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Abstract

State-of-the-art abstractive summarization sys-001
tems often generate hallucinations; i.e., con-002
tent that is not directly inferable from the003
source text. Despite being assumed incor-004
rect, we find that much hallucinated content005
is factual, namely consistent with world knowl-006
edge. These factual hallucinations can be bene-007
ficial in a summary by providing useful back-008
ground information. In this work, we propose a009
novel detection approach that separates factual010
from non-factual hallucinations of entities. Our011
method utilizes an entity’s prior and posterior012
probabilities according to pre-trained and fine-013
tuned masked language models, respectively.014
Empirical results suggest that our approach015
vastly outperforms five baselines and strongly016
correlates with human judgments. Furthermore,017
we show that our detector, when used as a re-018
ward signal in an off-line reinforcement learn-019
ing (RL) algorithm, significantly improves the020
factuality of summaries while maintaining the021
level of abstractiveness. 1022

1 Introduction023

State-of-the-art abstractive summarization systems024

can generate fluent summaries with high automatic025

evaluation scores in terms of ROUGE (Lin, 2004).026

However, recent studies have shown that these sys-027

tems are prone to hallucinate content that is not028

supported by the source document (Maynez et al.,029

2020; Kang and Hashimoto, 2020; Durmus et al.,030

2020; Zhao et al., 2020; Filippova, 2020; Kryscin-031

ski et al., 2020). For instance, Maynez et al. (2020)032

discovered that 64.1% of the summaries generated033

by a BERT-based abstractive summarization model034

on XSUM (Narayan et al., 2018a) contain halluci-035

nations.036

Previous studies commonly assume that hal-037

lucination is an undesirable behavior in abstrac-038

tive summarization systems. They investigate the039

1Both the data and code will be made publicly available
after the anonymity period.

Source:
Under the proposals, 120,000 additional asylum seekers
will be distributed among EU nations, with binding quotas.
(...) Mr Juncker told the European Parliament it was “not
a time to take fright”. (...) He said tackling the crisis was
“a matter of humanity and human dignity”. “It is true that
Europe cannot house all the misery in the world. But we
have to put it into perspective.” (...)
Generation:
European Commission President Jean-Claude Juncker has
set out his proposals for dealing with the migrant crisis
in a speech to MEPs, saying Europe cannot house all the
misery in the world.

Table 1: Example of factual hallucinations in a BART
generated summary on XSUM. Neither the title “Euro-
pean Commission President” nor the first name “Jean-
Claude” is mentioned in the document but both are
factual.

cause of model hallucination (Kang and Hashimoto, 040

2020; Wang and Sennrich, 2020) and propose meth- 041

ods that reduce the frequency of all hallucinations 042

(Filippova, 2020; Zhao et al., 2020; Nan et al., 043

2021; Narayan et al., 2021). 044

Our stance in this paper is that hallucinations 045

are not always undesirable: many factual halluci- 046

nations provide additional world knowledge that 047

is important for summary comprehension. Table 1 048

presents one such example from XSUM: the hallu- 049

cinated content European Commission President 050

provides additional background information on the 051

role of Mr. Juncker. Factual hallucinations refer to 052

content that is verifiable by world knowledge but 053

not inferable from source text. 054

We thus argue that not all hallucinations should 055

be treated equally; in particular, factual hallucina- 056

tions may be less deleterious or even potentially 057

beneficial to to be included in a summary, as op- 058

posed to non-factual ones. We propose a method 059

to classify entities according to whether they are 060

hallucinations and whether they are factual (if hal- 061

lucinated). We focus on entities (e.g., persons, lo- 062

cations, dates, cardinal numbers) because they are 063

necessary to express the most salient pieces of in- 064

formation in a summary. Moreover, entity halluci- 065
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nations are common in generated summaries. As066

