d = m+ 1, · · · , D.
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Hence, the solution to Eq. (39) takes the following the form[
ki(t)
qi(t)

]
=

1

2

D∑
d=m+1

e⊤d (ki(tm) + qi(tm)) exp

(
λ2
d

τ

∫ t

tm

vi(t
′)dt′

)[
ed
ed

]

+
1

2

D∑
d=m+1

e⊤d (ki(tm)− qi(tm)) exp

(
−
λ2
d

τ

∫ t

tm

vi(t
′)dt′

)[
ed
−ed

]

+
m∑
d=1

e⊤d (ki(tm) + qi(tm))

[
ed
ed

]
.

(40)

For vi > 0, the first term grows and the second term decays with time. The third term does not
change with respect to time.

E.6.2. REDUCTION TO SCALAR DYNAMICS WITH AN ALIGNMENT ANSATZ.

The dominating term in Eq. (40) is the term with the largest positive eigenvalue. In other words,
during the (m+1)-th plateau, the key and query weights that are still near small initialization grow
the fastest along the (m + 1)-th eigenvector em+1. Based on this insight, we make the ansatz in
Eq. (6). This ansatz can reduce the high-dimensional training dynamics to a one-dimensional ordi-
nary differential equation and provides a good approximation of the true dynamics, where weights
in one of the heads grow in scale with the key and query weights aligning with em+1, while the rest
of the heads do not change much from time tm to tm+1.

To calculate the training dynamics in Eq. (24) with the ansatz, we first calculate a common term
with the ansatz

Λ2 − E
(
Λ̂2
) H∑

i=1

vikiq
⊤
i Λ = Λ2 −

D∑
d=1

adede
⊤
d

(
m∑
i=1

λd

ad
eie

⊤
i + v3m+1em+1e

⊤
m+1

)
Λ

= Λ2 −
m∑
d=1

λ2
dede

⊤
d − λm+1am+1em+1e

⊤
m+1v

3
m+1 (41)

By substituting Eqs. (6) and (41) into Eq. (24), we find that the dynamics for the heads with index
i ̸= m+ 1 are zero

v̇i = 0, k̇i = 0, q̇i = 0, i ̸= m+ 1.
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For the head with index i = m+ 1, the dynamics reduce to one-dimensional dynamics about vi(t)

τ v̇i = v2i e
⊤
m+1

(
Λ2 −

m∑
d=1

λ2
dede

⊤
d − λm+1am+1em+1e

⊤
m+1v

3
i

)
em+1

= λ2
m+1v

2
i − λm+1am+1v

5
i

τ k̇i = τ v̇iem+1 = v2i

(
Λ2 −

m∑
d=1

λ2
dede

⊤
d − λm+1am+1em+1e

⊤
m+1v

3
i

)
em+1

= λ2
m+1v

2
i em+1 − λm+1am+1v

5
i em+1

τ q̇i = τ v̇iem+1 = v2i

(
Λ2 −

m∑
d=1

λ2
dede

⊤
d − λm+1am+1em+1e

⊤
m+1v

3
i

)
em+1

= λ2
m+1v

2
i em+1 − λm+1am+1v

5
i em+1

⇒ τ v̇i = λ2
m+1v

2
i − λm+1am+1v

5
i (42)

Eq. (42) is the same ordinary differential equation as Eq. (36) modulo the constant coefficients.
Therefore, with the same analysis, we can estimate the duration of the (m+ 1)-th loss plateau.

When vm+1 is small, the dominating term in Eq. (42) is λ2
m+1v

2
i and thus the dynamics is well

approximated by

τ v̇m+1 = λ2
m+1v

2
m+1 ⇒ t− tm =

τ

λ2
m+1

(
1

vm+1(tm)
− 1

vm+1(t)

)
.

At the end of the plateau, vm+1(tm+1) has grown to be much larger than vm+1(tm). Hence, the
duration of the (m+ 1)-th loss plateau is

tm+1 − tm ≈ τ

λ2
m+1vm+1(tm)

. (43)

We note that the Eq. (43) involves vm+1(tm), which depends on the random initialization and the
dynamics from time 0 to tm. This explains why we observe the variance of tm increases with a
larger m, that is the timing of a later abrupt loss drop varies more across random seeds as shown in
Fig. 1(a).

