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ABSTRACT

The aim of parameter-efficient fine-tuning is to achieve performance that is com-
parable to fine-tuning, but with fewer trainable parameters. Several hand-crafted
strategies, such as Adapters, Prefix Tuning, BitFit, and LoRA, have been pro-
posed, but it remains unclear whether there are underlying design patterns. Thus,
we present a parameter-efficient design paradigm and identify design patterns that
are applicable to various experimental settings. Instead of developing another
individual tuning strategy, we introduce design spaces that parameterize tuning
structures and strategies. These design spaces consist of four components: layer
grouping, trainable parameter allocation, tunable groups, and strategy assignment.
Our experiments reveal the following design patterns: (i) group layers in a spin-
dle pattern, (ii) allocate trainable parameters evenly among layers, (iii) tune all
groups, and (iv) assign appropriate tuning strategies to each group. These patterns
lead to new methods for parameter-efficient fine-tuning, which we show experi-
mentally outperform existing strategies across various backbone models and NLP
tasks1.

1 INTRODUCTION

Large pre-trained models have shown to achieve state-of-the-art results in many downstream natural
language processing tasks, by fine-tuning on task-specific labeled data (Devlin et al., 2019; Liu et al.,
2019; Yang et al., 2019; Joshi et al., 2019; Sun et al., 2019; Clark et al., 2019; Lewis et al., 2020a;
Bao et al., 2020; He et al., 2020; Raffel et al., 2020; Ziems et al., 2022). However, the cost of fine-
tuning all parameters and storing them separately for each task is high in terms of computational
and storage resources, e.g., 355 million parameters for RoBERTa (Liu et al., 2019) and 175 billion
parameters for GPT-3 (Brown et al., 2020). This makes it challenging to deploy in real-world natural
language processing (NLP) systems that handle multiple tasks.

To make pretrained models more efficient for specific downstream tasks, various strategies have
been proposed that only learn a small number of extra parameters while keeping the rest frozen
(Houlsby et al., 2019b; Pfeiffer et al., 2021; Li & Liang, 2021; Brown et al., 2020; Lester et al.,
2021b; Schick & Schütze, 2021; Ziems et al., 2022). One such strategy is adapter tuning (Houlsby
et al., 2019b), which adds small neural modules (adapters) to each layer of the pretrained network,
and only trains the adapters during fine-tuning. Other methods, such as prefix tuning (Li & Liang,
2021) and prompt tuning (Lester et al., 2021a), have been inspired by the success of controlling
pretrained models through textual prompts (Brown et al., 2020). These methods prepend tunable
tokens to the input or hidden layers, and only train these tokens during fine-tuning. BitFit (Zaken
et al., 2021) updates the bias terms of pretrained models while freezing the rest, while LoRA (Hu
et al., 2021) decomposes attention weight gradients into low-rank matrices to reduce the number of
trainable parameters. He et al. (2022) proposed a unified view of these strategies, illustrating their
differences and connections, but like its predecessors, the method is still equally applied to different
layers of the pretrained network.

Most current fine-tuning strategies to adapt pretrained models to specific tasks are effective, but they
are often developed through manual design processes without considering potential design patterns

∗Work done during an internship at Amazon Web Services. Correspondence to Jiaao Chen
<jiaaochen@gatech.edu> and Aston Zhang <astonz@amazon.com>

1We will release our code at https://github.com/amazon-science/peft-design-spaces.
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Figure 1: The design space is characterized by: (i) Grouping of consecutive layers, (ii) The allocation
of the number of trainable parameters to each layer, (iii) The selection of groups that will be fine-
tuned, and (iv) The assignment of appropriate strategies, such as Adapter (A), Prefix (P), BitFit (B),
or LoRA (L), to each group.

across these strategies, different backbone models, and downstream tasks. The effectiveness of dif-
ferent strategies is also unclear as they are usually applied separately, and it’s unknown how they
reinforce or complement each other (Mao et al., 2022). Our aim is to gain a comprehensive under-
standing of the fine-tuning design and uncover interpretable and widely applicable design patterns.

Instead of creating yet another strategy to be applied uniformly to various pretrained layers, we
present parameter-efficient fine-tuning design spaces that allow customization of both tuning struc-
tures and strategies. These design spaces are comprised of four main components, as illustrated in
Figure 1: layer grouping, trainable parameter allocation, tunable groups, and strategy assignment.

We start our journey towards parameter-efficient fine-tuning design using a relatively unconstrained
design space. We then narrow this space through successive rounds of comparison, using random
sampling and while enforcing constraints such as equal layer grouping. Through this process, we
discover several key design patterns, including layer grouping in a spindle pattern, uniform allo-
cation of trainable parameters, tuning all groups, and appropriate strategy assignments. Our new
methods outperform existing parameter-efficient fine-tuning strategies. We demonstrate the effec-
tiveness of our approach using T5 (Raffel et al., 2020) and classification tasks, but find that the
discovered design patterns are applicable to other backbones (such as RoBERTa (Liu et al., 2019),
BART (Lewis et al., 2020b) and XLNet (Yang et al., 2019)), and NLP tasks (e.g., summarization,
machine translation, and eight SuperGLUE datasets).

Our contributions are: (i) The introduction of parameter-efficient fine-tuning design spaces. (ii)
The discovery of several design patterns in parameter-efficient fine-tuning through comprehensive
experiments. (iii) The creation of parameter-efficient fine-tuning methods based on the discovered
design patterns, which outperform existing strategies on various backbone models and NLP tasks.

2 RELATED WORK

Our work is closely related to and builds on work about network design spaces and parameter-
efficient fine-tuning. We discuss the connections and differences below.

Network Design Spaces. Many works designed neural network models via an ad-hoc discovery
of new design choices that improve performance (Radosavovic et al., 2019), such as the use of
deeper architectures or residual connections. Recent work (Radosavovic et al., 2020; You et al.,
2020; Radosavovic et al., 2019) focuses on the design space to discover new design principles for
convolutional neural networks (Radosavovic et al., 2020) and graph neural networks (You et al.,
2020). Inspired by this work we focus on the design spaces to rethink parameter-efficient fine-
tuning, with the goal of discovering design patterns that are applicable to different settings.

Parameter-Efficient Fine-Tuning for NLP. As pretrained models increase in size, storing and fine-
tuning them becomes increasingly expensive and unfeasible for those without ample computational
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resources. A growing body of research is aimed at finding alternatives to fine-tuning large-scale
models that reduce memory and storage costs. Some researchers have proposed using bottleneck
layers with skip-connections to adapt large models, as seen in works such as Houlsby et al. (2019a),
(Stickland & Murray, 2019), (Pfeiffer et al., 2020), and (Rebuffi et al., 2017). Other works focus
on identifying and training only a subset of all model parameters, such as (Zhao et al., 2020) and
(Guo et al., 2020). More recent research explores low-rank decomposition (Zhang et al., 2021)
and the injection of trainable low-rank decomposition matrices into each layer (Hu et al., 2021;
Karimi Mahabadi et al., 2021).

