
Domain Adaptation meets Individual Fairness.

And they get along.

Debarghya Mukherjee∗

Princeton University
University of Michigan

mdeb@umich.edu

Felix Petersen∗

Stanford University
University of Konstanz

mail@felix-petersen.de

Mikhail Yurochkin
IBM Research, MIT-IBM Watson AI Lab

mikhail.yurochkin@ibm.com

Yuekai Sun
University of Michigan
yuekai@umich.edu

Abstract

Many instances of algorithmic bias are caused by distributional shifts. For example,
machine learning (ML) models often perform worse on demographic groups that
are underrepresented in the training data. In this paper, we leverage this connec-
tion between algorithmic fairness and distribution shifts to show that algorithmic
fairness interventions can help ML models overcome distribution shifts, and that
domain adaptation methods (for overcoming distribution shifts) can mitigate al-
gorithmic biases. In particular, we show that (i) enforcing suitable notions of
individual fairness (IF) can improve the out-of-distribution accuracy of ML models
under the covariate shift assumption and that (ii) it is possible to adapt representa-
tion alignment methods for domain adaptation to enforce individual fairness. The
former is unexpected because IF interventions were not developed with distribution
shifts in mind. The latter is also unexpected because representation alignment is
not a common approach in the individual fairness literature.

1 Introduction

Although algorithmic bias and distribution shifts are often considered separate problems, there is a
recent body of empirical work that shows many instances of algorithmic bias are caused by distribution
shifts. Broadly speaking, there are two ways distribution shifts cause algorithmic biases [1]: (i) The
model is trained to predict the wrong target; (ii) The model is trained to predict the correct target, but
its predictions are inaccurate for demographic groups that are underrepresented in the training data.

From a statistical perspective, the first type of algorithmic bias is caused by concept or posterior
drift between the training data and the real-world. This leads to a mismatch between the model’s
predictions and actual data. This type of algorithmic bias is also known as label choice bias [2]. The
second type of algorithmic biases arises when ML models are trained or evaluated with non-diverse
data, causing the models to perform poorly on underserved groups. This type of algorithmic bias
is caused by a covariate shift between the training data and the real-world data. In this paper, we
mostly focus on algorithmic biases caused by covariate shift. The overlap between the problems of
algorithmic bias and distribution shift suggests two questions:

1. Is it possible to overcome distribution shifts with algorithmic fairness interventions?

2. Is it possible to mitigate biases caused by distribution shifts with domain adaptation methods?
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For a concrete example, consider building an ML model to predict a person’s occupation from their
biography. For this task, Yurochkin et al. [3] showed that ML models trained on top of pre-trained
language models without any algorithmic fairness intervention can be unfair: they can change
prediction (e.g., from attorney to paralegal or vice versa), when the name and gender pronouns
are changed in the input biography. This is a violation of individual fairness (IF), in part caused
by underrepresentation of female attorneys in the train (source) data. Consequently, this model
underperforms on female attorneys, in particular when female attorneys are better represented in
the target domain. This is a type of distribution shift known as subpopulation shift in the domain
adaptation literature [4]. In this case, enforcing IF will not only result in a fairer model, but can also
improve performance in the target domain, i.e., solve the domain adaptation problem.

Now, under the same source and target domains, consider applying a domain adaptation (DA) method
that matches the distributions of representations on the domains (see Appendix G for a brief review
of DA and algorithmic fairness under distribution shifts). Assuming class marginals are the same1,
i.e., source and target have the same fraction of attorneys, any differences between the source and
the target distribution are due to different fractions of male to female attorneys. Learning a feature
(representation) extractor that is invariant to gender pronouns and names will align the two domains
and result in a model that is individually fair. For group fairness, Schumann et al. [5] and Creager et
al. [6] show that it is possible to leverage DA algorithms to enforce group fairness. The goal of this
paper is to complement these results by precisely characterizing the cases in which enforcing IF
achieves domain generalization and vice a versa. Our contributions can be summarized as:

1. We show that methods designed for IF can help ML models adapt/generalize to new domains, i.e.,
improve the accuracy of the trained ML model on out-of-distribution samples.

2. Conversely, we show that DA algorithms that align the feature distributions in the source and
target domains can be used to improve IF under certain probabilistic conditions on the features.

We verify our theory on the Bios [7] and the Toxicity [8] datasets: enforcing IF via the methods
of Yurochkin et al. [3] and Petersen et al. [9] improves accuracy on the target domain, and DA
methods [10]±[12] trained with appropriate source and target domains improve IF.

2 Overcoming Distribution Shift by Enforcing Individual Fairness

The goal of individual fairness is to ensure similar treatment of similar individuals. Dwork et al. [13]
formalize this notion using L-Lipschitz continuity of an ML model f : X → Y:

dY(f(x), f(x
′)) ≤ LdX (x, x′) (2.1)

for all x, x′ ∈ X . Here, dY is the metric on the output space quantifying the similarity of treatment
of individuals, and dX is the metric on the input space quantifying the similarity of individuals.

