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Abstract001

Large language models (LLMs) have demon-002
strated remarkable reasoning and planning ca-003
pabilities, driving extensive research into task004
decomposition. Existing task decomposition005
methods focus primarily on memory, tool us-006
age, and feedback mechanisms, achieving no-007
table success in specific domains, but they of-008
ten overlook the trade-off between performance009
and cost. In this study, we first conduct a com-010
prehensive investigation on task decomposition,011
identifying six categorization schemes. Then,012
we perform an empirical analysis of three fac-013
tors that influence the performance and cost of014
task decomposition: categories of approaches,015
characteristics of tasks, and configuration of de-016
composition and execution models, uncovering017
three critical insights and summarizing a set of018
practical principles. Building on this analysis,019
we propose the Select-Then-Decompose strat-020
egy, which establishes a closed-loop problem-021
solving process composed of three stages: se-022
lection, execution, and verification. This strat-023
egy dynamically selects the most suitable de-024
composition approach based on task character-025
istics and enhances the reliability of the results026
through a verification module. Comprehensive027
evaluations across multiple benchmarks show028
that the Select-Then-Decompose consistently029
lies on the Pareto frontier, demonstrating an030
optimal balance between performance and cost.031
We will release our code upon acceptance.032

1 Introduction033

Large Language Models (LLMs) have demon-034

strated excellent performance in the field of Natural035

Language Processing (Yang et al., 2024b; OpenAI,036

2022, 2023; Touvron et al., 2023a,b). They have037

not only achieved remarkable success in basic tasks038

such as language understanding and text generation,039

but also exhibit strong reasoning and planning abili-040

ties (Qiao et al., 2023; Sun et al., 2023a). Motivated041

by these capabilities, researchers have increasingly042

focused on leveraging LLMs for task decomposi- 043

tion, allowing them to tackle complex problems 044

in a step-by-step manner and improve overall ac- 045

curacy and robustness (Kojima et al., 2022; Wang 046

et al., 2023; Sun et al., 2023b; Yao et al., 2023). 047

Current research on task decomposition primar- 048

ily enhances the performance of LLMs by integrat- 049

ing tool usage, feedback mechanisms, and mem- 050

ory modules (Chen et al., 2023; Shen et al., 2023; 051

Zhang et al., 2025; Qian et al., 2024; Li et al., 2024). 052

However, there are still several questions that re- 053

main unanswered. For instance, what are the fac- 054

tors that influence performance and cost, and how 055

can we balance the trade-off between them? 056

In this work, we investigate task decomposition 057

in LLMs and introduce six categorization schemes: 058

❶ the interleaving sequence between decomposi- 059

tion and execution (Huang et al., 2024), ❷ the num- 060

ber of LLM calls required to complete a task, ❸ 061

the topological structure of decomposition, ❹ the 062

format of decomposition, ❺ the range of subtask se- 063

lection during decomposition, and ❻ whether tool 064

usage is involved during execution. 065

Based on these categorization schemes, we sum- 066

marize five representative approaches for the fol- 067

lowing experiment and analysis. Subsequently, 068

we conduct an in-depth empirical analysis to ex- 069

plore the main elements that influence the perfor- 070

mance and cost of task decomposition, and identify 071

three major contributing factors: categories of task 072

decomposition approaches, characteristics of the 073

tasks, configuration of the decomposition model 074

and execution models. The experimental results re- 075

veal three important insights: ❶ The existing task 076

decomposition approaches are confronted with a 077

performance-cost dilemma; ❷ Task characteristics 078

determine the sequence, calling form, and topol- 079

ogy of task decomposition; ❸ Scaling the execu- 080

tion model yields greater performance gains than 081

scaling the decomposition model, with the reason- 082

ing model further enhancing the execution stage. 083
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Based on these insights, we summarize a set of084

practical principles to guide task decomposition085

in LLMs, providing valuable insights for future086

research and practical deployment.087

To further balance performance and cost, we088

propose the Select-Then-Decompose strategy — a089

closed-loop framework composed of three collab-090

orative modules: selection, execution, and vali-091

dation. Instead of relying on a fixed decomposi-092

tion paradigm, the selection module dynamically093

chooses the most suitable decomposition approach094

based on task complexity and characteristics. The095

execution module then applies the chosen approach096

to generate candidate solutions, while the valida-097

tion module evaluates the confidence of the solu-098

tions and determines whether a fallback to a more099

sophisticated approach is necessary. Extensive ex-100

periments across diverse benchmarks demonstrate101

that Select-Then-Decompose consistently lies on102

the Pareto frontier, striking an effective balance103

between performance and token cost.104

Overall, our key contributions are: 1) We pro-105

vide a comprehensive investigation of task decom-106

position in LLMs, analyzing three key factors that107

impact its performance and cost, which lead to valu-108

able insights and a set of practical principles; 2)109

We propose the Select-Then-Decompose strategy,110

which dynamically selects appropriate decomposi-111

tion approaches to mitigate the performance–cost112

dilemma; 3) Experimental results validate the su-113

periority of the Select-Then-Decompose strategy114

in multiple tasks, achieving an effective balance115

between task performance and token cost.116

2 Categorization of Task Decomposition117

Approaches118

We systematically categorize existing task decom-119

position approaches and introduce six categoriza-120

tion schemes, with each scheme illustrated by a121

corresponding diagram in Figure 1.122

Decomposition-First vs. Interleaved Task de-123

composition approaches generally consist of two124

main stages: decomposition and execution. Based125

on the interplay and sequence between these two126

stages, existing approaches can be classified into127

decomposition-first approach (Shen et al., 2023;128

Singh et al., 2023; Sun et al., 2023b) and inter-129

leaved approach (Yao et al., 2023; Wu et al., 2023;130

Khot et al., 2022). The former first decomposes131

the original task into a set of subtasks, which are132

then executed sequentially. In contrast, the latter133

performs decomposition and execution in an inter- 134

leaved manner—only one subtask is generated at a 135

time, and the next subtask is determined based on 136

the outcome of the current task’s execution. 137

Implicit vs. Explicit Since solving problems 138

with LLMs often involves multi-step generation, 139

the manner in which LLMs are invoked plays a 140

crucial role. Based on the frequency of LLM in- 141

vocations, existing task decomposition approaches 142

can be broadly categorized into explicit approach 143

(Shen et al., 2023; Singh et al., 2023; Zhou et al., 144

2022) and implicit (Kojima et al., 2022; Wang et al., 145

2023; Gao et al., 2023) approach. The explicit ap- 146

proach entails multiple LLM calls to separately 147

carry out task decomposition and execution. In 148

contrast, the implicit approach seeks to integrate 149

task understanding, decomposition, and execution 150

within a single LLM invocation. 151

DAG vs. Linear In the decomposition stage, 152

based on the dependency relationships between 153

subtasks, the decomposition results can typically 154

be classified into two common topological struc- 155

tures: linear structure (Shen et al., 2023; Singh 156

et al., 2023; Zhou et al., 2022) and directed acyclic 157

graph (DAG) structure (Chen et al., 2023; Wang 158

et al., 2024a; Kannan et al., 2024). In the linear 159

structure, a task is decomposed into a sequential 160

chain of subtasks, where the output of each subtask 161

directly serves as the input to the subsequent one. 162

In contrast, the DAG structure offers a more flexible 163

and expressive decomposition paradigm, allowing 164

for the parallel execution of independent subtasks 165

and supporting complex dependency relationships, 166

including both predecessors and successors. 167

Code vs. Text In the decomposition stage, the 168

representation format of subtasks significantly im- 169

pacts the subsequent execution strategies and their 170

effectiveness. Based on the design of current main- 171

stream approaches, the decomposed subtasks are 172

typically expressed in two common formats: code 173

format (Singh et al., 2023; Kannan et al., 2024; 174

Gao et al., 2023) and text format (Shen et al., 2023; 175

Zhou et al., 2022; Sun et al., 2023b). In the code 176

format, subtask representations leverage structured 177

languages (e.g., Python functions, JSON structures) 178

to capture the execution logic and input-output de- 179

pendencies between tasks. In contrast, the text 180

format describes each subtask’s content and objec- 181

tives in natural language, offering greater flexibility 182

and openness. 183
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Figure 1: Task decomposition approaches are categorized from six perspectives, with those highlighted in color
representing the primary focus of this study, while the categories in gray are not within the scope of our investigation.

