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Abstract
Modern data mining applications require to perform incremental clustering over dynamic
datasets by tracing temporal changes over the resulting clusters. In this paper, we propose
A-Posteriori affinity Propagation (APP), an incremental extension of affinity propagation
(AP) based on cluster consolidation and cluster stratification to achieve faithfulness and
forgetfulness. APP enforces incremental clustering where i) new arriving objects are dynam-
ically consolidated into previous clusters without the need to re-execute clustering over the
entire dataset of objects, and ii) a faithful sequence of clustering results is produced and
maintained over time, while allowing to forget obsolete clusters with decremental learning
functionalities. Four popular labeled datasets are used to test the performance of APP with
respect to benchmark clustering performances obtained by conventional AP and incremental
affinity propagation based on nearest neighbor assignment algorithms. Experimental results
show that APP achieves comparable clustering performance while enforcing scalability at
the same time.

Keywords Incremental affinity propagation · Cluster consolidation · Cluster stratification ·
Evolutionary clustering

1 Introduction

The capability to perform incremental clustering over dynamic datasets is getting more and
more importance in current data mining applications, like for example social network analy-
sis [1], climate change studies [15], medical images segmentation [36], and semantic change
detection [32]. However, conventional clustering algorithms are mostly conceived to deal
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with static datasets, where all the objects are available as a whole and clustering is per-
formed offline over the entire set of data [33]. Extensions based on incremental solutions are
proposed to deal with dynamic datasets, where objects continuously arrive, and clustering
is performed by processing new data as they appear. Instead of recomputing the clustering
result from scratch every time new objects are received, incremental clustering algorithms
aim to efficiently update the clustering result by processing and assimilating the new objects
into the existing clusters.

For instance, extensions for incremental clustering have been proposed for k-means and
Affinity Propagation (AP) algorithms, where the focus is to find the best solution for assimi-
lating new incoming objects into the current clustering result, rather than recomputing a new
clustering result from scratch [3, 14, 33, 37]. A weighted AP extension has been proposed to
deal with data streams, based on a compact description of the data flow and on the use of a
reservoir where to place stream objects showing low affinity with existing clusters [41]. To
work with dynamic datasets, scalability issues become also relevant in designing incremental
clustering algorithms, in that they have to cope with high data volumes, sequential access,
and dynamically evolving nature of the data to be classified.

To support temporal evolution analysis and to trace cluster changes over time, evolu-
tionary incremental clustering algorithms have been proposed which produce a sequence of
clustering results, one for each time period [5, 16, 26]. Two main issues become relevant in
evolutionary clustering. A first issue regards the faithfulness property, that is, the clustering at
any point in time should remain faithful to the current data as much as possible, thus avoiding
resulting clusters to dramatically change from one time-step to the next [9]. This property
facilitates the exploitation of clustering results over time, namely the capability to trace the
cluster history, since users get progressively familiar with results and can compare cluster-
ing of different time periods in a more effective way. A second issue regards the so-called
stability-plasticity dilemma, that is, the phenomenon by which some patterns may be lost to
learn new knowledge, and learning new patterns may overwrite previously acquired knowl-
edge [40]. Thus, faithfulness is enforced in evolutionary clustering to learn new information
without forgetting what has been previously learned. As an additional property, forgetful-
ness is required to discard information become obsolete, thus reducing memory usage and
enforcing scalability.

In this article, we propose the A-Posteriori affinity Propagation (APP) algorithm, that
is conceived as an incremental extension of AP based on cluster consolidation and cluster
stratification to achieve faithfulness and forgetfulness. APP enforces incremental clustering
in that i) new arriving objects at time t are dynamically assimilated into previous cluster
results without re-calculating clusters at time t − 1 and ii) a faithful sequence of clustering
results is produced and maintained over time (i.e., cluster history), while allowing to forget
obsolete clusters. Cluster consolidation means that APP keeps memory of clustering results
at time t − 1 by collapsing each cluster into a summary representation, namely the centroid,
which is considered as an additional object to cluster at time t . Cluster stratification means
that the new clusters at time t are obtained from clusters at time t − 1 i) by creating a new
cluster including new objects arriving at time t (stratification-by-creation), ii) by inserting
new objects arriving at time t into an existing t − 1 cluster (stratification-by-enrichment),
iii) by merging two or more t − 1 clusters into a new one at time t (stratification-by-merge).

We originally conceived APP for application to computational linguistics, where consol-
idation and stratification can be useful features to deal with the dynamic nature of language.
Specifically, given a diachronic corpus of documents, we designed APP to detect the lexical
semantic change, namely a linguistic phenomenon where a word changes in meaning over
time within the considered corpus. In this context, an APP cluster is intended to represent a
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word meaning, and the stratification of the cluster over time allows to track the evolution of
the correspondingwordmeaning. APP can be employed to detect the lexical semantic change
by working under the assumption of “group evolution”, in contrast to the “individual evolu-
tion”. A new incoming object dissimilar from the past observations tends to be considered
by APP as an outlier of a previously generated cluster rather than a unique exemplar of a new
cluster. This means that a new cluster, i.e., a new meaning of a word, can be detected only if
there is a relevant number of incoming exemplars, i.e., word occurrences within documents,
associated with it. Moreover, to recognize and possibly prune obsolete word meanings, APP
enforces forgetfulness through a decremental learning functionality aimed at selectively drop
aged clusters, similarly to the forgetful property of the human mind [40].

Although APP has been conceived for application to semantic change, we believe that it
can be considered as a general-purpose incremental clustering algorithm. In this sense, for
evaluation, we consider popular labeled datasets and we compare APP against benchmark
algorithms (i.e., AP and IAPNA) by also discussing theAPP scalability benefits. Furthermore,
to show the applicability of APP to a real scenario, we consider a diachronic document corpus
andwe discuss a case-study in the field of lexical semantic change. Thus far, benchmarkswith
diachronic sense labels over multiple time periods are currently unavailable. For this reason,
we also evaluatedAPPon theLexical SemanticChange task introduced at SemEval-2020 [35]
with promising results.

Summary of our contributions Our original contributions can be summarised as follows:

• We propose a A-Posteriori Affinity Propagation, a new clustering algorithm that extends
the standard Affinity Propagation for incremental scenarios. APP introduces faithfulness
and forgetfulness through cluster consolidation and stratification. We evaluate APP on
popular benchmark datasets, demonstrating its ability to maintain comparable cluster
quality to existing algorithms while achieving superior scalability.

• We showcase the use of APP for semantic change detection, with the goal of tracking
the evolution of word meanings in a diachronic text corpus. This showcase illustrates the
suitability of APP for studying the meaning of words in real-world corpora. Additionally,
we perform quantitative evaluations on established Natural Language Processing (NLP)
benchmarks to validate its effectiveness.

• We engage in a detailed discussion of the implications of the APP algorithm. We provide
insights into both the effectiveness and limitations of APP in capturing evolutionary
patterns over time, and we outline future perspectives for its application.

The article is organised as follows. In Sect. 2, the traditional AP algorithm as well as its
main, incremental extensions are over-viewed. The APP algorithm is presented in Sect. 3.
The comparison against benchmark algorithms is discussed in Sect. 4. Section5 illustrates
the application of APP to a case-study of semantic change detection. Finally, a thorough
discussion and concluding remarks are given in Sect. 7.

2 RelatedWork

Work related to incremental clustering over dynamic datasets and temporal/stream-based data
aggregation techniques are widely discussed in the literature (e.g., 2, 24, 25). Incremental
clustering is an active area of research due to its wide range of real-world applications,
and various families of solutions have been proposed to address specific challenges and use
cases. Recent advancements in this field include graph-based [17], density-based [6], and
deep learning-based clustering [21].
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Solutions based on graph-based clustering are essential in domains like biomedical and
social network analysis. In this context,Cai et al. [11] propose using graph contrastive learning
to capture cluster information from multiple perspectives, leveraging the complex Euclidean
and structural information inherent in graphs.

To reduce the computational complexity typically associated with graph-based clustering
while maintaining accuracy and efficiency, alternative forest-based clustering methods have
been proposed. For example, Kim et al. [18] propose integrating forest graphs with density-
based clustering for real-time applications such as hotspot detection and segmentation.

Density-based clustering approaches are particularly popular for their ability to update
clusters incrementally without requiring full reclustering. Approaches like DISC [19] and
IncAnyDBC [22] are designed to improve the efficiency of updating clustering results under
streaming or sliding window models. For example, DISC introduces an optimized incre-
mental clustering DBSCAN algorithm with enhanced computational efficiency. Similarly,
IncAnyDBC peforms incremental updates by leveraging an object-node graph structure to
propagate changes only around affected nodes.