Li & Liang (2021) introduced prefix-tuning, where a set of prefixes is added to autoregressive lan-
guage models or both encoders and decoders, while Lester et al. (2021b) proposed adding virtual
tokens to the embedding layer. Another approach, side-tuning, was introduced in (Sung et al., 2022).
He et al. (2022) and Ding et al. (2022). They proposed a unified view of existing parameter-efficient
fine-tuning strategies. In yet another approach, Mao et al. (2022) introduced a unified framework to
combine various methods through mixture-of-experts.

Our research focuses on the general design spaces of parameter-efficient fine-tuning, providing a
more comprehensive view of this method. By experimenting and refining design spaces, we aim to
discover design patterns for parameter-efficient fine-tuning.

3 COMPONENTS OF DESIGN SPACES

Our goal is not to list all possible design choices, but to show how design spaces can guide
parameter-efficient fine-tuning research. As such, we pick a representative subset for each of the fol-
lowing four components: (i) layer grouping, (ii) trainable parameter allocation, (iii) tunable groups,
and (iv) strategy assignment. Figure 1 provides an example.

Given these choices, we sample from a distribution over them, then pick a subset that performs the
best, narrowing down the set of choices. Given that more restrictive set, we repeat the procedure
by sampling and picking a now even more restrictive subset until we arrive at a concise description
of the design space. Quite understandably, this is very costly when dealing with Large Language
Models. Taking a leaf out of (Radosavovic et al., 2020) we perform our experiments using a suffi-
ciently cheap model, in this case T5-base and T5-3b, unless stated otherwise. Further details will be
discussed in the next section. For now let’s review the set of choices available.

Layer Grouping. Different layers in pre-trained models capture varying information and behave
differently. For example, the authors of (Jawahar et al., 2019) found that the 3, 4, 5, 6, 7, 9, 12th
layers have the most representation power in BERT and each layer captures a different type of
information, ranging from surface to syntactic to semantic level representation of text. For instance,
the 9th layer performs well in semantic tasks such as checking random swaps of coordinated clauses,
while the 3rd layer is best suited for surface tasks like predicting sentence length.

When adapting these pre-trained models for downstream tasks, it’s crucial to group layers with simi-
lar behaviors together. This is critical to the design and proper implementation of parameter-efficient
fine-tuning strategies. In this design component, we study patterns of how to group consecutive lay-
ers in pre-trained models (e.g., transformer layers in T5) during the fine-tuning process.

Trainable Parameter Allocation. In parameter-efficient fine-tuning, the total number of trainable
parameters is usually set to a small portion of the total parameters in the pretrained model. Our study
will explore different ways to allocate the predefined number of trainable parameters to the layers.

Tunable Groups. Not all the parameters of a pretrained model need to be updated during fine-tuning
for downstream tasks. For example, BitFit (Zaken et al., 2021) only updates the bias parameters
while freezing the rest. As a result, we explore which groups of parameters need to be learned
during parameter-efficient fine-tuning to achieve better performance.

Strategy Assignment. In order to improve the parameter efficiency, different sets of strategies (Li &
Liang, 2021; Lester et al., 2021b; Houlsby et al., 2019b; Hu et al., 2021) were proposed, where only
a small number of (extra) parameters are tuned and the remaining parameters in these pretrained
models are frozen to adapt their general knowledge to specific down-stream tasks. We hypothesize
that different groups might benefit from different proper strategies (or combinations) for capturing
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different types of information. More formally, given a set of individual strategies A for assignment,
for any group Gi, assign a subset Ui ⊂ A to each layer in Gi.

4 DISCOVERING DESIGN PATTERNS

Each design space, denoted as Si, consists of a set of models (Si-models) that satisfy the con-
straints characterizing the space with respect to layer grouping, trainable parameter allocation, tun-
able groups, and strategy assignment. To discover design patterns, we start from a relatively uncon-
strained parameter-efficient fine-tuning design space S0. We progressively refine it via S1, . . .S4 by
comparing the overall quality of models in design spaces enforced with different constraints (e.g.,
each group has the same number of layers). To quantify the overall quality of models in any design
space Si with a low-compute, low-epoch regime (Radosavovic et al., 2020), we randomly sample
100 models from Si, fine-tune with only 3 epochs 2, and compute the average of the GLUE average
performance. Using such a low number of epochs is sufficient to obtain a sufficiently representative
score to draw consistent conclusions (see Table 7 in the Appendix) that extend to a full training run.

We emphasize that our goal is to demonstrate how the perspective of design spaces can help inform
parameter-efficient fine-tuning research, rather than to find out the “best” design space or method.
For computational efficiency, it is beyond the scope of this work to enumerate all possible constraints
with respect to the design space components (Section 3). For efficiency, we use T5-base (pretrained
backbone model) as it’s both representative and also sufficiently small to make experimentation with
many options computationally affordable.

In this work, we follow the discovery sequence of “grouping patterns – trainable parameter allocation
– tunable groups – strategy assignment”: (1) To explore and understand the design patterns in all
the layers in large pre-trained models in scale, it is necessary and more efficient to study the layers
in the unit of groups. So we start with the grouping patterns. (2) Once figuring out the optimal
grouping patterns, it is then important to explore how to allocate the trainable parameters to these
different groups in order to study more subtle designs with fair comparisons (e.g., this would allow
comparing different patterns of strategy assignments without the impact from different trainable
parameters.). (3) Next, it becomes influential to examine which groups need to be learned during
fine-tuning before we dig into the strategy assignment patterns. Because it is only meaningful to
study assigning strategies to different groups after we figure out which groups need to be learned.
(4) Finally, we study the tuning strategy assignment, which is the most subtle design.

4.1 S0 — THE INITIAL DESIGN SPACE

The initial relatively unconstrained design space S0 consists of all models without constraints on the
design space components. Individual parameter-efficient fine-tuning strategies consist of Adapter,
Prefix, BitFit, and LoRA. Specifically, without grouping constraints, each layer of the pretrained
layer has a probability of 0.5 to be tuned. If tuned, a random strategy, or combinations thereof, with
a random amount of trainable parameters are assigned to that layer.

Before comparing more subtle design patterns such as to which tuning strategy among Adapter,
Prefix, BitFit, and LoRA to pick, we begin by exploring how to group layers and how to allocate the
total number of trainable parameters to layers.

4.2 S1 — APPLYING GROUPING CONSTRAINTS

Transformers are quite deep by now. This makes it impractical to pick a different tuning strategy
for each layer. As such, the first question to ask is how to assemble the layers into groups that will
be tuned using the same strategy. Inspired by Radosavovic et al. (2020), we consider 4 groups,
G1, . . . , G4, in the order of forward pass, in the experiments 3 Denote by Ni the number of layers
in Gi. As illustrated in Figure 2, we compare the following layer grouping patterns:

Increasing (Ni+1 > Ni): the number of layers in groups gradually increases;

2We set the low epoch by observing whether it is enough for models to obtain stable performances to draw
consistent conclusions (See Table 7 in the Appendix).