we will show later in our work, about 30% of en-067

tities generated by BART (Lewis et al., 2020) on068

XSUM test set are hallucinated.069

Our approach is inspired by the observation that070

many hallucinated entities are generated with low071

probabilities. This observation suggests that the072

summarization model’s confidence correlates with073

the factuality statuses of generated entities. In other074

words, the uncertainty is indicative of the likelihood075

of whether generated entities are hallucinated and076

non-factual.077

We refer to the probability of an entity being in a078

summary without considering the source document079

as its prior probability, and its probability given080

the document as its posterior probability. Our as-081

sumption is that if an entity in a generated summary082

results in a factual error, giving the source should083

not provide more evidence for it, resulting in a084

small change in probability between the prior and085

the posterior. Based on this assumption, we pro-086

pose to use the prior and posterior probabilities as087

the key features in a simple classifier that predicts088

an entity’s hallucination status and factuality.089

Due to the lack of fine-grained hallucination an-090

notation, we create an entity-level hallucination091

and factuality annotation on the XSUM dataset.092

We evaluate our detection method on this anno-093

tated dataset as well as annotations from Maynez094

et al. (2020). On both datasets, our approach out-095

performs five baseline models at identifying non-096

factual hallucinations. In addition, our approach097

has a strong correlation with the factuality scores098

given by human judges. Besides, we show that our099

detector, when used as a reward signal in training100

neural-based summarizers with the off-line RL al-101

gorithm, significantly improves the factuality of102

generated summaries even when the underlying103

dataset is noisy.104

Our contributions are the following: (i) We105

demonstrate that an entity’s prior and posterior106

probabilities can be used to infer whether it is hal-107

lucinated and factual. Based on this hypothesis,108

we propose a novel approach for entity-level hal-109

lucination detection and factuality checking. Our110

approach outperforms five baselines from previous111

work on two human-annotated datasets, in addi-112

tion to having a strong correlation with summary-113

level factuality scores given by human judges. (ii)114

We empirically demonstrate that our classifier can115

provide reliable reward signals for RL algorithms,116

leading to improved factuality while maintaining 117

the level of abstractiveness in generated summaries. 118

(iii) We create a set of entity-level hallucination 119

annotations. 120

2 Related Work 121

The correctness of summarization systems’ outputs 122

has been evaluated as one aspect of content selec- 123

tion in the past, for example using the Pyramid 124

method (Nenkova and Passonneau, 2004). As neu- 125

ral abstractive summarizers have become popular, 126

their issues with correctness have sparked much 127

recent work that focus specifically on model hallu- 128

cinations and summary factuality (Kryscinski et al., 129

2020). 130

2.1 Model Hallucination 131

Maynez et al. (2020) conducted a large-scale hu- 132

man evaluation of several neural abstractive sum- 133

marization systems, and found that hallucinations 134

are common among the outputs of different sum- 135

marization models. 136

Recently, many methods have been proposed to 137

reduce model hallucination. Kang and Hashimoto 138

(2020) propose a “loss truncation” training algo- 139

rithm that filters out noisy training samples which 140

may lead a model to hallucinate. Zhao et al. (2020) 141

use a verification system to recognize non-factual 142

quantities in summaries and adopt a re-ranking 143

system to reduce the number of hallucinated quan- 144

tities in the final output summary. Narayan et al. 145

(2021) use entity chains to mitigate the hallucina- 146

tion problem in the generation of abstractive sum- 147

maries. Nan et al. (2021) show that data filtering 148

and use a summary-worthy entity classification task 149

as an auxiliary training objective can help improve 150

model’s entity-level factuality. 151

Filippova (2020) proposed a method for control- 152

ling hallucination in data-to-text generation task. 153

They suggest that a conditional language model 154

(CLM) will put more probability mass on a non- 155

hallucinated entity than an unconditional language 156

model (LM). Our work differs in that we focus on 157

both hallucination and factuality. Also, our method 158

works at the entity-level rather than the sentence- 159

level, and is geared towards text summarization. 160

2.2 Summary Factuality 161

Another line of work focuses on evaluating the 162

factual consistency of abstractive summarization 163

systems. Kryscinski et al. (2020) train models on 164
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an artificially corrupted dataset for factual errors165

detection. Cao et al. (2020) induce artificial pertur-166

bations in text to train a summary error correction167

system, but find that there is a large gap between168

such artificial perturbations and the type of hallu-169

cinations that are generated by abstractive summa-170

rizers. (Goyal and Durrett, 2020) measure factual171

consistency by checking whether the semantic re-172

lationship manifested by individual dependency173

arcs in the generated summary is supported by the174

source document. Wang et al. (2020); Dong et al.175

(2020); Durmus et al. (2020) measure and improve176

the factual consistency of summaries by asking and177

answering questions based on generated summaries178

and input documents.179

3 Method180

In this section, we propose a novel detection ap-181

proach that separates factual from non-factual hal-182

lucinations of entities (Section 3.2), and present183

a factuality-aware training framework for sum-184

marization models trained on noisy dataset (Sec-185

tion 3.3).186

3.1 Problem Statement187

Let (S,R) be a pair of a source document and188

a reference summary, where S = (s1, ..., sM ) is189

the source document with M tokens, and R =190

(r1, ..., rL) is the reference summary with L to-191

kens. Let G = (g1, ..., gN ) be the model-generated192

summary with N tokens. For each named en-193

tity ek, which we assume to be a span of tokens194

gik , ..., gik+|ek|−1 (|ek| ≥ 1) starting at position ik195

in G, the task is to determine whether ek is hal-196

lucinated, and whether it is factual. We define an197

entity as hallucinated if it is not directly inferable198

in its generated context given the input document199

S. If an entity is hallucinated, we further classify200

it into two subtypes: factual hallucinations and201

non-factual hallucinations. Factual hallucinations202

cannot be directly entailed in their generated con-203

text from the source document but can be based204

on world knowledge (see Table 1). Non-factual205

hallucinations are entities that are neither inferable206

from the source nor based on world knowledge.207

3.2 The Prior & Posterior Probability of an208

Entity209

We now define the prior and posterior probabili-210

ties of an entity, which we will use to predict its211

hallucination and factuality statuses.212

For entity ek, we define its prior probability 213

pprior(ek) as the probability of its generation by 214

a language model that does not have access to the 215

source text. If ek spans multiple tokens, we com- 216

pute its probability auto-regressively. Let ck be the 217

context of entity ek in G, excluding the tokens in 218

ek. Then: 219

pprior(ek) = fPMLM(ek | ck) (1) 220

=

|ek|∏
t=1

PMLM(etk | e1...t−1
k , ck) (2) 221

which we compute using a masked language model 222

PMLM. 223

The posterior probability ppos(ek) of entity ek is 224

the conditional probability of the entity given the 225

context and the source text: 226

ppos(ek) = PCMLM(ek | ck, S) (3) 227

=

|ek|∏
t=1

PCMLM(etk | e1...t−1
k , ck, S), (4) 228

where CMLM is a conditional masked language 229

model. CMLM is an encoder-decoder model that is 230

trained with a masked language model objective on 231

a parallel dataset. Specifically, a CMLM predicts 232

a target sequence T given a source text S and part 233

of the target Tmasked, where Tmasked is the target 234

sequence with a random entity being masked. In 235

order to correctly generate the missing part of the 236

sentence, the model needs to condition on both 237

Tmasked and S. Alternatively, we can calculate the 238

entity’s posterior probability using a conditional 239

language model (CLM) instead of a CMLM. In this 240

case, the entity’s posterior probability is defined as 241

PCLM(ek | cek , S) where cek = g1, ..., gi−1. Note 242

that CLM is only conditioned on the left context. 243

Training a Discriminator To classify the hallu- 244

cination and factuality statuses of a given entity, 245

we need to train a discriminator model. We use 246

the K-Nearest Neighbors (KNN) algorithm since 247

it requires no training and makes minimal assump- 248

tions about the form of the decision boundary, as 249

a non-parametric method. It also offers adequate 250

interpretability. The KNN classifier is trained us- 251

ing the prior and posterior probabilities as fea- 252

tures on our labeled dataset. Since the classifier 253

is used for entity hallucination and factuality as- 254

sessment, we refer to it as ENTFA. Besides using 255

the prior/posterior probability as features, we also 256
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add a binary overlap feature that indicates whether257