Deep learning-based clusteringmethods have alsomade significant advancements by inte-
grating feature learning and clustering into unified frameworks. For example, methods like
Wasserstein embedding clustering utilize robust generative models to jointly optimize fea-
ture learning and clustering [12]. Other approaches, such as those proposed by Cai et al.
[7], introduce scalable alternatives to self-expressive models, iteratively refining subspace
bases for deep clustering tasks. Additionally, Cai et al. [10] propose a framework that incor-
porates contractive representation learning and focal loss, improving the performance and
adaptability of unsupervised clustering methods for large datasets.

In this context, the APP algorithm we are proposing is designed as an extension of the
original Affinity Propagation algorithm [14]. Unlike the aforementioned methods, APP has
been conceived to deal with NLP tasks with particular reference to semantic change detec-
tion [31]. Affinity Propagation is well-recognised in this domain due to its flexibility in
clustering similarity-based data, making it particularly suitable for tracking semantic evo-
lution over time [23]. For this reason, in the following, we first recall the main features
of Affinity Propagation, and then we review the main incremental extensions of this algo-
rithm, by also highlighting the distinctive features of our APP algorithm with respect to the
considered solutions.

2.1 Affinity Propagation

Affinity Propagation (AP) is a clustering algorithm based on “message passing” between
data points represented as connected nodes on a bipartite graph, in which edges represent
the similarity between pairs of points. The main advantages is that, unlike other clustering
algorithms such as K-Means or K-Medoids, it does not require the number of clusters to be
determined beforehand since they are formed around exemplary nodes, namely exemplars,
which are representative nodes of the clusters. The objective function is to maximise

z =
n∑

i=1

s(i, ci ) +
n∑

k=1

δk(c) (1)

where s(i, ci ) denotes similarity between a node xi and its nearest exemplar xci , and δk(c)
has the form

δk(c) =
{−∞ if ck �= k but ∃i : ci = k

0 otherwise
(2)
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and penalises invalid configurations where a node xi chooses another nodes xk as its exemplar
without xk being labelled as an exemplar. The optimization problem is implemented by
exchanging two kinds of message between nodes on the graph:

1. responsibility r(i, k), sent from node xi to the candidate exemplar xk indicates to what
extent xk is a good exemplar for xi .

2. availability a(i, k), sent from the candidate exemplar xk to node xi indicates to what
extent it would be for xi to choose xk as its exemplar taking into account the accumulated
evidence obtained from other nodes about the suitability of xk as an exemplar.

According to [14], r(i, k) and a(i, k) can be computed as follows:

r(i, k) ← s(i, k) − max
k′, k′ �=k

{
a(i, k′) + s(i, k′)

}
(3)

a(i, k) ← min

⎧
⎨

⎩0, r(k, k) +
∑

i ′, i ′ /∈{i,k}
max

{
0, r(i ′, k)

}
⎫
⎬

⎭ (4)

Unlike the other pairs, the so called self-availability a(k, k) is computed as

a(k, k) =
∑

i ′,i ′ �=k

max
{
0, r(i ′, k)

}
. (5)

In the beginning, all messages are initialised to 0. Then, AP iteratively updates responsi-
bilities and availabilities until convergence. The number of resulting clusters is determined by
the clustering algorithm. However, it was argued by Frey and Dueck [14] that it is influenced
by the self-similarity value s(i, i), which is called preference, and by the damping factor
which damps the responsibility and availability of messages to avoid numerical oscillations
in the updates.

As a general remark, Frey and Dueck [14] suggest preference p should be the median,
or minimum value of similarities and point out that a larger p generates a larger number
of clusters. The damping factor d should be at least 0.5 and less than 1. In particular, the
responsibility and availability messages are “damped” as follows

msgnew = d · msgold + (1 − d) · msgnew (6)

where msgold and msgnew are the values of a(i, k) and r(i, k) before and after the update,
respectively.

2.2 Incremental Extensions of Affinity Propagation

AP was designed for discovering patterns in static data. Several extensions have been pro-
posed to cope with data appearing in a dynamic manner. Incremental extensions of AP
have been successfully employed in a series of problems such as text clustering [34], robot
navigation [28], and multispectral images classification [40]. Moreover, we also consider
incremental AP extensions where a notion of clustering history is somehow supported, that
is the capability to trace the object membership over time or to compare clusters related to
different time steps. A comparative overview of the considered AP extensions is provided in
Table 1.

Zhang et al. [41] propose an incremental AP clustering algorithm (STRAP) for data
streaming settings that reduces the time complexity of AP by limiting the number of its
recomputations. The idea is to assign new objects to previously generated clusters only if
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they satisfy a similarity requirement with respect to the current exemplars. On the contrary,
a reservoir is leveraged to detain too dissimilar objects. When the size of reservoir exceeds
a threshold, or some changes in the rate of acquisition are detected, the AP is re-executed
over the current exemplars and the objects in the reservoir. An additional step is employed
to merge the exemplars independently learned from subsets of the whole dataset.

Shi et al. [34] propose a semi-supervised incremental AP (I-APC) which injects some
supervision in the clustering by adjusting the similarity matrix of the AP algorithm. They set
much larger distance for objects with the same label and much smaller distance for objects
with different labels. At each time-step, after eachAP run, the labeled dataset is extendedwith
the most similar objects to the current clusters, and the similarity matrix is reset according
to the new labeled data. However, this step affects computational time and it makes I-APC
cost more CPU time than AP.

Similarly to Shi et al. [34], Yang et al. [40] propose a semi-supervised incremental algo-
rithm, called Incremental and Decremental AP (ID-AP), that incorporates a small number
of labeled samples to guide the clustering process of the conventional AP algorithm. At each
time-step the labeled samples are used as prior information to adjust the similarity matrix of
the AP algorithm. Furthermore, the algorithm deals with the stability-plasticity dilemma by
using an incremental and a decremental learning approach for selecting the most informative
unlabeled data and discarding useless labeled samples, respectively. The intrinsic relationship
between the labeled samples and unlabeled data improves the clustering performance. On
the other hand, the learning phase of ID-AP method is several times higher than that required
from the conventional AP since the selection/discard phases involve repeated execution of
the clustering algorithm.

Sun and Guo [33] present an Incremental Affinity Propagation based on K-Medoids
(IAPKM). The goal of this extension is to adjust the current clustering results according
to new incoming objects, rather than recomputing AP clustering on the whole data set.
IAPKM combines AP and K-Medoids in an incremental clustering task, that is: AP cluster-
ing is executed on the initial bunch of objects, and K-Medoids is employed to modify the
current clustering result according to the new arriving objects. As a result, IAPKM achieves
comparable clustering performance and can save a great deal of time compared to the con-
ventional AP algorithm. However, the number of clusters cannot be adjusted according to
the new incoming objects since the traditional K-Medoids can’t adjust the number of clusters
automatically.

As an alternative to IAP-KM, Sun and Guo [33] discuss an Incremental version of Affinity
Propagation based on Nearest Neighbor Assignment (IAPNA). The intuition under IAPNA
is that objects added at different time-steps are at different statuses: pre-existing objects
have established certain relationships (nonzero responsibilities and nonzero availabilities)
between each other after AP, while new objects’ relationships with other objects are still at
the initial level (zero responsibilities and zero availabilities). The idea of IAPNA is to put all
the data points at the same status before proceeding with the AP procedure till convergence.
According to this idea, responsibilities and availabilities of the new incoming objects are
assigned referring to their nearest neighbors. Similarly to IAPKM, IAPNA achieves higher
performance than traditional AP clustering while reducing computational complexity. In
addition, it preserves the AP feature of automatically discovering new clusters.

An Evolutionary Affinity Propagation (EAP) is presented by Arzeno and Vikalo [3,
4]. Compared to previous incremental extensions of AP, EAP is the first algorithm that
can automatically trace the clustering history and temporal changes in cluster memberships
across time. EAP introduces consensus nodes and factors into the AP graph with the aim to
encourage objects to select a consensus node, rather than another object, as their exemplar.
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Clusters are traced by observing the positions of consensus nodes in the clustering history.
Basically, the creation and the disappearance of consensus nodes indicate cluster birth and
death, respectively. In EAP, the computational time is also reduced since messages need to
be passed between consensus nodes and not between all pairs of objects.

Sunmood et al. [37] propose the evolutionary clusteringSED-Stream-AP as an integration
of the SED-Stream [39] and theAP clustering algorithms. SED-Stream-AP adopts a two stage
process phases, called online and offline phase, respectively. In the online phase, the clustering
history is continuously monitored and detected. The evolution-based clustering of SED-
Stream enables SED-Stream-AP to support different evolving structures (e.g., appearance,
merge). In the off-line phase, the AP clustering is used to automatically determine the number
of clusters and deliver the final clustering without any need for user intervention.

