
R3: Robust Rubric-Agnostic Reward Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Reward models are essential for aligning language model outputs with human pref-1

erences, yet existing approaches often lack both controllability and interpretability.2

These models are typically optimized for narrow objectives, limiting their general-3

izability to broader downstream tasks. Moreover, their scalar outputs are difficult to4

interpret without contextual reasoning. To address these limitations, we introduce5

R3, a novel reward modeling framework that is rubric-agnostic, generalizable6

across evaluation dimensions, and provides interpretable, reasoned score assign-7

ments. R3 enables more transparent and flexible evaluation of language models,8

supporting robust alignment with diverse human values and use cases. Our models,9

data, and code will be available as open source.10

1 Introduction11

Reward models play a central role in aligning language model outputs with human preferences by12

assigning scalar scores to generated responses [26, 17]. However, current reward modeling approaches13

suffer from two significant limitations: limited controllability and poor interpretability. First, these14

models are often optimized for narrow objectives—such as helpfulness or harmlessness—resulting in15

behavior that is overly tailored to specific metrics and not readily generalizable to a broader range16

of downstream tasks [18, 32]. Second, the interpretability of reward scores remains unclear. For17

instance, scalar values like “1” or “2” on a Likert scale are not inherently meaningful without an18

explicit explanation of what those scores represent in context.19

Aligning models with human preferences is crucial, but obtaining human judgments is often costly20

and time-consuming [34, 20, 42]. Leveraging existing human evaluations from prior research21

appears promising; however, it poses several challenges, including lack of standardization, varying22

evaluation criteria, insufficient documentation, data privacy issues, and proprietary restrictions [12].23

As an alternative, using model-generated outputs for reward modeling or annotation offers greater24

efficiency and flexibility. This lack of generalizability and transparency presents challenges for25

reliably evaluating and guiding language model behavior across diverse use cases. To address these26

issues, we propose R3, a novel reward modeling framework that is rubric-agnostic, generalizable to27

various evaluation dimensions, and grounded in interpretable, measurable scores. Our approach not28

only supports more flexible alignment with human values but also includes explicit reasoning for29

score assignments, enabling more transparent and trustworthy model evaluation.30

2 Aren’t Existing Reward Models Robust Enough?31

The challenge of building models that generalize across diverse tasks and domains—particularly in32

evaluating quality from multiple aspects or human annotation metrics. In this section, we present the33

motivation behind the need for developing new reward models.34
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Figure 1: ROBUST RUBRIC-AGNOSTIC REWARD (R3) models both the input and output of a task.
It takes a prompt that includes an instruction, task description, input, response(s), and evaluation
rubrics, and generates a score along with the corresponding reasoning.

Controllability. Existing reward models, such as ArmoRM [38] and UniEval [49], offer limited35

support for evaluating models on fine-grained aspects. They typically require separate training for36

each aspect along with corresponding parameter weights, reducing flexibility during both training and37

evaluation—especially when dealing with unseen aspects. Similarly, models like Prometheus [11, 13]38

are restricted in the range of supported task types; for example, they do not accommodate binary39

classification. ArmoRM is further limited in that it only supports point-wise tasks, making it unsuitable40

for pair-wise comparisons. Interpretability. Scores generated by reward models—particularly those41

based on generative LLMs [30, 44] or some custom classifiers [40, 41, 47] —can be difficult to42

interpret. For example, a score of 0.6543 on a 0–1 scale offers little clarity: Is it measuring helpfulness,43

correctness, coherence, or some opaque combination of all three? Without a clearly defined rubric or44

accompanying explanation, such scores provide limited actionable insight, leaving users to guess45

what aspect of quality the number is intended to capture. Limited Compatibility on Various Tasks.46

Existing reward models often have limited compatibility with a diverse range of tasks. For instance,47

models like RM-R1 [3] are primarily designed for pair-wise comparisons, making them less suitable48

for point-wise or binary classification tasks, which limits their applicability. Similarly, Prometheus49

supports point-wise and pair-wise evaluations but lacks native support for binary classification—an50

approach that can be particularly effective for tasks like hallucination or toxicity detection.51

3 Tasks and Datasets52

The goal of our open-ended evaluation model is to assess the quality of a response according to human-53

defined criteria, producing both a final score and a natural language explanation for interpretability.54

Formally, given a task instruction t, input instance i, one or more candidate responses a, and an55

evaluation rubric r, the model is tasked with generating an explanation e, that justifies the evaluation56

and a score s that reflects the response quality under the given rubric r. We define this evaluation57

process as a function: f(x) = y,where x = (t, i, a, r) and y = (e, s).58

3.1 Task Formats59

To support a wide range of evaluation settings, we define three task formats within our unified60

framework: point-wise, pair-wise, and binary evaluation. Each format shares the same input structure61

x = (t, i, a, r)and output structure y = (e, s) but differs in how the candidate responses are structured62

and how the score s is defined.63

Point-wise Evaluation. This format assesses the quality of a single response a1 by assigning an64

integer score, typically on a 1–5 scale [11]. It is suitable for open-ended generation tasks where65

scalar assessments of quality are needed, such as helpfulness, relevance, coherence, etc. Formally,66

a = a1, fpoint−wise(t, i, a, r) = (e, s), s ∈ {1, 2, 3, 4, 5}.67

Pair-wise Evaluation. In this setting, the model compares two candidate responses a1 and a2 to the68

same input i and selects the preferred one, along with an explanation. This format is commonly used69

in preference-based training. Formally, a = (a1, a2), fpair−wise(t, i, a, r) = (e, s), s ∈ {a1, a2}.70
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Binary Evaluation. Binary task requires the model to make a definitive judgment about the71

correctness or acceptability of a response a1, given the input and rubric. These tasks span a variety of72

use cases, including factual verification, binary classification (e.g., determining whether a summary is73

faithful), and structured reasoning (e.g., assessing the validity of a math or code solution). Formally,74

a = a1, fbinary(t, i, a, r) = (e, s), s ∈ {true, false}.75

3.2 R3 Datasets76

To support open-ended evaluation across diverse domains and task formats, we begin with a large77

pool of publicly available datasets spanning over 3 million examples, which include general chat,78

reasoning, and classification tasks, as shown in Figure 3. However, most of these datasets lack79

consistent evaluation rubrics and explanation traces, which are key components to train our evaluation80

model to output both scores and natural language justifications. Generating such traces, particularly81

using a strong reasoning model such as DeepSeek-R1 [6], is also computationally expensive and82

infeasible on a large scale. To address this, we build our training dataset in multiple stages, drawing83

inspiration from Muennighoff et al. [23] to emphasize both quality and diversity of the training data84

while on a limited budget. We first sample a diverse subset from the raw pool, then enrich each85

example with on-the-fly rubric generation and explanation traces. Finally, we apply filtering and86

refinement to produce smaller, higher-quality datasets used in supervised training, which results in87

datasets of size 14k and 4k. More details about the dataset construction can be found in Appendix D.88

3.3 Training89

Given our generated training data, we further use supervised fine-tuning (SFT) to enhance the base90

model’s reasoning capability as a reward model by minimizing the negative log-likelihood of reference91

responses. Given our training dataset D = {(x(i), y(i))}Ni=1, where x(i) is prompt input previously92

introduced and y(i) = (y
(i)
1 , . . . , y

(i)
Ti
) introduced in eq. (4) is the corresponding target sequence,93

the objective is the cross-entropy loss: LSFT(θ) = − 1
N

∑N
i=1

∑Ti

t=1 log πθ

(
y
(i)
t | y(i)<t, x

(i)
)
, where94

πθ(yt | y<t, x) denotes the model’s conditional probability of token yt given the history y<t and95

prompt x, parameterized by θ. By directly maximizing the log-likelihood of the ground-truth tokens,96

this loss encourages the base model to produce high-quality reasoning traces and the desired format97

for pair-wise comparisons or single-answer rewards.98

4 Results and Analysis99

In this section, we present the overall performance and summarize the human evaluation used to100

assess the quality of reasoning traces generated by the DeepSeek-R1 model. Detailed results are101

provided in the Appendix due to space constraints.102

4.1 Overall Performance103

Figure 2 highlights the strong performance of our R3 models, showcasing the effectiveness of R3104

models in pair-wise preference scoring under a training budget. Our models deliver remarkable results105

where even our smallest model, R3-QWEN3-4B, outperforms nearly all other reasoning models106

from RM-R1, with the exception of RM-R1-DeepSeek-Distilled-Qwen-14B and RM-R1-DeepSeek-107