Algorithms for enforcing IF are similar to algorithms for domain adaptation/generalization. For
example, adversarial training/distributionally robust optimization can not only enforce IF [3], [14], but
can also be used for training ML models that are robust to distribution shifts [11], [15]. This similarity
is more than a mere coincidence: the goal in both enforcing IF and domain adaptation/generalization
is ignoring uninformative dissimilarity. In IF, we wish to ignore variation among inputs that are
attributed to variation of the sensitive attribute. In domain adaptation/generalization, we wish to
ignore variation among inputs that are attributed to the idiosyncracies of the domains. Mathematically,
ignoring uninformative dissimilarity is enforcing invariance/smoothness of the ML model among
inputs that are dissimilar in uninformative ways. For example, (2.1) requires the model to be
approximately constant on small dX -balls.

In this section, we exploit this connection between IF and domain adaptation/generalization to show
that enforcing IF can improve accuracy in target domain under covariate shift if the regression function
is individually fair. In order words, if the inductive bias from enforcing IF is correct, then enforcing
IF improves accuracy in the target domain. More concretely, we consider the task of adapting an
ML model from a source domain to a target domain. We have ns labeled samples from the source
domain {(xs,i, ys,i)}

ns

i=1
and nt unlabeled samples from the target domain {xt,i}

nt

i=1
. Our goal is to

1This setting corresponds to a domain shift assumption common in the DA literature.
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obtain a model f̂ ∈ F that has comparable accuracy on the source and target domains. We assume

the regression function f0(x) ≜ E
[
yi | xi = x

]
in the source and target domains are identical.

ye,i = f0(xe,i) + ϵe,i, e ∈ {s, t}, (2.2)

where ϵi’s are exogenous error terms with mean zero and variance σ2
e . This is a special case of

distribution shift called covariate shift [16]. The covariate shift problem is most challenging when
the model class is mis-specified (i.e., f0 /∈ F) and this is the primary focus of this paper. As an
example, consider the Inclusive Images Challenge [17]. Publicly available image datasets often lack
geo-diversity. Thus, ML models trained on such datasets tend to make mistakes on images from
underrepresented countries. As a concrete example, while brides in western countries typically wear
white dresses at wedding ceremonies, brides in non-western countries may not. An ML model trained
on images from mostly western countries may not recognize brides from other parts of the world that
are not wearing white dresses. Although there is a function (on images) that recognizes brides from
non-western countries (e.g., the function humans implicitly use to recognize brides), the ML model
does not learn this function because either the function is not in the model class and/or the inductive
bias of the learning algorithm leads the algorithm to pick a different function (i.e., inductive bias of
learning algorithm is mis-specified).

To warm up, we consider the transductive (learning) setting before moving on to the inductive setting.
Recall that, in the transductive setting, the learner is given a set of labeled samples and another set of
unlabeled samples. The goal is correctly predicting the labels of the given unlabeled samples; the
learner is unconcerned with the accuracy of the model on new test samples. This is different from the
inductive setting, where the goal is correctly predicting the labels of new test samples. The features
of the unlabeled samples (but not their labels) are used for training in both settings. We provide
theoretical results for both settings.

2.1 Warm Up: The Transductive Setting

In the transductive setting, we are only concerned with the accuracy of the predictions on the unlabeled
samples from the target domain in the training data. The distribution of unlabeled samples is different
from the (marginal) distribution of features in the source domain due to covariate shift. Thus, the
problem is similar to that of extrapolation/label propagation in which we wish to propagate the
labels/signal from the labeled samples in the source domain to the unlabeled samples in the target
domain. Towards this goal, we leverage the (labeled) source and (unlabeled) target samples and
the inductive bias on the smoothness of the regression function. We encode this inductive bias in a
regularizer R and solve the following regularized risk minimization problem

f̂ = argminf∈F

[
1

ns

∑ns

i=1
L (yi, f(xi)) + λRn (f(X))

]
(2.3)

where F is the model class, L is a loss function, and λ > 0 is a regularization parameter. In
the transductive setting, the regularizer Rn is a function of the vector of model outputs on the

source and target inputs: f(X) ≜
[
f(Xs)

⊤, f(Xt)
⊤
]⊤

, where f(Xs) ∈ R
ns (resp. f(Xt) ∈ R

nt)
is the vector of outputs on the source (resp. target) inputs. Intuitively, the regularizer enforces
invariance/smoothness of the model outputs on the source and target inputs.