2.2.1 Framing APP with Respect to the Above Solutions

Inspired by STRAP [41], the APP algorithm we propose performs clustering over exemplars
created in past aggregation stages and new incoming objects. As a difference with STRAP,
APP ignores cluster exemplars and replaces them by using an average representation of the
clusters, i.e. the centroid of each cluster. Moreover, new incoming objects are a posteriori
clustered and not a priori assigned to a previously generated cluster. In particular, APP
replaces the use of a reservoir with the assumption of “group evolution”, meaning that a
new cluster for a new kind of objects can be detected only if there is a relevant number of
incoming exemplar objects associated with it.

Similarly to ID-AP [40], APP is an incremental extension ofAP conceived for dealingwith
the stability-plasticity dilemma by enforcing faithfulness and forgetfulness in evolutionary
scenarios. Like SED-Stream-AP [37], APP can trace the clustering history by supporting
different kinds of cluster stratifications.

3 A-Posteriori Affinity Propagation

Using the conventional AP algorithm to cluster dynamic datasets is not suitable to cope with
the stability-plasticity dilemma [40]. In particular, clusters generated at time t − 1 can be
mixed-up due to a new bunch of objects that arrive at time t . This means that previously
clustered objects at time t − 1 can remain in the same cluster at time t , but they can also
be moved to another cluster due to the updated object position from time t − 1 to time t . In
this situation, tracing the history of a specific cluster across different time periods becomes
arduous, and a number of noisy clusters could be created when different kinds of objects
arrive according to a skewed distribution [23].

Figure 1 shows an example ofAP execution illustrating such a problem. The conventional
AP clustering is implemented on the initial bunch of objects (t = 0), represented by white
circles. The clustering result is shown in Fig. 1A, where the black objects denote the cluster
exemplars. The new objects represented by gray diamonds and triangles arrive at time t = 1
and t = 2, respectively. After the arrival of new objects, the clustering result of the second
and third AP run is shown in Fig. 1B, C. By comparing Fig. 1A–C, we note that some objects
change cluster in the various AP rounds and several clusters are generated (t = 2).
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Fig. 1 Example of AP with an incremental scenario. A shows the clustering result over the initial bunch of
objects (t = 0) represented by white circles. The black objects denote the cluster exemplars and dashed lines
connect the objects of each cluster. B show the the clustering result after the second AP run (t = 1). New
incoming objects at time t = 1 are represented by gray diamonds. Similarly to (B), the clustering result after
the third AP run (t = 2) is shown in (C). New incoming objects at time t = 2 are represented by gray triangles

3.1 The APP Algorithm

Assume that the objects to cluster become progressively available at different time-steps
t = {0, . . . , n}. The pseudo-code of APP at each time-step is shown in Algorithm 1.

Algorithm 1 The APP algorithm
Input
t : time-step
X: objects at time-step t
X1: objects at time-step t − 1
L1: labels at time-step t − 1
thγ : pruning threshold

Output
L, X: at time-step t

1: if t == 0 then
2: L ← AP(X)
3: yield L, X
4: else
5: μX1 ← Consolidate(L1, X1)
6: L ∪ μL1 ← AP(X ∪ μX1)
7: L1 ← Map(μL1)
8: L1, X1 ← Prune(L1∪ L, X1, thγ )
9: X1 ← X1 ∪ X
10: L1 ← L1 ∪ L
11: yield L1, X1
12: end if
13:
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Call X and X1, and L and L1 the objects and the cluster labels at time t and t − 1,
respectively.

At time t = 0, the execution of APP coincides with the conventional AP algorithm
(Algorithm 1; row 2).

At each time t > 0, cluster consolidation(Algorithm 1, line 5, stratification (Algorithm 1,
lines 6-7), and pruning (Algorithm 1, line 8) are performed.

In a time-step t , the goal ofAPP is to apply clustering to the objectsXnewly arrived at t , and
to a synthetic representation of the clusters of time t − 1 without considering the (potentially
high number of) objects already clustered in previous time-steps. To this end, consolidation
means that the clusters formed at time t − 1 are replaced by their corresponding cluster
centroids. For a cluster, the centroid is defined as the average of the vector representations
of all the objects belonging to the cluster. A set of cluster centroids denoted as μX1 is the
result of consolidation.

The conventional AP algorithm is then applied to the objects X of time t along with the
cluster centroids μX1 coming from time t − 1. The result of AP is a set of cluster labels
L ∪ μL1 where L are the clusters of the objects X, and μL1 are the clusters of the centroids
μ X1.

We note that only the centroids μX1 are associated with cluster labels μL1 created at
time t , and all the object X1 clustered at time t − 1 are still associated with cluster labels
of previous/aged steps. Stratification has the goal to map/propagate the cluster labels μL1

to the objects X1. Specifically, given a centroid μxi ∈ μX1 and a corresponding cluster
label μli ∈ μL1, the objects in X1 that have been averaged in μxi are assigned to the label
μli . An updated set of cluster labels L1 is the result of stratification where the labels μL1

are propagated to the objects X1. This way, as a featuring property of APP, it is possible to
trace the history of any object by considering the sequence of assigned cluster labels in each
time-step.

Pruning is then executed to drop aged clusters that represents obsolete, non-relevant groups
at time t . Pruningworks by using a pruning threshold thγ ∈ [1, +∞]. The threshold specifies
themax number of time-steps that can be executed without any change to the cluster contents.
At time t , each cluster defined by L1 ∪ L is evaluated for possible pruning with respect to
thγ . A pruned cluster label and corresponding objects are removed, and updated L1, X1 are
returned as a result.

Finally, the new incoming objects X are added to the objects X1 arrived in previous
steps. (Algorithm 1, line 9). The corresponding cluster labels are also updated accordingly
(Algorithm 1, line 10).

The APP algorithm enforces faithfulness and forgetfulness as featuring properties.
Faithfulness is the capability to preserve clustering history possibly enriched with new
objects. At time t , the execution of APP ensures that the objects X1 arrived in previous
time-steps remain grouped with the objects of their original cluster. Faithfulness is enforced
through consolidation, in that the clusters of time t−1 and the associated centroids constitute
the “memory” of the objects observed in the past, and the new objects are stratified over the
existing clusters according to one of the following criteria:

• stratification-by-creation: a newcluster is created containing a subset of the new incoming
objects X̄ ⊆ Xwhen all the objects in X̄ are found to be too dissimilar from all the existing
cluster centroids μX1.

• stratification-by-enrichment: a previously created cluster is enriched with a subset of the
new incoming objects X̄ ⊆ Xwhen all the objects in X̄ are found to be similar to a cluster
centroid in μX1.
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Fig. 2 Example of APP. A shows the objects available at time t = 0. The first clustering result coincides
with AP and it is represented in B. The black objects denote the cluster exemplars. For the sake of clarity,
dashed lines fully connect the objects of each cluster. C shows the cluster centroids as bold circles generated
by averaging the objects of each cluster on the background. D shows the input objects of APP at time t = 1.
Gray diamonds represent the new incoming objects. The clustering result is represented in E. In F, cluster
centroids are consolidated and their cluster labels are associated with each object of previous time-steps. The
second APP run at time t = 2 is shown in G, H, J. New incoming objects are represented by gray triangles.
J denotes the final clustering result. Note that the cluster on the right-top corner of I disappears in J due to a
pruning threshold thγ = 1

• stratification-by-merge: a new, unique cluster is created bymerging two ormore centroids
in μX1 and a subset of the new incoming objects X̄ ⊆ Xwhen the objects in X̄ are found
to be similar to all the merged centroids.

Forgetfulness is the capability to recognise obsolete clusters and discard them. At a certain
time t , it is possible that a cluster represents thememory of a group of obsolete objects, namely
a group emerged in past time-steps, but disappeared in recent observations. Forgetfulness is
enforced through pruning. Each cluster is associated with an aging index γ ≤ t that denotes
the last time-step t in which the cluster has been created/changed. For instance, a cluster
enriched by new objects at time t has an aging index γ = t . Given a cluster with aging index
γ , the cluster is pruned when t − γ > thγ . When thγ ≥ t , it means that forgetfulness is not
enforced and all the clusters created at any time-step is maintained. Otherwise, forgetfulness
is enforced and the pruning condition is applied. For instance when thγ = 1 and thγ < t ,
all the clusters not enriched at the last time t are considered as obsolete, and then pruned.

Figure 2 is an example of APP execution with pruning threshold thγ = 1. The initial
bunch of objects (t = 0) is shown in Fig. 2A. The clustering result at time t = 0 is represented
in Fig. 2B. Black objects denote the cluster exemplars. In Fig. 2C, centroids are calculated
as average representations of cluster objects (t = 1) and they are denoted as bold circles.
New objects at time (t = 1) are represented as gray diamonds in Fig. 2D. After the cluster
consolidation, the clustering result of the APP run is shown in Fig. 2E (t = 1). In particular,
Fig. 2E shows an example of stratification-by-creation (i.e., cluster on the bottom-left corner)
and an example of stratification-by-enrichment (i.e., cluster on the bottom-middle part). In
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Fig. 2F, each centroid is mapped/propagated and its label is associated to each object in the
cluster from previous time-steps. The subsequent round of APP (t = 2) is presented in
Fig. 2G, H, J. In particular, Fig. 2I shows an example of stratification-by-merge where two
previously generated clusters are merged into a single one. The final clustering result at time
t = 2 is shown in Fig. 2J. As a result of the stratification-by-pruning, the cluster on the
right-top corner in Fig. 2I is pruned in Fig. 2J since it is unchanged for two time-steps. As a
difference with AP (see Fig. 1), objects do not change cluster in Fig. 2 and a lower number
of clusters is generated.