Distilled-Qwen-32B. It also surpasses Prometheus-7B-v2.0, GPT-4.1 mini, and even DeepSeek-R1108

as well, demonstrating its competitiveness. Furthermore, both full SFT and LoRA SFT versions of109

R3-QWEN3-14B-4K outperforms RM-R1’s best model, RM-R1-DeepSeek-Distilled-Qwen-32B,110

by up to 1.0 point. Between our R3-QWEN3-14B and R3-PHI-4-R+ models, R3-QWEN3-14B111

models consistently outperforms R3-PHI-4-R+ models in all aspects.112

The performance of our R3 models on point-wise assessment tasks, along with binary tasks, all R3113

models consistently outperform DeepSeek-R1 and Prometheus-7B-v2.0, highlighting the effectiveness114

of binary assessment for R3 models. In terms of coherence and relevance, our R3-PHI-4-R+ models115

perform the best among all open-source and proprietary models. For binary classification tasks, we116

observe that both larger model size and greater fine-tuning data improve performance, reflecting117

stronger reasoning capabilities. All of our R3 models outperform Prometheus-7B-v2.0, while R3-118
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Figure 2: R3 models outperforms competitor models across differences model sizes in all data types.

QWEN3-14B models surpass GPT-4.1 mini’s performance. Overall, these results highlight the119

competitive and robust performance of R3 models across a range of point-wise and binary evaluation.120

4.2 Ablation Study121

Table 1: Ablation studies on dataset construction, employing the R3-QWEN3-14B model trained on
a 14k-sample dataset using LoRA.

RM-Bench RewardBench BBH MMLU-STEM XSUM FeedbackBench
Overall Acc. Overall Acc. Overall Acc. Overall Acc. Acc. Faithfulness τ Coherence τ Relevance τ

Random Sampling 77.0 86.6 89.7 93.0 71.0 0.228 0.333 0.648

Dataset
Only Pairwise 82.1 90.2 91.5 94.4 68.4 0.205 0.329 0.662
Only Pointwise 80.0 86.0 90.1 93.4 63.5 0.236 0.318 0.639
Only Binary 81.6 88.8 91.0 94.0 67.2 0.296 0.332 0.658

No Rubric 76.3 87.9 85.1 91.9 70.3 -0.037 -0.032 0.652
No Explanation 83.1 90.2 91.7 94.5 66.4 0.198 0.353 0.651
No Reasoning 71.2 82.6 79.8 88.2 72.8 0.092 0.399 0.683

R3 83.5 90.2 91.9 94.5 69.2 0.245 0.336 0.654

We conduct an ablation study to assess the effectiveness of our overall dataset construction on different122

sampling strategies, dataset types, and supervision signals, with results summarized in Table 1. For123

efficiency, we apply LoRA [9] in all experiments using R3-QWEN3-14B. Our results indicate that124

random sampling consistently underperforms compared to diversity sampling. Among dataset types,125

pairwise supervision achieves the best results (82.1% on RM-Bench, 94.4% on MMLU-STEM),126

surpassing pointwise and binary-only settings and improving relevance on XSUM. Supervision127

signals also have distinct effects: removing the rubric lowers BBH accuracy, excluding explanations128

reduces coherence, and eliminating reasoning traces causes the largest performance drop (e.g.,129

71.2% RM-Bench, 79.8% BBH), underscoring the importance of reasoning data. The full model130

(R3) achieves the best overall balance (83.5% RM-Bench, 94.5% MMLU-STEM, strong scores on131

coherence, relevance, and FeedbackBench). Although excluding explanations has limited impact on132

accuracy, we retain them in R3 to enable more interpretable outputs.133

5 Conclusion134

In this paper, we introduce R3, a novel reward modeling framework that is rubric-agnostic, generaliz-135

able across evaluation dimensions, and capable of producing interpretable, reasoning-based score136

assignments. Leveraging reasoning distillation, targeted dataset curation, and a two-stage quality137

filtering pipeline, R3 addresses key limitations of prior reward models in terms of interpretability,138

controllability, and generalizability. Despite using training datasets that are an order of magnitude139

smaller than those of many baselines, R3 models matches or surpasses state-of-the-art performance.140

Our experiments demonstrate the method’s strong training efficiency and scalability, including effec-141

tive use of compute-efficient techniques. By enabling more transparent and adaptable evaluation, R3142

advances robust alignment with diverse human values and real-world applications, paving the way143

for more trustworthy and versatile reward models.144
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A Limitations282

In our experiments, we limit our exploration to models with up to 14B parameters due to resource283

constraints. We also include smaller models in our study, aiming to shed light on scaling behavior284

and its impact on performance. Larger models, such as those with 32B parameters or more, are left285

for future investigation.286

B Related Work287

Rubric-Based Evaluation Models. Recent works leverage explicit rubrics to guide LLM evaluation.288

Kim et al. [11] created FeedbackCollection, a fine-grained text evaluation finetuning dataset using289

detailed rubric for point-wise (direct accessment) evaluation. [13] followed-up by adding pair-wise290

evaluation to the training and found that weight merging performs better than training a jointly291

trained model. Likewise, LLM-Rubric (Hashemi et al. [7]) prompts an LLM on a human-authored292

multi-question rubric (e.g. dimensions like naturalness, conciseness, citation quality) and calibrates293

its outputs via a small model to match human judges. These rubric-driven methods yield fine-grained,294

interpretable assessments, but their reliance on laboriously constructed rubrics and reference solutions295

limits scalability and generality ([7]; [11]). By contrast, R3 eliminates the need for external rubrics,296

learning reward signals directly in a transparent form to enable broad, rubric-agnostic evaluation.297

Preference-Based Reward Models. Reward models learned from (implicit or explicit) human298

preferences—typically via RLHF or related methods—have become a standard alignment approach299

[26]. In practice, however, learned RMs often exploit trivial cues: for instance, they tend to favor300

longer or more elaborate outputs (a well-known length bias) over brevity [29], and recent analyses301

show LLM evaluators even “self-recognize” and prefer their own generations over others of equal302

quality [25]. Zhu et al. [50] further demonstrate “model preference bias” in RMs, whereby certain303

models’ outputs are systematically overvalued. Such biases and spurious correlations undermine304

fairness and generalization. New techniques mitigate these issues: Direct Preference Optimization305

(DPO) recasts RLHF in a simpler optimization framework [26], and Vu et al. [34] train FLAMe306

on 5M+ human judgements across 100+ tasks, achieving stronger OOD generalization and even307

outperforming GPT-4 on reward-modeling benchmarks. Despite these advances, preference-trained308

RMs remain large, opaque models tied to specific data, motivating R3’s interpretable, rubric-free309

reward formulation as a more transparent alternative.310

LLM-as-a-judge Framework. Using a pretrained LLM itself as the evaluator has gained popularity311

due to its zero-shot flexibility [13]. However, numerous studies reveal reliability issues. For instance,312

Wang et al. [39] found that simply altering the order of candidate responses can drastically flip an LLM313

judge’s ranking, making one model appear vastly superior or inferior. More broadly, LLM evaluators314

suffer from hallucinations and entrenched biases; e.g., Panickssery et al. [25] show LLM judges315

systematically score their own outputs higher than others’ (“self-preference” bias), and Zhu et al. [50]316

observe strong model-specific scoring bias in LLM-based evaluation. These flaws undermine trust317

and consistency in LLM-as-judge systems. R3 addresses these gaps by offering a fully interpretable318

reward model that does not rely on opaque LLM judgments or fixed rubrics.319

C Analysis320

C.1 Human Evaluation of Reasoning Traces321

A total of five annotators annotated approximately 2% of D4k, which was stratified sampled from322

various dataset sources, to verify both the reliability of the reasoning traces and the quality of the323

trace summarization. Details of the annotations setup, metrics we use to annotate, the experiments,324

and results are in Appendix K. We find on average the reasoning traces score 2.9 ± 0.2 (out of 3,325

higher better) in factual correctness, 2.8± 0.2 in logical coherence (n=93). The faithfulness of the326

summary scores averages 2.8± 0.5 and the style consistency scores 2.7± 0.4 (n=84). These results327

confirm the high quality reasoning traces used in our dataset.328
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Figure 3: Dataset sources utilized in training the R3 model.