the entity appears in the document. We train two258

classifiers for hallucination detection and factuality259

checking tasks respectively.260

3.3 Improving the Factuality of Abstractive261

Summarization Systems262

We now propose a factuality-aware training ap-263

proach for summarization systems that combines264

our factuality assessment model with the latest off-265

line RL technique.266

RL for Text Generation Sequence generation of267

the tokens in the summary text can be viewed as268

a finite Markov Decision Process (MDP). At each269

time-step t, the state st consists of the source text270

x and the previously generated tokens y<t, st =271

(y<t, x). The agent, which is the summarization272

model, takes an action by generating a new token273

at. Depending on the action taken, the agent gets a274

reward rt = R(st, at) and deterministically transi-275

tions to the next state st+1 = (y<t+1, x). The prob-276

ability of each action (i.e., token) is specified by the277

policy πθ(at|st). The goal of the agent is to maxi-278

mize the discounted cumulative reward throughout279

the trajectory: J(θ) = Eτ∼π

[∑T
t=0 γ

trt

]
.280

When training the summarization model with281

human-written reference summaries, we can frame282

the training process as an off-line RL problem283

with expert demonstrations (i.e., the reference sum-284

maries). In this setting, since we are sampling285

trajectories from a behavior policy, we need an im-286

portance sampling term wt to correct the gradient287

estimation. Following Pang and He (2021)’s work,288

we approximate wt with πθ(at|st) and this gives289

us the following objective:290

∇θJ(θ) =

Eτ∼πb

[∑
t=0

πθ(at|st)∇θ log πθ(at | st)Q̂(at, st)
]

(5)

291

where Q̂(at, st) =
∑T

t′=t γ
t′−trt′ is the estimated292

return from state st and πb is the behavior policy293

from which we draw trajectories τ . In our case, πb294

is the (noisy) summarization dataset.295

Training with a Factuality-based Reward One296

problem in the off-line RL setting is that expert297

demonstrations, which in our case are the reference298

summaries, are often noisy and contain content that299

cannot be inferred from the source document. The300

commonly used teacher forcing training encour- 301

ages the model to blindly imitate the training data, 302

which leads to model hallucination at inference 303

time (Kang and Hashimoto, 2020). 304

To discourage the model from overfitting to the 305

noise in the training set, we use the predictions 306

from our classifier as factuality reward signals to 307

guide the training of the summarization model. In 308

the off-policy learning stage, we use our factual- 309

ity classifier to label all the entities in the training 310

set. If an entity is classified by our classifier as 311

“non-factual”, we consider it noise and give it a neg- 312

ative reward −rnfe. For factual entities and other 313

tokens, we use the posterior probability from a 314

MLE-trained model as token-level rewards, as in 315

(Pang and He, 2021). Formally, we have: 316

R(st, at) =

{
−rnfe, if at is non-factual
pMLE(at|st), otherwise

317

4 Dataset 318

4.1 XENT dataset 319

To study entity hallucination and factuality in ab- 320

stractive summarization, we need annotations of 321

entity- or token-level hallucination. To the best of 322

our knowledge, there is no such dataset available. 323

Therefore, we create a dataset ourselves, which we 324

call the XENT dataset. 325

We2 annotate 800 summaries generated by 326

BART, which is one of the state-of-the-art abstrac- 327

tive summarization models. The input documents 328

are randomly selected from XSUM test set. We 329

choose XSUM because it is more abstractive than 330

other summarization datasets. We extract 2,838 331

entities from the 800 generated summaries. We 332

randomly select 30% of the samples as our test set. 333

We manually labeled each entity with one of the 334

following three tags: non-hallucinated, factual hal- 335

lucination, and non-factual hallucination. First, we 336

extract entities from the given summary using au- 337

tomatic NER tools (Honnibal and Montani, 2017). 338

Then, we check whether each property associated 339

with the identified entity can be directly entailed 340

using the information from the source document. 341

If so, then the property is non-hallucinated. For in- 342

stance, consider the entity “European Commission 343

President Jean-Claude Juncker” in Table 1. The 344

last name “Juncker” can be directly entailed from 345

2Two coauthors and three graduate students. The data col-
lection process was approved by institution ethics committee.
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Category Source Document Generated Summary

Non-hallucinated
(...) Tian Tian has had cubs in the past in China, before she came on
loan to Edinburgh. (...) The panda enclosure at Edinburgh Zoo is due
to close to visitors from Saturday ahead of a possible birth.

Edinburgh Zoo’s giant panda,
Tian Tian, could give birth at
the end of the month.

Factual
Hallucination

The couple, who have been dating since 2011, wed in front of about
10 people in Mazan, Provence - close to where the bride’s family has
a holiday home. (...) Knightley, 28, announced her engagement to
Righton, 29, last year. “Keira was a charming bride, very modest and
simple in her attitude, as was James,” (...)

Oscar-winning actress Keira
Knightley and British musi-
cian James Righton have mar-
ried in a small ceremony in
France.

Non-factual
Hallucination

The city was brought to a standstill on 15 December last year when a
gunman held 18 hostages for 17 hours. Family members of victims Tori
Johnson and Katrina Dawson were in attendance. (...) Prime Minister
Malcolm Turnbull gave an address saying a "whole nation resolved to
answer hatred with love". (...)

Sydney has marked the first
anniversary of the siege at the
Waverley cafe in which two
women were killed by a gun-
man in the Australian city.

Intrinsic
Hallucination

Christopher Huxtable, 34, from Swansea, had been missing since the
collapse in February. His body was found on Wednesday and workers
who carried out the search formed a guard of honour as it was driven
from the site in the early hours of the morning. (...)

The body of a man whose
body was found at the site
of the Swansea Bay Power
Station collapse has been re-
moved from the site.