Limited Subtask Selection Range vs. Unlim-184

ited Subtask Selection Range In the decompo-185

sition stage, based on the size of the selectable186

subtask space, existing approaches can be classi-187

fied into two categories: approaches with a limited188

subtask selection range (Singh et al., 2023; Sun189

et al., 2023b; Wang et al., 2024a) and approaches190

with an unrestricted subtask selection range (Shen191

et al., 2023; Zhou et al., 2022; Chen et al., 2023).192

The former relies on a predefined set of candidate193

subtasks, from which the LLM must select when194

decomposing a task. These approaches allow for195

explicit control over the quality and relevance of196

the subtasks through the candidate set, providing197

stronger controllability and stability. In contrast,198

the latter do not depend on a predefined set of can-199

didates. Instead, the LLM generates new subtasks200

freely based on the semantics and objectives of the201

higher-level task.202

Tool-Augmented vs. Pure LLM-based In the203

execution stage, existing approaches can be cate-204

gorized according to whether external tools are in-205

volved in the execution of subtasks, resulting in two206

categories: tool-augmented execution (Shen et al.,207

2023; Singh et al., 2023; Chen et al., 2023) and208

pure LLM-based execution (Zhou et al., 2022; Sun209

et al., 2023b; Khot et al., 2022). Tool augmented ex-210

ecution approaches leverage external tools-such as211

code interpreters, robots, or multi-modal models-to212

assist in completing specific subtasks. In contrast,213

pure LLM-based execution approaches rely solely214

on the reasoning and generation capabilities of the215

LLM without invoking any external tools.216

Summary Among the aforementioned six cate- 217

gorization schemes, the latter three schemes each 218

contain a category that is typically tailored to spe- 219

cific tasks. For instance, the code format is primar- 220

ily applicable to domains such as robotic control 221

and mathematical problem solving. Similarly, the 222

limited subtask selection range has limited appli- 223

cability, as the set of candidate subtasks must be 224

predefined in advance. In contrast, this study fo- 225

cuses on evaluating the effectiveness of various 226

task decomposition approaches in general-purpose 227

scenarios. Therefore, in the following sections, 228

we concentrate on the categorization schemes in- 229

troduced in the former three schemes, and select 230

five representative approaches: CoT (Kojima et al., 231

2022), P&S (Plan and solve) (Wang et al., 2023), 232

ReAct (Yao et al., 2023), P&E (Plan and execute) 233

(Sun et al., 2023b), and P&E with DAG structure 234

(Sun et al., 2023b), covering three categorization 235

schemes. Table 1 summarizes the specific cate- 236

gories of the five approaches. A comprehensive 237

categorization taxonomy of all task decomposition 238

approaches surveyed can be found in Appendix A. 239

The details of each of the five representative ap- 240

proaches are described in Appendix B.1. 241

3 Empirical Analysis 242

While most existing research concentrates on apply- 243

ing decomposition approaches for designing task- 244

specific workflows (Chen et al., 2023; Zhang et al., 245

2025), they often neglect to explore the underly- 246

ing factors that fundamentally influence the perfor- 247

mance and cost of task decomposition in LLMs. In 248

this study, we conduct a systematic analysis of task 249
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Table 1: Category assignments of the five representative methods

Categorization COT P&S ReAct P&E P&E (DAG)

Decomposition-First(★) vs. Interleaved(✩) ✩ ★ ✩ ★ ★

Implicit(★) vs. Explicit(✩) ★ ★ ✩ ✩ ✩

DAG(★) vs. Linear(✩) ✩ ✩ ✩ ✩ ★

decomposition from three perspectives: the per-250

formance–cost dilemma, the relationship between251

tasks and approaches, and the impact of model dis-252

crepancies. Based on extensive experiments and253

analysis, we present three key insights and summa-254

rize a set of practical principles.255

3.1 Performance-Cost Dilemma256

To emphasize the performance and cost variations257

among different task decomposition approaches,258

we choose six approaches in total: IO (direct LLM259

invocation) and five representative approaches sum-260

marized in Section 2. Experiments are conducted261

on five widely used benchmarks: GSM8K (Cobbe262

et al., 2021), MATH (Hendrycks et al., 2021), Hu-263

manEval (Chen et al., 2021), Trivia Creative Writ-264

ing (Wang et al., 2024b), and HotpotQA (Yang265

et al., 2018). Detailed descriptions of these ap-266

proaches and datasets are provided in the Ap-267

pendix B. GPT-4o-mini (OpenAI, 2024) is adopted268

as the base model, conducted with the temperature269

parameter set to zero.270

To compare the effectiveness of these ap-271

proaches, we report their performance across all272

five benchmarks in Table 2. IO shows limited ef-273

fectiveness across tasks. In contrast, implicit ap-274

proaches such as CoT and P&S perform well on275

GSM8K, likely due to alignment with patterns en-276

countered during pretraining. However, their per-277

formance significantly degrades on more complex278

tasks like Trivia Creative Writing, which typically279

cannot be handled within a single LLM call. On280

the other hand, ReAct and P&E achieve superior281

results on HumanEval and MATH. Notably, P&E282

(DAG) delivers the best performance on Trivia Cre-283

ative Writing and HotpotQA, and also performs284

competitively on the remaining benchmarks, result-285

ing in the highest average score overall.286

We also compare the average token consumption287

and API call frequency across the six approaches.288

Figure 2 presents the results for four representative289

benchmarks, with comprehensive results provided290

in Appendix F.1. While explicit approaches achieve291

superior performance on certain benchmarks, they292

inevitably incur substantial costs in terms of to- 293

ken usage and API call frequency. For example, 294

in the Trivia Creative Writing task (N=5), P&E’s 295

token consumption exceeds that of the implicit ap- 296

proach with the highest token usage by an astonish- 297

ing 1066%, which is highly prohibitive. Although 298

the P&E (DAG) approach performs consistently 299

well across all tasks, it still results in approximately 300

400% higher token consumption compared to im- 301

plicit approaches. 302

Takeaway I: The existing task decomposition ap- 303

proaches are confronted with a performance-cost 304

dilemma. 305

3.2 The Relationship between Tasks and 306

Approaches 307

Different studies have adopted diverse decomposi- 308

tion strategies to cope with domain-specific chal- 309

lenges. This has led us to a deeper exploration of 310

the relationship between task characteristics and 311

decomposition approaches. 312

Based on the results in Table 2, we observe that 313

for mathematical tasks, CoT and P&E exhibit the 314

best performance. For code generation tasks, React 315

is the only one that achieves a score above 90. In 316

writing and text comprehension tasks, P&E (DAG) 317

clearly outperforms other approaches. We hypoth- 318

esize that these differences mainly stem from the 319

distinct characteristics of each task type. To val- 320

idate this hypothesis, we further conduct experi- 321

ments on the MT-bench benchmark (Zheng et al., 322

2023), with a detailed dataset setup described in 323

Appendix B.2. 324

The experimental results, as shown in Table 3, 325

indicate that for mathematical and reasoning tasks, 326

CoT achieved the highest subjective scores. For 327

writing and role-playing text tasks, P&E (DAG) 328

continued to excel, maintaining a leading posi- 329

tion. However, in code generation tasks, ReAct, 330

while ranking second, scored lower than CoT. We 331

attribute this to the absence of a code execution 332

component, which likely impacted ReAct’s perfor- 333

mance. Overall, this experiment not only mitigates 334

metric inconsistencies across different benchmarks, 335
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Table 2: Comparison of decomposition approaches across benchmarks

Method
Math Code Generation Creative Writing Text Understanding

Avg.
GSM8K MATH HumanEval Trivia Creative Writing(N=5) Trivia Creative Writing(N=10) HotpotQA

IO 33.13 17.02 84.73 47.00 51.50 60.54 48.99
CoT 93.17 50.73 86.26 49.80 51.20 63.00 65.69
P&S 92.72 49.10 84.73 49.20 51.20 61.93 64.81
ReAct 91.66 44.83 90.07 62.00 63.00 53.52 67.51
P&E 92.34 52.09 83.21 62.80 54.20 63.22 67.98
P&E (DAG) 90.67 48.06 83.97 64.60 64.10 65.52 69.49
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Figure 2: Token cost and API call analysis across benchmarks. The bar represents the token cost, and the line
represents the API calls.