C.2 Model Scaling and Efficiency329

We observe that our R3 models consistently improve with larger model sizes across all benchmarks,330

with some showing significant gains. For instance, on RM-Bench, our method achieves up to a331

4.9-point improvement. In contrast, baseline models such as RM-R1 and Prometheus-7B-v2.0 do332

not perform as well at similar model sizes. Notably, our models even outperform larger models333

like RM-R1-DeepSeek-Distilled-Qwen-32B. Furthermore, models trained using LoRA demonstrate334

performance on par with full fine-tuning, highlighting the effectiveness of our approach even in335

compute-efficient training regimes. These results suggest that both our methodology and dataset are336

highly effective for training reward models in resource-constrained settings.337

C.3 Robustness338

Among proprietary models, GPT-4o-mini outperforms DeepSeek-R1 on reward benchmarks involving339

pair-wise scoring, while DeepSeek-R1 demonstrates stronger performance on tasks such as XSUM,340

FeedbackBench, BBH, and MMLU-STEM. For open-weight models, our R3 models consistently341

outperform existing reward models, such as Prometheus-7B-v2.0 and all RM-R1 variants, across342

most benchmarks. The only exception is FeedbackBench, where Prometheus-7B-v2.0 performs343

exceptionally well. However, this suggests that Prometheus-7B-v2.0 is highly specialized rather344

than robust across tasks. In contrast, RM-R1 is more robust than Prometheus-7B-v2.0 but lacks345

flexibility in supporting diverse evaluation formats such as point-wise and binary scoring; Prometheus,346

meanwhile, supports only point-wise and pair-wise formats. Our R3 models offer both robustness347

and versatility, making it more suitable for general-purpose reward modeling.348

D Dataset Creation Details349

The following sections describe each stage.350

D.1 Initial Curation351

We begin by curating a large collection of publicly available datasets, denoted by Dinit, which352

spans on three broad categories: general chat, reasoning, and classification or evaluation tasks. Each353

example x(j) ∈ Dinit is a tuple x(j) =
(
t(j), i(j), a(j), r

(j)
opt

)
, where r

(j)
opt is optional rubric from the354

original dataset.355

• General Chat and Instruction-Following: This category includes open-domain instruction356

tuning and user preference data, drawn from resources such as the Tulu subset [16], Ultra-357
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Feedback [4], and Skywork Reward Preference [21]. These datasets contain point-wise and358

pair-wise tasks.359

• Reasoning Tasks: To support math and code reasoning evaluations, we include datasets360

like Math-Step-DPO-10K [15] and AceCodePair-300K [45], which contain preference361

annotations focused on correctness and reasoning quality on math and coding tasks.362

• Classification and Factual Evaluation: This category consists of binary and pair-wise363

tasks aimed at assessing factuality, consistency, and alignment with task rubrics. We include364

GLUE [35], SuperGLUE [36], SummEval [5], FeedbackCollection [11], PreferenceCollec-365

tion [13], and EVOUNA [37]. These tasks span summarization, natural language inference,366

general rubric-based classification, and factual correctness.367

To construct binary-labeled data that includes false scores, we need to generate negative answers,368

as many datasets only provide the correct response (e.g., EVOUNA, GLUE, SuperGLUE). When369

possible, we sample negative answers from existing multiple-choice options. Otherwise, we generate370

negative answers using GPT-4o mini [1].371

D.2 Diversity Sampling372

To ensure feasibility for distilling reasoning traces while maintaining representative coverage across373

domains and reducing redundancy, we downsample Dinit to a 20k-example subset D20k ⊂ Dinit,374

manually allocating quotas per dataset to balance task types and formats. Dataset composition details375

can be found in Section E. For each dataset in Dinit, we perform a three-stage sampling process to376

extract the most diverse examples:377

1. Embedding and Preprocessing. We begin by embedding each instance using a semantic378

representation that combines its task instruction and input text to capture the sample’s379

semantics across topics. Specifically, we use the gte-Qwen2-7B-instruct model [19] to380

compute embeddings over h(x(j)) = t(j) ⊕ i(j), where ⊕ denotes string concatenation. The381

resulting embedding Emb(h(x(j))) = q(j) is used to measure similarity and diversity in382

semantic space during clustering.383

2. Cluster Determination and Assignment. To identify an appropriate number of groups384

k∗ ∈ {kmin, . . . , kmax}, we select the value of k that maximizes the average Silhouette385

score [28]. Here we choose kmin = 3 and kmax = 10. If the dataset includes labeled386

subcategories (e.g., topics or task types), clustering is applied independently within each387

subcategory to preserve intra-category diversity. The Silhouette score for a sample x(j) is388

defined as sj =
vj−wj

max(vj ,wj)
where vj is the mean distance between xj and other points in389

the same cluster, and wj is the mean distance to the nearest cluster not containing x(j). We390

select the optimal number of clusters k∗ by391

k∗ = arg max
k∈{kmin,...,kmax}

1

|D|

|D|∑
j=1

s
(k)
j , (1)

where s
(k)
j is the Silhouette score of sample x(j) under the clustering configuration with k392

clusters.393

3. Stratified Sampling with Maximal Marginal Relevance (MMR). We perform stratified394

sampling from each cluster with a minimum of 10 samples per cluster. For each cluster C395

with centroid qC :396

• We retain the first 25% of samples based on the closest to the cluster centroid, to ensure397

topical relevance, i.e., Rclosest = Top⌊0.25·|C|⌋{x ∈ C | ∥Emb(x)− qC∥2};398

• The next 75% of the samples are selected via MMR, which balances relevance and399

diversity among the already selected samples. Let R denote the set of already selected400

examples, in which initially R = Rclosest. To sample the next candidate x ∈ C \ R,401

we compute the MMR score as:402

MMR(x) = λ · sim(x, qC)− (1− λ) · max
xr∈R

sim(x, xr), (2)
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where sim(·, ·) denotes cosine similarity, and λ ∈ [0, 1] is a tunable trade-off parameter,403

in which we set λ = 0.5 to balance relevance and diversity. The next selected example404

is x∗ = argmaxx∈C\R MMR(x).405

For binary datasets, we retain only one instance per question, either the positive or the negative, to406

avoid redundancy from semantically similar content.407

D.3 Rubric Generation408

Many datasets lack explicit evaluation rubrics, which are essential to our framework for generating409

structured supervision. To address this, we automatically generate rubrics based on task type at410

inference time. Although rubrics are produced dynamically to simulate realistic deployment, they are411

cached for reusability in our dataset.412

Formally, for each sample x(j) in D20k, we transform the optional rubric r
(j)
opt into a required rubric413

r(j), so the dataset becomes D20k = {(t(j), i(j), a(j), r(j))}20000j=1 . The rubrics are generated based414

on task type using the following methodology:415

Pair-wise and Binary Tasks. We use templated prompts to generate rubric variations tailored to416

each format. To encourage generalization and mitigate overfitting, we randomize the rubric phrasing417

across three prompt variants. Full templates are listed in Appendices F.3 and F.4.418