3.2 Complexity andMemory Usage Analysis

Since APP leverages AP for object clustering, the complexity of APP and AP are related. In
AP, the time complexity of message-passing iteration according to Eqs.3 and 4 is O(N 2),
where N is the number of all the current available objects. Therefore, the time complexity
is O(N 2T ), where T is the number of iterations until convergence. Further, the memory
complexity is in the order O(N 2) if a dense similarity matrix is used.

Similarly, the time complexity of APP is O(M2T1), where M = (μt−1 + nt ), and μt−1,
nt are the number of previous centroids and the number of the new incoming objects, respec-
tively. At each iteration, the memory complexity of APP isO(M2), in that, there is no need to
keep in memory previously clustered objects during the AP execution of APP (Algorithm 1,
row 6). By definition M � N and T1 � T , thus a lot of time and memory are saved, making
APP a scalable solution in incremental scenarios.Moreover, when thγ > 0, time andmemory

complexity are further reduced toO(M2
γ T2),O(Nγ ), respectively; where Mγ = (μ

(γ )
t−1+nt )

andμ
(γ )
t−1 is the number of previous centroids that were not affected by pruning, and T2 < T1.

Basically, the smaller γ , the more μ
(γ )
t−1 < μt−1, since more clusters will be pruned.

4 Experiments and Evaluation Results

The goal of our experimentation is to compare the results of APP against benchmark cluster-
ing algorithms. We note that official implementations of incremental AP algorithms are not
available for comparison. We thus selected AP since it is the baseline clustering algorithm on
which APP relies upon, and IAPNA since it is a well-known and top-cited incremental exten-
sion ofAP, being also straightforward to implement at the same time. In the evaluation,wefirst
focus on two evaluation experiments called uniform-incremental and variable-incremental
experiments. Both the experiments are based on a dynamic scenario where the objects to
cluster arrive as separated bunches at different time-steps. In the uniform-incremental exper-
iment, we define the number and the set of objects arriving at the various time-steps without
any constraint on the category. The idea is to analyse the behavior of the considered cluster-
ing algorithms on a pure incremental setting like the one proposed in Sun and Guo [33] (see
Sect. 4.3.2). In the variable-incremental experiment, the category of the objects arriving at
each time-step is constrained according to a given schema. The idea is to analyse the capa-
bility of the considered clustering algorithms to recognise the categories of the incoming
objects when they appear over time according to a specific incremental schema, that can be
growing, shrinking, or stable (see Sect. 4.3.1).
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Table 2 A summary description of the benchmark datasets

Dataset Number of objects Number offeatures Number ofcategories Usage of dataset

Iris 150 4 3 Whole

Wine 178 13 3 Whole

Car 260 6 4 Partly

KDD-CUP 2904 41 11 Partly

All the experiments are implemented in Python 3.10 and they are conducted on a PC with
1.80GHz Intel Core i7 processor and 16GBofRAM.Our code is based on the implementation
of AP by scikit-learn1. The APP code is available at https://github.com/umilISLab/APP.

4.1 Datasets and Pre-processing

In the evaluation, four popular labeled datasets are considered. In particular, we selected Iris,
Wine, and Car datasets from [27] since they are used in the evaluation of AP and IAPNA
by Sun and Guo [33]. Moreover, we added the KDD-CUP dataset since it is characterised
by a high number of categories [37], and thus it is appropriate for clustering evaluation in
incremental experiments. In all the datasets, the objects are described as feature vectors; a
different number of features per object is defined for each dataset.

A summary view of the benchmark datasets used in the evaluation is provided in Table 2.
Some datasets (Car and KDD-CUP) are characterised by a highly unbalanced number

of objects per category. As in Sun and Guo [33], we select and use only part of them. In
particular, we consider 65 objects taken from the top 4 most numerous categories in the Car
dataset, and 264 objects taken from the top 11 most numerous categories in the KDD-CUP
dataset.

A pre-processing stage is enforced to normalise the dataset objects. Since the experiments
are performed in a dynamic scenario, a single normalisation stage on the whole dataset is not
appropriate. Instead, at each time-step of the experiments, we perform normalisation on the
Nt objects of the dataset available at time t . For the sake of comparison, we use the same
normalisation used by Sun and Guo [33].

4.2 EvaluationMetrics

As in Sun and Guo [33], for clustering objects, we calculate the similarity between pairs
of objects through the negative euclidean distance where we do not leverage the preference
coefficients described bySun andGuo [33]. For each dataset, the preference p (self-similarity)
is set to the median of the input similarities at a given time (see Sect. 2 for further details
about the p parameter).

The clustering results are evaluated according to Purity (PUR) and Normalised Mutual
Information (NMI). To compute PUR, each cluster is assigned to the category which is most
frequent in the cluster, and then the accuracy of this assignment is measured by counting the
number of correctly assigned objects and by dividing by Nt , that is the number of objects of

1 (scikit-learn.org/stable/)
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the dataset available at time t . Formally:

PU R(�, C) = 1

Nt

∑

k

max
j

ω̄k ∩ c̄ j (7)

where � = {ω1, ..., ωK } is the set of clusters, C = {c, ..., cJ } is the set of categories, and
ω̄k and c̄ j are the set of objects in ωk and c j , respectively. High PUR values are frequently
achieved when a high number of clusters is generated. For instance, PUR is 1 when each
object is placed in a corresponding singleton cluster. Thus, we also exploit NMI to estimate
the quality of the clustering by considering the number of generated clusters. NMI is defined
as:

NMI (�, C) = I (�, C)

[H(�) + H(C)]/2 (8)

where I (�, C) is themutual information between the set of clusters� and the set of categories
C, and the normalisation [H(�) + H(C)]/2 is introduced to penalise large cardinalities of �

with respect to C, in that, the entropy H(�) tends to increase with the number of clusters.
As in Sun and Guo [33], three metrics are employed to evaluate the scalability of the

considered clustering algorithms, namely the Number of Iterations until convergence (NI),
the Computation Time (CT) in seconds, and the Memory Usage (MU) in MB. Furthermore,
we also consider the Number of Clusters (NC) generated at each time-step.

4.3 Experimental Setup

The setup of uniform-incremental and variable-incremental experiments is discussed in the
following.

As a general remark, we stress that the experiments are repeated 100 times for each dataset;
each time, the order of incoming objects is randomly defined. For each dataset, the settings
of the 100 executions are stored and used for each considered algorithm (i.e., AP, IAPNA,
and APP). We analyse the results by considering the median score of the 100 obtained values
at each time-step.

The hyperparameters of theAP algorithm are configured as follows: themaximumnumber
of iterations is set to 200, the damping factor is set to 0.9, and 15 iterations without changes
in the exemplars at the last time-step are required before declaring convergence.

About IAPNA, since the implementation used in the evaluation of Sun and Guo [33] is not
available, we developed a Python IAPNA implementation for the sake of our experiments.

About the APP configuration, we define a pruning threshold thγ = 1.2

4.3.1 Uniform-Incremental Setting

In the uniform-incremental setting, we borrow the evaluation setup proposed by Sun and Guo
[33]. A fixed (i.e., uniform) number of objects is scheduled for arrival in any time-stepwithout
considering the category. Each dataset is shuffled and split through sampling into six bunches
(one for each time-step). For each dataset, we define i) the number of incoming objects at the
first time-step (t = 0), and ii) the number of incoming objects at any subsequent time-steps
(t > 0). In this experiment, most of the objects become available at time-step 0-th, while few
objects are introduced in the subsequent time-steps. The details about dataset sampling in the

2 As pruning threshold, we chose the value that provided the best trade-off between APP performance and
scalability in all the considered experiments.
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Table 3 The number of objects in the incremental setting (first and subsequent time-steps)

Dataset Number of objects (first time-step)objects Number of objects(subsequent time-steps)

Iris 100 10

Wine 128 10

Car 210 10

KDD-CUP 1904 200

incremental setting are provided in Table 3. For instance, considering the IRIS dataset, 100
objects are sampled for clustering at the first time-step, and 10 by 10 objects are sampled in
the subsequent time-steps.