E.7. Conservation Law

The gradient flow dynamics of linear attention with rank-one key and query in Eq. (24) implies a
conservation law. The value, key, and query weights in a head obey

d

dt

(
k⊤
i ki − q⊤i qi

)
= 0,

d

dt

(
k⊤
i ki − v2i

)
= 0, (44)

Under small initialization, the quantities k⊤
i ki − q⊤i qi ≈ 0 and k⊤

i ki − v2i ≈ 0 are small at
initialization and remain small throughout training. Thus, the conservation law enforces the ℓ2

norms of the value, key, and query to be approximately the same throughout training, ∥ki∥2 ≈
∥qi∥2 ≈ v2i .

We here prove that Eq. (44) holds regardless of the choice of the loss function.
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Proof We can use the generic gradient flow equation, τ dW
dt = −1

2
∂L
∂W , to calculate the gradients of

k⊤
i ki, q

⊤
i qi, and v2i ,

dk⊤
i ki

dt
= 2k⊤

i

dki

dt
= 2E

(
−k⊤

i

dL
dŷq

dŷq
dki

)
= 2E

(
− dL
dŷq

vik
⊤
i βq

⊤
i xq

)
dq⊤i qi
dt

= 2q⊤i
dqi
dt

= 2E
(
−q⊤i

dL
dŷq

dŷq
dqi

)
= 2E

(
− dL
dŷq

viq
⊤
i xqk

⊤
i β

)
dv2i
dt

= 2vi
dvi
dt

= 2E
(
−vi

dL
dŷq

dŷq
dvi

)
= 2E

(
− dL
dŷq

viβ
⊤kiq

⊤
i xq

)
We see that the gradients of k⊤

i ki, q
⊤
i qi, and v2i are equal, regardless of the specific choice of the

loss function L. Hence, the following conservation law holds for any loss function:

d

dt

(
k⊤
i ki − q⊤i qi

)
= 0,

d

dt

(
k⊤
i ki − v2i

)
= 0.

Appendix F. Linear Attention with Low-Rank Key and Query

F.1. Justification for Zero Blocks Assumption

We initialize vi = 0, ki,r = 0 (i = 1, · · · , H, r = 1, · · · , R), and prove that they will stay zero
throughout training.
Proof The bottom right entry of the output of linear attention with rank-R key and query is

ŷq ≡ ATTN(X)D+1,N+1

=

H∑
i=1

[
v⊤
i vi

] [ 1
N

(
xqx

⊤
q +

∑
n xnx

⊤
n

)
1
N

∑
n xnyn

1
N

∑
n ynx

⊤ 1
N

∑
n y

2
n

] [
ki,1 · · · ki,R

ki,1 · · · ki,R

]q
⊤
i,1
...

q⊤i,R

xq

=

H∑
i=1

(
v⊤
i

(
Λ̂+

1

N
xqx

⊤
q

) R∑
r=1

ki,rq
⊤
i,r + viβ

⊤
R∑

r=1

ki,rq
⊤
i,r + v⊤

i β
R∑

r=1

ki,rq
⊤
i,r + viw

⊤Λ̂w
R∑

r=1

ki,rq
⊤
i,r

)
xq

If we initialize vi = 0, ki,r = 0, ŷq is

ŷq =

H∑
i=1

R∑
r=1

viβ
⊤ki,rq

⊤
i,rxq = w⊤Λ̂

H∑
i=1

R∑
r=1

viki,rq
⊤
i,rxq.
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We now calculate the gradient updates of vi = 0, ki,r = 0 and prove their gradients are zero if their
initialization is zero. The gradient update of vi contains E(w), which is zero. Specifically, we have

τ v̇i = E

[
(yq − ŷq)

((
Λ̂+

1

N
xqx

⊤
q

) R∑
r=1

ki,rq
⊤
i,r + β

R∑
r=1

ki,rq
⊤
i,r

)
xq

]

= E

[(
w⊤xq −w⊤Λ̂

H∑
i=1

R∑
r=1

viki,rq
⊤
i,rxq

)(
Λ̂+

1

N
xqx

⊤
q

) R∑
r=1

ki,rq
⊤
i,rxq

]

= Ew(w)⊤E

[(
xq − Λ̂

H∑
i=1

R∑
r=1

viki,rq
⊤
i,rxq

)(
Λ̂+

1

N
xqx

⊤
q

) R∑
r=1

ki,rq
⊤
i,rxq

]
= 0.