Point-wise Tasks. When original rubrics r
(j)
opt are available (e.g., in FeedbackCollection), we419

reuse them. Otherwise, we generate task-specific rubrics targeting relevant evaluation criteria (e.g.,420

helpfulness in UltraFeedback) using a few-shot prompting strategy with GPT-4o mini. Details on421

rubric prompting are available in Appendix F.1.422

D.4 Explanation Trace Generation423

Given the curated dataset D20k = {(t(j), i(j), a(j), r(j))}20,000j=1 , we distill natural language explana-424

tions using a reasoning distillation model. Specifically, we define a function:425

ReasoningModelθ : (t(j), i(j), a(j), r(j)) −→
(
reasoning_trace(j), ŝ(j), ê(j)

)
, (3)

where ReasoningModelθ is instantiated with DeepSeek-R1 [6]. This model generates a natural426

language explanation (reasoning_trace(j)) along with short response of its predicted score ŝ(j)427

and a short justification span ê(j), following methodologies from prior work on explanation-based428

distillation [31, 34]. Prompting templates are provided in Appendix F. We define the final target for429

each sample x(j) as:430

y(j) = reasoning_trace(j) ⊕ (ŝ(j), ê(j)) (4)

where ⊕ is string concatenation. Therefore, we define the dataset D20k as D20k = {(x(j), y(j))}20000j=1 .431

Approximately 20% of the reasoning traces are either overly verbose or contain repetitive content.432

For any example where y(j) exceeds 4,096 tokens, we apply a post-processing step using GPT-4.1433

mini to summarize the reasoning trace. The summarization preserves the core explanation while434

removing redundant content and maintains stylistic coherence with the original output. Details and435

heuristics for this step are provided in Appendix H.436

As both the reasoning traces and their summaries are machine-generated, to verify the quality of437

the generated data, we conduct a human evaluation in Section C.1, where we assess the factual438

correctness and logical coherence of the original reasoning traces, as well as the faithfulness and style439

consistency of the trace summarizations.440

D.5 Quality Filtering441

Finally, to improve the quality of our training dataset while preserving the diversity of responses, we442

apply a two-stage filtering pipeline to the annotated dataset D20k.443
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Table 2: Dataset size and composition of the top 7 source datasets at each stage of filtering. FC =
Feedback Collection, PC = Preference Collection. Additional statistics are provided in Appendix E.

Count Tulu3 AceCodePair Math-step-DPO FC PC UltraFeedback Skywork
D20k 20,000 0.18 0.15 0.15 0.13 0.10 0.10 0.10
D14k (Filter Step 1) 13,772 0.19 0.20 0.21 0.09 0.07 0.06 0.11
D4k (Filter Step 2) 3,949 0.13 0.28 0.19 0.12 0.03 0.12 0.05

Step 1: Incorrect Prediction Filtering. We discard examples for which the predicted score differs444

from the ground truth. Formally, we construct a filtered dataset D14k ⊂ D20k such that for each445

retained example (x(j), y(j)) ∈ D14k, we have ŝ(j) = s(j), where s(j) is the true score for sample446

x(j). This ensures that all reasoning signals used for training are consistent with the gold labels. After447

this step, approximately 14,000 examples remain.448

Step 2: Triviality Filtering via Small Model Agreement. To remove overly easy examples that449

provide a limited training signal, we evaluate each example in D14k using our smallest model, Qwen3-450

4B [43]. For each example x(j), we compute predictions across five decoding runs without chain-451

of-thought reasoning as {ŝ(j)[1] , . . . , ŝ
(j)
[5] } = Qwen3-4B(x(j)). If ŝ(j)[k] = s(j) for all k ∈ {1, . . . , 5},452

then we discard x(j) This results in the final dataset D4k ⊂ D14k, containing approximately 4,000453

challenging and diverse training examples. Brief dataset statistics are provided in Table 2. We454

fine-tune our R3 models with both D4k (-4K) and D14k (-14K) to assess the impact of data size.455

D.6 Evaluation Datasets456

RM-Bench [22] is a reward model evaluation benchmark consisting of 1.3K instances that cover457

four domains: Chat, Safety, Math, and Code. Each instance consists of three prompts categorized by458

difficulty level: easy, medium, and hard. We measure the accuracy on each domain and difficulty level,459

along with the overall average accuracy. RewardBench [17] is a popular reward model evaluation460

benchmark consists of 3K instances of preference pairs on four categories: Chat, Chat-Hard, Safety,461

Reasoning. We measure the accuracy on each category along with the overall average accuracy.462

XSUM [24] is a news summarization dataset. For our evaluation, we use a subset that has been463

annotated by human evaluators across three criteria: faithfulness (binary), coherence (Likert scale464

1–5), and relevance (Likert scale 1–5), following the annotation protocol of Zhang et al. [46]. We465

measure the Kendall-Tau [27] correlation for coherence and relevance, while we measure accuracy466

for faithfulness. FeedbackBench [11] is the test split of FeedbackCollection introduced with the467

Prometheus model for evaluating point-wise tasks. It contains 1K score rubrics, 200 instructions, and468

1K responses that do not overlap with the train data. We measure the Kendall-Tau [27] correlation as469

previously done by Kim et al. [11]. MMLU-STEM Binary [8] is a STEM-subject related subset1 of470

the MMLU benchmark with multiple-choice questions from various branches of knowledge. Given471

four potential choices and one correct answer, we convert it to a binary evaluation task. For each472

original question, we evaluate model’s response given the correct and separate a randomly selected473

incorrect answer. We measure the overall accuracy, along with the accuracy on each subject. Unless474

otherwise specified, all references to MMLU-STEM in this work refer to our MMLU-STEM Binary475

benchmark. BBH Binary [33] is a collection of 27 non-trivial reasoning-like tasks sourced from476

BigBench [2] with a total of 6.7K instances. The format of the tasks can be multiple choice or short477

string completion. Similar to MMLU-STEM, we include a copy of the data with the correct response478

and a copy with the incorrect response. Details of the dataset generation process is in Appendix J.479

We measure the overall accuracy. Unless otherwise specified, all references to BBH in this work refer480

to our BBH Binary benchmark.481

E Dataset Statistics482

E.1 Prompt and Response Length483

In Table 3 we document the length distribution of our dataset.484

1https://huggingface.co/datasets/TIGER-Lab/MMLU-STEM.
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Table 3: Length (white-space separated word count) distribution of our dataset. Response length
includes DeepSeek-R1 thinking tokens along with the short response, which contains an explanation
and the score assigned.

Prompt Length Response Length
D20k 504 ± 302 850 ± 847
D14k (Filter Step 1) 497 ± 413 729 ± 538
D4k (Filter Step 2) 442 ± 224 851 ± 599

E.2 Label Distribution485

In Table E.2 we show the label distribution of our dataset across different filtering stages. Our raw486

dataset has balanced distribution within each evaluation type. In D14k (Filter Step 1), binary labels487

are slightly biased towards "false" and pair-wise labels are slightly biased towards "Response 1".488

In D4k (Filter Step 2), binary labels are slightly biased towards "true" and and pair-wise labels are489

slightly biased towards "Response 1". Point-wise scores are also biased towards middle values (i.e.,490

"3").

Table 4: Dataset label statistics distribution across the filtering process.
Binary Pair-wise Point-wise

true false resp. 1 resp. 2 1 2 3 4 5

D20k 0.024 0.026 0.34 0.335 0.047 0.053 0.055 0.058 0.062
D14k (Filter Step 1) 0.024 0.031 0.429 0.354 0.04 0.036 0.021 0.038 0.027
D4k (Filter Step 2) 0.033 0.022 0.365 0.304 0.035 0.048 0.7 0.061 0.046

491

F Prompt Template492

F.1 Rubric Generation Template493

For point-wise tasks, we generate rubric with Likert score from 1 to 5 using the following template.494

Rubric generation template

You are an expert evaluator. Given a defined task, analyze the task and create a rubric using a
Likert scale from 1 to 5 to that will help to perform the given task.
Please follow these steps:
1. Explain the criteria for distinguishing between the scores (e.g., how a score of 1 differs
from a score of 5).
2. Based on your analysis, generate a rubric in JSON format with the Likert scale ranging
from 1 to 5, including descriptions for each score.
3. Ensure that the rubric is clear, actionable, and covers key aspects of the task.