4.3.2 Variable-Incremental Setting

In the variable-incremental experiment, the number of incoming objects at each time-step is
not fixed/uniform. The goal is to analyse the behavior of clustering algorithms when a larger
number of incoming objects is scheduled for arrival at each time-step with respect to the
uniform-incremental experiment. Moreover, the category of the objects arriving at each time-
step is chosen according to a specific incremental schema. Each dataset is shuffled and split
through sampling into six bunches (one for each time-step). The object sampling from each
category in a given time-step is defined according to one of the following schema/behavior:

1. growing, the objects of a category are sampled by scheduling the order of arrival to
be ascending in size across the time-steps. The category reproduces the behavior of a
growing group of objects over time.

2. shrinking, the objects of a category are sampled by scheduling the order of arrival to
be decreasing in size across the time-steps. The category reproduces the behavior of a
shrinking group of objects over time.

3. stable, an equal number of objects of a category is scheduled for arrival in any time-step.
The category reproduces the behavior of a stable group of object over time.

In each of the 100 iterations, each category of the datasets is associated with a certain schema
with a 33% probability (i.e., the three schemas are equally probable over the categories).
The arrival of objects of growing and shrinking categories can be focused in a subset of the
time-steps. This means that the objects of a growing category can start to appear in a time-
step t > 0, as well as the objects of a shrinking category can be consumed before the last
time-step. As a consequence, in a given time-step, the objects of a category can be missing.
Otherwise, according to the “group evolution” assumption, a minimum number of object q
of a category is scheduled for arrival in any time-step t according to the associated schema.
The aim is that any category appearing in a certain time-step has enough objects for being
recognised by the clustering algorithms. As a final constraint, we define that the incoming
objects at each time-step are taken from two different categories as a minimum.

In the experiment, for each category, we define q as the 10% of the dataset size divided by
the number of dataset categories. A summary of q values for the categories of each dataset
is provided in Table 4.
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Table 4 The minimum number of
objects q per dataset category in
the variable-incremental setting

Dataset q parameter

Iris 5

Wine 6

Car 7

KDD-CUP 26

Table 5 Uniform-incremental experiment: comparison on Purity (PUR). PUR measures the homogeneity of
clusters, with higher values indicating better alignment with ground-truth categories, though it tends to favor
a larger number of clusters. The highest score is denoted with an asterisk; the APP score is denoted in bold.
On average, APP performs comparably to IAPNA but slightly lower than AP

Dataset Method 1th 2th 3th 4th 5th

Iris AP 0.964* 0.975* 0.954* 0.957* 0.967*

IAPNA 0.882 0.950 0.877 0.957* 0.953

APP 0.873 0.867 0.862 0.864 0.667

Wine AP 0.754 0.750* 0.747* 0.732* 0.730*

IAPNA 0.884* 0.365 0.620 0.613 0.624

APP 0.710 0.655 0.665 0.661 0.663

Car AP 0.814* 0.830* 0.812* 0.816 0.812

IAPNA 0.791 0.796 0.804 0.828* 0.823*

APP 0.727 0.604 0.704 0.514 0.550

KDD-CUP AP 0.863 0.812* 0.853 0.858 0.862

IAPNA 0.349 0.515 0.512 0.983* 0.981*

APP 0.816 0.806 0.780 0.741 0.748

AVG. AP 0.849 0.842 0.794 0.802 0.805

IAPNA 0.726 0.656 0.735 0.875 0.872

APP 0.781 0.769 0.761 0.749 0.702

4.4 Experimental Results

All the considered algorithms (i.e., AP, IAPNA, and APP) are based on AP for clustering
objects in the first time-step. Thus, the results of the three algorithms coincide on the first
clustering execution at time t = 0. For this reason, the results on the 0-th bunch of objects
are not shown/considered in the analysis.

4.4.1 Results on the Uniform-Incremental Experiment

Experimental results with the uniform-incremental settings are shown in
Tables 5, 6, 7, 8, 9, 10.

The results show that APP achieves comparable/higher clustering performance than the
conventional AP and IAPNA algorithms. On average by considering all the time-steps and
datasets, APP achieves a PUR score of 0.724, which is comparable but lower than the PUR
score of AP (0.846) and IAPNA (0.755). This result can be explained by considering the
number of clusters NC created by the three algorithms, where we note that APP always
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Table 6 Uniform-incremental experiment: comparison on Normalised Mutual Information (NMI). NMI mea-
sures how well clusters match the true categories while accounting for the number of generated clusters, with
higher values indicating better alignment with ground-truth categories. The highest score is denoted with an
asterisk; the APP score is denoted in bold. On average, APP performs similarly to IAPNA and slightly better
than AP

Dataset Method 1th 2th 3th 4th 5th

Iris AP 0.600 0.660 0.586 0.561 0.568

IAPNA 0.616 0.658 0.658 0.648 0.594

APP 0.707* 0.740* 0.712* 0.718* 0.734*

Wine AP 0.346 0.339 0.335 0.329 0.326

IAPNA 0.582* 0.000 0.484* 0.489* 0.565*

APP 0.363 0.444* 0.444 0.445 0.417

Car AP 0.427 0.432* 0.417* 0.403 0.392

IAPNA 0.415 0.409 0.403 0.406* 0.406*

APP 0.466* 0.391 0.221 0.236 0.362

KDD-CUP AP 0.713 0.700 0.696 0.693 0.692

IAPNA 0.564 0.668 0.665 0.754* 0.743*

APP 0.739* 0.743* 0.738* 0.719 0.714

AVG. AP 0.521 0.533 0.508 0.497 0.498

IAPNA 0.544 0.434 0.553 0.574 0.577

APP 0.569 0.579 0.529 0.529 0.557

Table 7 Uniform-incremental experiment: comparison on Computation Time (CT) in seconds. Lower val-
ues indicate better efficiency. The lowest score is denoted with an asterisk; the APP score is in bold. APP
outperforms both AP and IAPNA

Dataset Method 1th 2th 3th 4th 5th

Iris AP 0.128 0.117 0.319 0.321 0.156

IAPNA 0.241 0.221 0.131 0.260 0.238

APP 0.009* 0.008* 0.010* 0.009* 0.008*

Wine AP 0.199 0.182 0.204 0.221 0.278

IAPNA 0.184 0.123 0.117 0.153 0.364

APP 0.052* 0.047* 0.051* 0.050* 0.051*

Car AP 0.332 0.406 0.563 0.842 0.867

IAPNA 0.200 0.678 0.282 0.844 0.231

APP 0.074* 0.058* 0.028* 0.048* 0.035*

KDD-CUP AP 18.523 26.752 34.037 42.068 46.151

IAPNA 44.656 43.041 36.304 83.318 68.759

APP 0.294* 0.210* 0.209* 0.211* 0.192*

AVG. AP 4.796 6.864 8.781 10.863 11.863

IAPNA 11.320 11.016 9.209 21.144 17.398

APP 0.107 0.081 0.075 0.080 0.072

123



Incremental Affinity Propagation … Page 19 of 32    44 

Table 8 Uniform-incremental experiment: comparison onMemoryUsage (MU) inMB. Lower values indicate
better efficiency. The lowest score is denoted with an asterisk; the APP score is in bold. APP outperforms both
AP and IAPNA

Dataset Method 1th 2th 3th 4th 5th

Iris AP 0.303 0.359 0.420 0.486 0.556

IAPNA 0.308 0.366 0.428 0.496 0.569

APP 0.020* 0.023* 0.024* 0.026* 0.028*

Wine AP 0.492 0.563 0.639 0.719 0.804

IAPNA 0.507 0.581 0.659 0.742 0.831

APP 0.046* 0.059* 0.062* 0.066* 0.070*

Car AP 1.215 1.325 1.440 1.559 1.684

IAPNA 1.227 1.340 1.458 1.581 1.709

APP 0.050* 0.055* 0.058* 0.037* 0.034*

KDD-CUP AP 108.287 129.658 153.012 178.233 205.425

IAPNA 108.928 130.381 153.819 179.128 206.408

APP 2.207* 2.850* 3.029* 3.207* 3.400*

AVG. AP 27.57 32.98 38.88 45.25 52.12

IAPNA 27.74 33.17 39.09 45.48 52.38

APP 0.58 0.75 0.79 0.83 0.88

Table 9 Uniform-incremental experiment: Comparison on the Number of Iterations (NI). Higher values indi-
cate more iterations. The highest score is denoted with an asterisk; the APP score is in bold. On average, APP
outperforms both AP and IAPNA