3The experimental results with 8 groups are shown in the Table 16 in the Appendix.
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Table 1: Average performance (low-compute, low-epoch regime: 100 random models, 3 tuning
epochs) on the GLUE datasets using the T5-base pretrained backbone. We compare adding different
layer grouping constraints to the S0 design space.

Layer Grouping SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Avg

S0-models 76.9 70.1 72.5 73.3 63.6 71.7 73.8 24.3 65.7

Increasing 85.3 74.9 77.2 77.5 66.8 76.2 76.0 33.0 70.8
Uniform 84.8 73.7 78.1 78.6 68.5 77.8 79.2 36.1 72.1

Decreasing 81.9 72.1 78.3 76.7 67.3 75.9 78.6 28.7 70.0
Spindle 86.9 75.5 79.8 79.4 69.8 78.3 80.1 37.3 73.3

Bottleneck 84.5 74.6 76.9 78.1 69.2 76.2 78.6 32.1 71.3

Table 2: Average performance (low-compute, low-epoch regime: 100 random models, 3 tuning
epochs) on the GLUE datasets using the T5-base pretrained backbone model. We compare adding
different parameter allocation constraints to the S1 design space.

Param Allocation SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Avg

Increasing 87.2 77.9 79.4 78.7 71.6 77.6 81.4 32.0 73.2
Uniform 87.8 77.4 80.1 80.5 73.9 78.1 80.4 34.3 74.0

Decreasing 86.4 75.8 78.4 77.0 70.4 77.1 78.7 35.8 72.4

Uniform (Ni+1 = Ni): the number of layers in groups is the same;
Decreasing (Ni+1 < Ni): the number of layers in groups gradually decreases;
Spindle (N1 < N2 = N3 > N4): the numbers of layers in groups at both ends are smaller;
Bottleneck (N1 > N2 = N3 < N4): the numbers of layers in groups at both ends are bigger.

Figure 2: Layer grouping patterns: group ID (G1, . . . G4) vs. number of layers per group.

These layer grouping patterns lead to 5 possible design choices. They consist of all models in the
S0 design space that satisfy one of these grouping pattern constraints. To compare the overall model
qualities of different design spaces, we (i) randomly sample 100 models from the S0 design space
that satisfy each grouping pattern constraint (Figure 2); (ii) fine-tune with 3 epochs; and (iii) compute
the average performance for each design space. We will follow this procedure as we progressively
add new constraints later.

The average performance is shown in Table 1 4. We find that models from the design space with
the spindle grouping pattern (Figure 2) consistently outperform those from the other design spaces
across all the 8 GLUE tasks. In other words, we find that fine-tuning works better if we treat a small
number of layers close to the input and close to the output as special, and furthermore, if we divide
up the bulk of the network into two blocks, each with their own design choices.

Applying the spindle grouping partitioning to S0 yields the new design space S1.

4.3 S2 — VARYING THE NUMBER OF TRAINABLE PARAMETERS PER LAYER

Now that we know how to group the layers we need to establish how to allocate the parameters ni

within the layers i of each group. In particular, we consider the following options:

Increasing (ni+1 ≥ ni): number of trainable parameters per layer increases or remains the same.

4The training time for the step is shown in the Table 18 in the Appendix.

5



Published as a conference paper at ICLR 2023

Table 3: Average performance (low-compute, low-epoch regime: 100 random models, 3 tuning
epochs) on the GLUE datasets using the T5-base pretrained backbone model. We compare adding
different tunable group constraints to the S2 design space.

Tunable Groups SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Avg

G1 82.6 72.1 77.6 70.6 65.3 71.9 77.6 27.6 68.2
G2 83.3 72.8 77.5 72.8 63.6 72.8 77.5 27.5 68.4
G3 83.6 73.3 78.2 73.3 66.4 71.3 77.9 22.9 68.4
G4 83.2 73.0 77.9 73.7 63.9 72.0 77.9 27.9 68.7

G1, G2 83.5 73.2 78.0 75.4 67.7 73.2 78.0 28.0 69.6
G3, G4 87.8 74.6 78.3 76.9 68.6 74.3 78.3 28.3 70.7

G1, G2, G3 86.0 75.8 79.0 77.8 71.8 78.8 79.0 33.0 72.6
G2, G3, G4 85.2 76.6 79.1 78.6 70.1 77.6 79.1 31.9 72.2

G1,G2,G3,G4 88.3 77.4 82.1 81.5 74.9 79.4 81.4 34.3 74.9

Uniform (ni+1 = ni): number of trainable parameters in every layer is constant;
Decreasing (ni+1 ≤ ni): number of trainable parameters per layer decreases or remains the same.

As above, we obtain 100 models for each of these 3 new design spaces. Table 2 reports the average
performance of these 3 design spaces. The uniform allocation design pattern obtains the highest
GLUE average performance, making this relatively simple, interpretable design pattern favorable.

Allocating the number of trainable parameters to layers uniformly yields the new design space S2.

4.4 S3 — SELECTING THE GROUPS

Given that we established how to partition layers into groups, and how to allocate parameters per
group, the next step is to assess whether all groups actually need tuning. Rather than exploring the
24 − 1 = 15 combinatorial choices we limit ourselves to the 4(4 + 1)/2 = 10 options with the
exception of (G2, G3), since focusing on interior groups only does not yield good results (this is
consistent with our findings in Table 3).

Based on the GLUE average performance, we find that all the groups need to be tuned to obtain the
best results. This suggests that all the groups of pretrained layers have captured useful information
that should be adapted to the downstream tasks.

Tuning all the groups yields the new design space S3.

4.5 S4 — SELECTING STRATEGIES PER GROUP

So far the structure we’ve been exploring is fairly trivial: S4 amounts to a uniform distribution of
parameters over the layers of the groups and to tuning all groups. This belies the fact that we still
have significant freedom of design in picking specific fine-tuning approaches. Specifically, each
design space consists of models that assign a subset of {Adapter (A), Prefix (P), BitFit (B), and
LoRA (L)} to the layers of each group Gi for i ∈ {1 . . . 4}. This is quite a large space of options.
To make some headway, we determine the ideal choice progressively by first reviewing strategies
for G1, then G2 up to G4. Due to space constraints the details of this procedure are relegated to the
appendix(G1 in Table 8, G2 Table 9, G3 in Table 10, and G4 in Table 11). We arrive at the following
strategy assignment for the T5-base pretrained backbone:

G1: (A, L) — G2: (A, P) — G3: (A, P, B) — G4:(P, B, L)

For example, Adapter is more recommended in groups closer to input, while BitFit is more recom-
mended in groups closer to the output. The resulting design space will be referred to as S4.