### TASK
{task_instruction}

### INPUT
{input/question}

### EXAMPLE RUBRICS (Unrelated Tasks)
{sample_rubrics}

### RUBRIC FOR CURRENT TASK

495
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F.2 Point-wise Evaluation496

For point-wise tasks where the judge model needs to assign a score for a response from 1-5, we use497

the following template.498

Pointwise evaluation prompt template

Evaluate the response based on the given task, input, response, and evaluation rubric.
Provide a fair and detailed assessment following the rubric.

### TASK
{task_instruction}

### INPUT
{input/question}

### RESPONSE
{response}

### EVALUATION RUBRIC
1: {score_of_1_description}
2: {score_of_2_description}
3: {score_of_3_description}
4: {score_of_4_description}
5: {score_of_5_description}

### OUTPUT FORMAT
Return a JSON response in the following format:

{
"explanation": "Explanation of why the response received a particular score",
"score": "Score assigned to the response based on the rubric between 1 to 5"
}

### EVALUATION

499

F.3 Pair-wise Evaluation500

For pair-wise tasks where the judge model needs to compare against two responses, we use the501

following template.502

Pairwise evaluation prompt template

Evaluate the response based on the given task, input, two responses, and evaluation rubric.
Provide a fair and detailed assessment following the rubric.

### TASK
{task_instruction}

### INPUT
{input/question}

### RESPONSE 1
{response_1}

### RESPONSE 2
{response_2}

503
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### EVALUATION RUBRIC
Response 1: Response 1 provided better response, rejecting Response 2.
Response 2: Response 2 provided better response, rejecting Response 1.

### OUTPUT FORMAT
Return a JSON response in the following format:

{
"explanation": "Explanation of why one response is preferred over the other",
"score": "Final selection between ’Response 1’ or ’Response 2’"
}

### EVALUATION
504

For rubrics, we include three variations and uniformly randomly sample from them when creating505

our dataset.506

Pairwise evaluation rubric variation 1

{
"response_1": "Response 1 is the preferred choice over Response 2.",
"response_2": "Response 2 is the preferred choice over Response 1."
}

507

Pairwise evaluation rubric variation 2

{
"response_1": "Response 1 provided better response, rejecting Response 2.",
"response_2": "Response 2 provided better response, rejecting Response 1."
}

508

Pairwise evaluation rubric variation 3

{
"response_1": "Response 1 is superior, meaning Response 2 is not chosen.",
"response_2": "Response 2 is superior, meaning Response 1 is not chosen."
}

509

F.4 Binary Evaluation510

For binary tasks where the judge model needs to classify true or false to the response, we use the511

following template.512

Binary evaluation prompt template

Evaluate the response based on the given task, input, response, and evaluation rubric.
Provide a fair and detailed assessment following the rubric.

### TASK
{task_instruction}

### INPUT
{input/question}

### RESPONSE
513
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{response}

### EVALUATION RUBRIC
true: The response accurately reflects the correct answer based on the input.
false: The response does not accurately reflect the correct answer based on the input.

### OUTPUT FORMAT
Return a JSON response in the following format:

{
"explanation": "Explanation of why the answer is true or false",
"score": "Final boolean answer between true or false"
}

### EVALUATION
514

For rubrics, we include three variations and uniformly randomly sample from them when creating515

our dataset.516

Binary evaluation rubric variation 1

{
"true": "The answer correctly corresponds to the given input.",
"false": "The answer does not correctly correspond to the given input."
}

517

Binary evaluation rubric variation 2

{
"true": "The response accurately reflects the correct answer based on the input.",
"false": "The response does not accurately reflect the correct answer based on the input."
}

518

Binary evaluation rubric variation 3

{
"true": "The answer is appropriate and correctly derived from the input.",
"false": "The answer is inappropriate or incorrectly derived from the input."
}

519

G Example Prompts and Responses520

G.1 Point-wise Evaluation521

Prompt example for pointwise evaluation (sourced from FeedbackCollection)

Evaluate the response based on the given task, input, response, and evaluation rubric.
Provide a fair and detailed assessment following the rubric.

### TASK
Does the final conclusion drawn by the response hold up to logical scrutiny and provide a
correct solution for an instruction with a definite answer?

### INPUT
522
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Imagine a situation where there is a debate going on regarding the total number of prime
numbers between 1 and 100. Your task is to determine the correct count and also provide the
list. The debate is currently revolving around three different answers - 25, 26 and 27 prime
numbers.

### RESPONSE
The total number of prime numbers between 1 and 100 is definitely 30. Prime numbers are
those numbers that only have 1 and the number itself as factors. We don’t need to list down
each of them because it’s already known that there are 30 prime numbers between 1 and 100.
It’s simple mathematics, and there is no need for any debate on this matter. The discussion
around the number being 25, 26, or 27 is irrelevant and baseless. So, the conclusion is there
are 30 prime numbers between 1 and 100.

### EVALUATION RUBRIC
1: The concluding answer from the model is entirely false and devoid of logical foundation.
2: The concluding answer from the model has major flaws that seriously compromise its
validity.
3: The concluding answer from the model bears considerable mistakes that demand
significant rectification.
4: The concluding answer from the model has slight inaccuracies, but these are simple to fix
and do not greatly affect its overall validity.
5: The concluding answer from the model is wholly correct and logically sound.

### OUTPUT FORMAT
Return a JSON response in the following format:

{
"explanation": "Explanation of why the response received a particular score",
"score": "Score assigned to the response based on the rubric between 1 to 5"
}

### EVALUATION

523

Example response from R1 (summarized) used for SFT

<think>
Okay, let me evaluate this response. The user asked about the number of primes between 1
and 100, with the debate being 25, 26, or 27. The response says there are 30 primes, which
is definitely wrong. The actual count is 25. The response claims it’s "simple mathematics"
and dismisses the debate, but that’s incorrect. The answer provided is entirely false, and the
reasoning is flawed because they didn’t list or verify the primes. The rubric says a score of 1
is for entirely false and no logical foundation. This fits because the answer is wrong and the
logic is absent. So, score 1.
</think>
{
"explanation": "The response concludes there are 30 prime numbers between 1 and 100,
which is factually incorrect. The actual number is 25. The claim that ’it’s already known there
are 30 primes’ is baseless, and the dismissal of the debate over 25, 26, or 27 as ’irrelevant’
ignores the correct answer (25). The response fails to provide logical reasoning, a correct list,
or acknowledgment of established mathematical facts. This demonstrates a complete lack of
validity and logical foundation.",
"score": "1"
}

524
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G.2 Pair-wise Evaluation525

526

Prompt example for pairwise evaluation (sourced from Tulu-3-sft)

Evaluate the response based on the given task, input, two responses, and evaluation rubric.
Provide a fair and detailed assessment following the rubric.

### TASK
Evaluate the factual accuracy of the response. Consider whether the information provided is
correct, up-to-date, and free from errors or misconceptions.

### INPUT
Come up with a question and reasoning that would justify this answer: Raphael Sbarge Your
ENTIRE response should be in Chinese, no other language is allowed. Come up with a
question and reasoning that would justify this answer: Raphael Sbarge

### RESPONSE 1
Question: 《Blade》这部吸血鬼题材的电影中，扮演主角V的演员是谁？

Reasoning: 电影《Blade》是一部著名的吸血鬼题材作品，Raphael Sbarge在这
部电影中饰演了主角V，这是一个非常有影响力的角色。因此，这个问题和回答完
美契合，Raphael Sbarge正是该角色的扮演者。

### RESPONSE 2
问题：谁是演 ’Once Upon a Time’中的 "金Pinocchio/Archie Hopper"一角的演员？

理由：Raphael Sbarge 是美国演员，他最著名的角色之一就是美国电视剧
’Once Upon a Time’中的金Pinocchio/Archie Hopper。

### EVALUATION RUBRIC
Response 1: Response 1 provided better response, rejecting Response 2.
Response 2: Response 2 provided better response, rejecting Response 1.