Dataset Method 1th 2th 3th 4th 5th

Iris AP 59.0 49.0 164.0 156.0 57.0

IAPNA 62.0 51.0 15.0* 43.0* 37.0*

APP 43.0* 40.0* 50.0 43.0* 39.0

Wine AP 60.0 55.0 63.0 61.0 65.0

IAPNA 53.0 24.0* 15.0* 15.0* 70.0

APP 39.0* 40.0 41.0 39.0 41.0

Car AP 83.0 88.0 119.0 161.0 154.0

IAPNA 15.0* 127.0 34.0 166.0 15.0*

APP 58.0 43.0* 15.0* 41.0* 33.0

KDD-CUP AP 103.0 115.0 133.0 142.0 139.0

IAPNA 167.0 81.0 15.0* 172.0 79.0

APP 73.0* 77.0* 70.0 74.0* 68.0*

AVG. AP 76.25 76.75 94.75 130.00 103.75

IAPNA 74.25 70.75 19.75 99.00 72.75

APP 53.25 50.00 44.00 49.25 45.25
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Table 10 Uniform-incremental experiment: Comparison on the Number of Clusters (NC). The highest score
is denoted with an asterisk; the APP score is in bold. The subscript denotes the number of categories in each
dataset. On average, APP generates fewer clusters than AP and IAPNA

Dataset Method 1th 2th 3th 4th 5th

Iris3 AP 10.0 8.0 10.0 11.0 12.0

IAPNA 5.0 6.0 5.0 7.0 9.0

APP 4.0* 3.0* 3.0* 3.0* 2.0*

Wine3 AP 11.0 12.0 12.0 12.0 12.0

IAPNA 9.0 1.0 2.0 2.0* 2.0

APP 4.0* 2.0* 3.0* 2.0* 3.0*

Car4 AP 27.0 28.0 26.0 31.0 31.0

IAPNA 25.0 26.0 25.0 29.0 28.0

APP 8.0* 4.0* 2.0* 50.0* 3.0*

KDD-CUP11 AP 74.0 82.0 72.0 78.0 84.0

IAPNA 4.0* 6.0* 6.0* 63.0 72.0

APP 26.0 21.0 18.0 16.0* 20.0*

AVG. AP 30.50 32.50 30.00 33.00 34.75

IAPNA 10.75 9.75 9.50 25.25 27.75

APP 10.50 7.50 6.50 17.75 7.00

returns the lowest value (see Table 10).As amatter of fact, a high number of clusters positively
affects the PUR metric without considering the possible noisiness of the created groups. On
the opposite, APP achieves higher NMI score compared to AP and IAPNA. On average, APP
obtains a NMI score of 0.553, while AP and IAPNA obtain 0.511 and 0.536, respectively.
By considering the Wine and the Car datasets, we note that the NMI score of all the three
algorithms is quite low. This is probably due to the categorical features in the such datasets that
has been converted to numeric values by using one-hot encoding for vector representation.
If we exclude the Wine and the Car dataset, the NMI average score of APP achieves the
value of 0.726, while the AP and IAPNA scores are 0.647 and 0.657, respectively. As a
further consideration, we note that the best results of APP in terms of NMI are reached on
the KDD-CUP dataset where the average score is 0.731, while those of AP and IAPNA are
0.699 and 0.679, respectively. This is a particularly interesting result since KDD-CUP is the
dataset with the highest number of objects and categories among those considered.

As amain result, due to the faithfulness property ofAPP that reduces the number of objects
considered for clustering in each time-step, we observe that APP is far more scalable than AP
and IAPNA in terms of CT, MU, and NI. On average by considering all the time-steps and
datasets, APP achieves a CT score of 0.083, while AP and IAPNA achieve 8.633 and 14.017,
respectively. Also about MU, we note that AP consumes 0.768 MB, while AP and IAPNA
consume 39.359 MB and 39.573 MB, respectively. Furthermore, the average NI score of
APP is 48.350, while AP and IAPNA obtain the score 101.300 and 62.800, respectively.
According to the above results on the uniform-incremental experiment, we observe that
APP is much faster than AP and IAPNA, while consuming much less memory than the two
considered baselines. Furthermore, we note that the NC values of APP represent the best
approximation among the considered clustering algorithms with respect to the number of
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Table 11 Variable-incremental experiment: results of APP on all the considered datasets. The asterisks denote
the APP scores higher than the corresponding ones in the uniform-incremental experiment

Dataset Metric 1th 2th 3th 4th 5th

Iris3 PUR 1.000* 0.988* 0.938* 0.897* 0.887*

NMI 0.616 0.696 0.751* 0.754* 0.718

CT 0.051 0.048 0.051 0.048 0.058

MU 0.016* 0.020* 0.025 0.027 0.038

NI 59.0 45.0 51.0 46.0 50.0

NC 4.0 4.0 4.0 4.0 5.0

Wine3 PUR 0.816* 0.823* 0.842* 0.834* 0.742*

NMI 0.412* 0.518* 0.581* 0.604* 0.572*

CT 0.058 0.044* 0.054 0.047* 0.047*

MU 0.036* 0.048* 0.057* 0.067 0.079

NI 44.0* 39.5* 39.5* 37.0* 43.0

NC 5.0 4.0 4.0 3.0* 5.0

Car4 PUR 0.770* 0.677* 0.578 0.604* 0.535

NMI 0.364 0.323 0.278* 0.315* 0.213

CT 0.055* 0.048* 0.037 0.034* 0.032*

MU 0.046* 0.072 0.088 0.084 0.100

NI 51.0* 43.0* 46.0 45.0 15.0*

NC 10.0 11.0 9.0 10.0* 4.0

KDD-CUP11 PUR 0.849* 0.838* 0.831* 0.806* 0.744

NMI 0.719 0.732 0.737 0.732* 0.691

CT 1.804 1.352 1.500 1.451 1.479

MU 3.006 3.629 4.054 4.584 5.405

NI 87.5 67.0* 71.0 72.0* 64.0*

NC 30.0 28.0 28.0 27.0 25.0

categories contained in the datasets. Usually, the NC value of APP is slightly higher and
sometimes equal to the number of dataset categories.

4.4.2 Results on the Variable-Incremental Experiment

In the variable-incremental experiment, we performed the same tests of the uniform-
incremental experiment on PUR, NMI, CT, MU, NI, and NC. For the sake of comparison,
the scores of APP on all the tests and datasets of the variable-incremental experiment are
shown in Table 11.

As a general remark, we observe that the APP results on the variable-incremental experi-
ment confirms the observations on the uniform-incremental experiment of Sect. 4.3.1. Thus,
we decided to not include additional data tables in the paper for the sake of readability,
and we remark that the whole set of results on both the uniform- and variable-incremental
experiments is available for download at https://github.com/umilISLab/APP. Here, we only
stress that APP achieves comparable/higher clustering performances than AP and IAPNA
algorithms. As a difference with the uniform-incremental experiment, we note that the APP
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Table 12 Ablation study: PUR andNMI scores of APPwhen the q parameter is not considered and aminimum
number of incoming objects per category is not employed. The APP scores that are higher with respect to
Table 11 are denoted with an asterisk; the scores on the KDD-CUP dataset are denoted in bold

Metric Dataset 1th 2th 3th 4th 5th

PUR Iris 0.923 0.900 0.882 0.882 0.880

Wine 0.835* 0.881* 0.881* 0.889* 0.888*

Car 0.702 0.624 0.577 0.602 0.596*

KDD-CUP99’ 0.586 0.182 0.165 0.135 0.410

NMI Iris 0.647* 0.677 0.659 0.693 0.640

Wine 0.481* 0.585* 0.629* 0.642* 0.615*

Car 0.337 0.280 0.240 0.288 0.300*

KDD-CUP99’ 0.529 0.000 0.000 0.414 0.000

scores on PUR are improved. This is in relationwith the fact that also a slightly higher number
of clusters NC are generated by APP in the variable-incremental experiment.

Ablation study
APP is designed to work under the “group evolution” assumption, namely the idea that a

new incoming object that differs from past observations is more likely to be considered as
an outlier of a previously created cluster rather than as a singleton new cluster. To this end,
in the variable-incremental experiment, we inserted a q parameter to specify the minimum
number of incoming objects per category at a time-step t .

In the following, we present an ablation study, where the “group evolution” assumption
is replaced by an “individual evolution” assumption. In particular, the constraint on the q
parameter is removed and it is possible that just one or few objects per category are incoming
at a certain time-step t . The goal of this experiment is to analyse whether and how APP is
capable of successfully recognising the category of incoming objects also when few elements
of that category appear at a certain time-step.

In Table 12, we show the APP results in terms of PUR and NMI when a minimum number
of incoming objects per category q is not specified/considered.

With respect to the scores on PUR and NMI of Table 11, we note that the APP scores are
slightly lower on Iris and Car datasets and they are slightly higher on the Wine dataset. We
also note that the APP scores on the KDD-CUP dataset are dramatically lower than those
shown in Table 11.

As a result, we argue that the “group evolution” assumption implemented through the q
parameter does not significantly affect the APP scores on small datasets like Iris, Car, and
Wine where few categories are defined. On the opposite, on large datasets like KDD-CUP
where a number of categories are defined, not using the q parameter has a strong negative
impact on PUR and NMI scores. This means that the “group evolution” assumption imple-
mented through the q parameter positively affects the correct recognition of object categories
especiallywhen datasetswith several categories are considered,while not negatively affecting
the PUR and NMI scores on datasets with few categories.