A concrete example of a such a regularizer is the graph Laplacian regularizer. A graph Laplacian
regularizer is based on a similarity symmetric kernel K on the input space X . For example, Petersen et
al. [9] take kernel K to be a decreasing function of a fair metric that is learned from data [18], e.g., a
metric in which the distance between male and female biographies with similar relevant content is
small. In domain adaptation, a similar intuition can be applied. For example, suppose the source train
data consists of Poodle dogs and Persian cats (the task is to distinguish cats and dogs), and the target
data consists of Dalmatians and Siamese cats [19]. Then, a meaningful metric for constructing kernel
K assigns small distances to different breeds of the same species.

Given the kernel, we construct the similarity matrix K = [K (Xi, Xj)]
n

i,j=1
. Note that, here, we

are considering all the source and target covariates together. Based on the similarity matrix, the
(unnormalized) Laplacian matrix is defined as L = D − K where D is a diagonal matrix with
Di,i =

∑
j K(Xi, Xj), which is often denoted as the degree of the ith observation. There are also

other ways of defining L (e.g., L = D
−1/2

KD
−1/2 or L = I−D

−1
K) which would also lead to
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the similar conclusion, but we stick to unnormalized Laplacian for the ease of exposition. Based on
the Laplacian matrix L, we define the graph Laplacian regularizer R as:

Rn(f(X)) = 1

n2 f(X)⊤Lf(X) = 1

n2

∑
i,j K(Xi, Xj) (f(Xi)− f(Xj))

2
.

The above regularizer enforces that if K(Xi, Xj) is large for a pair (Xi, Xj) (i.e., they are similar),
f(Xi) must be close to f(Xj). As mentioned earlier, for individual fairness, K(Xi, Xj) is chosen
to be a monotonically decreasing function of dfair(Xi, Xj), which ensures that f(Xi) and f(Xj)
are close to each other when Xi is close to Xj with respect to the fair metric (for more details, see
Petersen et al. [9]). Recently, Lahoti et al. [20], Kang et al. [21], and Petersen et al. [9] used the
graph Laplacian regularizer to post-process ML models so that they are individually fair. This is also
widely used in semi-supervised learning to leverage unlabeled samples [22].

We focus on problems in which the model class F is mis-specified, i.e., f0 /∈ F . If the model
is well-specified (i.e., f0 ∈ F), the optimal prediction rule in the training and target domains are
identical (both are f0). It is possible to learn the optimal prediction rule for the target domain from the
training domain (e.g., by empirical risk minimization (ERM)), and there is no need to adapt models
trained in the source domain to the target. On the other hand, if the model is mis-specified, the transfer
learning task is non-trivial because the optimal prediction rule model depends on the distribution of
the inputs (which differ in training and target domains). Here, we focus on the non-trivial case. We

show that, as long as f0 satisfies the smoothness structure enforced by the regularizer, f̂ from (2.3)
remains accurate at the target inputs {xt,i}

nt

i=1
. First, we state our assumptions on the loss function L

and the regularizer Rn.

Assumption 2.1. We assume that the regression function is smooth with respect to the penalty Rn,
i.e., Rn(f0(X)) ≤ δ for some small δ > 0.

This is an assumption on the effect of the smoothness structure enforced by the regularizer being in
agreement with the regression function f0.

Assumption 2.2. We assume that R is
µRn

nt

-strongly convex with respect to the model outputs on the

target inputs and
LRn

n -strongly smooth. More specifically, for v1 ∈ R
ns , v2, v ∈ R

nt , ṽ, v0 ∈ R
n

Rn (v1, v2) ≥ Rn (v1, v) + ⟨v2 − v, ∂tRn (v1, v)⟩+
µRn

2nt
∥v2 − v∥

2

2
.

Rn (v1, v2) ≤ Rn (v, ṽ) +

〈(
v1 − v
v2 − ṽ

)
, ∂Rn (v, ṽ)

〉
+

LRn

2n

∥∥∥∥
[
v1 − v
v2 − ṽ

]∥∥∥∥
2

2

.

This is a regularity assumption on the regularizer to ensure the extrapolation map yt : R
ns → R

nt

y∗t (v) ≜ argmint∈RntRn(v, t) (2.4)

is well-behaved. Intuitively, the extrapolation map extrapolates (hence its name) model outputs on the
source domain to the target domain in the smoothest possible way. Next, we state our assumptions on
the loss function:

Assumption 2.3. The loss function L : R×R → R+ satisfies L(a, b) ≥ 0 and = 0 if and only if
a = b. Furthermore, it is µL - strongly convex and LL - strongly smooth, i.e.,

L(x, y) ≥ L(x0, y0) + ⟨(x, y)− (x0, y0), ∂L(x0, y0)⟩+
µL

2
∥(x, y)− (x0, y0)∥

2

2
.

L(x, y) ≤ L(x0, y0) + ⟨(x, y)− (x0, y0), ∂L(x0, y0)⟩+
LL

2
∥(x, y)− (x0, y0)∥

2

2
.