4.6 VERIFICATION OF THE DESIGN CHOICES ON T5-3B

So far our results have led to a competent fine-tuning strategy for T5-base. To assess whether we
actually discovered some useful strategies that have validity beyond T5-base, we need to apply it to
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other models, too. For convenience we pick T5-3b. As before, the detailed results are relegated to
the appendix (Tables 12, 13, 14 and 15). We observe that the following design patterns still apply:

1. grouping layers in a spindle pattern (Table 12)
2. uniformly allocating the number of trainable parameters to layers (Table 13)
3. tuning all the groups (Table 14)
4. tuning different groups with proper strategies (Table 15)

Note that for T5-3b (with final design space S4-3b), the discovered proper strategy assignment is
slightly different

G1: (P, L) — G2: (A, L) — G3: (P, B, L) — G4: (A, P, B).

4.7 EXPERIMENTAL SETUP

Datasets. Our process is based on the average performance on the widely-used GLUE bench-
mark (Wang et al., 2018). It covers a wide range of natural language understanding tasks. First,
single-sentence tasks include (i) Stanford Sentiment Treebank (SST-2) and (ii) Corpus of Linguistic
Acceptability (CoLA). Second, similarity and paraphrase tasks include (i) Quora Question Pairs
(QQP), (ii) Semantic Textual Similarity Benchmark (STS-B), and (iii) Microsoft Research Para-
phrase Corpus (MRPC). Third, inference tasks include (i) Multi-Genre Natural Language Inference
(MNLI), (ii) Question Natural Language Inference (QNLI), and (iii) Recognizing Textual Entail-
ment (RTE). To compare performance, the Matthews correlation is measured for CoLA; the Spear-
man correlation is used for STS-B, and accuracy is measured for the remaining GLUE tasks.

Pretrained Backbone Models and Model Settings We use T5-base/3b (Raffel et al., 2020) as the
main pretrained backbone models for discovering design patterns via our parameter-efficient fine-
tuning design spaces. We use HuggingFace Transformers for our implementations and follow the
default settings. During the exploration, we fix the total number of trainable parameters (in the
percentage of that in the backbone model) by following He et al. (2022).

By limiting ourselves to a rather concise parameter space and a small number of parameters within
that parameter space that we allow to be fine-tuned we ensure that exploration remains computa-
tionally feasible. Obviously, this exploration would be pointless if the discovered insights were
not portable. Hence, we need to evaluate how well the strategies perform on new models and new
architectures.

5 EVALUATION

The S4 model (Section 4.5) and S4-3b model (Section 4.6) adopt the design patterns discovered
from T5-base and T5-3b, respectively. We will evaluate their effectiveness when applied to different
pretrained backbones and different NLP tasks.

5.1 EXPERIMENTAL SETUP

Dataset. Besides the GLUE datasets (Wang et al., 2018) (Section 4.7), we evaluate our methods on
two generation tasks used by He et al. (2022): Abstractive Summarization using XSum (Narayan
et al., 2018), and Machine Translation using the WMT 2016 en-ro dataset (Bojar et al., 2016). We
report ROUGE scores (Lin, 2004) on the XSum test set, and BLEU scores (Papineni et al., 2002) on
the en-ro test set.

Models and Model Settings. We mainly compare our methods with the following baselines: (i)
Full Fine-tuning (full): it fine-tunes all the model parameters in the pretrained models; (ii) Adapter
(Houlsby et al., 2019b): it adds adapter modules to each transformer layer; (iii) Prefix (Li & Liang,
2021): it optimizes a set of small continuous vectors prepended to transformer layers; (iv) BitFit
(Zaken et al., 2021): it only updates the bias terms in pretrained models; (v) LoRA (Hu et al.,
2021): it decomposes the attention weight into low-rank matrices to reduce the number of trainable
parameters. Besides T5 (Raffel et al., 2020), we additionally apply our methods to other backbone
models including RoBERTa-base/large (Liu et al., 2019) and BART-base/large (Lewis et al., 2020a).
We use the default settings. We set the total number of trainable parameters (in the percentage of
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Table 4: Performances of different tuning methods on the GLUE datasets using the T5-base (upper
part) and T5-3b (lower part) pretrained backbone models, respectively. The results are averaged
over 20 random runs (with standard deviations as subscripts). The S4-model and the S4-3b-model
perform significantly better than the second-best PEFT methods in all the eight datasets at the sig-
nificance level p < 0.05(∗) or even p < 0.01(∗∗).

Method SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Average

full 95.2 87.1 93.7 89.4 80.1 89.4 90.7 51.1 84.5

Adapter 94.6 85.5 89.8 86.7 75.3 86.7 89.1 59.2 83.3
Prefix 94.0 81.6 87.8 83.4 64.3 83.1 84.8 34.0 76.6
BitFit 94.4 84.5 90.6 88.3 74.3 86.6 90.1 57.7 83.3
LoRA 94.8 84.7 91.6 88.5 75.8 86.3 88.7 51.5 82.7

S4-model 95.5∗∗
1.7 87.6∗∗

1.0 92.7∗∗
1.1 88.8∗∗

1.0 80.4∗
2.3 87.4∗

2.0 91.2∗∗
2.4 62.2∗

3.2 85.7

full 97.4 91.4 96.3 89.7 91.1 90.6 92.5 67.1 89.5

Adapter 96.3 89.9 94.7 87.8 83.4 90 89.7 65.2 87.1
Prefix 96.3 82.8 88.9 85.5 78.3 83.5 85.4 42.7 80.4
BitFit 95.8 89.5 93.5 88.5 86.2 90.7 88.6 64.2 87.1
LoRA 96.2 90.6 94.9 89.1 91.2 91.1 91.1 67.4 88.9

S4-3b-model 97.2∗∗
1.8 91.6∗∗

1.2 96.6∗∗
1.0 89.5∗∗

1.5 91.5∗
2.8 91.5∗

2.5 91.9∗
2.0 69.7∗

3.4 89.9

Table 5: Performances of different tuning methods on GLUE datasets using the RoBERTa-base
(upper part) and RoBERTa-large (lower part) pretrained backbone models. The results are averaged
over 20 random runs (with standard deviations as subscripts). Here we also include two baselines:
(i) S0-model, where all the designs are randomly selected for RoBERTa as in the S0 design space;
(ii) S3-model, where strategies are randomly assigned to different RoBERTa layer groups as in the
S3 design space. The S4-model and S4-3b-model perform significantly better than the second-best
PEFT methods in all the eight datasets at the significance level p < 0.05(∗) or even p < 0.01(∗∗).