but—through a unified subjective evaluation—also336

reinforces our hypothesis concerning the relation-337

ship between tasks and approaches. See the Ap-338

pendix F.2 for complete data on MT-bench.339

We then conduct a qualitative analysis to exam-340

ine the relationship between task characteristics341

and approach categories, such as sequence, calling342

form, and topology. The logical rigor of math and343

reasoning tasks makes them well-suited to CoT’s344

<implicit > and P&E’s <linear > strategies, both of345

which emphasize coherent, stepwise reasoning. In346

contrast, the divergent thinking required by writing347

and comprehension tasks aligns with P&E (DAG)’s348

parallel decomposition. Code generation, charac-349

terized by iterative refinement, benefits more from350

ReAct’s <explicit, interleaved > strategy. These351

findings suggest that task-specific cognitive de-352

mands fundamentally influence the suitability of353

decomposition approaches.354

Takeaway II: Task characteristics determine the355

sequence, calling form, and topology of task de-356

composition.357

3.3 Impact of Model Discrepancies358

The parameter scale and reasoning capability of a359

model are key factors influencing its performance360

(Kaplan et al., 2020; Shao et al., 2024). We simi-361

larly focus on the specific roles these factors play in362

the stages of decomposition and execution. Based363

on the discussion in Section 3.1, we select the P&E 364

(DAG) approach as the research carrier, primar- 365

ily due to its explicit decomposition pattern and 366

the requirement of a structured plan. Systematic 367

experiments are conducted on the MATH dataset. 368

First, we explore the impact of model scale. We 369

use three language models from the Qwen2.5 se- 370

ries (Yang et al., 2024a) with different parameter 371

sizes (Qwen2.5-1.5B/7B/14B-instruct) as the de- 372

composition and execution models, forming nine 373

cross-model experiment combinations. As shown 374

in the left panel of Figure 3, from both the decom- 375

position and execution model perspectives, overall 376

accuracy improves with larger model parameter 377

sizes, indicating that model scale has a positive 378

impact on performance. 379

To further analyze the individual and compara- 380

tive impacts of the decomposition model and the 381

execution model, we design three sets of controlled 382

experiments, as shown in the right panel of Fig- 383

ure 3. We observe that the performance of the 384

execution model has a more significant impact on 385

overall task performance, as evidenced by two key 386

findings: First, the slope of the blue line is notice- 387

ably steeper than that of the green line, indicating 388

that performance improvements from scaling the 389

execution model size far exceed those from scaling 390

the decomposition model. Second, the blue line 391
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Table 3: MT-bench evaluation results: turn 1, turn 2, and average scores across approaches and five task cate-
gories, evaluated by Claude-3.5-Sonnet (Anthropic, 2024) as the judge and using GPT-4o-mini as the base model.
Underlined values indicate the highest score in each turn, while bold values indicate the highest average score.

Method
MT-bench

Writing Roleplay Reasoning Math Coding

Turn 1 Turn 2 Avg Turn 1 Turn 2 Avg Turn 1 Turn 2 Avg Turn 1 Turn 2 Avg Turn 1 Turn 2 Avg

IO 8.92 7.63 8.28 8.28 6.96 7.62 5.85 6.05 5.95 4.75 3.87 4.31 5.15 4.50 4.83
CoT 9.06 7.38 8.22 8.50 6.98 7.74 8.55 7.66 8.11 9.73 8.55 9.14 7.82 5.69 6.76
P&S 8.91 8.03 8.47 8.90 7.06 7.98 7.61 7.00 7.31 9.63 7.93 8.78 6.25 5.90 6.08
ReAct 8.10 7.98 8.04 6.77 6.23 6.50 8.08 7.12 7.60 9.58 7.32 8.45 6.00 6.70 6.35
P&E 9.05 7.04 8.05 8.53 6.39 7.46 8.13 6.02 7.08 9.33 7.70 8.52 4.95 5.27 5.11
P&E (DAG) 9.27 7.78 8.53 8.80 7.77 8.29 8.08 6.83 7.46 9.47 7.50 8.49 4.86 4.87 4.87

1.5B 7B 14B
Execution Model

14
B

7B
1.

5BDe
co

m
po

sit
io

n 
M

od
el 17.85 44.30 53.22

15.04 39.17 43.14

12.73 34.88 38.67

Qwen2.5 P&E(DAG) (MATH)

1.5B 7B 14B
Model Scale

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

17.85

38.67

12.73

44.30

43.14
39.17

53.22

Qwen2.5 P&E(DAG) (MATH)

Fixed Decomp. Model=14B
Fixed Exec. Model=14B
Same Decomp. and Exec. Model

15

20

25

30

35

40

45

50

Figure 3: The left panel presents nine cross-model ex-
periments, while the right panel shows three sets of
controlled experiments.

closely aligns with the red line, confirming that the392

adjustment in the execution model is the primary393

driver behind the scaling law phenomenon.394

In addition, we examine the impact of reasoning395

capability by comparing the performance of models396

(Qwen2.5-math-1.5B/7B-instruct, Qwen2.5-14B-397

instruct) with their corresponding Deepseek-R1398

distilled versions (DeepSeek-AI, 2025) as decom-399

position models and execution models. Firstly,400

we report the number of invalid plans generated401

during the decomposition stage (left panel of Fig-402

ure 4). The results show that non-reasoning models403

at both 1.5B and 7B scales struggle to generate404

plans that comply with the required format, while405

their distilled reasoning counterparts show marked406

improvements. However, at the 14B scale, rea-407

soning models produce more invalid outputs, sug-408

gesting that increased reasoning ability may com-409

promise format control, especially when abstract410

reasoning is prioritized over structural compliance.411

Secondly, we compare the execution-stage perfor-412

mance of reasoning and non-reasoning models, us-413

ing Qwen2.5-14B-instruct as a fixed decomposi-414

tion model (right panel of Figure 4). The results415

show that reasoning models consistently outper-416

form their non-reasoning counterparts across all417

parameter scales, highlighting their advantages in418
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Figure 4: Performance comparison between reasoning
and non-reasoning models in decomposition and execu-
tion stages.

the execution stage. 419

Takeaway III: Scaling the execution model yields 420

greater performance gains than scaling the decom- 421

position model, with the reasoning model further 422

enhancing the execution stage. 423

3.4 Practical Principles 424

Based on the above experiments and analysis, we 425

summarize a set of practical principles to guide 426

the selection of appropriate task decomposition 427

approaches and models, providing actionable guid- 428

ance for real-world applications. 429

The practical principles can be formulated as 430

follows: Firstly, when approaching a question, 431

one should choose a decomposition approach that 432

matches the task characteristics, such as logical 433

rigor, divergence, or iterativity. For example, CoT 434

is suitable for mathematical problems, P&E (DAG) 435

for writing tasks, and ReAct for coding tasks. Sec- 436

ondly, the choice of models should depend on re- 437

source constraints and performance requirements. 438

If an implicit decomposition method is adopted, 439

selecting a single model with strong performance 440

is sufficient. In contrast, for explicit decomposi- 441

tion, it is recommended to use a model with strong 442

performance for execution and a model with basic 443

instruction-following ability for decomposition. 444
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4 Methodology445