Assumption 2.3 is standard in learning theory, which provides us control over the curvature of the
loss function.

Theorem 2.4. Suppose f̂ is the estimated function obtained from (2.3). Under Assumption 2.3 on the
loss function and Assumptions 2.1 and 2.2 on the regularizer, we have the following bound on the risk
in the target domain:

1

nt

∑nt

i=1
L
(
f̂(xt,i), f0(xt,i)

)
≤ αn

[
1

ns

∑ns

i=1
L
(
f̂(xs,i), f0(xs,i)

)
+λRn(f̂(X))

]
+ βnRn(f0(X)) .

(2.5)
where

αn = max

{
LLL

2
R (µL + 3LL)

2µ2
RµL

ρn,
2 + LL

λµR
(1 + ρn)

}
, βn =

2 + LL + L2
L

µR
(1 + ρn) . (2.6)

with ρn = ns/nt.
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We note that the right side of (2.5) does not depend on the yi,s’s in the target domain. Intuitively,

Theorem 2.4 guarantees the accuracy of f̂ on the inputs from the target domain as long as the
following conditions hold.

1. The model class F is rich enough to include an f that is not only accurate on the training domain,
but also satisfies the smoothness/invariance conditions enforced by the regularizer. This implies
the first term on the right side of (2.5) is small.

2. The exact relation between inputs and outputs encoded in f0 satisfies the smoothness structure
enforced by the regularizer. This implies the second term on the right side of (2.5) is small.

If the model is correctly specified (f0 ∈ F) and the regression function perfectly satisfies the
smoothness conditions enforced by the regularizer (Rn(f0) = 0), then the bias term vanishes. In
other words, Theorem 2.4 is adaptive to correctly specified model classes.

Example: Laplacian regularizer We now show that the graph Laplacian regularizer satisfies
Assumption 2.2. As Rn(f(X)) is a quadratic function of L, it is immediate that n∇2Rn(f(X)) = L.
Therefore, the strong convexity and smoothness of R depend on the behavior of the maximum and
minimum eigenvalues of L. The maximum eigenvalue of L is bounded above for the fixed design,
which plays the role of LL/2 in Assumption 2.2. For the lower bound, we note that we only assume
strong convexity with respect to the target samples fixing the source samples. If we divide the whole
Laplacian matrix into four blocks, then the value of the regularizer in terms of these blocks will be:

Rn(f(X)) =
∑

i,j∈{s,t} f(Xi)
⊤
Lijf(Xj) .

Therefore, the Hessian of Rn with respect to the model outputs in the target domain is LTT whose
minimum eigenvalue is bounded away from 0 as long as the graph is connected, i.e., source inputs
have a degree of similarity with target inputs. Thus, Rn satisfies Assumption 2.2. Graph Laplacian
regularizer is often used to achieve individual fairness [9], [20], [21] and our Theorem 2.4 shows that
it can also be used for domain adaptation. We further verify this empirically in Section 2.4.

Proof Sketch of Theorem 2.4. To keep things simple, we focus on the case in which the loss function
is quadratic (L(x, y) = 1

2
(x− y)2). We have

1

2nt

∥f̂(Xt)− f0(Xt)∥
2
2 ≲ 1

2nt

∥f̂(Xt)− y∗t (f̂(Xs))∥
2
2 +

1

2nt

∥y∗t (f̂(Xs))− y∗t (f0(Xs))∥
2
2

+ 1

2nt

∥y∗t (f0(Xs))− f0(Xt)∥
2
2. (2.7)

The first term depends on the smoothness of the model outputs across the source and target domain

f̂(X): it measures the discrepancy between the model outputs in the target domain f(Xt) and the
smoothest extrapolation of the model outputs in the source domain to the target domain y∗t (f(Xs)).
Similarly, the third term depends on the smoothness of the regression function (across the source and

target domains). In Appendix B.1, we bound the two terms with R(f̂(X)) and R(f0(X)).

It remains to bound the second term in (2.7). Intuitively, stability of the extrapolation map (2.4)
implies the extrapolation operation is similar to a projection onto smooth functions, so the second

term satisfies 1

2nt

∥y∗t (f̂(Xs))−y∗t (f0(Xs))∥
2
2 ≲ 1

2ns

∥f̂(Xs)−f0(Xs)∥
2
2. See Appendix B.1.

2.2 The Inductive Setting

We now consider the inductive setting. Previously, in Section 2.1, we focused on the accuracy of the

fitted model f̂ on the inputs from the test domain {xt,i}
nt

i=1
. Here we instead consider the expected

loss of f̂ at a new (previously unseen) input point in the target domain. We consider a problem setup
similar to that in Section 2.1: the ns labeled samples from the source domain are independently
drawn from the source distribution P , while the nt unlabeled samples from the target domain are
independently drawn from (the marginal of) the target distribution Q. We also assume the covariate

shift condition (2.2). The method remains the same as before: we learn f̂ from (2.3).