Method SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Average

full 94.8 87.6 92.8 91.9 80.8 90.3 90.2 63.6 86.5

Adapter 94.2 87.1 93.1 90.2 71.5 89.7 88.5 60.8 84.4
Prefix 94.0 86.8 91.3 90.5 74.5 90.3 88.2 61.5 84.6
BitFit 93.7 84.8 91.3 84.5 77.8 90.8 90.0 61.8 84.3
LoRA 94.9 87.5 93.1 90.8 83.1 90.0 89.6 62.6 86.4

S0-model 94.2 95.3 90.4 90.6 75.6 89.6 88.0 60.9 85.6
S3-model 94.3 87.2 92.8 91.0 81.8 90.3 89.2 63.2 86.2
S4-model 94.81.6 87.8∗∗

0.8 93.4∗∗
1.3 91.6∗

1.2 85.8∗∗
1.8 90.4∗2.0 90.0∗∗

1.8 63.2∗
3.5 87.1

full 96.4 90.2 94.7 92.2 86.6 92.4 90.9 68.0 88.9

Adapter 96.6 90.5 94.8 91.7 80.1 92.1 90.9 67.8 88.1
Prefix 95.7 87.6 92.1 88.7 82.3 89.6 87.4 62.8 85.7
BitFit 96.1 88.0 93.4 90.2 86.2 90.9 92.7 64.2 87.7
LoRA 96.2 90.6 94.7 91.6 87.4 92.0 89.7 68.2 88.8

S0-model 95.5 86.5 92.3 89.8 84.6 89.2 86.3 61.2 85.6
S3-model 96.3 89.4 93.8 90.2 85.9 90.8 90.9 63.4 87.6

S4-3b-model 96.6∗∗
1.3 90.8∗

1.1 95.1∗∗
0.8 92.0∗∗

1.2 87.22.8 92.3∗
2.2 91.8∗∗1.8 68.4∗

3.2 89.3

that in the backbone model) by following He et al. (2022). Specifically, this value is set to 0.5% for
Adapter, Prefix, LoRA, and our methods, and 0.1% for BitFit.

For all the experiments, we followed Liu et al. (2019) to set the linear decay scheduler with a
warmup ratio of 0.06 for training. The batch size was 128 for base models and 64 for large models.
The maximum learning rate was 5e− 5 and the maximum number of training epochs was set to be
either 5 or 10. All the experiments were performed using 8 A100 GPUs.

5.2 EFFECTIVENESS ON DIFFERENT BACKBONES

GLUE with T5 Backbone. With our discovered design patterns, we fine-tune T5-base (S4-model)
and T5-3b (S4-3b-model) on GLUE and compare them with all the baseline methods. The results
are shown in Table 4, where the key measure is the GLUE average performance (last column). We
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Table 6: Performance of different tuning methods on generation tasks (XSUM and en-ro) using the
BART-base (left) and BART-large (right) pretrained backbone models.

BART-base XSUM(R-1/2/L) en-ro (BLEU) BART-large XSUM(R-1/2/L) en-ro (BLEU)

full 40.5/19.2/34.8 34.5 full 45.1/22.3/37.2 37.9

Adapter 37.7/17.9/33.1 33.3 Adapter 43.8/20.8/35.7 35.3
Prefix 38.2/18.4/32.4 33.8 Prefix 43.4/20.4/35.5 35.6
BitFit 37.2/17.5/31.4 33.2 BitFit 42.8/18.7/33.2 35.2
LoRA 38.9/18.6/33.5 33.6 LoRA 42.9/19.4/34.8 35.8
PA 39.3/18.7/33.8 33.8 PA 43.9/20.6/35.6 36.4
S4-model 40.2/19.3/34.2 34.1 S4-3b-model 44.3/21.7/36.8 37.2

find that our S4-model and S4-3b-model consistently outperform the investigated methods in the
key measure. By tuning only 0.5% parameters, our methods even outperform the full fine-tuning
baseline where all the parameters are tuned, indicating the effectiveness of our discovered parameter-
efficient fine-tuning design patterns.

GLUE with RoBERTa Backbone. We directly apply the S4-model and S4-3b-model (adopting
design patterns discovered using T5-base and T5-3b) to fine-tune the RoBERTa-base and RoBERTa-
large pretrained backbone models, respectively. We keep all the other settings the same and evaluate
them on GLUE datasets. We also compare with variant methods randomly sampled from two design
spaces: (i) S0-model, where all the designs are randomly selected for RoBERTa as in S0; (ii) S3-
model, where strategies are randomly assigned to different RoBERTa layer groups as in S3. Table 5
shows that (i) the design patterns (adopted by S4-model and S4-3b-model) discovered using T5
models are applicable to the RoBERTa backbone models and outperform the investigated methods
in GLUE average performance with no extra discovery process5; (ii) improved performance from
S0-models, S3-models, to S4-(3b)-models support adding more constraints in the pattern discovery
process (Section 4).

SuperGLUE with XLNet Backbone. We also directly use the S4-model and S4-3b-model (adopt-
ing design patterns discovered using T5-base and T5-3b) to fine-tune the XLNet-base and XLNet-
large pretrained backbone models without any extra discovery process. We keep all the other settings
the same and evaluate them on SuperGLUE datasets. Table 17 (In the Appendix) reiterates the fact
that our PEFT design patterns discovered from T5 models are generelizable to the XLNet backbone
models and outperform the investigated methods in other tasks (SuperGLUE) with no additional
discovery process.

Generation Tasks with BART Backbone. We further apply the S4-model and S4-3b-model (adopt-
ing design patterns discovered using T5-base and T5-3b) to fine-tune the BART-base and BART-
large pretrained backbone models, respectively. We evaluate the models on two generation tasks:
summarization (XSUM) and machine translation (en-ro) following He et al. (2022). We also com-
pare with PA (parallel adapter) using the same number of trainable parameters (He et al., 2022).
Table 6 shows that our methods, although adopting design patterns discovered from classification
tasks using T5, still outperform investigated parameter-efficient fine-tuning strategies on generation
tasks with different BART backbones.

6 CONCLUSION

Parameter-efficient fine-tuning adapts knowledge in pretrained models to down-stream tasks in a
more parameter-efficient fashion. Instead of focusing on designing another strategy in the first place,
we introduced parameter-efficient fine-tuning design spaces. We empirically discovered several de-
sign patterns in parameter-efficient fine-tuning. These design patterns led to new parameter-efficient
fine-tuning methods. Experiments showed that these methods consistently outperform investigated
parameter-efficient fine-tuning strategies across different backbone models and different tasks in
natural language processing.

5Future works might repeat the discovery process using RoBERTa to improve performance for this back-
bone.
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A MORE EXPERIMENTAL RESULTS

Table 7: Average performances (low-compute, low-epoch regime: 100 random models, tuning
epochs = 1, 2, 3, 4, 20 for five different blocks) on the GLUE datasets using the T5-base pretrained
backbone model. We compare adding different grouping constraints to the S0 design space.