The gradient update of ki,r contains Ew

(
w⊤Λ̂ww⊤

)
, whose entries are linear combinations of

third moments the zero-mean normal random variable w, and are thus zero. Specifically, we have

τ k̇i,r = E
[(

v⊤
i β + viw

⊤Λ̂w
)
(yq − ŷq)q

⊤
i,rxq

]
= E

[
viw

⊤Λ̂w

(
w⊤xq −w⊤Λ̂

H∑
i=1

R∑
r′=1

viki,r′q
⊤
i,r′xq

)
q⊤i,rxq

]

= Ew

(
w⊤Λ̂ww⊤

)
E

[
vi

(
xq − Λ̂

H∑
i=1

R∑
r′=1

viki,r′q
⊤
i,r′xq

)
q⊤i,rxq

]
= 0.

F.2. Gradient Flow Equations

Based on the gradient flow training rule, τ dW
dt = −1

2
∂L
∂W , the gradient flow dynamics of linear

attention with rank-R key and query is

τ v̇i =

R∑
r=1

k⊤
i,rE

(
β(yq − ŷq)x

⊤
q

)
qi,r =

R∑
r=1

k⊤
i,r

(
Λ2 − E

(
Λ̂2
) H∑

i=1

R∑
r′=1

viki,r′q
⊤
i,r′Λ

)
qi,r,

(45a)

τ k̇i,r = viE
(
β(yq − ŷq)x

⊤
q

)
qi,r = vi

(
Λ2 − E

(
Λ̂2
) H∑

i=1

R∑
r′=1

viki,r′q
⊤
i,r′Λ

)
qi,r, (45b)

τ q̇i,r = vik
⊤
i,rE (β(yq − ŷq)xq) = vi

(
Λ2 −Λ

H∑
i=1

R∑
r′=1

viqi,r′k
⊤
i,r′E

(
Λ̂2
))

ki,r. (45c)

where i = 1, · · · , H, r = 1, · · · , R , and the data statistics E
(
Λ̂2
)

is calculated in Eq. (17).
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F.3. Fixed Points

We use M(Sm) to denote a set of fixed points that correspond to learning m (m = 0, 1, · · · , D) out
of the D eigenvectors,

M(Sm) =

{
v1:H ,WK

1:H ,WQ
1:H

∣∣∣∣conditions (C1)-(C3) are met
}
, (46)

where the set Sm specifies the indices of the learned eigenvectors,

Sm ⊆ {1, 2, · · · , D}, |Sm| = m. (47)

The three conditions for Eq. (46) are:

(C1) The heads sum up to fit the eigenvectors with indices Sm

H∑
i=1

R∑
r=1

viki,rq
⊤
i,r =

∑
d∈Sm

λ−1
d

(
1 +

1 + tr(Λ)/λd

N

)−1

ede
⊤
d . (48)

(C2) For heads with a nonzero value weight, vi ̸= 0, ki,r, qi,r (r = 1, · · · , R) all lie in the span of
{ed}d∈Sm .

(C3) For heads with a zero value weight, vi = 0,

R∑
r=1

∑
d/∈Sm

λ2
dk

⊤
i,rede

⊤
d qi,r = 0. (49)

With the same reasoning as Appendix E.3, one can show the weights satisfying these three condi-
tions have zero gradients and thus are fixed points. Though conditions (C1,C3) do not explicitly
specify the weights, they are feasible conditions. One possible weight configuration that satisfies all
three conditions is to let ki,r, qi,r (r ̸= 1) be zero and let vi,ki,1, qi,1 be the same as the fixed point
for linear attention with rank-one key query, where the low-rank case falls back into the rank-one
case. Therefore, the fixed points described in Eq. (46) are valid and feasible. Linear attention with
rank-R key and query has the same 2D fixed points in the function space as its rank-one counterpart.

F.4. Saddle-to-Saddle Dynamics

For linear attention with rank-R key and query, the gradient updates of the key and query weights in
Eq. (45), k̇i,r, q̇i,r, include the factor vi, which is the shared across ranks r = 1, · · · , R but unique
to each head. In linear attention with rank-one key and query initialized with small weights, the
weights in a head, vi,ki, qi, escape from the unstable zero fixed point to drive the first abrupt drop
of loss. Similarly, in the rank-R model, the value weight vi and a pair of key and query weights
ki,r, qi,r in a head escape from the zero fixed point to drive the first abrupt drop of loss.