4.1 Select-Then-Decompose Strategy446

In addition to a set of practical principles, we also447

endeavor to optimize the balance between task per-448

formance and cost. Based on the insights in Sec-449

tion 3.1 and Section 3.2, we propose a novel and450

efficient strategy called Select-Then-Decompose451

(S&D), which dynamically selects an appropriate452

decomposition approach according to the task’s453

complexity and characteristics. This allows for454

achieving an optimal balance between performance455

and cost.456

The Select-Then-Decompose strategy mainly457

consists of three functional modules: the Selection458

Module, the Execution Module, and the Valida-459

tion Module. These three modules work collabo-460

ratively to form a closed-loop task-solving process.461

The detailed algorithmic procedure is described in462

Appendix C.463

The Selection Module is the core component of464

the Select-Then-Decompose strategy. Powered by465

an LLM, this module employs a carefully designed466

set of prompts P to guide the LLM in analyzing and467

understanding the input question Q, and returns468

the most suitable decomposition approach A along469

with the reasoning R. The complete prompt for the470

Selection Module is provided in the Appendix D.1.471

The Execution Module follows the approach A472

selected by the Selection Module and applies the473

corresponding decomposition algorithm to the in-474

put task Q, generating a candidate solution S. The475

Execution Module is designed with high modular-476

ity and extensibility.477

The Validation Module leverages an LLM to478

assess the confidence score C ∈ [0, 1] of the candi-479

date solution S, based on the original question Q.480

If C ≥ T , where T is a predefined threshold, the481

solution is accepted; otherwise, the system initiates482

a staged switching mechanism that sequentially ex-483

plores {IO}, implicit approaches {CoT, P&S}, and484

explicit approaches {ReAct, P&E, P&E (DAG)}.485

Within each category, the method is selected via486

uniform random sampling (M ∼ U(G)). De-487

tailed prompting instructions are provided in the488

Appendix D.1.489

5 Experiments490

5.1 Setup491

The baselines and benchmarks in our experiments492

follow the same settings as those described in Sec-493

tion 3.1. Additionally, S&D strategy employs a val- 494

idation threshold of 0.7 and allows up to 3 switch- 495

ing iterations. 496

5.2 Main Results 497

The main experimental results as shown in Figure 5. 498

S&D consistently lies on the Pareto frontier across 499

five benchmark tasks, demonstrating a favorable 500

balance between performance and cost. The com- 501

plete raw data is in the Appendix F.1. Notably, on 502

tasks where candidate approaches show small per- 503

formance gaps, such as GSM8K and MATH, S&D 504

achieves higher accuracy with minimal additional 505

cost. This advantage stems from its LLM-based 506

selection mechanism, which can identify the ap- 507

propriate approach according to the question, thus 508

outperforming any individual method. On the Hu- 509

maneval and HotpotQA datasets, S&D attains near- 510

optimal performance while using only 24.77% of 511

the average token cost, achieving Pareto optimality. 512

In the Trivia Creative Writing task, where implicit 513

and explicit approaches exhibit significant perfor- 514

mance differences, S&D demonstrates an approxi- 515

mately linear trade-off between performance and 516

cost along the Pareto frontier. 517

We further analyze the proportions of final ap- 518

proaches selected by the S&D strategy across differ- 519

ent benchmarks after the “Select-Execute-Verify” 520

process, as shown in Figure 6. Overall, Implicit 521

decomposition approaches dominate, comprising 522

approximately 85%, while explicit approaches ac- 523

count for only about 15%. This suggests that 524

S&D favors low-cost implicit strategies and only 525

switches to explicit methods mainly for complex 526

problems or failed verifications. Task-specific pat- 527

terns reveal that, relative to other tasks, CoT and 528

P&E are more common in mathematical tasks, Re- 529

Act sees greater usage in code generation, and P&E 530

(DAG) is more prevalent in writing and text under- 531

standing. These findings align with the insights in 532

Section 3.2, highlighting the relationship between 533

tasks and decomposition approaches. See the Ap- 534

pendix G for more examples. 535

5.3 Ablation Study 536

Effect of selection and validation module To 537

assess the contributions of the selection and veri- 538

fication modules in the S&D strategy, we conduct 539

controlled experiments on HumanEval using the 540

GPT-4o-mini model. As shown in Table 4, remov- 541

ing the selection module and using IO as the initial 542

approach reduces token usage but degrades per- 543
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formance, while using a random initial approach544

increases token consumption and also lowers accu-545

racy. This suggests that the selection module en-546

hances efficiency and effectiveness by guiding the547

choice of decomposition. Additionally, omitting548

the verification module leads to a significant per-549

formance drop, underscoring its role in mitigating550

hallucinations and improving solution reliability.551

Effect of Confidence Threshold We investigate552

the impact of the confidence threshold T , which553

governs approach switching during decomposi-554

tion. Results show a trade-off: higher thresholds555

enhance solution quality but increase switch fre-556

quency and computational cost. Detailed results557

and analysis are in Appendix E.558

Config. Performance Avg. Token Cost

w/ Select & Val. 88.55 845.82

w/o Select (IO) 86.59 (↓2.21%) 542.35 (↓35.89%)
w/o Select (Random) 87.19 (↓1.53%) 2782.34 (↑228.99%)
w/o Val. 85.98 (↓2.90%) 753.29 (↓10.94%)

Table 4: Ablation study for Select-Then-Decompose
strategy on HumanEval. Percentage changes are relative
to the full configuration.

6 Conclusion 559

In conclusion, our research explores the task de- 560

composition in LLMs. We first investigate existing 561

task decomposition research into six categoriza- 562

tion schemes and identify five representative ap- 563

proaches. Through experiments and analysis across 564

approaches, tasks, and models, we present three in- 565

sights into task decomposition and propose a set 566

of practical principles to guide real-world applica- 567

tions. In addition, the issue of the high cost of ex- 568

isting methods leads us to propose the Select-Then- 569

Decompose strategy, which dynamically chooses 570

suitable decomposition approaches based on the 571

task. Extensive experiments show that our strategy 572

consistently lies on the Pareto frontier, achieving a 573

strong balance between performance and cost. Our 574

contributions not only enhance the understanding 575

of LLM task decomposition and offer a practical 576

framework for balancing performance and cost. 577
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Limitations578

Although our research focuses on task decomposi-579

tion in LLMs, we acknowledge two primary limita-580

tions. First, we only examined the decomposition581

mechanism, without exploring the representation582

formats (e.g., code or text) or the use of external583

tools, both of which have been shown in prior work584

to improve performance. Second, our Select-Then-585

Decompose strategy relies solely on prompting the586

model to choose a suitable decomposition approach587

based on the task, without any additional training588

to enhance this capability. We encourage future589

research in these two promising directions to fur-590

ther advance our understanding of autonomous task591

decomposition in LLMs.592

Ethical Considerations593

While task decomposition in LLMs offers signifi-594

cant advancements in tackling complex problems595

efficiently, it also raises important ethical con-596

cerns. The increased use of LLMs with dynamic597

decomposition strategies can lead to unintended598

consequences such as over-reliance on automated599

decision-making, potential biases inherited from600

training data, and privacy risks when handling sen-601

sitive information. Additionally, the token cost and602

computational resources required may contribute603

to environmental impacts and raise accessibility604

issues for smaller organizations or communities.605

Therefore, it is crucial to design task decomposi-606

tion approaches with transparency, fairness, and607

sustainability in mind, ensuring that these technolo-608

gies are deployed responsibly and inclusively.609
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A Taxonomy of Task Decomposition 847

Methods 848

We categorize task decomposition methods from 849

six distinct perspectives, summarizing the cat- 850

egorization of existing approaches accordingly. 851

Specifically, "Perspective 1" corresponds to 852

"Decomposition-First vs. Interleaved", "Perspec- 853

tive 2" to "Implicit vs. Explicit", "Perspective 3" 854

to "DAG vs. Linear", "Perspective 4" to "Code 855

vs. Text", "Perspective 5" to "Limited Subtask 856

Selection Range vs. Unlimited Subtask Selection 857

Range", and "Perspective 6" to "Tool-Augmented 858

vs. Pure LLM-based". The symbol "★" denotes 859

the former category in each perspective, while "✩" 860

denotes the latter. 861

B Detailed Descriptions of Baselines and 862

Datasets 863

B.1 Baselines 864

We select five representative approaches: CoT, 865

P&S, ReAct, P&E, and P&E (DAG). The details 866

of these approaches are as follows: 867

• CoT (Kojima et al., 2022): CoT enables 868

LLMs’ zero-shot reasoning with the prompt 869

"Let’s think step-by-step." 870

• P&S (Wang et al., 2023): P&S improves 871

upon CoT by splitting it into two instructions: 872

"Let’s first devise a plan" and "Let’s carry out 873

the plan." 874

• ReAct (Wang et al., 2023): Unlike CoT, 875

which embeds reasoning within planning, Re- 876

Act alternates between reasoning (Thought) 877

and acting (Action). 878

• P&E (Sun et al., 2023b): P&E decomposes 879

the task into a multi-step plan and executes 880

each subtask sequentially. 881

• P&E (DAG) (Sun et al., 2023b): The key 882

difference between P&E (DAG) and P&E is 883

that the former produces a DAG-structured 884

plan, while P&E generates a linear-structured 885

plan. 886

B.2 Benchmarks 887

We select four representative task categories: rea- 888

soning, code generation, creative writing, and text 889

comprehension. To ensure a comprehensive and 890

multidimensional assessment, we adopt five ob- 891

jective benchmarks and one subjective benchmark. 892

The details of tasks and benchmarks are as follows: 893
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Table 5: Category assignments of the five representative methods

Approach Perspective 1 Perspective 2 Perspective 3 Perspective 4 Perspective 5 Perspective 6