### OUTPUT FORMAT
Return a JSON response in the following format:

{
"explanation": "Explanation of why one response is preferred over the other",
"score": "Final selection between ’Response 1’ or ’Response 2’"
}

### EVALUATION
527

Pairwise example response from R1 (summarized) used for SFT

<think>
好的，我现在需要评估两个回答，看看哪个在事实准确性上更好。任务是根据提供
的输入，判断哪个回答更准确、最新且没有错误。输入是让用户想出一个问题和理
由来证明答案是Raphael Sbarge。

首先看Response 1的问题：“《Blade》这部吸血鬼题材的电影中，扮演主角V的演
员是谁？”理由里说Raphael Sbarge在这部电影中饰演了主角V。但根据我的了解，
《Blade》系列电影的主角Blade是由Wesley Snipes扮演的，而“V”可能是指另一部电
影《V字仇杀队》里的主角V，但那个是由Hugo Weaving饰演的。Raphael Sbarge确实
参演过《Blade》吗？我需要确认一下。查资料发现，Raphael Sbarge确实在1998年
的《刀锋战士》（Blade）中出演过一个角色，但并不是主角V，而是次要角色Dr.
Curtis Webb。所以Response 1的问题和理由存在错误，把主角V的扮演者错误地归
为Sbarge，这显然是错误的。

528
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接下来看Response 2的问题：“谁是演 ’Once Upon a Time’ 中的 ’金Pinocchio/Archie
Hopper’一角的演员？”理由指出Sbarge在该剧中扮演这个角色。根据资料，Raphael
Sbarge确实在《童话镇》（Once Upon a Time）中扮演了Archie Hopper，也就是木偶
匹诺曹的人类形态。这个信息是正确的，所以Response 2的问题和理由都是事实正确
的。

根据评分标准，应该选择事实准确的回答。显然Response 2正确，而Response
1有错误，因此Response 2更优。
</think>“‘json
{
"explanation": "Response 1存在事实错误：《Blade》系列电影的主角V并非由Raphael
Sbarge饰演（实际由Wesley Snipes饰演），且该电影中Raphael Sbarge仅饰演次要角
色Dr. Curtis Webb。Response 2则正确指出Raphael Sbarge在《Once Upon a Time》中饰
演Archie Hopper/金Pinocchio，这一信息符合事实且无错误。因此，Response 2在事实
准确性上明显优于Response 1。",
"score": "Response 2"
} “‘

529

G.3 Binary Evaluation530

Prompt example for binary evaluation (sourced from evouna)

Evaluate the response based on the given task, input, response, and evaluation rubric.
Provide a fair and detailed assessment following the rubric.

### TASK
Your task is to determine whether the given answer response is correct based on the query
input.

### INPUT
who was the killer in the movie i know what you did last summer

### RESPONSE
Ben Willis

### EVALUATION RUBRIC
true: The response accurately reflects the correct answer based on the input.
false: The response does not accurately reflect the correct answer based on the input.

### OUTPUT FORMAT
Return a JSON response in the following format:

{
"explanation": "Explanation of why the answer is true or false",
"score": "Final boolean answer between true or false"
}

### EVALUATION
531

Prompt example for binary evaluation (sourced from evouna)

<think>
Okay, let’s tackle this evaluation. The user is asking whether the killer in the movie "I Know
What You Did Last Summer" is Ben Willis, as stated in the response. First, I need to recall the
plot of the movie to verify this. From what I remember, the movie revolves around a group of
friends who hit someone with their car and then cover it up. The killer is later revealed to

532
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be seeking revenge for that incident. The main antagonist is indeed Ben Willis, who is also
known as the Fisherman. He’s the father of the person they hit, and he faked his own death to
frame someone else. So, the response "Ben Willis" is correct. The answer should be true.
</think>
{
"explanation": "In the movie ’I Know What You Did Last Summer,’ the killer is revealed
to be Ben Willis, also known as the Fisherman. He is the father of the victim the group
accidentally hit with their car and covers up. Ben Willis fakes his death and seeks revenge,
making the response accurate.",
"score": "true"
}

533

H Explanation Trace Summarization Details534

First, we perform inference using the model to obtain the initial reasoning trace. This training trace535

is then passed through the model once more; conditioned on the prompt shown in "Prompt for536

Summarization Tracing" to generate a concise version. The second inference produces a shortened537

reasoning trace by removing redundant or unnecessary reasoning steps while preserving the original538

tone, style, and logical progression.539

Prompt for Reasoning Trace Summarization

Shorten the following reasoning trace by removing redundant or unnecessary thinking loops
while preserving the exact same tone, style, and progression of thought. Output only the
shortened reasoning trace without any explanation.

{DeepSeek-R1 Reasoning Trace}

540

I Training Hyper-parameters541

For all of our experiments, we use 4 A800 80GB GPUs.542

We use LLaMA-Factory [48] to perform SFT for all R3 models. We set the maximum sequence543

length to 8192, with a learning rate of 1e−5, trained for 5 epochs using a cosine learning rate544

scheduler. The batch size per device is 16. For R3 LoRA models, we use LoRA rank of 64 and545

alpha of 128. For inference, we use vLLM [14] using the recommended inference configuration from546

Qwen3 and Phi-4-reasoning-plus.547

J Evaluation Prompt548

Since RewardBench and FeedbackBench are of pair-wise and point-wise evaluation format, they do549

not require extra processing to format into our prompt template. For both MMLU-STEM and BBH,550

since we are converting them to binary evaluation, we need to sample negative responses to augment551

the dataset.552

The original MMLU-STEM consists of multiple-choice questions. We simply randomly sample a553

wrong answer as the negative. For subtasks of BBH that are also in the format of multiple-choice554

questions, we do the same.555

There are four tasks that require custom adaptation for negative label sampling:556

DyckLanguages is a task where models are tasked to complete un-closed parentheses of different557

types. To sample negatives, with equal chance, we randomly delete, swap, or insert a symbol that558

appears in the context.559
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WordSorting is a task where models are tasked to sort a set of unordered words. We randomly560

swap a pair of words from the target order to create the negative.561

MultistepArithmeticTwo is a task where models are expected to perform arithmetic calculations in-562

volving 8 single-digit operands. We calculate the mean and standard deviation of the label distribution,563

and randomly sample a number within the distribution.564

ObjectCounting is a task where models are expected to count the number of objects (possibly565

a subset of all mentioned objects) mentioned in a sentence. We calculate the mean and standard566

deviation of the label count distribution, and randomly sample a number within the distribution.567

K Human Annotation Details568

We stratified-sample 100 instances of data, and have the authors of the paper annotate the quality569

of the reasoning and reasoning summarizations. In total we have 5 annotators, annotating a total of570

around 2% of D4k.571

K.1 Reliability of Reasoning Trace572

To ensure reasoning trace is reliable, we define two metrics Factual Correctness and Logical573

Coherence to ensure consistent labeling:574

Factual Correctness (Scale: 1–3) assesses whether the statements in the reasoning trace are true575

and supported by external knowledge or evidence. When scoring, treat retrievable evidence or576

commonsense facts as acceptable grounding.577

1. (Incorrect) Contains one or more clear factual errors or hallucinations that undermine the578

trace. May lead to incorrect conclusions or mislead the model.579

2. (Partially Correct) Most statements are accurate, but minor factual errors or unverifiable580

claims exist. Does not change the final conclusion, but may reduce trace reliability.581

3. (Fully Correct) All statements are factually accurate and supported by known facts, context,582

or ground truth. No hallucinations or inaccuracies.583

Logical Coherence measures whether the reasoning steps logically follow from each other and584

form a coherent argument or thought process. Judge based on internal consistency, not factuality. A585

trace can be factually wrong but still logically coherent.586

1. (Incoherent) Trace is illogical, disjointed, or internally inconsistent. Steps may contradict,587

skip crucial logic, or appear arbitrary.588

2. (Somewhat Coherent) Mostly logical, but has minor gaps, unclear transitions, or weak589

justifications. Still understandable, but less robust as supervision.590

3. (Fully Coherent) All steps follow logically and consistently. No missing steps, contradictions,591

or unjustified jumps in reasoning. A smooth, interpretable chain.592

In Table 5 we show detailed annotation results across annotators.593

Table 5: Human annotation results on reasoning trace factual correctness and logical coherence
(out of 3, higher better).