However, the subsequent dynamics differ between the the rank-one and rank-R models. In
the rank-one model, the loss will undergo a conspicuous plateau until weights in a new head,
vi′ ,ki′ , qi′ (i

′ ̸= i), escape from the zero fixed point to grow. By contrast, in the rank-R model
(R > 1), the loss will plateau briefly or not plateau because a new pair of key and query weights
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(b) R = 3

0 2500 5000
Training steps t

0.0

0.2

0.4

0.6

0.8

1.0

Loss
vi

L(M0)

L(M1)

L(M2)

L(M3)
L(M4)

(c) R = 4

Figure 7: Loss and value weights trajectories. The setting is the same as Fig. 1(b) except dif-
ferent ranks R = 2, 3, 4. In the rank-one case in Fig. 1(b), value weights in four heads grow,
each corresponding to an abrupt loss drop from L(Mm) to L(Mm+1) (m = 0, 1, 2, 3). In the
rank-R case, a new value weight grows big from small initialization when the loss decreases from
L(Mm) to L(Mm+1) for m that divides R. Here D = 4, N = 32, H = 5, and Λ has eigenvalues
0.4, 0.3, 0.2, 0.1.

Figure 8: Same as Fig. 2 but with ranks R = 3, 5, 6, 7. Here D = 8, N = 31, H = 9, Λ has trace 1
and eigenvalues λd ∝ d−1.

in the same i-th head, ki,r′ , qi,r′ (r
′ ̸= r), can quickly grow to drive the loss drop. A new pair of

key and query weights in the i-th head grows faster than the key and query weights in a new head,
because the value weight in the i-th head, vi, has already grown during the first abrupt loss drop.
Since the gradient updates of all key and query weights in the i-th head include the factor vi, a larger
value weight leads to larger gradient updates for the associated key and query weights. We plot the
value weights with D = 4 and ranks R = 1, 2, 3, 4 in Figs. 1(b) and 7 to show: the loss drop after
a conspicuous plateau corresponds to a new value weight escaping from zero, while the loss drop
after a brief plateau does not.

We plot the loss trajectories with D = 8 and different ranks in Fig. 8 to complement Fig. 2 in
the main text.

F.5. Dynamics with Repeated Eigenvalues

We have demonstrated that linear attention exhibits loss plateaus during training when the eigenval-
ues of the input token covariance matrix, Λ, are distinct. When Λ has repeated eigenvalues, linear
attention can also exhibit loss plateaus due to the different random initial weights in each head. In
the case with distinct eigenvalues (Fig. 1(a)), the plateau duration is determined by both the size of
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Figure 9: Loss trajectories of multi-head linear attention when the input token covariance has
repeated eigenvalues. The setup is the same as in Fig. 1(a) except that Λ has eigenvalues
0.35, 0.35, 0.15, 0.15. The four panels differ only in the rank of the key and query weights. Al-
though some eigenvalues are equal, the loss trajectory of linear attention with R = 1 can still
exhibit plateaus when learning them, due to the different random initial weights in each head. The
plateaus may also be skipped for certain random seeds.

the eigenvalues and the random initialization. In the case with repeated eigenvalues (Fig. 9, leftmost
panel), the plateau duration is determined solely by the random initialization.

F.6. Conservation Law

The gradient flow dynamics of linear attention with rank-R key and query in Eq. (45) implies a
conservation law. The value, key, and query weights in a head obey

d

dt

(
k⊤
i,rki,r − q⊤i,rqi,r

)
= 0,

d

dt

(
R∑

r=1

k⊤
i,rki,r − v2i

)
= 0. (50)

We here prove that Eq. (50) holds regardless of the choice of the loss function.
Proof We can use the generic gradient flow equation, τ dW

dt = −1
2

∂L
∂W , to calculate the gradients

dk⊤
i,rki,r

dt
= 2k⊤

i,r

dki,r

dt
= 2E

(
−k⊤

i

dL
dŷq

dŷq
dki,r

)
= 2E

(
− dL
dŷq

vik
⊤
i,rβq

⊤
i,rxq

)
(51a)

dq⊤i,rqi,r

dt
= 2q⊤i,r

dqi,r
dt

= 2E
(
−q⊤i

dL
dŷq

dŷq
dqi,r

)
= 2E

(
− dL
dŷq

viq
⊤
i,rxqk

⊤
i,rβ

)
(51b)

dv2i
dt

= 2vi
dvi
dt

= 2E
(
−vi

dL
dŷq

dŷq
dvi

)
= 2

R∑
r=1

E
(
− dL
dŷq

viβ
⊤ki,rq

⊤
i,rxq

)
(51c)

Comparing Eqs. (51a) and (51b), we see that the following holds regardless of the specific choice
of the loss function L

dk⊤
i,rki,r

dt
=

dq⊤i,rqi,r

dt
.

Similarly, comparing Eqs. (51a) and (51b) with Eq. (51c), we obtain
R∑

r=1

dk⊤
i,rki,r

dt
=

dv2i
dt

.
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