HuggingGPT (Shen et al., 2023) ★ ✩ ✩ ✩ ✩ ★

ProgPrompt (Singh et al., 2023) ★ ✩ ✩ ★ ★ ★

Least-to-most (Zhou et al., 2022) ★ ✩ ✩ ✩ ✩ ✩

PEARL (Sun et al., 2023b) ★ ✩ ✩ ✩ ★ ✩

AutoAgents (Chen et al., 2023) ★ ✩ ★ ✩ ✩ ★

DART-LLM (Wang et al., 2024a) ★ ✩ ★ ✩ ★ ★

SMART-LLM (Kannan et al., 2024) ★ ✩ ★ ★ ★ ★

ReAct (Yao et al., 2023) ✩ ✩ ✩ ✩ ✩ ★

Visual ChatGPT (Wu et al., 2023) ✩ ✩ ✩ ✩ ✩ ★

Decomposed Prompting (Khot et al., 2022) ✩ ✩ ✩ ✩ ✩ ✩

Task Navigator (Ma et al., 2024) ✩ ✩ ✩ ✩ ✩ ✩

Plan-and-Solve (Wang et al., 2023) ★ ★ ✩ ✩ ✩ ✩

CoT (Kojima et al., 2022) ✩ ★ ✩ ✩ ✩ ✩

PAL (Gao et al., 2023) ✩ ★ ✩ ★ ✩ ★

PoT (Chen et al., 2022) ✩ ★ ✩ ★ ✩ ★

TDAG (Wang et al., 2025) ✩ ★ ✩ ✩ ✩ ✩

ADaPT (Prasad et al., 2023) ✩ ★ ✩ ✩ ✩ ✩

Re-TASK (Wang et al., 2024c) ✩ ★ ✩ ✩ ✩ ✩

Objective Benchmarks We employ five publicly894

available benchmarks with well-defined quantita-895

tive metrics covering four task categories.896

• Reasoning Task. GSM8K (Cobbe et al., 2021)897

provides a comprehensive set of elementary898

school-level word problems, designed to eval-899

uate arithmetic reasoning capabilities. We assess900

the quality of generated solutions via accuracy901

(%), with the full dataset for testing. MATH902

(Hendrycks et al., 2021) integrates high-difficulty903

mathematical competition problems covering904

seven mathematical fields, categorized into five905

difficulty levels. We similarly assess using the ac-906

curacy (%) for measuring the quality of the gen-907

erated solutions. Following (Hong et al., 2024),908

we select 617 problems from four representa-909

tive problem types (Combinatorics & Probability,910

Number Theory, Pre-algebra, and Pre-calculus)911

at difficulty level 5.912

• Code Generation Task. HumanEval (Chen913

et al., 2021) is a widely recognized function-level914

code generation benchmark, tailored for assess-915

ing fundamental programming skills. We assess916

adopting the pass@k as a measure of function917

correctness across multiple standard test cases,918

with the full dataset for testing.919

• Creative Writing Task. Trivia Creative Writ-920

ing (Wang et al., 2024b) requires generating a921

coherent narrative based on a given topic while922

integrating answers from N(=5/10) trivia ques-923

tions, designed to quantify the model’s informa-924

tion synthesis and writing abilities. We assess925

using an automatic metric score, calculated by 926

the proportion of correct answer mentions. We 927

use the full dataset consists of 100 instances each 928

for N=5 and N=10, totaling 200 samples. 929

• Text Comprehension Task. HotpotQA (Yang 930

et al., 2018) integrates Wikipedia-based multi- 931

hop question-answer pairs, designed to assess 932

text comprehension abilities by requiring an- 933

swers derived from multiple supporting docu- 934

ments. We assess via the F1 score, which quanti- 935

fies the balance between precision and recall in 936

identifying the correct answers. In line with prior 937

works (Hu et al., 2025; Shinn et al., 2023), we 938

randomly select 1,000 samples for evaluation. 939

Subjective Benchmark To mitigate the impact 940

of evaluation differences caused by different bench- 941

mark indicators, we choose MT-bench (Zheng 942

et al., 2023), which provides 80 high-quality open- 943

ended questions covering 8 task categories and 944

is evaluated through models or human subjective 945

scores. We asses using Claude-3.5-Sonnect as the 946

evaluation model to rate the responses on a scale 947

from 0 to 10. We selected 50 high-quality open- 948

ended questions from MT-bench, corresponding 949

to different task categories (mathematics, reason- 950

ing, coding, writing, and role-playing). Through 951

this benchmark, we ensure consistency in evalua- 952

tion metrics across tasks and effectively assess the 953

performance of various decomposition methods in 954

handling open-ended questions. 955
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C Algorithm of Select-Then-Decompose956

Strategy957

To balance task performance and computational958

cost, we propose the Select-Then-Decompose959

(S&D) strategy.960

The strategy comprises three key modules: Se-961

lection, Execution, and Validation, forming a962

closed-loop task-solving framework (see Algo-963

rithm 1).964

• Selection Module: Utilizes an LLM guided965

by a prompt P to analyze the input question Q,966

selecting a suitable decomposition approach967

A along with reasoning R.968

• Execution Module: Applies the selected ap-969

proach A to the input task Q, producing a970

candidate solution S.971

• Validation Module: Assesses the confidence972

score C ∈ [0, 1] of the solution S based on the973

original question Q. If C ≥ T , the solution974

is accepted. Otherwise, the system initiates975

a staged switching mechanism, sequentially976

exploring {IO}, implicit approaches {CoT,977

P&S}, and explicit approaches {ReAct, P&E,978

P&E (DAG)}, with uniform random sampling979

within each group.980

This modular design enables flexible and981

efficient task resolution with adaptive cost-982

performance tradeoffs.983

D Complete Prompts984

D.1 Prompt for Select-Then-Decompose985

Strategy986

For the Selection Module, to improve the LLM’s987

decision-making ability, the prompt systematically988

introduces various decomposition approaches and989

guides the model to consider task complexity and990

semantic features when making a choice. We stan-991

dardize the model’s output format, requiring it to992

return two key elements: the name of the selected993

method M , and the reason for selection R.994

For the Validation Module, to let LLM score the995

solutions purely without other interference, we sim-996

ply prompt the big model to generate a confidence997

score between 0 and 1 based on the problem and998

solution, and also specify that it format the output999

Reason and score.1000

Prompt for Selection Module
Please analyze the characteristics of the task description
and select the most suitable method to solve the task from
the candidate methods.

Task description: {problem}

Please analyze the characteristics of the task from the
following dimensions:
- Whether it has clear goals and solution steps (logic).
- Whether it may require multiple rounds of attempts,
corrections, or dynamic adjustments (iterative).
- Whether it involves information collection, viewpoint
exploration (divergent).

Candidate methods and introduction:
- io: Input-Output, directly outputs the answer, suitable for
simple problems.
- cot: Chain of Thought, step-by-step thinking and
reasoning to generate answers, suitable for problems that
require logical deduction.
- ps: Plan & Solve, make a plan first and then execute,
suitable for problems that require logical deduction.
- react: Reason+Act, alternate reasoning and execution,
suitable for iterative code generation tasks.
- pe: Plan & Execute, generate a plan and execute it in
sequence, suitable for vertical tasks with strict logic.
- dag_flow: build a task structure of a directed acyclic
graph, suitable for divergent tasks of parallel processing
and extensive information collection.

When choosing a method, please combine the specific
characteristics of the task with the applicable scenarios of
the above methods to explain your reasons for choosing.

Please strictly follow the following format:
<think>
Your analysis
</think>
<answer>
Your choice (only fill in the method name, such as: cot, ps,
etc.)
</answer>

1001

Prompt for Validation Module
Please, as a serious evaluator, rate the quality of the
following "solution".

Problem:
{problem}

Solution:
{solution}

Please give your **confidence score** for the solution,
give your explanation, and return a floating point number
between 0 and 1.

Please strictly follow the following format:
<think>
Your analysis
</think>
<score>
Your confidence score
</score>

1002
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Algorithm 1 Select-Then-Decompose Strategy

Require: Question Q, Threshold T , Max attempts K, Instruction prompt P , Define groups DG: {IO},
Implicit {CoT, P&S}, Explicit {ReAct, P&E, P&E (DAG)}

Ensure: Solution S or ∅
1: k ← 0, S ← ∅
2: while k < K do
3: if k = 0 then
4: (A,R)←LLM(Q,Pseletion) ▷ Generate selected method and reason
5: else
6: G← next group in DG ▷ Staged order:IO→Implicit→Explicit
7: Sample M randomly from U(G)
8: end if
9: S ← Execute(A,Q)

10: C ← LLM(Q,S, Pvalidation) ▷ Generate confidence score C ∈ [0, 1]
11: if C ≥ T then
12: return S ▷ Generate a satisfactory solution
13: else
14: k ← k + 1 ▷ Update the attempt count
15: end if
16: end while
17: return ∅ ▷ No appropriate solution

D.2 Prompt for IO1003

Prompt for IO
Q: {question}

A: Please output the final answer directly.
1004

D.3 Prompt for CoT1005

Prompt for CoT (Zero Shot)
Q: {question}

A: Let’s think step by step.
1006

D.4 Prompt for Plan-and-Solve1007

Prompt for Plan-and-Solve
Q: {question}

A: Let’s first understand the problem and devise a plan to
solve the problem.
<Plan>
Step 1. xxx
Step 2. xxx
...(repeat as needed)
</Plan>

Then, let’s carry out the plan to solve the problem step by
step.
<Solution>
Place your solution for each step in the plan.
</Solution>

1008

D.5 Prompt for ReAcT 1009

Prompt for ReAcT
Answer the following questions as best you can.

Use the following format:

Question: the input question you must answer.
Thought: you should always think about what to do.
Subtask: your subtask to carry out.
Result: the result of the subtask.
... (this Thought/Subtask/Result can repeat N times).
Thought: I now know the final answer.
Final Answer: the final answer to the original input
question.

Begin!

Question: {question}

1010

D.6 Prompt for Plan-and-Execute 1011

Prompt for Plan
Let’s first understand the following problem and devise a
linear plan to solve the problem.
{question}

Use the following format:
Subtask 1: [First step to solve the problem]
Subtask 2: [Second step to solve the problem]
...(repeat as needed)

Provide only the subtasks as a plan. Do not execute or
generate results for any subtask.
Begin!