Annotator 1 Annotator 2 Annotator 3 Annotator 4 Average
Factual Correctness 3 ± 0.2 3 ± 0 2.9 ± 0.3 2.8 ± 0.5 2.9 ± 0.2
Logical Coherence 2.9 ± 0.4 2.6 ± 0.7 2.9 ± 0.3 2.7 ± 0.5 2.8 ± 0.2
Count 27 10 28 28 -
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K.2 Reasoning Trace Summary Quality594

During dataset curation, we use GPT-4.1 mini to summarize the reasoning traces that are too long.595

We want to measure faithfulness and style similarity.596

Faithfulness measures how well the summary covers the ideas of the original reasoning trace597

1. (Unfaithful) Omits key reasoning or introduces incorrect logic. Could mislead a model or598

change the original meaning.599

2. (Partially Faithful) Minor omissions or slightly altered emphasis, but preserves the general600

logic and outcome. Acceptable for training.601

3. (Fully Faithful) Captures all core and necessary reasoning steps accurately. No hallucinations,602

distortions, or omissions of crucial logic.603

Style Similarity includes similar tone, level of formality, structured markers ("first", "therefore"),604

or domain-specific phrasing.605

1. (Completely different) Omits all tone, level of formality, etc. from original trace606

2. (Somewhat similar style) Somewhat similar in terms of tone, level of formality, etc. from607

original trace608

3. (Same style) Same style with the original reasoning trace609

In Table 6 we show detailed annotation results across annotators.610

Table 6: Human annotation results on reasoning trace summary faithfulness and style similarity
(out of 3, higher better).

Annotator 1 Annotator 2 Annotator 3 Annotator 4 Annotator 5 Average

Faithfulness 2.6 ± 0.8 2.8 ± 0.5 2.8 ± 0.4 2.7 ± 0.8 3 ± 0 2.8 ± 0.5
Style similarity 2.5 ± 0.6 3 ± 0.2 2.7 ± 0.5 2.8 ± 0.4 2.7 ± 0.5 2.7 ± 0.4
Count 20 26 25 6 7 -

L Other Results611

L.1 RM-Bench & Reward Bench612

Additional results presented in Table 7 and Table 8 are derived from the findings reported in [3].613

L.2 BBH Binary & MMLU-STEM Binary614

Table 9 reports additional results from our BBH Binary and MMLU-STEM Binary.615

L.3 XSUM and FeedbackBench616

Table 10 reports additional results, reproduced from prior work including Jia et al. [10], to provide617

broader context and facilitate direct comparison across XSUM and FeedbackBench benchmarks.618
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Table 7: Comparison of existing models with R3 on RM-Bench. Bolded numbers indicate the
best-performing results within each group section independently.

Model Domain Difficulty Overall
Chat Math Code Safety Easy Medium Hard Avg.

Scalar RMs

steerlm-70b 56.4 53.0 49.3 51.2 48.3 54.9 54.3 52.5
tulu-v2.5-70b-preference-mix-rm 58.2 51.4 55.5 87.1 72.8 65.6 50.7 63.0
Mistral-7B-instruct-Unified-Feedback 56.5 58.0 51.7 86.8 87.1 67.3 35.3 63.2
RM-Mistral-7B 57.4 57.0 52.7 87.2 88.6 67.1 34.9 63.5
Eurus-RM-7b 59.9 60.2 56.9 86.5 87.2 70.2 40.2 65.9
internlm2-7b-reward 61.7 71.4 49.7 85.5 85.4 70.7 45.1 67.1
Skywork-Reward-Gemma-2-27B 69.5 54.7 53.2 91.9 78.0 69.2 54.9 67.3
ArmoRM-Llama3-8B-v0.1 67.8 57.5 53.1 92.4 82.2 71.0 49.8 67.7
GRM-llama3-8B-sftreg 62.7 62.5 57.8 90.0 83.5 72.7 48.6 68.2
internlm2-20b-reward 63.1 66.8 56.7 86.5 82.6 71.6 50.7 68.3
Llama-3-OffsetBias-RM-8B 71.3 61.9 53.2 89.6 84.6 72.2 50.2 69.0
Nemotron-340B-Reward 71.2 59.8 59.4 87.5 81.0 71.4 56.1 69.5
URM-Llama-3.1-8B 71.2 61.8 54.1 93.1 84.0 73.2 53.0 70.0
Skywork-Reward-Llama-3.1-8B 69.5 60.6 54.5 95.7 89.0 74.7 46.6 70.1
infly/INF-ORM-Llama3.1-70B 66.3 65.6 56.8 94.8 91.8 76.1 44.8 70.9
Generative RMs

tulu-v2.5-dpo-13b-chatbot-arena-2023 64.9 52.3 50.5 62.3 82.8 60.2 29.5 57.5
tulu-v2.5-dpo-13b-nectar-60k 56.3 52.4 52.6 73.8 86.7 64.3 25.4 58.8
stablelm-2-12b-chat 67.2 54.9 51.6 65.2 69.1 63.5 46.6 59.7
tulu-v2.5-dpo-13b-stackexchange-60k 66.4 49.9 54.2 69.0 79.5 63.0 37.2 59.9
Nous-Hermes-2-Mistral-7B-DPO 58.8 55.6 51.3 73.9 69.5 61.1 49.1 59.9
Claude-3-5-sonnet-20240620 62.5 62.6 54.5 64.4 73.8 63.4 45.9 61.0
tulu-v2.5-dpo-13b-hh-rlhf-60k 68.4 51.1 52.3 76.5 53.6 63.0 69.6 62.1
tulu-2-dpo-13b 66.4 51.4 51.8 85.4 86.9 66.7 37.7 63.8
SOLAR-10.7B-Instruct-v1.0 78.6 52.3 49.6 78.9 57.5 67.6 69.4 64.8
Llama3.1-70B-Instruct 64.3 67.3 47.5 83.0 74.7 67.8 54.1 65.5
Skywork-Critic-Llama-3.1-70B 71.4 64.6 56.8 94.8 85.6 73.7 56.5 71.9
GPT-4o-0806 67.2 67.5 63.6 91.7 83.4 75.6 58.7 72.5
Gemini-1.5-pro 71.6 73.9 63.7 91.3 83.1 77.6 64.7 75.2
Prometheus-7B-v2.0 46.0 52.6 47.6 73.9 68.8 54.9 41.3 55.0
JudgeLRM 59.9 59.9 51.9 87.3 73.2 76.6 54.8 64.7
RM-R1-Qwen-Instruct-7B 66.6 67.0 54.6 92.6 79.2 71.7 59.7 70.2
RM-R1-DeepSeek-Distilled-Qwen-7B 64.0 83.9 56.2 85.3 75.9 73.1 68.1 72.4
RM-R1-Qwen-Instruct-14B 75.6 75.4 60.6 93.6 82.6 77.5 68.8 76.1
RM-R1-Qwen-Instruct-32B 75.3 80.2 66.8 93.9 86.3 80.5 70.4 79.1
RM-R1-DeepSeek-Distilled-Qwen-14B 71.8 90.5 69.5 94.1 86.2 83.6 74.4 81.5
RM-R1-DeepSeek-Distilled-Qwen-32B 74.2 91.8 74.1 95.4 89.5 85.4 76.7 83.9
R3 Models (Ours)