Grouping Patterns SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Avg

1 epochs

Increasing 73.2 63.3 67.8 68.8 63.8 67.2 64.1 11.0 59.9
Uniform 72.8 64.1 63.4 63.4 62.5 69.8 65.8 12.1 59.2

Decreasing 72.4 63.2 65.1 69.8 59.3 62.7 63.6 18.7 59.4
Spindle 72.6 64.8 66.8 71.1 62.1 62.3 64.8 12.3 59.6

Bottleneck 72.2 63.7 65.3 68.3 61.2 63.2 66.6 12.1 59.0

2 epochs

Increasing 76.2 69.3 73.2 76.5 65.8 72.2 74.0 21.0 66.0
Uniform 74.8 70.9 74.1 75.6 66.5 73.4 71.2 22.1 66.1

Decreasing 71.4 70.1 72.1 76.8 64.3 71.7 73.6 18.7 64.8
Spindle 76.6 71.9 71.8 74.4 67.5 73.5 71.8 22.3 66.2

Bottleneck 74.2 71.1 69.6 73.3 65.2 73.3 73.6 24.1 65.5

3 epochs

Increasing 85.3 74.9 77.2 77.5 66.8 76.2 76.0 33.0 70.8
Uniform 84.8 73.7 78.1 78.6 68.5 77.8 79.2 36.1 72.1

Decreasing 81.9 72.1 78.3 76.7 67.3 75.9 78.6 28.7 69.9
Spindle 86.9 75.5 79.8 79.4 69.8 78.3 80.1 47.3 74.6

Bottleneck 84.5 74.6 76.9 78.1 69.2 76.2 78.6 32.1 71.3

4 epochs

Increasing 88.3 78.5 80.2 80.5 70.8 80.2 80.0 37.0 74.4
Uniform 88.8 78.9 81.9 81.5 71.5 80.8 81.4 39.1 75.4

Decreasing 87.6 74.1 80.8 81.7 79.3 78.9 79.6 38.7 75.1
Spindle 89.6 79.8 83.6 82.8 71.8 81.3 82.1 39.3 76.3

Bottleneck 86.5 77.6 82.7 81.1 70.2 70.9 81.6 36.1 73.3

20 epochs

Increasing 92.3 83.3 86.2 82.5 71.8 82.2 84.0 51.0 79.1
Uniform 92.8 83.9 86.1 83.6 72.5 83.8 84.2 52.1 79.9

Decreasing 91.4 82.1 85.1 83.1 69.3 81.7 83.6 48.7 78.1
Spindle 93.6 84.8 87.8 84.4 73.5 84.3 85.8 52.3 80.8

Bottleneck 92.1 82.6 85.6 83.3 71.2 83.2 84.6 52.1 79.3

B GENERAL EFFECTIVENESS ON SUPERGLUE WITH XLNET BACKBONES

We also directly use the S4-model and S4-3b-model (adopting design patterns discovered using T5-
base and T5-3b) to fine-tune the XLNet-base and XLNet-large pretrained backbone models without
any extra discovery process. We keep all the other settings the same and evaluate them on Su-
perGLUE datasets. Table 17 reiterates the fact that our PEFT design patterns discovered from T5
models are generelizable to the XLNet backbone models and outperform the investigated methods
in other tasks (SuperGLUE) with no additional discovery process.
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Table 8: Average performances (low-compute, low-epoch regime: 100 random models, 3 tuning
epochs) on the GLUE datasets using the T5-base pretrained backbone model. We compare adding
different G1 strategy assignment constraints to the S3 design space.

Strategy Assignment SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Avg

G1-Adapter (A) 89.8 83.5 84.9 80.8 72.5 80.8 78.5 37.7 76.1
G1-Prefix (P) 89.3 83.1 84.4 80.1 70.1 80.0 77.6 33.0 74.7
G1-BitFit (B) 89.0 82.9 84.1 81.4 72.0 81.1 77.0 30.8 74.8
G1-LoRA (L) 89.9 83.6 85.0 81.1 71.8 81.0 78.8 35.3 75.8
G1-(P, L) 89.1 82.8 85.1 81.2 71.9 81.5 79.1 35.0 75.7
G1-(A, P) 89.8 82.8 84.8 81.1 72.2 81.3 79.2 36.4 75.9
G1-(A, L) 89.6 83.8 85.6 81.3 72.9 81.7 79.5 36.8 76.4
G1-(A, P, L) 89.6 83.5 85.2 81.5 72.2 81.4 79.2 35.2 75.9
G1-(P, B, L) 89.3 83.6 85.5 81.6 72.3 81.0 78.8 35.7 76.0
G1-(A, P, B) 89.2 83.3 84.8 81.8 72.5 81.1 78.6 35.6 75.8
G1-(A, B, L) 89.8 83.4 84.8 81.1 72.6 81.6 79.4 34.8 75.9
G1-(A, P, B, L) 90.0 83.1 85.3 81.6 72.6 81.4 79.2 36.5 76.1

Table 9: Average performances (low-compute, low-epoch regime: 100 random models, 3 tuning
epochs) on the GLUE datasets using the T5-base pretrained backbone model. We compare adding
different G2 strategy assignment constraints with G1-(L, A) to the S3 design space.

Strategy Assignment SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Avg

G2-Adapter (A) 91.6 84.3 85.5 82.3 73.5 82.8 81.3 38.8 77.5
G2-Prefix (P) 89.6 84.0 86.5 81.5 73.3 82.5 80.5 36.2 76.7
G2-BitFit (B) 91.2 83.6 85.7 82.9 72.6 82.6 80.8 33.1 76.5
G2-LoRA (L) 91.4 84.4 86.1 82.0 72.8 81.8 81.6 39.8 77.4
G2-(P, L) 91.6 84.6 86.8 81.8 73.8 82.8 82.0 38.5 77.7
G2-(A, P) 92.2 84.2 87.1 82.2 74.4 83.0 82.5 40.8 78.3
G2-(A, L) 92.0 84.4 86.5 81.8 73.6 82.6 82.2 40.1 77.9
G2-(A, P, L) 91.8 84.8 86.8 81.8 74.1 83.0 82.1 37.9 77.7
G2-(P, B, L) 91.6 84.1 87.1 82.0 74.0 82.9 82.4 35.8 77.4
G2-(A, P, B) 91.8 84.2 86.8 82.1 73.7 83.3 82.2 41.2 78.1
G2-(A, B, L) 92.2 84.3 86.1 82.0 74.1 83.2 82.0 37.6 77.6
G2-(A, P, B, L) 92.0 84.1 87.0 81.9 74.2 83.1 81.3 42.4 78.1

Table 10: Average performances (low-compute, low-epoch regime: 100 random models, 3 tuning
epochs) on the GLUE datasets using the T5-base pretrained backbone model. We compare adding
different G3 strategy assignment constraints with G1-(L, A) – G2-(P, A) to the S3 design space.