1012
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Prompt for Execute
{question}

{context}

{subtask_id}: {subtask_description}

Please execute this {subtask_id} and provide the result:
1013

D.7 Prompt for Plan-and-Execute (DAG)1014

Prompt for Plan
Let’s first understand the following problem and devise
a directed acyclic graph (DAG) of subtasks to solve the
problem.

{question}

Use the following JSON format to break down the
problem into subtasks:

{subtasks_example}

Rules:
1. Each subtask must have a unique ID (e.g., "Subtask 1").
2. Each subtask must have a clear description of what
needs to be done.
3. If a subtask depends on other subtasks, list their IDs in
the "dependencies" field.
4. Ensure the subtasks form a directed acyclic graph
(DAG) with no circular dependencies.
5. Provide only the JSON output. Do not include any
additional text.

Begin!

1015

Subtasks_example
{
"subtasks": [
{
"id": "Subtask 1",
"description": "[First step to solve the problem]",
"dependencies": []
},
{
"id": "Subtask 2",
"description": "[Second step to solve the problem]",
"dependencies": ["Subtask 1"]
},
{
"id": "Subtask 3",
"description": "[Third step to solve the problem]",
"dependencies": ["Subtask 1", "Subtask 2"]
}
]
}

1016

Prompt for Execute
Here is the original question: {question}

Here is the context of previous subtasks and their results:
{context}

The current subtask is: {subtask_id}: {sub-
task_description}

Dependencies: {subtask_dependencies}

Please execute this subtask and provide the result. If the
subtask depends on previous subtasks, use their results to
complete the task.

1017

E Effect of Confidence Threshold 1018

We further investigate the effect of the confidence 1019

threshold T through experiments on the Trivia Cre- 1020

ative Writing dataset. As shown in Figure 7, rais- 1021

ing the threshold notably enhances system perfor- 1022

mance by filtering out unreliable candidate solu- 1023

tions. However, this improvement comes at the 1024

cost of increased token consumption, particularly 1025

beyond the 0.9 threshold. These results indicate 1026

a trade-off: higher thresholds improve solution 1027

quality but also trigger more frequent approach 1028

switches, leading to greater computational cost. 1029
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Figure 7: Impact of the choice of confidence threshold
T on the Trivia Creative Writing dataset.

F Original Data 1030

F.1 Original Data for Five Objective 1031

Benchmarks 1032

We present the raw data of various decomposition 1033

approaches on five benchmarks, including evalua- 1034

tion metrics, token consumption, and the number 1035

of API calls in Table 6–11. Additionally, token cost 1036

and API call analysis across all five benchmarks 1037

are shown in Figure 8. 1038
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Figure 8: Token cost and API call analysis across all five benchmarks.

Table 6: Original Data for GSM8K

Method Accuracy (%) Tokens API Calls

IO 33.13 106.37 1.00
CoT 93.17 396.45 1.00
P&S 92.72 467.70 1.00
ReAct 91.66 2700.04 6.81
P&E 92.34 2442.82 5.13
P&E (DAG) 90.67 1943.24 4.08

Select-Then-Decompose 93.56 516.57 1.28

Table 7: Original Data for MATH

Method Accuracy (%) Tokens API Calls

IO 17.02 240.25 1.00
CoT 50.73 890.47 1.00
P&S 49.10 973.55 1.00
ReAct 44.83 5865.86 6.75
P&E 52.09 10521.10 6.26
P&E (DAG) 48.06 4330.35 4.13

Select-Then-Decompose 52.39 2560.22 2.31

Table 8: Original Data for HumanEval

Method Accuracy (%) Tokens API Calls

IO 84.73 328.03 1.00
CoT 86.26 724.98 1.00
P&S 84.73 767.08 1.00
ReAct 90.07 3421.78 6.08
P&E 83.21 7887.10 6.02
P&E (DAG) 83.97 3856.52 4.09

Select-Then-Decompose 88.55 845.82 1.18

Table 9: Original Data for Creative Writing(N=5)

Method Score Tokens API Calls

IO 47.00 497.24 1.00
CoT 49.80 591.00 1.00
P&S 49.20 740.42 1.00
ReAct 62.00 3552.34 5.80
P&E 62.80 8630.23 6.78
P&E (DAG) 64.60 3432.22 4.20

Select-Then-Decompose 59.20 2902.72 1.39
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Table 10: Original Data for Creative Writing(N=10)

Method Score Tokens API Calls

IO 51.50 720.74 1.00
CoT 51.20 815.77 1.00
P&S 51.20 948.31 1.00
ReAct 63.00 4965.75 5.21
P&E 54.20 18783.87 8.36
P&E (DAG) 64.10 6596.20 4.02

Select-Then-Decompose 55.70 1461.76 1.57

Table 11: Original Data for HotpotQA

Method Score Tokens API Calls

IO 60.54 1348.62 1.00
CoT 63.00 1466.95 1.00
P&S 61.93 1584.43 1.00
ReAct 53.52 5181.09 3.34
P&E 63.22 8254.73 5.06
P&E (DAG) 65.52 6600.19 4.02

Select-Then-Decompose 65.26 1639.99 1.14

F.2 Original Data for MT-Bench1039

We present the raw data of five classic decompo-1040

sition approaches on MT-Bench in Table 12–16,1041

including scores of two turns, token consumption,1042

and the number of API calls.1043

Table 12: Original Data for MT-Bench: Writing

Method Turn 1 Turn 2 Tokens API Calls

IO 8.92 7.63 1031.20 2.00
CoT 9.06 7.38 1156.77 2.00
P&S 8.91 8.03 1292.13 2.00
ReAct 8.10 7.98 7170.17 9.93
P&E 9.05 7.04 22482.47 14.17
P&E (DAG) 9.27 7.78 7635.53 8.07

Table 13: Original Data for MT-Bench: Roleplay

Method Turn 1 Turn 2 Tokens API Calls

IO 8.28 6.96 803.70 2.00
CoT 8.50 6.98 1312.97 2.00
P&S 8.90 7.06 1616.60 2.00
ReAct 6.77 6.23 5195.17 9.17
P&E 8.53 6.39 36750.83 14.67
P&E (DAG) 8.80 7.77 10553.40 8.00

Table 14: Original Data for MT-Bench: Reasoning

Method Turn 1 Turn 2 Tokens API Calls

IO 5.85 6.05 308.03 2.00
CoT 8.55 7.66 1037.83 2.00
P&S 7.61 7.00 1200.50 2.00
ReAct 8.08 7.12 3544.23 6.93
P&E 8.13 6.02 17796.23 11.33
P&E (DAG) 8.08 6.83 9270.87 8.10

Table 15: Original Data for MT-Bench: Math

Method Turn 1 Turn 2 Tokens API Calls

IO 4.75 3.87 239.70 2.00
CoT 9.73 8.55 1416.63 2.00
P&S 9.63 7.93 1615.77 2.00
ReAct 9.58 7.32 7822.17 11.50
P&E 9.33 7.70 15064.93 11.13
P&E (DAG) 9.47 7.50 9702.77 8.27

Table 16: Original Data for MT-Bench: Coding

Method Turn 1 Turn 2 Tokens API Calls

IO 5.15 4.50 921.80 2.00
CoT 7.82 5.69 1762.10 2.00
P&S 6.25 5.90 1844.20 2.00
ReAct 6.00 6.70 5231.80 9.20
P&E 4.95 5.27 24217.20 12.90
P&E (DAG) 4.86 4.87 8388.40 8.20
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G Examples1044

Example of IO in GSM8K
Question:

Janet sells 16 − 3 − 4 = 9 duck eggs a day. She makes
9× 2 = 18 dollars every day at the farmer’s market.

Answer:

Janet makes $18 every day at the farmer’s market.
1045

Example of CoT in MATH
Question:

What is the value of x if − 2
3
(x− 5) = 3

2
(x+ 1)?

Answer:

To solve the equation − 2
3
(x − 5) = 3

2
(x + 1), we will

follow these steps:

1. Distribute both sides:

−2

3
(x− 5) = −2

3
x+

10

3
3

2
(x+ 1) =

3

2
x+

3

2

So the equation becomes:

−2

3
x+

10

3
=

3

2
x+

3

2

2. Eliminate the fractions:

Multiply both sides of the equation by the least com-
mon multiple (LCM) of the denominators, which is
6:

6

(
−2

3
x+

10

3

)
= 6

(
3

2
x+

3

2

)
This simplifies to:

−4x+ 20 = 9x+ 9

3. Combine like terms:

Move all terms involving x to one side and constants
to the other:

−4x− 9x = 9− 20

−13x = −11

4. Solve for x:

Divide both sides by −13:

x =
−11

−13
=

11

13

Thus, the value of x is
11

13
.