Table 2: Examples of four types of hallucinations. In the second example, the nationality of the groom and the
country where the wedding took place are not directly stated in the source. According to information online both
entities are factual. In the third example, the terrorist attack described in the news took place at a place called "Lindt
Cafe" according to Wikipedia. Therefore, “the Waverley cafe” in the generated summary is non-factual.

the source document. Therefore, it is not a halluci-346

nation. However, the first name “Jean-Claude” and347

the position information “European Commission348

President” are not mentioned in the source. In the349

next step, we need to decide whether these informa-350

tion is factual or not using world knowledge. This351

often requires external resources such as Wikipedia352

or Google Search. In this case, “European Commis-353

sion President” and “Jean-Claude” are both factual.354

If there is no information found online to prove355

or disprove the hallucinated entity, it is labeled as356

non-factual. There is a special case where the en-357

tity misrepresents information from the document.358

For instance, the summary might include a number359

from the document but that number is actually re-360

lated to a different event. In this case, the entity is361

considered as an intrinsic hallucination (Maynez362

et al., 2020). In this work, we will focus on ex-363

trinsic hallucinations, so we discarded all intrinsic364

hallucinations in our experiments. Table 3 shows365

the distribution of entities by hallucination and fac-366

tuality status in our labeled dataset. We show an367

example for each hallucination type in Table 2.368

Inter-Annotator Agreement We report Fleiss’s369

Kappa (κ) to access the reliability of agreement370

between annotators. Each sample in the dataset is371

annotated by three different annotators. We obtain372

a high agreement (0.80 ≤ κ ≤ 1.00) with κ =373

0.809. Following Pagnoni et al. (2021), we also374

report the percentage µ of annotators that agree375

with the majority class. We obtain µ = 0.931 of376

annotators agreeing with the majority class on the 377

four-category annotation which shows substantial 378

agreement. 379

4.2 MENT Dataset 380

Recently, Maynez et al. (2020) released a set of 381

factuality and hallucination annotations for XSUM. 382

For each generated summary, they labeled the hallu- 383

cinated spans as well as the overall factuality of the 384

summary. Compared with our labeling approach, 385

their annotation has a lower granularity and does 386

not distinguish between factual and non-factual 387

hallucination. Therefore, we have to convert their 388

dataset first before using it for evaluation. 389

To perform entity-level factuality checking on 390

their dataset, we do the following: First, we ex- 391

tract entities from the annotated summaries. For 392

entities that are extracted from factual summaries, 393

we label them as factual entities. For each entity 394

from non-factual summary, if it is inside an extrin- 395

sic hallucinated span, then we assume the entity 396

is non-factual. Otherwise the entity is labeled as 397

a factual. This process gives us a new dataset that 398

has the same format as ours for entity-level factual- 399

ity evaluation. We refer to this new dataset as the 400

MENT dataset. 401

However, it is worth pointing out that the con- 402

verted dataset is noisy. For instance, in Maynez 403

et al. (2020)’s annotation, the entire generated sum- 404

mary is often labeled as a hallucinated span if it 405

does not capture the meaning of the document well. 406

In this case, the hallucinated span could still con- 407
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tain faithful entities with respect to the source docu-408

ment. This could result in false-positive non-factual409

entities after the conversion. Therefore, we filter410

out entities in the extrinsic hallucination span that411

also appear in the source document.412

5 Evaluation Tasks413

5.1 Entity-level Hallucination & Factuality414

Classification415

We evaluate our method on entity-level hallucina-416

tion and factuality classification tasks on XENT and417

MENT. For each entity in the summary, the model418

predicts a hallucination label and a factuality label.419

We will conduct factual and hallucination assess-420

ments separately for comparison with the baselines.421

We compare our method with five baselines models,422

which are discussed in detail in Section 6.1.423

5.2 Correlation with Human Judgments of424

Factuality425

In addition to entity-level classification perfor-426

mance, we also evaluate our methods by corre-427

lating them against human judgments of factuality.428

Previous work has collected summary-level judg-429

ments of factuality from human annotators, which430

are then correlated with automatic evaluation mea-431

sures applied to those summaries. To apply our432

entity-level method, we use the lowest classifier433

confidence for the factual class among its entities434

as the factuality score for the entire summary. We435

evaluate correlation on two datasets by Pagnoni436

et al. (2021) and Wang et al. (2020).437

5.3 Evaluating the Factuality of438

Summarization Systems439

To evaluate our factuality-aware training approach440

proposed in Section 3.3, we train a summarization441

model with factuality rewards and evaluate model’s442

predictions on XSUM test set. To evaluate the faith-443

fulness of generated summaries, we use automatic444

faithfulness evaluation tools FEQA (Durmus et al.,445

2020) and DAE (Goyal and Durrett, 2020)3. We446

also calculate ROUGE scores, and the percentage447

of n-grams and percentage of entities in the gener-448

ated summaries that are not found in the source doc-449

ument (ENFS). The percentage of novel n-grams450

reflects the extractiveness of summarization model.451

3In this work, we define the faithfulness of the summary
as whether it is faithful with respect to the source. Factuality
as whether is factual with respect to world knowledge.

Label #Samples Total Ent.

Non-hallucinated 1,921 (67.69%)

2,838Factual hal. 441 (15.54%)
Non-factual hal. 421 (14.83%)
Intrinsic hal. 55 (1.94%)

Table 3: Statistics of labeled dataset. See Appendix A.2
for more details.

Hallucination Factuality
Acc. F1 Acc. F1

Overlap-based 92.93 91.73 81.25 74.19
Synonym-based 90.76 89.42 81.30 74.79
Alignment 78.35 71.10 81.65 66.03
LM-based 74.18 54.99 84.54 57.80
Zhou et al. (2020) 86.66 81.71 85.76 75.07

ENTFA (ours) 93.09 91.91 90.95 81.82

Table 4: Entity’s factuality and hallucination status
evaluation results on XENT. We report the accuracy
and (macro) F1 score on the test set. The number of
neighbors k is set to 20 for both tasks.