Strategy Assignment SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Avg

G3-Adapter (A) 92.5 85.3 87.5 83.3 73.9 84.0 83.8 44.9 79.4
G3-Prefix (P) 91.5 84.7 86.7 82.6 74.2 83.8 82.9 40.5 78.4
G3-BitFit (B) 91.9 84.3 87.0 82.0 73.6 84.1 83.3 36.1 77.8
G3-LoRA (L) 92.8 85.4 87.8 83.5 74.7 82.4 84.0 44.0 79.3
G3-(P, L) 93.0 85.2 88.3 83.8 75.2 84.4 84.2 37.9 79.0
G3-(A, P) 92.4 85.6 88.1 83.6 75.0 84.2 84.0 41.8 79.3
G3-(A, L) 92.0 85.9 88.2 83.1 75.3 84.3 83.9 42.2 79.4
G3-(A, P, L) 92.6 86.0 87.5 83.4 75.6 84.6 83.5 43.9 79.6
G3-(P, B, L) 92.7 85.8 87.2 83.7 75.2 84.5 83.8 40.8 79.2
G3-(A, P, B) 93.3 85.8 88.6 84.0 75.5 84.9 84.1 42.1 79.8
G3-(A, B, L) 93.7 86.5 88.0 83.2 75.8 84.2 84.2 39.7 79.4
G3-(A, P, B, L) 93.3 85.6 87.7 83.8 75.2 84.3 84.4 41.6 79.4
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Table 11: Average performances (low-compute, low-epoch regime: 100 random models, 3 tuning
epochs) on the GLUE datasets using the T5-base pretrained backbone model. We compare adding
different G4 strategy assignment constraints with G1-(A, L) – G2-(A, P) – G3-(A, P, B) to the S3

design space.

Strategy Assignment SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Avg

G4-Adapter (A) 93.8 85.8 88.6 84.8 76.3 85.8 86.0 48.5 81.2
G4-Prefix (P) 93.5 85.2 88.3 83.6 76.8 85.3 85.6 44.8 80.3
G4-BitFit (B) 94.1 85.3 88.9 84.4 77.1 85.4 86.2 46.1 80.9
G4-LoRA (L) 94.0 86.0 89.2 85.0 77.2 85.5 85.8 47.7 81.3
G4-(P, L) 94.3 86.2 89.3 85.8 78.0 86.0 88.2 47.2 81.8
G4-(A, P) 94.1 86.2 89.6 85.4 77.9 86.2 86.9 45.3 81.4
G4-(A, L) 94.2 85.9 89.2 85.5 77.8 86.2 88.0 46.8 81.7
G4-(A, P, L) 94.1 85.8 88.8 85.7 77.4 86.5 87.9 44.8 81.3
G4-(P, B, L) 94.6 86.4 90.4 86.1 78.2 86.8 88.5 47.2 82.3
G4-(A, P, B) 94.5 86.0 89.6 86.0 78.0 86.2 88.1 44.8 81.6
G4-(A, B, L) 94.3 86.4 89.2 85.6 78.2 86.4 88.3 46.6 81.9
G4-(A, P, B, L) 94.2 86.2 89.2 85.9 78.5 86.1 88.0 45.3 81.6

Table 12: Average performances (low-compute, low-epoch regime: 100 random models, 3 tuning
epochs) on the GLUE datasets using the T5-3b pretrained backbone model. We compare adding
different layer grouping constraints to the S0 design space.

Grouping Patterns SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Avg

S0-models 80.3 72.1 74.7 72.8 76.9 75.2 71.0 32.2 69.4

Increasing 84.4 75.7 83.0 78.3 82.7 80.3 76.3 42.1 75.3
Uniform 86.8 77.1 82.6 76.2 83.8 81.6 77.3 48.9 76.8

Decreasing 83.2 74.3 81.8 77.3 82.8 79.9 76.5 40.8 74.5
Spindle 88.6 78.8 83.7 77.7 84.2 80.9 78.3 44.6 77.1

Bottleneck 86.3 77.0 82.2 75.6 83.3 80.2 77.1 41.5 75.4

Table 13: Average performances (low-compute, low-epoch regime: 100 random models, 3 tuning
epochs) on the GLUE datasets using the T5-3b pretrained backbone model. We compare adding
different layer parameter constraints to the S1 design space.

Parameter Allocation SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Avg

Increasing 90.3 79.3 84.9 79.3 85.2 82.8 79.2 50.1 78.9
Uniform 90.6 80.8 84.6 79.7 85.5 82.4 78.9 50.8 79.1

Decreasing 88.6 78.2 83.5 78.1 84.4 81.5 78.1 49.6 77.7
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Table 14: Average performances (low-compute, low-epoch regime: 100 random models, 3 tuning
epochs) on the GLUE datasets using the T5-3b pretrained backbone model. We compare adding
different tuning groups constraints to the S2 design space.

Tunable Groups SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Avg

G1 88.3 78.3 82.2 77.4 82.1 80.7 76.1 49.4 76.8
G2 89.1 78.8 82.1 77.2 82.3 81.2 76.4 49.6 77.1
G3 89.6 78.5 82.6 78.1 83.8 81.9 77.4 48.7 77.5
G4 89.8 79.3 82.7 77.9 83.5 81.9 77.9 48.5 77.1

G1, G2 90.1 80.2 83.4 78.5 84.3 82.4 78.5 51.1 78.5
G3, G4 90.5 80.6 83.8 78.7 84.2 83 78.2 50.3 78.6

G1, G2, G3 90.6 80.3 84.9 79.3 84.7 82.9 79.3 50.2 79.0
G2, G3, G4 90.8 80.9 84.6 79.1 85.1 83.1 79.1 49.2 78.9

G1, G2, G3, G4 91.1 81.4 85.2 80.4 85.9 83.5 80.0 51.6 79.9
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Table 15: Average performances (low-compute, low-epoch regime: 100 random models, 3 tuning
epochs) on the GLUE datasets using the T5-3b pretrained backbone model. We compare adding
different strategy assignment constraints following the process in Section 4.5.

Strategy Assignment SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Avg

G1-Adapter (A) 91.1 81.4 86.1 80.5 86.7 83.3 80.1 50.8 80.0
G1-Prefix (P) 90.8 81.1 85.5 80.2 86.2 83.1 79.8 50.2 79.6
G1-BitFit (B) 90.2 81.3 85.1 79.6 85.8 82.8 79.6 49.5 79.2
G1-LoRA (L) 91.4 81.9 86.2 80.8 86.4 83.9 80.8 49.6 80.0
G1-(P, L) 91.8 82.9 86.8 81.3 87.1 84.2 81.6 52.3 81.0
G1-(A, P) 91.3 81.9 86.4 81.1 85.6 83.7 80.7 52.8 80.1
G1-(A, L) 91.6 82.3 86.1 81.5 85.8 84.9 81.5 51.8 80.6
G1-(A, P, L) 91.1 81.7 85.8 81.2 86.4 84.2 80.9 52.3 80.4
G1-(P, B, L) 91.5 82.8 86.3 81.4 86.1 83.6 81.2 51.5 80.5
G1-(A, P, B) 91.3 82.3 86.7 80.8 86.8 84.3 80.7 51.8 80.5
G1-(A, B, L) 91.7 82.5 86.2 81.3 86.3 84.6 81.3 51.7 80.7
G1-(A, P, B, L) 91.6 82.3 86.2 81.1 86.6 84.2 81.1 51.1 80.5