Analysis of clustering results over time
As a further test, we consider a specific execution of APP and the related clustering results

over six time-steps. The goal is to analyse the capability of APP to correctly cluster objects
according to the corresponding categories when different incremental schemas are used (i.e.,
growing, shrinking, stable). In Fig. 3, we show the results of an APP execution on the Iris
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Fig. 3 Variable-incremental experiment: example of APP results by time-step over the Iris dataset

dataset.
In the dataset, the objects are distinguished in three different categories each one consti-

tuted by 50 elements, namely gold-0, gold-1, and gold-2. In the test, the objects of the three
categories follow a different incremental schema of arrival. The objects of the gold-0 cate-
gory are scheduled for arrival according to the stable schema (i.e., 9 gold-0 objects at 0-th and
1-th time-steps; 8 gold-0 objects at subsequent time-steps). The objects of the gold-1 category
follow a shrinking schema focused on time-steps from 0-th to 2-th. In particular, 19, 16, and
15 gold-1 objects are scheduled at 0-th, 1-th, and 2-th time-steps, respectively. Finally the
objects of the gold-2 category follow a growing schema focused on time-steps from 3-th to
5-th. In particular, 12, 13, and 25 gold-2 objects are incoming at 3-th, 4-th, and 5-th time-steps,
respectively.

In Fig. 3, for each time-step, we compare the clusters created by APP against the expected
gold clusters based on the category of the incoming objects. We observe that APP works very
well in clustering objects of stable and shrinking schemas. Indeed, the cluster-0 of APP always
succeeds in correctly clustering the gold-0 objects in all the time-steps. Similarly, we note
that the cluster-1 of APP perfectly reproduces the group of gold-1 objects in all the time-steps
from 0-th to 2-th where the gold-1 objects are incoming. We also note that some incorrect
clustering results are produced byAPP on the gold-2 objects that arrivewith a growing schema
from 3-th to 5-th time-steps. In particular, in 3-th and 4-th time-steps, the gold-2 objects are
distributed in two APP clusters, namely cluster-1 and cluster-2. Cluster-2 represents the APP
cluster that better fits to the gold-2 category. A part of the gold-2 objects arewrongly recognised
as gold-1 objects and placed in cluster-1. In the 5-th time-step, the gold-2 objects are spread
over five APP clusters. Again, a (small) part of gold-2 objects are placed in cluster-1 since
they are wrongly recognised as gold-1 objects. Coherently with the results of 3-th and 4-th
time-steps, the cluster-2 of APP seems to be the group that better fits the gold-2 category. The
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remaining cluster-3, cluster-4, and cluster-5 represent noisy groups with respect to the expected
gold categories of Iris. According to the above observations, we argue that clustering errors
mostly occur when the incoming objects follow a growing incremental schema. This is due
to the fact that the new category appears with a low number of objects in the first time-step
and this schema challenges the correct recognition of the new cluster to create.

5 Application of APP to Semantic Change Detection

As a concrete case-study of application of APP, we consider the semantic change detection
in the field of computational linguistics [20, 31, 38]. Semantic change detection refers to the
capability of recognising and measuring how much the use of a target word changes over
time. Typically, given a target word w, the detection of a semantic change in the use of w

is evaluated over two time-steps t1 and t2 characterised by distinct corpora of documents
C1 and C2 where w occurs. By generalizing such a scenario, semantic change detection can
be enforced over a sequence of time-steps t1....tn [29], each one associated with a bunch of
documents and it can thus be analysed using APP, in that the documents (i.e., objects) to
consider are incrementally added and become available at different time-steps (i.e., dynamic
arrival of objects).

Furthermore, a number of occurrences with different meaning of the target word w can
appear in the documents arrived at a given time-step t due to the possible polysemy ofw. For
instance, the word rock is used with the meaning stone in the sentences the tunnel
was blasted out of solid rock and they drilled through several
layers of rock. On the opposite, rock is used with the meaning music in the sen-
tencesJohn loves rock ’n roll and He plays guitar in a rock band.
Clustering can be effectively employed over the documents of a certain time-step t with the
aim to create groups, each one containing the occurrences of the target wordwwhere a certain
meaning of w is employed. The comparison of groups calculated over different time-steps
allows to recognise the possible change on the meanings of the word w.
The Vatican case-study. As a case-study, we consider a diachronic corpus of Vatican pub-
lications and we focus on capturing how the meaning(s) of a target word changed over
time [8]. The Vatican corpus contains 29k documents extracted from the digital archive of
the Vatican website and it consists of all the web-available documents, spanning from the
papacy of Eugene IV to Francis (1431-2023). Although the documents are available in var-
ious languages, including Italian, Latin, English, Spanish, and German, we downloaded the
Italian corpus since a largest number of documents are available in this language. We note
that the Vatican corpus is particularly appropriate for semantic change detection since it is
characterised by an exceptional historical depth and it deals with popular issues in the public
debate, alongside themes of faith and worship.

To set-up the case-study, we first define a target word w we aim to detect its semantic
change within the Vatican corpus. Then, we split the corpus in six sub-corpora, each one
denoting a specific time period. It is worth noting that for most of the earlier pontificates, a
few documents are available (e.g., Eugene IV) or none at all (e.g., Nicholas V). To address
the skewed distribution of documents over time, we aggregated popes and related documents
for ensuring that each sub-corpus contains at least 50 occurrences of the target word w.
Furthermore, we performed a random sampling of 100 occurrences of w from each sub-
corpus when more occurrences are available to ensure that the number of occurrences are
comparable across the sub-corpora.
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Fig. 4 The APP results on the Vatican corpus for the word novelty

ToapplyAPP to theVatican corpus,we follow the approachpresented inMartinc et al. [23].
In particular, we exploit the Italian pre-trained BERTmodel3 to represent each occurrence of
the target word w as a word embedding vector. The APP algorithm is then executed to create
clusters of embeddings related to the same meaning of w. The first sub-corpus is considered
in the initial run of APP, then the remaining sub-corpora are added one-by-one in a specific
APP iteration. In the case-study, the pruning threshold thγ is set to ∞ since the goal of our
experiment is to focus on the evolution of clusters over time, rather than to analyse the effects
of the forgetfulness property on irrelevant clusters.

5.1 Cluster Evolution Analysis

As a target word of our case-study, we consider w = novità (novelty). The Vatican corpus
is split into the following sub-corpora: 1) before Leo XIII, with documents prior to 1878; 2)
from Leo XIII to Pius XI, with documents in the range 1878–1939; 3) from Pius XII to John
XXIII, with documents in the range 1939–1963; 4) Paul VI, with documents in the range
1963–1978; 5) Benedict XVI, with documents in the range 2005–2013; 6) Francis I, with
documents up to 2023. It is worth noting that we do not include the pontificate of John Paul
II in this analysis. The richness and the variety of documents of John Paul II is significantly
higher than the other pontificates andwe note that it has been used in several different contexts
and meanings, thus introducing a really challenging task of semantic change detection. So,
we decided to exclude the documents of John Paul II since the goal of our case-study is to
show the behavior of APP on cluster evolution and not to discuss the APP effectiveness on
a custom task of change detection. As such, the effectiveness of APP for semantic change
detection will be discussed on a benchmark dataset in Sect. 5.2.

In Fig. 4, we provide an example of cluster evolution according to the stratification criteria
presented in Sect. 3. Each cluster contains a set of contextual embeddings of the target word
novelty and it denotes a corresponding meaning of novelty at a certain time by considering
the documents of the Vatican corpus until that moment.

3 dbmdz/bert-base-italian-cased.
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A cluster k is represented as a box with an associated identifier. The cluster size denotes
the cumulative number of elements in the cluster at each iteration: the larger the cluster box,
the greater the number of cluster elements. In the example, we use the same cluster identifier
across different iterations when the cluster is the result of a stratification-by-enrichment,
while we assign new identifiers to clusters resulting from stratification-by-creation and
stratification-by-merge.

The example of Fig. 4 shows that just onemeaning of thewordnovelty could be recognised
in the 1st APP iteration; and further meanings appeared in subsequent executions, especially
in the iterations from 4th to 6th, where the use of the word novelty becomes strongly
polysemous.

The cluster k0 in the 1st APP iteration is an example of stratification-by-creation and
it describes the use of the word novelty as a negative, dangerous concept, since new ideas
and novel practices were considered as a threat to the traditional teachings of the Church by
the earlier pontificates. The cluster k0 is populated with new elements in the 2nd iteration
(stratification-by-enrichment), when a new cluster k1 is also introduced with embeddings
of the novelty occurrences from the documents of the 2nd sub-corpus (stratification-by-
creation). The clusters k0 and k1 are joined in the 3rd iteration to generate the cluster k2
(stratification-by-merge). The cluster k2 remains unchanged in subsequent iterations from
4th to 6th (no more documents are found similar to k2), confirming that such a conservative,
right-wing position of the Church has been abandoned after the Second Vatican Council
(1962–1965).