6 Experiments 452

Training CMLM & MLM For training the 453

CMLM, we use both XSUM, Narayan et al. 454

(2018b)) and the CNN/Dailymail dataset (Hermann 455

et al., 2015) dataset. To build a training corpus for 456

CMLM, we randomly select one entity in each ref- 457

erence summary and mask it with a special [MASK] 458

token. We append a [S] token at the beginning of 459

each summary. The document and summary are 460

concatenated together (separated by [\S] token) as 461

CMLM’s input. The training target is the reference 462

summary without any masking. If there is no speci- 463

fication, we use the CMLM trained on XSUM. For 464

the MLM, we use the large BART model. BART is 465

pre-trained on five different reconstruction tasks in- 466

cluding token masking and text infilling. For more 467

experimental setup and hyper-parameter setting de- 468

tails, see Appendix A.3. 469

6.1 Classification Experiments 470

Baselines We compare with four baseline meth- 471

ods: (1) The overlap-based method checks the 472

word overlap between the summary and the source 473

document. In our case, we check whether a given 474

entity in the generated summary also exist in the 475

source document. If it does not, the entity is clas- 476

sified as both hallucinated and non-factual. (2) 477

The synonym-based baseline extends the overlap- 478

based baseline by checking the overlap of sum- 479
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mary synonyms and source synonyms. See Zhou480

et al. (2020) for more details. (3) The alignment-481

based baseline is based on the unsupervised word482

alignment method SimAlign by Jalili Sabet et al.483

(2020). SimAlign extracts word alignments from484

similarity matrices induced from pretrained embed-485

dings. In our task, we treat all unaligned entities486

in summaries as hallucinated and non-factual. (4)487

The LM-based method is proposed by Filippova488

(2020). The LM-based method uses LM and CLM489

to compute the token’s prior and posterior proba-490

bility. In Filippova (2020)’s work, they compare491

the value of pprior and ppos. If the generated token492

does not match the reference and pprior is greater493

than ppos, the token is classified as hallucinated.494

Since we are evaluating the generated summary but495

not the reference, we modify their method to the496

following: if the entity is not found in the source497

and pprior > ppos, then the entity is classified as498

non-factual and hallucinated. (5) Zhou et al. (2020)499

frame the hallucination detection task as a sequence500

labeling task. They train a hallucination labeling501

model on synthetic data. We adapt their model to502

our task by finetuning their model on XENT.503

Evaluation Results on XENT Table 4 shows the504

evaluation results of our classifiers and baselines505

in terms of both entity factuality and hallucination506

status classification. The results show that our ap-507

proach outperforms five baselines on the factuality508

classification task. To show that our model is statis-509

tically better than the baselines, we run a 10-fold510

cross-validated paired t-test comparing our model511

with five baselines. The results show that our model512

is better than the baseline models with p-value less513

than 3.27e−5. On the hallucination detection task,514

the overlap-based and synonym-based baselines515

achieve relatively high accuracy. However, these516

methods cannot distinguish between factual and517

non-factual hallucinations. This is the reason for518

their performance degradation on factuality classi-519

fication task. For hallucination classification, the520

reason computing word overlap with the source521

does not completely solve the hallucination detec-522

tion problem is that hallucination is defined based523

on the semantic relationship between the source524

and the summary. There can exist words that are525

not in the source document but which can neverthe-526

less be inferred from it.527

Evaluation Results on MENT Dataset Table 5528

shows the evaluation results on MENT. ENTFA529

Acc. F1

Overlap-based 68.22 54.68
Synonym-based 68.91 53.43
Alignment 69.21 50.86
LM-based 67.48 48.02
Zhou et al. (2020) 71.02 56.42

ENTFA (ours) 78.48 60.23

Table 5: Entity-level factuality evaluation results on
converted MENT Dataset (Maynez et al. (2020)).

Metric FRANK
(Partial Pearson’s ρ)

Wang et al.
(PCC)

BLUE 0.139 0.118
ROUGE-1 0.155 0.132
ROUGE-L 0.156 0.089
METEOR 0.155 0.100

BERTScore -0.0359 0.025
QAGS -0.0225 0.175
FEQA 0.0242 -
DAE 0.0444 -

ENTFA (ours) 0.183 0.268

Table 6: Summary-level Pearson correlation coeffi-
cients between various automatic metrics and human
judgments of factuality for XSUM datasets. In the mid-
dle column, we use the FRANK benchmark for factual-
ity evaluation metrics from Pagnoni et al. (2021); In the
right column, we use the human judgments collected by
Wang et al. (2020). All baselines’ coefficient values are
cited from their papers.

are learned on our annotated training set with k set 530

to 20. The performance of all models is lower on 531

this dataset. This may be due to fact that the con- 532

verted dataset is noisier than the XENT dataset (see 533

Section 4.2). For the factuality classification task, 534

our model outperforms five baseline models. This 535

demonstrates the generalizability of our approach. 536

6.2 Correlation Experiments 537

Table 6 presents the correlation evaluation results. 538

On Pagnoni et al. (2021)’s benchmark dataset, our 539

approach has the highest partial Pearson correlation 540

coefficient ρ = 0.183 (p < 1e−8). On Wang et al. 541

(2020)’s dataset (right column), our approach out- 542

performs all other automatic metrics significantly. 543

These results indicate that our model can be used 544

for automatic factuality evaluation of summaries at 545

both the entity and sentence levels. 546

6.3 Factuality Evaluation Results of 547

Summarization Systems 548

Baselines We compare our approach with four 549

baselines: a teacher forcing trained summarizer 550

(MLE), a RL-based summarizer (RL) (Pang and 551
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ROUGE % of novel n-gram Faithfulness ENTFA
System R1 ↑ RL ↑ unigrams ↑ bigrams ↑ % ENFS ↓ FEQA ↑ DAE ↑ % Factual Ent ↑ % Factual Hal ↑

MLE 45.1 37.3 27.86 74.47 42.0 25.9 34.6 82.8 21.4
RL 45.8 37.6 28.14 74.73 43.2 25.6 33.3 82.8 21.6
LM-based 43.2 34.6 29.75 75.86 38.2 24.2 31.3 87.4 21.7