G2-Adapter (A) 92.1 82.5 86.4 81.8 87.2 84.8 81.8 53.8 81.3
G2-Prefix (P) 91.8 83.1 87.2 81.6 86.2 84.4 81.1 52.8 81.0
G2-BitFit (B) 91.2 82.1 86.4 81.1 86.3 84.6 80.3 53.1 80.6
G2-LoRA (L) 92.6 82.9 87.5 81.3 87.4 85.1 81.9 52.2 81.4
G2-(P, L) 91.6 82.7 87.6 81.6 87.8 85.3 82.1 52.8 81.4
G2-(A, P) 92.1 83.3 87.5 81.9 87.4 85.5 81.8 53.1 81.5
G2-(A, L) 92.5 83.7 88.1 82.2 87.4 85.7 82.9 53.6 82.1
G2-(A, P, L) 92.3 83.4 87.4 81.6 87.1 85.3 81.4 53.2 81.4
G2-(P, B, L) 91.8 83.1 87.4 81.5 87.2 85.1 82.7 53.8 81.5
G2-(A, P, B) 91.5 82.6 87.8 81.3 86.5 85.2 82.1 54.2 81.4
G2-(A, B, L) 92.6 83.5 87.2 82 87.3 86.5 82.5 52.8 81.8
G2-(A, P, B, L) 92.8 83.2 87.6 81.6 87.5 85.5 82.4 51.2 81.5

G3-Adapter (A) 92.6 84.1 88.3 81.8 87.8 85.4 82.8 55.2 82.2
G3-Prefix (P) 92.1 83.3 87.6 81.4 87.1 85.4 82.6 53.5 81.6
G3-BitFit (B) 92.4 83.9 88.4 82.1 87.2 85.8 82.4 53.3 81.9
G3-LoRA (L) 93.1 84.3 87.7 82.4 87.8 86.2 83.1 54.3 82.3
G3-(P, L) 92.8 84.1 88.7 82.6 88.2 86.2 83.3 54.7 82.6
G3-(A, P) 93.1 83.8 89.1 82.3 88.1 85.8 82.6 55.1 82.5
G3-(A, L) 92.7 84.5 88.4 82.8 88.2 86.1 83.5 54.6 82.6
G3-(A, P, L) 92.8 84.6 88.1 82.5 87.7 85.5 83.2 53.8 82.3
G3-(P, B, L) 93.6 84.9 89.3 83.1 88.2 86.5 83.9 55.8 83.2
G3-(A, P, B) 93.3 83.9 88.5 82.2 88.4 86.2 83.5 55.3 82.6
G3-(A, B, L) 93.4 84.2 88.9 82.6 87.8 85.8 84.2 54.9 82.7
G3-(A, P, B, L) 92.2 84.4 88.7 82.3 88.5 86.2 84.2 54.2 82.5

G4-Adapter (A) 92.8 85.2 89.1 83.5 87.8 86.5 84.2 56.3 83.2
G4-Prefix (P) 92.8 84.6 89.5 82.6 87.4 86.5 83.8 55.8 82.8
G4-BitFit (B) 93.8 84.9 89.5 83.3 88.7 86.8 84.4 55.2 83.3
G4-LoRA (L) 93.3 84.7 89.3 82.7 88.3 86.2 82.7 54.7 82.7
G4-(P, L) 93.8 85.3 89.6 83.6 88.6 86.8 84.6 56.3 83.5
G4-(A, P) 93.8 84.9 89.8 84.3 88.5 86.6 84.8 56.7 83.6
G4-(A, L) 93.7 85.6 89.5 84.1 88.2 86.6 85.2 55.4 83.5
G4-(A, P, L) 94.2 85.2 89.6 83.9 88.2 86.4 84.9 55.9 83.5
G4-(P, B, L) 93.8 85.9 89.8 83.6 88.6 86.9 85.2 56.3 83.7
G4-(A, P, B) 94.4 85.7 90.1 84.8 88.9 87.2 85.3 57.3 84.2
G4-(A, B, L) 93.8 85.3 89.5 84.1 88.8 86.7 85.5 56.6 83.7
G4-(A, P, B, L) 94.1 85.4 89.7 84.4 88.5 86.5 85.2 56.8 83.8
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Table 16: Average performances (low-compute, low-epoch regime: 100 random models, 3 tuning
epochs) on the GLUE datasets using the T5-base pretrained backbone model. We compare adding
different layer grouping constraints to the S0 design space. Layer grouping is based on 8 groups.

Layer Grouping SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA Avg

S0-models 76.9 70.1 72.5 73.3 63.6 71.7 73.8 24.3 65.7

Increasing 83.2 74.1 76.6 77.1 67.7 76.8 74.7 30.0 70.0
Uniform 83.6 73.4 78.0 77.9 68.2 76.4 78.6 34.2 71.3

Decreasing 80.3 71.6 77.4 75.5 67.0 75.3 77.2 26.4 68.9
Spindle 86.2 74.3 79.1 78.6 68.5 77.4 79.5 35.1 72.3

Bottleneck 83.2 73.1 75.8 77.6 67.9 75.3 78.2 31.4 70.3

Table 17: Performances of different tuning methods on the SuperGLUE datasets using the XLNet-
base (upper part) and XLNet-large (lower part) pretrained backbone models, respectively. The re-
sults are averaged over 10 random runs. The S4-model and S4-3b-model perform significantly better
than the second-best PEFT methods in all the eight datasets at the significance level p < 0.05 (*) or
even p < 0.01 (**).

Method BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC Average

Adapter 72.8 71.3/78.0 64.0 67.0/24.5 71.0/71.8 76.2 65.0 60.8 66.2
Prefix 72.0 70.5/77.0 63.3 66.4/23.8 69.9/71.0 75.5 64.4 60.8 65.9
BitFit 71.8 70.0/76.2 62.8 65.8/22.6 69.4/70.6 74.5 64.8 60.6 65.2
LoRA 72.2 71.1/77.8 64.7 67.4/24.8 70.8/71.3 76.8 65.1 61.1 66.4

S4-model 73.8∗∗ 71.7/78.4∗ 65.9∗∗ 68.2/25.5∗∗ 71.1/72.0∗ 78.4∗∗ 65.8∗ 62.6∗ 67.5

Adapter 74.4 71.4/81.1 67.4 68.8/26.4 71.7/72.4 80.8 68.0 64.6 68.8
Prefix 72.4 70.0/78.3 66.9 68.8/25.8 70.9/71.2 78.8 66.9 64.0 67.7
BitFit 71.1 70.7/79.8 68.0 68.6/25.4 71.1/71.6 80.4 67.2 64.3 68.1
LoRA 74.1 72.1/80.9 67.9 69.1/26.8 72.0/72.8 81.0 67.8 64.4 69.0

S4-3b-model 76.8∗∗ 74.6/81.9∗∗ 68.6∗∗ 69.5/27.1∗ 72.4/73.3∗ 81.2∗ 68.2∗∗ 64.8∗ 69.7

Table 18: Total training time (low-compute, low-epoch regime: 100 random models, 3 tuning
epochs) on the GLUE datasets using the T5-base pretrained backbone model with 8 A100 GPUs
from S0 to S1.

SST-2 MNLI QNLI QQP RTE STS-B MRPC CoLA

18 mins 22 mins 20 mins 40 mins 8 mins 12 mins 8 mins 6 mins
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