The main difference between the inductive and transductive settings is in the population version of the
regularizer: In the transductive setting, we are only concerned with the output of the ML model for
the inputs in the source and target domains; thereby, the population version of the regularizer remains
a function of (the vector of) model outputs on the inputs in the source and target domains. In the
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inductive setting, we are also concerned with the output of the ML model on previously unseen points;
thus, we consider the regularizer as a functional (i.e., a higher order function): R : F × F → R

(the two arguments corresponds to f(Xs) and f(Xt) in the transductive case). For example, the
population version of the graph Laplacian regularizer (in the inductive setting) is

R(f, g) ≜ E
[
1

2
(f(Xs)− g(Xt))

2K(Xs, Xt)
]
,

where Xs ∼ PX and Xt ∼ QX . The population version of (2.3) in the inductive setting is

f̃ ≜ argminf∈FE[L(Ys, f(Xs))] + λR (f, f) . (2.8)

Now we state the assumptions to extend Theorem 2.4 to the inductive setting.

Assumption 2.5. The function f0 satisfies R(f0, f0) ≤ δ for some small δ > 0.

Assumption 2.6. The (population) regularizer R satisfies the following strong convexity condition:

R(f, g1) ≥ R(f, g2) + ∂2R ((f, g2); g1 − g2) +
µR

2
∥g1 − g2∥

2
Q ,

and the following Lipschitz condition on the partial derivative of R with respect to the second
coordinate, i.e., for any two f1, f2:

|∂2R((f1, g);h)− ∂2R((f2, g);h)| ≤ LR∥f1 − f2∥P ∥h∥Q ,

for some constants µR,LR > 0. Here, ∂2R((f, g);h) indicates the Gateaux derivative of R with
respect to the second coordinate along the direction h.

Assumptions 2.5 and 2.6 are analogues of Assumptions 2.1 and 2.2 in the inductive setting. In fact, it
is possible to show that Assumptions 2.5 and 2.6 imply Assumptions 2.1 and 2.2 with high probability
by appealing to (uniform) laws of large numbers (see Appendix D). The following theorem provides

a bound on the population estimation error of f̃ on the target domain:

Theorem 2.7. Under Assumptions 2.3, 2.5, and 2.6, we have:

EQ[L(f̃(x), f0(x)] ≤ C1

[
EP [L(f̃(x), f0(x)] + λR(f̃ , f̃)

]
+ C2R(f0, f0) .

for some constants C1, C2 defined in the proof.

The bound obtained in Theorem 2.7 is comparable to (2.5): the right side does not depend on the
distribution YQ | XQ. The second term denotes the aptness of regularizer R, i.e., how well it captures
the smoothness of f0 over the domains. Similar to (2.5), we note that the bound in Theorem 2.7 is
adaptive to correctly specified model classes.

To wrap up, we compare our theoretical results to other theoretical results on domain adaptation.
There is a long line of work started by Ben-David et al. [23] on out-of-distribution accuracy of ML
models [10], [24]±[27]. Such bounds are usually of the form

EQ

[
L(f(x), f0(x)

]
≲ EP

[
L(f(x), f0(x)

]
+ disc(P,Q) (2.9)

for any f ∈ F , where disc(P,Q) is a measure of discrepancy between the source and target domains.
For example, Zhang et al. [26] show (2.9) with

disc(P,Q) ≜ supf,f ′∈F

{
EQ

[
L(f(X), f ′(X)

]
−EP

[
L(f(X), f ′(X)

] }
.

A key feature of these bounds is that it is possible to evaluate the right side of the bounds with
unlabeled samples from the target domain (and labeled samples from the source domain). Compared
to our bounds, there are two main differences:

1. Equation 2.9 applies to any f ∈ F (while our bound only applies to a specific f̃ from (2.8)).
Although this uniform applicability is practically desirable (because it allows practitioners to
evaluate the bound a posteriori to estimate the out-of-distribution accuracy of the trained model),
it precludes the bounds from adapting to correct specification of the model class.

2. The uniform applicability of the bound (to any f ∈ F) also precludes (2.9) from capturing the
effects of the regularizer.