Loss trunc (c=0.3) 44.1 36.0 26.82 73.39 41.3 26.3 36.4 83.9 21.3
Loss trunc (c=0.7) 42.7 34.8 26.61 73.19 40.6 26.7 38.8 84.1 20.7

Ours (rnfe = 2.0) 44.6 36.2 27.71 74.90 37.2 26.5 37.3 90.1 24.0
Ours (rnfe = 4.0) 43.0 34.9 26.87 74.11 32.8 27.3 40.8 92.5 22.4

Table 7: Comparison of different summarization models. Results are evaluated on XSUM’s official test set. “%
Factual Ent” and “% Factual Hal” are the percentage of factual entities and factual hallucinations classified by
ENTFA model respectively. “% ENFS” is the percentage of entities in generated summary that not found in source
document. For the loss truncation baseline, c is the percentage of data to be dropped.
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Figure 1: The factuality and ROUGE score trade-off
curve on XSUM. We use different reward value rnfe
for our approach and different drop rate c for the loss
truncation baseline.

He, 2021) and a summarizer trained with the loss552

truncation technique from Kang and Hashimoto553

(2020). We also replace our factuality assessment554

model ENTFA with Filippova (2020)’s approach555

(LM-based) for entity factuality labeling as another556

baseline model (see Section 3.3).557

Table 7 shows the evaluation results on XSUM.558

The results show that our approach outperforms all559

baselines with fewer non-factual entities and higher560

faithfulness scores. Note that our approach has the561

lowest ENFS rate while having the highest percent-562

age of factual hallucinations. Compared with the563

loss truncation baseline, our method also produces564

more novel n-grams. These show that our method565

does not improve the factuality of the model by566

simply making the model more extractive.567

Figure 1 shows the factuality and abstractiveness568

trade-off curves of our model compared to the loss569

truncation baseline. At the same level of ROUGE570

performance, our method can obtain a higher factu-571

ality score. This further proves that our model can572

generate both factual and high-quality summaries573

compared with the loss truncation baseline.574

Factuality Hallucination

ENTFA 81.82 91.91

w/o overlap 77.18 74.83
w/o prior 80.12 91.32
w/o posterior 70.30 91.12

Table 8: Ablation studies of different feature combina-
tion. We report the F1 score on XENT test set.

7 Ablation Studies 575

To explore the effect of each feature, we conduct an 576

ablation study by training the KNN classifier with 577

fewer features. The results are illustrated in Table 8 578

and show that all the proposed features are useful. 579

For factuality classification, The performance w/o 580

posterior drops significantly from 90.95 to 85.69. 581

This result suggests that the posterior probability 582

is crucial for factuality classification. For halluci- 583

nation classification, the overlap-based feature has 584

the most significant impact on model performance. 585

8 Conclusion 586

In this paper, we investigate the hallucination and 587

factuality problems in abstractive summarization. 588

We show that about 30% of entities generated by 589

state-of-the-art summarization model are halluci- 590

nated. More interestingly, more than half of the 591

hallucinated entities are factual with respect to the 592

source document and world knowledge. We pro- 593

pose a novel method based on the entity’s prior 594

and posterior probabilities according to masked lan- 595

guage models. Our approach outperforms five base- 596

line models on both factuality classification and 597

hallucination detection tasks on human-annotated 598

datasets. In addition, using our classifier as a re- 599

ward signal vastly improves the factuality of sum- 600

marization systems. Our approach is limited to 601

entity-level hallucination and factuality classifica- 602

tion. In the future, we are interested in extending 603

our work to arbitrary text spans. 604
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A Appendix780

A.1 Dataset Annotation Guidelines and781

Process782

Before annotating the dataset at full-scale, we con-783

ducted a pilot study with the annotators on a small784

evaluation set that contains 10 document and sum-785

mary pairs. We then discussed with the annotators786

and had them explain the labels they were given to787

ensure they fully understood the task and followed788

the guidelines. The guidelines can be summarized789

as follows:790

(1) Read the source documentation and gener-791

ated abstract. If the article is incomprehensible (e.g.792

too short or in a language other than English), mark793

it as corrupted.794

(2) For each entity in the summary (identified795

by NER tool), check whether the entity can be796

directly entailed in the summary context using only797

the information within the source document. If the798

answer if yes, label the entity as non-hallucinated.799

If the entity has multiple properties, annotate each800

property separately.801

(3) If the source does not contain sufficient infor-802

mation to entail the entity, use Wikipedia or Google803

Search to determine the factuality of the entity. If804

no information can be found to prove or disprove805

the factuality of the entity. Label it as non-factual806

hallucination.807

(4) If the entity is mentioned in the source docu-808

ment, but it is used in the wrong context and mis-809

represents information from the document. Label810

the entity as intrinsic hallucination.811

We also ask the annotators to mark and annotate812

entities missed by automatic NER tools. We will813

then update the identified entities to ensure that the814

samples are consistent for all annotators. Anno-815

tators are paid 20$ an hour for their work, which816

is above the minimum wage in their country of817

residence.818

A.2 Patterns of Annotated Entities819

Table 9 shows the patterns of hallucinated entities.820

For factual hallucinations, Person, GPE, and ORG821

are the three most common types. Among non-822

factual hallucinations, Date is the most common823

type (31.65%). Cardinal numbers are also easily824

hallucinated by summarization model. Note that825

the proportion of Date and GPE type of entities826

in non-factual hallucinations is much higher than827

their proportion in all entities.828

All Factual hal. Non-factual hal.

Person 30.16% 33.23% 20.25%
GPE 21.84% 21.75% 8.54%
ORG 15.03% 18.43% 7.91%
Date 11.32% 9.06% 31.65%
Cardinal 6.34% 3.63% 12.97%
Other 15.31% 13.90% 18.68%

Table 9: Percentage of each type of entity in the XENT
dataset. GPE stands for geopolitical entity, i.e. coun-
tries, cities, states. ORG includes companies, agencies,
institutions.