1046

Example of P&S in HotpotQA
Question:

"Constantin Medien AG (formerly EM.Entertainment and
EM.TV & Merchandising AG, then EM.TV AG, and fi-
nally em.sport media ag) is a German media group, based
in Ismaning near Munich, active in the area of sports, film,
and event marketing to medium-sized media companies."
...(Omit the subsequent text)

Read and understand the above text, and answer the
following questions.

IVA Media AG changed its name in 2004. What does their
new acronym stand for?

Answer:

Plan

• Step 1: Identify the new name of VIVA Media AG
after it changed its name in 2004.

• Step 2: Determine if the new name has a specific
acronym that needs to be explained.

• Step 3: Provide the full form of the acronym if it
stands for something specific.

Solution

• Step 1: The name of VIVA Media AG was changed
to VIVA Media GmbH in 2004.

• Step 2: The acronym "GmbH" stands for
"Gesellschaft mit beschränkter Haftung," which is a
type of legal entity in Germany and other German-
speaking countries that denotes a company with lim-
ited liability.

• Step 3: Therefore, the new acronym "GmbH" specif-
ically indicates the legal structure of the company
rather than an acronym with a unique meaning re-
lated to the media industry.

Result
Gesellschaft mit beschränkter Haftung

1047
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Example of ReAcT in HumanEval
Question:

def solve(N):
""" Given a positive integer N, return

the total sum of its digits in
binary.

Example
For N = 1000, the sum of digits

will be 1 the output should be
"1".

For N = 150, the sum of digits
will be 6 the output should be
"110".

For N = 147, the sum of digits
will be 12 the output should
be "1100".

Variables:
@N integer
sConstraints: 0 <= N <=le 10000.

Output:
a string of binary number

"""

Answer:

Thought: I need to implement a function that calculates
the sum of the digits of a given integer N and then converts
that sum into its binary representation.
Subtask: First, I will calculate the sum of the digits of N .
Result: To calculate the sum of the digits of N , I will con-
vert N to a string, iterate through each character, convert
it back to an integer, and sum these integers.

def sum_of_digits(N):
return sum(int(digit) for digit in

str(N))

Now, I will apply this function to N .
Thought: I need to apply the sum_of_digits function to
the input N to get the total sum of its digits.
Subtask: I will call the sum_of_digits function with N
as the argument.
Result:

digit_sum = sum_of_digits(N)

Thought: I now need to convert the calculated digit sum
into its binary representation.
Subtask: I will use Python’s built-in bin function, which
gives the binary representation of an integer. The result
includes a ’0b’ prefix, so I’ll slice off the first two charac-
ters.
Result:

binary_representation=bin(digit_sum)
[2:]

Final Thought: I now know the final answer.
Final Answer: The final answer to the original input
question is the implementation of the function solve(N):

def solve(N):
def sum_of_digits(N):

return sum(int(digit) for
digit in str(N))

digit_sum = sum_of_digits(N)
binary_representation = bin(

digit_sum)[2:]
return binary_representation
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Example of P&E in MATH
Question:

Find the smallest positive integer that is greater than 1
and relatively prime to the product of the first 20 positive
integers. Reminder: two numbers are relatively prime if
their greatest common divisor is 1.

Answer:

Plan:

• Subtask 1: Calculate the product of the first 20 posi-
tive integers, known as 20!.

• Subtask 2: Determine the prime factorization of 20!.

• Subtask 3: Identify the smallest positive integer
greater than 1 that is not included in the prime fac-
torization of 20!.

• Subtask 4: Verify that the identified integer is rela-
tively prime to 20! by checking its greatest common
divisor with 20!.

• Subtask 5: Conclude and report the smallest positive
integer greater than 1 that is relatively prime to the
product of the first 20 positive integers.

Execution:
Subtask 1: Calculate 20!.

20! = 20× 19× 18× · · · × 2× 1

Calculating stepwise:

1× 2 = 2

2× 3 = 6

6× 4 = 24

24× 5 = 120

120× 6 = 720

720× 7 = 5040

5040× 8 = 40320

40320× 9 = 362880

362880× 10 = 3628800

3628800× 11 = 39916800

39916800× 12 = 479001600

479001600× 13 = 6227020800

6227020800× 14 = 87178291200

87178291200× 15 = 1307674368000

1307674368000× 16 = 20922789888000

20922789888000× 17 = 355687428096000

355687428096000× 18 = 6402373705728000

6402373705728000× 19 = 121645100408832000

121645100408832000× 20 = 2432902008176640000

Therefore,

20! = 2432902008176640000
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Subtask 2: Prime factorization of 20!.
The prime numbers up to 20 are: 2, 3, 5, 7, 11, 13, 17, 19.
The exponent of a prime p in n! is given by

∞∑
k=1

⌊
n

pk

⌋
.

Calculate each exponent for 20!:

For p = 2 :

⌊
20

2

⌋
+

⌊
20

4

⌋
+

⌊
20

8

⌋
+

⌊
20

16

⌋
= 10 + 5 + 2 + 1 = 18

For p = 3 :

⌊
20

3

⌋
+

⌊
20

9

⌋
= 6 + 2 = 8

For p = 5 :

⌊
20

5

⌋
+

⌊
20

25

⌋
= 4 + 0 = 4

For p = 7 :

⌊
20

7

⌋
= 2

For p = 11 :

⌊
20

11

⌋
= 1

For p = 13 :

⌊
20

13

⌋
= 1

For p = 17 :

⌊
20

17

⌋
= 1

For p = 19 :

⌊
20

19

⌋
= 1

Hence,

20! = 218 × 38 × 54 × 72 × 11× 13× 17× 19.

Subtask 3: Identify the smallest positive integer greater
than 1 relatively prime to 20!.
Since 20! includes all prime factors up to 19, the smallest
integer greater than 1 that shares no prime factors with 20!
must be a prime greater than 19.
The smallest such prime is

23 .

Subtask 4: Verify gcd(23, 20!) = 1.
Because 23 is prime and greater than all prime factors of
20!, it shares no common prime factor with 20!.
Therefore,

gcd(23, 20!) = 1,

which means 23 is relatively prime to 20!.

Subtask 5: Conclusion
The smallest positive integer greater than 1 that is relatively
prime to the product of the first 20 positive integers is

23 .
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Example of P&E (DAG) in Trivia Creative
Writing
Question:

Write a short and coherent story about Harry Potter that
incorporates the answers to the following 5 questions:
Who was the man behind The Chipmunks? Which Lloyd
Webber musical premiered in the US on 10th December
1993? Who was the next British Prime Minister after
Arthur Balfour? Who had a 70s No. 1 hit with Kiss
You All Over? What claimed the life of singer Kathleen
Ferrier?

Answer:

Plan:

{
"subtasks": [

{
"id": "Subtask 1",
"description": "Identify

the five key questions
that must be answered
to create a story

about Harry Potter.",
"dependencies": []

},
{

"id": "Subtask 2",
"description": "Research

the answers to each of
the five questions:

The man behind The
Chipmunks , the Lloyd
Webber musical , the
next British Prime
Minister after Arthur
Balfour , the artist of
'Kiss You All Over ',

and the cause of
Kathleen Ferrier 's
death.",

"dependencies": ["Subtask
1"]

},
{

"id": "Subtask 3",
"description": "Compose a

coherent story about
Harry Potter that
integrates the answers
to the five questions
found in Subtask 2.",

"dependencies": ["Subtask
1", "Subtask 2"]

}
]

}

Execution:
Subtask 1: Identify the five key questions that must be
answered to create a story about Harry Potter. Depen-
dencies: []
Result: To create a story about Harry Potter that incorpo-
rates the answers to the specified questions, the five key
questions to be answered are:
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Example of P&E (DAG) in Trivia Creative
Writing

1. Who was the man behind The Chipmunks?

2. Which Lloyd Webber musical premiered in the US
on 10th December 1993?

3. Who was the next British Prime Minister after Arthur
Balfour?

4. Who had a 70s No 1 hit with “Kiss You All Over”?

5. What claimed the life of singer Kathleen Ferrier?

These questions provide the necessary details that need to
be woven into the narrative about Harry Potter.
Subtask 2: Research the answers to each of the five
questions. Dependencies: [Subtask 1]
Result: Here are the answers to the five key questions:

1. Who was the man behind The Chipmunks?
The man behind The Chipmunks was Ross Bagdasar-
ian Sr., who created the characters and the music that
made them famous.

2. Which Lloyd Webber musical premiered in the
US on 10th December 1993?
The Lloyd Webber musical that premiered in the US
on 10th December 1993 is Sunset Boulevard.

3. Who was the next British Prime Minister after
Arthur Balfour?
The next British Prime Minister after Arthur Balfour
was David Lloyd George.

4. Who had a 70s No 1 hit with “Kiss You All Over”?
The artist who had a 70s No. 1 hit with “Kiss You
All Over” is Exile.

5. What claimed the life of singer Kathleen Ferrier?
Kathleen Ferrier’s life was claimed by cancer, specif-
ically breast cancer.