Remark 2.8. Although our theoretical analysis in the main paper is under the assumption of covariate
shift, our results can certainly be extended to the case when the conditional mean function E[Y | X]
is different on different domains. We present an extension of Theorem 2.7 to this effect in Appendix E.
Other theorems (e.g., Theorem 2.4) can also be extended using analogous arguments.
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2.3 Extension to Domain Generalization

In this subsection, we further extend our results to the domain generalization setup, i.e., when we
have no observations from the target domain. In the previous domain adaptation setup, when we had
access to unlabeled data from the target domain, we used a suitable regularizer to extrapolate the
prediction performance from the source domain to the target domain. However, when we do not have
unlabeled data from the target domain, we need to alter the regularizer appropriately, so that we have
some uniform guarantee over all domains in the vicinity of the source domain. Here is an example of
a regularizer that seeks to improve domain generalization:

R(f, g) =
{
maxT EX∼P

[
(f(X)− g(T (X)))

2
]

s.t. EX∼P [∥X − T (X)∥] ≤ ϵ. (2.10)

T here can be thought as an adversarial map that maps X to an adversarial example X ′ = T (X)
that maximizes the difference f(X) − g(X ′). As we need some uniform guarantees across all
domains in the vicinity of the source domain, T produces the adversarial test domain example. This
regularizer is similar to the SenSeI regularizer originally proposed and studied by Yurochkin et
al. [3] for enforcing individual fairness. In fact, R(f, f) is exactly the (Mongé form) of the SenSeI
regularizer. Note that we can further generalize this regularizer by incorporating a general loss
function L in the first equation or a general metric d in the second equation. However, as this
does not add anything to the underlying intuition, we confine ourselves to the ℓ2 metric here. Next,
we present our theoretical findings with respect to this regularizer. To this end, we define the set
of transformations Tϵ = {T : Ex∼P [∥x− T (x)∥] ≤ ϵ} and the corresponding set of measures
Qϵ = {Q : T#P = Q, T ∈ Tϵ}. We show that it is possible to generalize the performance of the

estimator f̂ obtained in (2.3) uniformly over the measures in Qϵ. As mentioned previously, we only
work with the quadratic loss function, but our result can be extended to the general loss function. The

following theorem establishes a uniform bound on the estimation error of the population function f̃
obtained from (2.3) with the regularizer as defined in (2.10):

Theorem 2.9. The population estimator f̃ satisfies the following bound on the estimation error:

supQ∈Qϵ
Ex∼Q

(
f̃(x)− f0(x)

)2

≤ 4

[
R(f̃ , f̃) +R(f0, f0) + Ex∼P

(
f̃(x)− f0(x)

)2
]
.

The bound obtained in the above is the same as the one obtained in Theorem 2.7 (up to constants)
and has analogous interpretation: it consists of the minimum training error achieved on F and the
smoothness of f0 quantified in terms of the regularizer. Moreover, the bound holds uniformly over all

the domains Q ∈ Qϵ, i.e., the performance of the estimator f̂ can be extrapolated to all the domains
in Qϵ, provided that R(f0, f0) is small.

2.4 Empirical Results

We verify our theoretical findings empirically. Our goal is to improve performance under distribution
shifts using individual fairness methods. We consider SenSeI [3], Sensitive Subspace Robustness
(SenSR) [14], Counterfactual Logit Pairing (CLP) [28], and GLIF [9]. GLIF, similar to domain
adaptation methods, requires unlabeled samples from the target. The other methods only utilize the
source data as in the domain generalization scenario. Our theory establishes guarantees on the target
domain performance for SenSeI (Section 2.3) and GLIF (Section 2.1).

Datasets and Metrics We experiment with two textual datasets, Toxicity [8] and Bios [7]. In
Toxicity, the goal is to identify toxic comments. This dataset has been considered by both the
domain generalization community [4], [6], [29] (under the name Civil Comments) as well as the
individual fairness community [3], [9], [28]. The key difference between the two communities are
in the comparison metrics. In domain generalization, it is common to consider performance on
underrepresented groups (or simply worst group performance). In individual fairness, a common
metric is prediction consistency, i.e., a fraction of test samples where predictions remain unchanged
under certain modifications to the inputs, which maintain a similarity from the fairness standpoint.

In Toxicity, the group memberships can be defined either with respect to human annotations provided
with the dataset, or with respect to the presence of certain identity tokens. Both groupings aim at
highlighting comments that refer to identities that are subject to online harassment. To quantify
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domain generalization, we evaluate average per group true negative (non-toxic) rate, where each
group is weighted equally. We choose true negative rate (TNR) because underrepresented groups tend
to have a larger fraction of toxic comments in the train data, thus being spuriously associated with
toxicity by the model yielding poor TNR. This is similar to how the background is spurious in the
popular domain generalization Waterbirds benchmark [15]. We weigh each group equally to ensure
that performance on underrepresented groups is factored in (a more robust alternative to worst group
performance). We consider both groupings, i.e., TNR (Annotations) and TNR (Identity tokens).

In Bios, the task is to predict the occupation of a person from their biography. This dataset has
been mostly studied in the fairness literature [3], [7], [30], [31], but it can also be considered from
the domain generalization perspective. Many of the occupations in the dataset exhibit large gender
imbalance associated with historical biases, e.g., most nurses are female and most attorneys are male.
Thus, gender pronouns and names can introduce spurious relations with the occupation prediction.
To quantify this effect from the domain generalization perspective, we report the average of the worst
accuracies with respect to the gender for each occupation (Worst per gender). Since both datasets
are class-imbalanced, we also report balanced (by class) test accuracy (BA) on source to ensure that
in-distribution performance remains reasonable.