A.3 Experimental Setup 829

Dataset We use both XSUM, Narayan et al. 830

(2018b)) and the CNN/Dailymail dataset (Her- 831

mann et al., 2015) in this work. CNN/DailyMail 832

is a widely used summarization benchmark with 833

287,227 training samples, 13,368 validation sam- 834

ples, and 11,490 test samples. XSUM dataset con- 835

tains 226,711 British Broadcasting Corporation 836

(BBC) articles. Each article is paired with a sin- 837

gle sentence summary written by the BBC journal- 838

ists. The dataset is split into three subsets: training 839

(204,045, 90%), validation (11,332, 5%), and test 840

(11,334, 5%) sets. 841

Language Model Hyperparameters All lan- 842

guage models used in this paper are based on the 843

Transformer encoder-decoder architecture from the 844

Fairseq library (Ott et al., 2019) that is written in 845

PyTorch (Paszke et al., 2017). For the CMLM train- 846

ing, we initialize the model with the checkpoint of 847

the large BART model. The max sequence length 848

is set to 1024 for both the encoder and decoder 849

modules. We fine-tuned the model for 15,000 steps 850

with the warm-up steps set to 500. We use the stan- 851

dard cross-entropy loss as our objective function 852

with 0.1 label-smoothing (Szegedy et al., 2016). 853

The Adam optimizer (Kingma and Ba, 2015) with 854

ϵ = 1e-8 and an initial learning rate 3e-5 are used 855

for training. The dropout rate in each layer is set to 856

0.1. These hyperparameter values are based on the 857

recommended values from the fairseq (Ott et al., 858

2019) library All experiments are conducted on 4 859

Tesla V100 GPUs with 32GB of memory. 860

RL Training In the off-line RL experiment, we 861

initialize the model using the BART large model 862

finetuned on XSUM dataset4. The discount factor 863

γ is set to 1 and the learning rate r is set to 1e− 5. 864

4https://github.com/pytorch/fairseq/
tree/master/examples/bart
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We update the model for 30,000 steps in total with865

1000 warm-up steps. We use polynomial decay to866

update the learning rate after each training step. No867

reward-shaping is used.868

To make the training more stable, we use an-869

other policy network π̃θ to compute the importance870

weight w. π̃θ is kept as a slow copy of πθ with the871

same model architecture. We use Polyak updates872

to slowly update the weight of π̃θ in the direction873

to match πθ every step. The update rate of π̃θ is set874

to 0.01.875

A.4 Classification Results on XENT Dataset876

Prec. Recall F1

Non-hallucinated 97.88 92.38 95.05
Factual hal. 60.84 84.87 70.88
Non-factual hal. 71.43 56.18 62.89

Table 10: Evaluation results on XENT. We report the
leave-one-out error of our ENTFA model with prior,
posterior probability and word overlap as features.

Table 10 shows the three-class classification re-877

sults of our model on XENT dataset. Since we are878

the first work (to the best of our knowledge) that879

distinguishes between factual and non-factual hal-880

lucinations, we did not have a baseline model to881

compare with right now. We compare with other882

models separately in terms of factuality and hallu-883

cination classification in Section 6.1.884

A.5 Prior/Posterior Probabilities885

Figure 2 plots entities in the XENT dataset ac-886

cording to their prior and posterior probabilities887

and shows the KNN classification boundaries of888

ENTFA w/o overlap. In Figure 2a, we find that889

the non-factual hallucinated entities are clustered890

around the origin. This is in line with our expecta-891

tions since non-factual hallucinations have lower892

prior and posterior probabilities. Both factual hallu-893

cinated and non-hallucinated entities are gathered894

in the top area with high posterior probabilities.895

In Figure 2b, the KNN classifier separates the896

factual and non-factual entities with clear bound-897

aries. A large part of the factual hallucinated en-898

tities are correctly identified by CMLMXSUM with899

relatively high posterior probabilities. This ex-900

plains our model’s superior performance on fac-901

tuality checking. The top and right histograms in902

Figure 2b show the entity distribution over prior903

and posterior probability value respectively. As 904

shown in 2b’s histogram, factual entities have sig- 905

nificantly higher posterior probability than that of 906

non-factual entities on average. 907

Figure 3 shows histograms of the prior and 908

posterior probabilities of entities from MLM 909

and CMLMXSUM, separated by their class (i.e., 910

whether they are hallucinated and/or factual). Non- 911

hallucinated entities have higher posterior proba- 912

bility than factual and non-factual hallucinations 913

on average. The average posterior probability for 914

non-hallucination, factual hallucinations, and non- 915

factual hallucinations are 0.763, 0.599, and 0.133 916

respectively. 917

A.6 Evaluating Entity Factuality on Noisy 918

Training Data 919

Recent work (Narayan et al., 2021; Nan et al., 2021) 920

has shown that filtering out noisy training samples 921

in the XSUM dataset can mitigate the hallucination 922

issue. Therefore, we divide the XSum training set 923

into clean samples and potentially noisy samples. 924

Potentially noisy samples are samples where the 925

reference summary contains entities that does not 926

appear in the source. This gives us around 150k 927

potentially noisy training samples and 50k clean 928

training samples. Then, we mix the clean sam- 929

ples with noisy samples at different proportions to 930

create training sets with different levels of noise. 931

Figure 4 shows the evaluation results of summa- 932

rization models trained on these datasets. We can 933

see that the model generates fewer factual entities 934

as the training set gets noisier. Also, it shows that 935

ROUGE score is not a favorable metric in terms 936

of factuality evaluation. Since with the training 937

set size fixed, the model seems to achieve higher 938

ROUGE score at the expense of entity factuality. 939

In addition, this indicates that if the system is op- 940

timized only for ROUGE, they may inadvertently 941

harm factual consistency. 942

We also observe that the word overlap method 943

predicts much lower entity factuality rate than 944

ENTFA. This is due to the fact that the word over- 945

lap method cannot identify factual hallucinations 946

and introduce many false-negative samples. To ver- 947

ify this, we extracted all entities from summaries 948

generated by the model trained on 50k noisy sam- 949

ples (x-axis = 1.0). Among these entities, there 950

are 7,358 entities that do not appear in the source 951

but are predicted as factual by our model. We find 952

that 50.5% of these entities can be found in the ref- 953
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Figure 2: The distribution of entities over prior/posterior probability. Each point in the figure represents an entity
(pprior(ek), ppos(ek)) and shading indicates the confidence of the classifier. (a) The distribution of entities; (b) The
entity factuality classification results with KNN (k = 20) classifier. Both factual hallucinated and non-hallucinated
entities are colored blue; (c) The KNN (k = 20) classification boundaries of hallucinated and non-hallucinated
entities.
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Figure 3: Normalized histogram of model prediction
probability for three classes of entities. The first row
shows the entities’ posterior probability calculated using
CMLM. The second row shows the prior probability
from MLM.