In this example, the clusters k0–k2 are equipped with a textual description that has the
goal to summarise the cluster contents and the related meaning of the word novelty in the
cluster. Since cluster labeling is not the focus of this paper, we leverage ChatGPT4 to generate
the cluster summaries of our examples. To label a cluster, we collect the text sources in the
Vatican corpus that are associated with the occurrences of the word novelty in the cluster
and we ask ChatGPT to summarise the common topic.

As a further example, in Fig. 5, we show the evolution/stratification over time of those
clusters that are finally merged into the cluster k26 at the 6th iteration of APP in Fig. 4. The
example of Fig. 5 is about the usage of the word novelty in relation with societal, cultural,
and religious change. In particular, we focus on the period from 1939 to 2023 (iterations
from 3rd to 6th), although this meaning of novelty appeared in the 2nd iteration with
the clusters k3 and k4 as examples of stratification-by-creation. According to Fig. 4, the 3rd
iteration is characterised by the emergence of new relevant clusters such as k5 and k6 through
stratification-by-creation, while the cluster k3 increases its importance with new elements
through stratification-by-enrichment. The cluster k4 remains unchanged, and a newmarginal
cluster called k7 is created. In the 4th iteration, the number of clusters about this meaning
of novelty is strongly increased (stratification-by-creation), probably due to the dynamism
of ideas introduced by the Second Vatican Council and reflected in the Vatican documents.
Such a variety of positions at the 4th iteration is represented in Fig. 5 by the clusters k6, k8,
and k17. The 5th iteration is mostly characterised by stratification-by-merge operations and
the clusters k20, k21, and k22 represent the main result of APP on this meaning of novelty.
About the cluster k21, we note that it is the result of a merge operation that involves a number
of clusters of the previous iteration (i.e., the 4th one), and it is also strongly increased in
importance due to the insertion of several elements (i.e., novelty occurrences) of the current
5th iteration.

4 https://openai.com/blog/chatgpt/
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Fig. 5 The evolution/stratification of clusters that are finally merged into the cluster k26 of Fig. 4. For the sake
of readability, the cluster description is provided only for k3, k6, k8, k17, k20, k21, k22, k26

The result at the 5th iteration also includes the (minor) cluster k16 that remains unchanged
with respect to the previous iteration (no elements of the 5th iteration are inserted in this
cluster). The summary descriptions of clusters k20, k21, and k22 are provided in Fig. 5. This
meaning of novelty is finally reconciled in a unique cluster k26 at the 6th iteration through
a final stratification-by-merge operation.

A final example of evolution/stratification is provided in Fig. 6 about the clusters k19, k23,
and k27 of Fig. 4.

This example is about the usage of novelty in relation with the innovation of the Christian-
ity, new understanding of the Church teaching, and effects on the followers. In this example,
we focus on the 5th and 6th iterations where most of the clusters about this meaning of
novelty appear, thus highlighting the very recent emergence of such a discussion in the
Church debate. In Fig. 6, we show the descriptions of clusters k19 and k23 that are the most
representative at the 5th iteration and that are finally merged into cluster k27 at the 6th
iteration.

It is worth to stress that APP allows to represent all the various meaning/interpretations
associated with the word novelty at each iteration. Furthermore, the stratification criteria are
able to track the transformations of clusters along the time, as well as to reconcile all the
branches of a certain meaning into a summary cluster at the last iteration, thus providing a
convenient picture to the scholar/analyst that aims to explore the evolution of novelty in the
whole Vatican corpus.
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Fig. 6 The evolution/stratification of clusters k19, k23, and k26 of Fig. 4

Table 13 Comparisonof AP,
IAPNA, and APP on SemEval
Task1. Further details are
provided in [30]

AP IAPNA APP

English 0.514 0.462 0.512

Latin 0.485 0.499 0.512

5.2 Evaluation on a Reference Benchmark

As a final test for assessing the effectiveness of APP on semantic change detection, we
performed a benchmark evaluation by considering the Task 1 defined in the SemEval-2020
challenges [35]. The task is characterised by a number of corpora with related change to
detect provided as gold standard.

For application of APP to semantic change detection, we extend the scheme proposed in
Martinc et al. [23]. In particular, our approach relies on i) the use of contextualised embeddings
to represent each occurrence of the targetword from aBERTmodel [13]; ii) the aggregation of
the embeddings with the APP clustering algorithm; iii) the computation of a semantic change
measure by comparing the vector distribution over clusters according to the time-steps by
using the Jensen-Shannon divergence (JSD).

In Table 13, we report the best result we obtained on the SemEval Task 1 by considering
the English and the Latin corpora. The results show the performance of AP, IAPNA, and
APP in terms of Spearman’s correlation.

We observe that the results of APP are comparable and sometimes higher than AP and
IAPNA. As occurred in both uniform-incremental and variable-incremental experiments, we
also note that APP produces a smaller and more reasonable number of clusters compared to
both AP and IAPNA. In particular, in the executed SemEval task, we found that the number
of APP clusters generally varies between 0 and 30 while both AP and IAPNA produce more
than 100 clusters, that is rather unrealistic if we consider that a cluster represents a word
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meaning. Further details about the APP results on the SemEval Task 1 for semantic change
detection are provided by Ref. [30].

6 Discussion

Our APP algorithm introduces a scalable and memory-efficient approach to incremental
clustering by consolidating clusters into centroids and enforcing faithfulness and forgetful-
ness properties. These design principles allow APP to effectively handle large and evolving
datasets, preventing previously clustered objects from changing their assignments. However,
while these strengths reduce memory usage and computational complexity, they also present
challenges in adapting to diverse datasets, potentially leading to slight drops in clustering
accuracy.

In particular, the inherent abstraction of clusters into centroids can hinder the clustering of
new incoming objects that exhibit high variability. For instance, when new objects are highly
dissimilar fromexisting centroids but insufficient in number to formanewcluster, theymaybe
misclassified into existing ones. A similar issue arises for outliers. This issue is particularly
pronounced in scenarios where new incoming objects emerge gradually over time. If the
evidence supporting the formation of a new cluster is insufficient within a specific time step,
APP may delay recognizing the new cluster, postponing the detection until a substantial
number of similar objects arrive together. We thus emphasize that APP operates under the
assumption of group evolution to ensure timely recognition of new clusters.

Furthermore, APP introduces a novel pruning mechanism to enforce forgetfulness and
manage obsolete clusters. By associating each cluster with an aging index, APP effectively
discards clusters that remain unchanged according to a considered threshold. While this
feature reduces memory usage and computational overhead, it may inadvertently remove
clusters representing periodic or less frequently updated patterns. This behavior can lead
to underrepresentation of clusters in certain applications, such as those analyzing seasonal
trends or long-tail distributions. This choice is highly dependent on the type of data being
analyzed. In scenarios where space is not a constraint, pruning can be skipped, and the entire
historical record can be retained. However, in cases with limited resources, pruning becomes
essential. For example, in rapidly evolving fields, a few intervals without cluster integrations
may be sufficient to deem a cluster as “lost”. In contrast, when the focus is on periodic
integration of data clusters, prematurely pruning clusters from memory could result in the
misidentification of a new cluster that is simply appearing and disappearing from memory.

As an example, consider semantic change detection, where clusters represent word mean-
ings. Setting the pruning threshold too low in such cases could hinder the detection of periodic
senses. For instance, in contexts like themeaning of "gold" during the Olympics, prematurely
pruning senses from memory may incorrectly capture a temporary shift in meaning as a per-
manent change. Therefore, the appropriate pruning strategy must be carefully tailored to the
features of the data and the temporal patterns of interest.

7 Concluding Remarks

In this paper, we propose A-Posteriori affinity Propagation (APP) as an extension of Affinity
Propagation (AP). APP is conceived to work in incremental scenarios by enforcing faith-
fulness and forgetfulness through cluster consolidation/stratification. Evaluation results on
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popular benchmark datasets are provided to assess the performance of APP in two different
incremental settings. The results show that APP obtains comparable results on cluster quality
with respect to AP and IAPNA algorithms, while achieving high scalability performances
at the same time. Further experimental results about the use of APP for semantic change
detection are discussed to highlight the applicability of our algorithm to a concrete evolu-
tionary scenario. More in general, APP is suitable for application scenarios where the “group
evolution” assumption holds, like for example tracking the evolution of word meanings over
diachronic corpora. Further application scenarios of APP are in the field of Computational
Linguistics and Natural Language Processing where the use of multi-dimensional vector
representations (e.g., the 768-dimensional BERT embeddings) is getting popular for repre-
senting the semantics of words and sentences. In this case, the average-based representation
of cluster centroids enforced by APP is particularly appropriate to manage the embeddings
generated by the modern large deep language models in a scalable way.
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