Results In Table 1, we compare methods for enforcing individual fairness with an ERM baseline. IF
methods require a fair metric that encodes that changes in identity tokens result in similar comments
in Toxicity, and changes in gender pronouns and names result in similar biographies in Bios (except
for CLP which instead uses this intuition for data augmentation). We obtained the fair metric as
in the original studies of the corresponding methods. We can observe that IF methods consistently
improve domain generalization metrics supporting our theoretical findings. They also tend to maintain
reasonable in-distribution performance, supporting their overall applicability in practical use-cases
where both in- and out-of-distribution performance is important. Among the IF methods, SenSeI
performs slightly better overall. We refer to Appendix F for additional results verifying that the
considered methods also achieve IF.

Table 1: Enforcing domain generalization using individual fairness methods. Means and stds over 10 runs.

Bios Toxicity

BA Worst p. gender BA TNR (Annot.) TNR (Id. tokens)

Baseline 84.2%± 0.2% 77.9%± 0.4% 80.7%± 0.2% 79.4%± 2.2% 75.0%± 2.3%

GLIF 84.6%± 0.3% 77.6%± 1.0% 70.5%± 7.1% 87.0%± 9.8% 84.5%± 9.8%

SenSeI 84.3%± 0.3% 80.2%± 0.4% 79.1%± 0.5% 83.5%± 1.7% 79.4%± 1.5%

SenSR 84.2%± 0.3% 80.2%± 0.4% 79.4%± 0.3% 81.5%± 1.1% 77.2%± 0.9%

CLP 84.1%± 0.3% 79.9%± 0.3% 79.5%± 0.6% 81.6%± 1.7% 78.0%± 1.8%

3 Individual Fairness via Domain Adaptation

In the previous section, we established that it is possible to use IF regularizers for domain adaptation
problems provided that the true underlying signal satisfies some smoothness conditions. In this
section, we investigate the opposite direction, i.e., whether the techniques employed for DA can be
leveraged to enforce IF. Many DA methods aim at finding a representation Φ(X) of the input sample
X , such that the source and the target distributions of Φ(X) are aligned. In other words, the goal is
to make it hard to distinguish Φ(XSi

)′s from Φ(XTi
)′s. For example, Ganin et al. [10] proposed the

Domain Adversarial Neural Network (DANN) for learning Φ(X), such that the discriminator fails
to discriminate between Φ(XS) and Φ(XT ). Shu et al. [11] assume that the target distribution is
clustered with respect to the classes and consequently the optimal classifier should pass through the
low density region. To promote this condition, they modify the previous objective [10] with additional
regularizers to ensure that the final classifier (which is built on top of Φ(X)) has low entropy on
the target and is also locally Lipschitz. Sun et al. [32] learn a linear transformation of the source
distribution (which was later extended to learn non-linear transformations [33]), such that the first two
moments of the transformed representations are the same in source and target distributions. Shen et
al. [12] learn domain invariant representations by minimizing the Wasserstein distance between the
distributions of source and target representations induced by Φ(X).
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A common underlying theme of all of the above methods is to find Φ(X) which has a similar
distribution on both the source and the target. In this section, we show that learning this domain
invariant map indeed enforces individual fairness under suitable choice of domains. We demonstrate
this by the following factor model: suppose we want to achieve individual fairness against a binary
protected attribute Z (say sex). We define two domains as two groups corresponding the protected
attribute, e.g., the source domain may consist of all the observations corresponding to the males and
the target domain may consist of all the observations corresponding to the females. We assume that
the covariates follow a factor model structure X = AU + bZ + ϵ for three independent random
variables (U,Z, ϵ) where U denotes the relevant attribute, Z denotes the protected attributes and ϵ is
the noise. Therefore, according to our design:

XS
L
= AU + b+ ϵ , (3.1) XT

L
= AU + ϵ . (3.2)

In the following theorem, we establish that if we estimate some linear transformation Φ ∈ R
q×p (with

q < p, p being the ambient dimension of X) of X such that ΦXS and ΦXT has same distribution,
then Φb = 0. Therefore, ΦX ignores the direction corresponding to the protected attribute and
consequently is an individually fair representation.

Theorem 3.1. Suppose the source and target distributions satisfy (3.1) and (3.2). If some linear

transformation ΦX satisfies ΦXS
L
= ΦXT , then Φb = 0.

This theorem implies any classifier built on top of the linear representation Φx will be individually
fair because Φx = Φx′ for any x, x′ that share relevant attributes U . The proof of the theorem can be
found in the appendix. The above theorem constitutes an example of how domain adaptation methods
can be adapted to enforce individual fairness when the covariates follow a factor structure.