erence summary. As a contrast, only 12.7% entities954

predicted as non-factual by our model can be found955

in the reference.956

Figure 5 shows the evaluation result of PEGA-957

SUS model (Zhang et al., 2020) follows the eval-958

uation set up in Section A.6. Both figures show a959

similar trend that the models get higher ROUGE960

score when trained on noisier dataset with the cost961

of generating more non-factual entities.962

Compared with BART model, PEGASUS gen-963

erates more hallucinated entities and has higher964

ROUGE score overall. For instance, when both965

trained on 50k clean data, PEGASUS has ROUGE-966

1 score 0.450 compared with BART’s 0.406. The967

predicted factual entity rate for PEGASUS and968

BART is 84.79% and 91.81% respectively. This969

may be due to the fact that PEGASUS is pre-970

trained on a much larger corpus than BART. We971

leave the study of this phenomenon to future work.972
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Figure 4: Evaluation of an abstractive summarization
model (BART) trained on datasets with different levels
of noise. The y-axis on the left represents the percentage
of factual entities classified as factual by (ENTFA) or the
word overlap baseline. The y-axis on the right indicates
ROUGE-1 scores. X-axis = 0 and x-axis = 1.0 means
that the model is trained on 50k clean samples and 50k
noisy samples respectively; x-axis = 0.5 represents the
model trained on a mix of 25k clean samples and 25k
noisy samples. X-axis = 2.0 represents a model that is
trained on 100k noisy samples. All models are tested
on XSUM’s official test set. We observe a similar trend
with the PEGASUS model (Figure 5).

A.7 Where Does the Model Learn to 973

Hallucinate? 974

Table 3 shows that 30% of the entities in the sum- 975

maries generated by BART are hallucinated, in- 976

cluding 15% factual hallucinated entities. To gener- 977

ate factual hallucinated entities, the summarization 978

model needs to integrate background knowledge 979

into the summary. One interesting problem is in- 980

vestigate where the model learns that knowledge. 981

Since the BART is pre-trained on a large text cor- 982

pus and fine-tuned on XSUM, the knowledge of 983
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Figure 5: Evaluation of PEGASUSLARGE trained on
datasets with different levels of noises.
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Figure 6: Entity distribution over posterior probabilities
from CMLMXSUM and CMLMCNN/DM. The shading
shows the classification boundaries of the classifier.

hallucinated entities could come from either the984

pre-training corpus or the XSUM training set. To985

investigate this, we trained a separate CMLM on986

the CNN/DM dataset.987

Figure 6 shows the entity distribution from988

the two CMLM models. For non-hallucinated989

entities, the distributions are similar; for fac-990

tual hallucinations, we can find that a large por-991

tion of them has very low posterior probabilities992

under CMLMCNN/DM, but high posterior under993

CMLMXSUM. This pattern suggests that the knowl-994

edge of many factual hallucinations comes from995

the XSUM training set.996

We define σ(ek) = log
PCMLMXSUM

(ek)

PCMLMCNN/DM (ek)
. If997

σ(ek) ≥ 0, it suggests that CMLMXSUM is more998

confident that ek is factual than CMLMCNN/DM.999

For a factual hallucination ek, we can infer that the1000

knowledge of ek is in XSUM if σ(ek) is large. To1001

further verify this, we retrieve the 10 most similar1002

documents from XSUM and CNN/DM for each1003

factual hallucinated entity using TF-IDF. Then, we1004

count the number of times each entity appears in1005

those similar training samples. For entities with1006

σ(ek) ≥ 5, the average number of appearances is1007

2.19 on XSUM and 0.77 on CNN/DM. For enti-1008

ties with σ(ek) ≤ 0, the average number of ap- 1009

pearances becomes 2.85 and 2.46 on XSUM and 1010

CNN/DM respectively. This further confirms that 1011

the knowledge of factual hallucinations with large 1012

σ(ek) comes from XSUM. 1013

A.8 Compare with Filippova (2020)’s Work 1014

Filippova (2020)’s work on data-to-text generation 1015

shows that low posterior probability from a CLM 1016

during decoding indicates hallucination. Take the 1017

summarization model as an example, if an entity 1018

is generated with very low posterior probability, it 1019

is likely that the generated entity is hallucinated 1020

and non-factual. However, compared with CMLM, 1021

CLM has more uncertainty during decoding since 1022

the right context of the entity is not determined. 1023

The uncertainty of the CLM comes from both con- 1024

tent selection (text content and structure) and lex- 1025

ical choice (Xu et al., 2020). For CMLM though, 1026

the uncertainty is mostly reduced to the latter. 1027

Figure 7 show the entity posterior probabilities 1028

from CLM and CMLM model. As shown in the 1029

figure, we can find that most factual entities (blue 1030

points) are above the x = y line. This means 1031

CMLM gives more certainty to the same factual en- 1032

tity than CLM. The ROC curve in Figure 8 further 1033

shows this. As the lines get closer to the origin, the 1034

threshold becomes larger, and CMLM has a higher 1035

TPR than CLM. This means CMLM will classify 1036

more entities as factual. The higher AUC value 1037

of CMLM further demonstrates that CMLM is a 1038

better choice for factuality checking than CLM. 1039
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Figure 7: Posterior probabilities calculated from CLM
and CMLM. Both models are trained on XSUM dataset.
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Figure 8: ROC curve of entity’s posterior probability
and factuality.
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