Subtask 3: Compose a coherent story about Harry
Potter that integrates the answers to the five questions.
Dependencies: [Subtask 1, Subtask 2]
Result:
Once upon a time in the magical world of Hogwarts, Harry
Potter found himself in a peculiar situation. It all began
when he stumbled upon an old, dusty book in the library
titled The Enchanted History of Muggle Music. Intrigued,
Harry opened it to find a chapter dedicated to the legendary
Ross Bagdasarian Sr., the man behind The Chipmunks.
The book described how Bagdasarian had enchanted the
world with his high-pitched melodies, and Harry couldn’t
help but imagine what it would be like to hear the Chip-
munks sing a wizarding song.
As he flipped through the pages, Harry discovered a men-
tion of a famous musical that had premiered in the Muggle
world on December 10, 1993—Andrew Lloyd Webber’s
Sunset Boulevard. The story of a faded star and her strug-
gles resonated with Harry, who often felt the weight of
expectations on his shoulders. He wondered if the char-
acters in the musical ever faced dark wizards or had to
navigate the complexities of friendship like he did.
...(Omit the subsequent story)
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Example of S&D (No Switch)
Question:

For Halloween, Megan received 11 pieces of candy from
neighbors and 5 pieces from her older sister. If she only
ate 8 pieces a day, how long would the candy last her?

Answer:

Selection Module:

<think>
The task has a clear goal: to determine how long Megan’s
candy will last given the total amount of candy and her
daily consumption rate. The solution steps involve straight-
forward arithmetic: first, calculating the total amount of
candy and then dividing that by the daily consumption.
This indicates a logical deduction process, which aligns
well with methods that emphasize step-by-step reasoning.
The task does not require multiple rounds of attempts or
dynamic adjustments, as it is a straightforward calculation
without the need for iterative refinement. Therefore, it
does not fit the characteristics of an iterative method.
Additionally, the task does not involve extensive informa-
tion collection or viewpoint exploration, as it is focused
on a single calculation rather than exploring multiple per-
spectives or gathering varied data.
Given these characteristics, the most suitable method for
this task is one that emphasizes logical deduction and
step-by-step reasoning, making the Chain of Thought (cot)
method the best fit.
</think>

<answer>
cot
</answer>

Execution Module Process (CoT):

1. Total Candy Calculation:

• Megan received 11 pieces of candy from
neighbors.

• She also received 5 pieces from her older sis-
ter.

• Total candy:

11 + 5 = 16 pieces of candy

2. Daily Consumption:

• Megan eats 8 pieces of candy per day.

3. Duration Calculation:

• To find out how many days the candy will
last, divide the total amount of candy by the
amount she eats per day:

16 pieces
8 pieces/day

= 2 days

Validation Module:
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Example of S&D (No Switch)
<think>
The solution provided is accurate and follows a logical
step-by-step approach to solve the problem. It correctly
calculates the total amount of candy Megan has by adding
the pieces received from neighbors and her sister. The
daily consumption is also correctly stated, and the final
calculation to determine how many days the candy will last
is performed correctly by dividing the total candy by the
daily consumption. The conclusion that Megan’s candy
will last her 2 days is correct based on the calculations pro-
vided. Therefore, I would rate the quality of this solution
as very high.
</think>

<score>
1.0
</score>

Confidence Score: 1.0

confidence_score =1.0 > threshold =0.7

Validate: True, no switching required

Final Approach: CoT
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Example of S&D (Switched)
Question:

Write a short and coherent story about Pikachu that
incorporates the answers to the following 5 questions:
Who directed the classic 30s western Stagecoach? Dave
Gilmore and Roger Waters were in which rock group?
Which highway was revisited in a classic ’60s album by
Bob Dylan? Which was the only Eastern Bloc country to
participate in the 1984 LA Olympics? Which 90s sci-fi
series with James Belushi was based on Bruce Wagner’s
comic strip of the same name?

Answer:

Selection Module:

<think>
The task requires writing a coherent story about Pikachu
while incorporating answers to five specific questions. This
involves several characteristics:
1. **Clear Goals and Solution Steps**: The task has a
clear goal of creating a story that includes specific infor-
mation. However, the steps to achieve this are not strictly
linear, as the story must weave in the answers creatively.
2. **Iterative Nature**: The task may require multiple
rounds of attempts and adjustments to ensure that the story
flows well and incorporates the answers seamlessly. This
suggests an iterative approach might be beneficial.
3. **Information Collection and Viewpoint Exploration**:
The task involves collecting specific information (the an-
swers to the questions) and creatively exploring how to
integrate that information into a narrative. This indicates a
need for a method that can handle divergent thinking.
Given these characteristics, the most suitable method
would be one that allows for both planning and iterative
refinement, as well as the ability to explore different narra-
tive angles. The "Plan & Solve" method (PS) is appropriate
here because it allows for an initial plan to be made regard-
ing how to structure the story and then execute it while
being open to adjustments as needed.
Thus, the method that best fits the task is "ps" as it
combines planning with the flexibility to adapt the story
as it is being written.
</think>

<answer>
ps
</answer>

Execution Module Process (P&S):

Plan:

Step 1: Introduce Pikachu in a setting that connects to the
themes of adventure and exploration.
Step 2: Incorporate elements from the questions into the
story, ensuring they flow naturally.
Step 3: Conclude the story with a resolution that ties back
to Pikachu’s journey.

Solution:

...(Omitted steps)

Once upon a time in the vibrant world of Pokémon,
Pikachu found himself yearning for adventure beyond the
familiar fields of Pallet Town.
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Example of S&D (Switched)
One sunny morning, he decided to embark on a journey
along the famous Route 66, a highway that had been
revisited in many tales, including a classic album by Bob
Dylan. With a spark of excitement, Pikachu set off, his
cheeks crackling with electricity.
... (Omit the subsequent story)

Validation Module:

<think>
The solution effectively incorporates the required elements
from the questions into a coherent story about Pikachu.
The references to Route 66 and Bob Dylan’s album are
smoothly integrated, as is the mention of the classic west-
ern "Stagecoach" directed by John Ford. The inclusion
of Pink Floyd and the Eastern Bloc country participat-
ing in the 1984 LA Olympics adds depth to the narrative,
while the reference to the sci-fi series "The Last Precinct"
provides a fitting climax to Pikachu’s adventure.
However, while the story is creative and engaging, some
connections may feel a bit forced or less natural, partic-
ularly the transition between the various elements. The
overall flow is good, but the integration of the trivia could
be more seamless. Additionally, the story could benefit
from more character development or emotional depth to
enhance the reader’s connection to Pikachu’s journey.
Overall, the solution meets the requirements of the prompt
and presents a fun and imaginative story, but there is room
for improvement in the integration of the trivia elements
and character depth.
</think>

<score>
0.65
</score>

Confidence Score: 0.65

confidence_score =0.65 < threshold =0.7

Validate: False, switching to the next group of ap-
proaches... The next approach is P&E.

Execution Module Process (P&E):

Plan:

Subtask 1: Identify the key elements from each of the five
questions that need to be incorporated into the story about
Pikachu.
Subtask 2: Research and confirm the answers to the five
questions to ensure accuracy.
Subtask 3: Create a rough outline of the story, determin-
ing how Pikachu will interact with the elements from the
answers.
Subtask 4: Write a draft of the story, weaving in the an-
swers to the questions in a coherent and engaging manner.
Subtask 5: Revise the draft to improve flow, coherence,
and ensure all elements are included appropriately.

Execution: ... (Omit)

**Pikachu’s Adventure on Highway 61**
One sunny day in the Pokémon world, Pikachu was feeling
particularly adventurous.
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Example of S&D (Switched)
He had heard tales of a legendary place called Highway
61, where trainers from all over gathered to challenge each
other and share stories. Inspired by the grand adventures
depicted in classic films, especially those directed by John
Ford, who had once captured the spirit of the wild west in
his iconic film "Stagecoach," Pikachu decided it was time
to embark on his own journey.
... (Omit the subsequent story)

Validation Module:

<think>
The solution provided is a well-structured and coherent
story that successfully incorporates the answers to the five
questions into a narrative about Pikachu. The story flows
logically, with each element being integrated in a way that
enhances the overall adventure. The key elements from the
questions are clearly represented: John Ford’s influence is
acknowledged, Pink Floyd’s music is featured, Highway
61 is the setting, Romania’s Olympic participation is
mentioned, and the concept of "The Tenth Dimension"
is creatively woven into the plot. The narrative captures
the essence of adventure and friendship, which aligns
well with Pikachu’s character. Overall, the execution is
strong, and the story is engaging and imaginative. </think>

<score>
0.95
</score>

Confidence Score: 0.95

confidence_score =0.95 > threshold =0.7

Validate: True, no switching required

Final Approach: P&E
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