3.1 Empirical Results

In this section, our goal is to train individually fair models using methods popularized in the domain
adaptation (DA) literature. We experiment with DANN [10], VADA [11], and a variation of the
Wasserstein-based DA (WDA) [12] discussed in Section 3. We present experimental details in Apx. F.

Datasets and Metrics We consider the same two datasets as in our domain generalization experi-
ments in Section 2.4. We use prediction consistency (PC) to quantify individual fairness following
prior works studying these datasets [3], [9]. For the Toxicity dataset, we modify identity tokens in
the test comments and compute prediction consistency with respect to all 50 identity tokens [8]. A
pair of comments that only differ in an identity token, e.g., ªgayº vs ªstraightº, are intuitively similar
and should be assigned the same prediction to satisfy individual fairness. For the Bios dataset, we
consider prediction consistency with respect to changes in gender pronouns and names. Such changes
result in biographies that should be treated similarly.

In these experiments, we have one labeled training dataset, rather than labeled source and unlabeled
target datasets typical for DA setting. As shown in Section 3, the key idea behind achieving individual
fairness using DA techniques is to split the available train data into source and target domains such
that aligning their representations pertains to the fairness goals. To this end, in the Bios dataset we
split the train data into all-male and all-female biographies, and the Toxicity dataset we split into a
domain with comments containing any of the aforementioned 50 identity tokens and a domain with
comments without any identity tokens. The ERM baseline is trained on the complete training dataset.

Table 2: Enforcing individual fairness using domain adaptation methods. Means and
standard deviations over 10 runs.

Bios Toxicity

BA PC BA PC

Baseline 84.2%± 0.2% 94.2%± 0.1% 80.7%± 0.2% 62.1%± 1.4%

DANN 84.0%± 0.3% 94.8%± 0.3% 80.8%± 0.2% 62.8%± 1.1%

VADA 84.0%± 0.3% 94.8%± 0.3% 80.8%± 0.2% 62.0%± 1.4%

WDA 83.3%± 0.3% 95.5%± 0.3% 80.5%± 0.3% 65.4%± 1.3%

SenSeI 84.3%± 0.3% 97.7%± 0.1% 79.1%± 0.5% 77.3%± 4.3%

Results We summa-
rize the results in Ta-
ble 2. Among the con-
sidered DA methods,
WDA achieves best in-
dividual fairness im-
provements in terms
of prediction consis-
tency, while maintain-
ing good balanced ac-
curacy (BA). Compar-
ing to a method de-
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signed for training individually fair models, SenSeI, prediction consistency of DA methods is
worse; however, the subject understanding required to apply them is milder. Individual fairness
methods require a problem-specific fair metric, which can be learned from the data, but even then
requires user to define, e.g., groups of comparable samples [18]. The domain adaptation approach
requires a fairness-related splitting of the train data. In our experiments, we adopted straightfor-
ward data splitting strategies and demonstrated improvements over the baseline. More sophisticated
data splitting approaches can help to achieve further individual fairness improvements. We present
additional experimental details in Appendix F.

4 Conclusion

We showed that algorithms for enforcing individual fairness (IF) can help ML models generalize to
new domains and vice versa. From the lens of algorithmic fairness, the results in Section 2 show
that enforcing IF can mitigate algorithmic biases caused by covariate shift as long as the regression
function satisfies IF. This complements the recent results on mitigating algorithmic biases caused
by subpopulation shift with group fairness [34]. On the other hand, compared to existing results
on out-of-distribution accuracy of ML models, the results in Section 2 demonstrate the importance
of inductive biases in helping models adapt to new domains. One limitation of our analysis is the
assumption of covariate shift. We have relaxed this assumption in Appendix E (see Theorem E.1),
where we establish results for more general distribution shifts (e.g. label shift, posterior drift etc.).

In Section 3, we showed a probabilistic connection between domain adaptation (DA) and IF. As we
saw, it is possible to enforce IF by aligning the distributions of the features under a factor model. This
factor model is implicit in some prior works on algorithmic fairness [18], [35], but we are not aware
of any results that show it is possible to enforce IF using DA techniques.

Recent DA methods typically leverage many inductive biases through data augmentations and
regularizers, and our results suggest that IF can also be leveraged. For example, utilizing annotations
to identify similar images [36] can be used to learn a ªfairº metric for an IF-based regularizer. We
also note that our approach is similar to that of consistency regularization for DA (e.g. see [37], [38],
[39], [40]) where the key idea is to ensure that similar samples should yield similar labels. We show
that regularizer for enforcing IF can also be used as a consistency regularizer for extrapolation on
the test domain. Finally, from the perspective of achieving IF, a study of different strategies for data
partitioning in combination with modern DA best practices is an interesting direction for future work.
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