R3-QWEN3-4B-LORA-4K 68.2 93.4 72.6 85.4 87.4 81.3 71.1 79.9
R3-QWEN3-4B-LORA-14K 66.9 92.2 72.7 86.5 86.9 81.5 70.3 79.6
R3-QWEN3-4B-4K 68.9 92.3 72.5 86.5 86.5 81.4 72.3 80.0
R3-QWEN3-4B-14K 67.9 93.0 74.7 86.9 88.8 81.9 71.1 80.6
R3-QWEN3-8B-LORA-4K 68.9 93.5 75.2 88.1 88.2 83.8 72.4 81.4
R3-QWEN3-8B-LORA-14K 68.9 92.9 75.0 88.9 89.0 83.2 72.1 81.4
R3-QWEN3-8B-4K 70.8 92.9 74.2 89.2 87.9 83.4 74.0 81.8
R3-QWEN3-8B-14K 69.1 93.2 75.9 87.6 89.0 83.4 71.9 81.4
R3-QWEN3-14B-LORA-4K 74.6 93.9 78.7 89.8 90.2 86.3 76.2 84.2
R3-QWEN3-14B-LORA-14K 73.8 93.6 77.4 89.0 89.7 85.9 74.8 83.5
R3-QWEN3-14B-4K 74.0 93.7 77.2 89.3 89.7 85.3 75.6 83.6
R3-QWEN3-14B-14K 73.4 93.8 79.1 89.5 90.3 86.6 74.9 84.0
R3-PHI-4-R+-14B-LORA-4K 71.4 94.4 78.2 86.2 88.7 84.3 74.7 82.5
R3-PHI-4-R+-14B-LORA-14K 73.2 90.9 73.7 85.3 87.7 82.9 71.7 80.8
R3-PHI-4-R+-14B-4K 74.9 90.7 74.1 86.6 87.9 83.3 73.5 81.6
R3-PHI-4-R+-14B-14K 74.5 93.0 77.5 84.8 89.3 84.7 73.3 82.5
R3-QWEN2.5-7B-LORA-4K 59.6 60.2 49.4 76.3 71.2 63.1 49.8 61.4
R3-QWEN2.5-7B-4K 69.6 75.5 59.8 86.9 80.2 74.2 64.5 73.0
R3-QWEN2.5-7B-14K 66.8 82.0 65.0 87.0 83.8 76.8 64.9 75.2
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-4K 69.0 90.3 70.5 85.8 85.9 81.6 69.3 78.9
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-14K 68.0 90.8 71.2 86.7 87.0 81.8 68.9 79.2
R3-DEEPSEEK-DISTILLED-QWEN-14B-4K 73.0 92.2 77.1 86.3 88.5 84.1 73.9 82.1
R3-DEEPSEEK-DISTILLED-QWEN-14B-14K 71.7 93.0 78.4 86.4 89.3 84.7 73.1 82.4

Proprietary Models

GPT-5 mini 88.0 92.9 91.1 78.0 77.4 85.8 96.4 92.4
GPT-4.1 mini 67.6 73.0 71.3 90.7 87.0 78.4 61.7 75.7
GPT-o4 mini 77.6 93.0 80.8 93.4 92.0 88.7 78.0 86.2
DeepSeek-R1 78.6 66.2 81.9 88.7 86.9 82.2 67.3 78.8
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Table 8: Comparison of existing models with R3 on RewardBench using pair-wise scoring. Bolded
numbers indicate the best-performing results within each group section independently.

Models Chat Chat Hard Safety Reasoning Avg.

Scalar RMs

Eurus-RM-7b 98.0 65.6 81.4 86.3 82.8
Internlm2-7b-reward 99.2 69.5 87.2 94.5 87.6
SteerLM-RM 70B 91.3 80.3 92.8 90.6 88.8
Cohere-0514 96.4 71.3 92.3 97.7 89.4
Internlm2-20b-reward 98.9 76.5 89.5 95.8 90.2
ArmoRM-Llama3-8B-v0.1 96.9 76.8 90.5 97.3 90.4
Nemotrom-4-340B-Reward 95.8 87.1 91.5 93.6 92.0
Skywork-Reward-Llama-3.1-8B 95.8 87.3 90.8 96.2 92.5
Skywork-Reward-Gemma-2-27B 95.8 91.4 91.9 96.1 93.8
infly/INF-ORM-Llama3.1-70B 96.6 91.0 93.6 99.1 95.1
Generative RMs

Llama3.1-8B-Instruct 85.5 48.5 75.6 72.1 70.4
Llama3.1-70B-Intruct 97.2 70.2 82.8 86.0 84.0
Llama3.1-405B-Intruct 97.2 74.6 77.6 87.1 84.1
Claude-3-5-sonnet-20240620 96.4 74.0 81.6 84.7 84.2
GPT-4o-0806 96.1 76.1 86.6 88.1 86.7
Gemini-1.5-pro 92.3 80.6 87.9 92.0 88.2
Self-taught-evaluator-llama3.1-70B 96.9 85.1 89.6 88.4 90.0
SFR-LLaMa-3.1-70B-Judge-r 96.9 84.8 91.6 97.6 92.7
Skywork-Critic-Llama-3.1-70B 96.6 87.9 93.1 95.5 93.3
Prometheus-7B-v2.0 90.2 45.6 75.8 74.6 71.6
m-Prometheus-14B 93.6 59.0 85.1 84.8 80.6
JudgeLRM 92.9 56.4 78.2 73.6 75.2
SynRM 38.0 82.5 74.1 87.1 70.4
RM-R1-DeepSeek-Distilled-Qwen-7B 88.9 66.2 78.4 87.0 80.1
RM-R1-Qwen-Instruct-7B 94.1 74.6 85.2 86.7 85.2
RM-R1-Qwen-Instruct-14B 93.6 80.5 86.9 92.0 88.2
RM-R1-DeepSeek-Distilled-Qwen-14B 91.3 79.4 89.3 95.5 88.9

R3 Models (Ours)

R3-QWEN3-4B-LORA-4K 91.1 74.4 85.6 95.5 86.7
R3-QWEN3-4B-LORA-14K 90.4 75.2 85.7 96.1 86.9
R3-QWEN3-4B-4K 88.3 77.4 86.1 95.3 86.8
R3-QWEN3-4B-14K 92.4 76.0 85.8 95.7 87.5
R3-QWEN3-8B-LORA-4K 93.2 76.6 87.0 96.3 88.3
R3-QWEN3-8B-LORA-14K 93.0 76.2 87.6 96.4 88.3
R3-QWEN3-8B-4K 91.6 79.8 87.7 95.8 88.7
R3-QWEN3-8B-14K 93.8 78.6 86.3 96.7 88.8
R3-QWEN3-14B-LORA-4K 93.6 85.1 88.7 96.8 91.0
R3-QWEN3-14B-LORA-14K 92.9 82.8 88.2 96.9 90.2
R3-QWEN3-14B-4K 92.6 81.0 88.4 96.6 89.7
R3-QWEN3-14B-14K 93.3 79.7 88.4 96.9 89.6
R3-PHI-4-R+-14B-LORA-4K 90.6 76.5 86.8 96.5 87.6
R3-PHI-4-R+-14B-LORA-14K 93.4 79.1 85.2 94.3 88.0
R3-PHI-4-R+-14B-4K 92.6 79.0 85.8 96.3 88.4
R3-PHI-4-R+-14B-14K 94.5 78.0 86.6 96.5 88.9
R3-QWEN2.5-7B-LORA-4K 83.1 67.0 79.4 73.2 75.7
R3-QWEN2.5-7B-4K 85.9 75.3 85.5 85.1 82.9
R3-QWEN2.5-7B-14K 91.4 73.8 85.1 90.6 85.2
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-4K 90.8 75.6 84.6 93.1 86.0
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-14K 92.4 75.2 84.7 93.8 86.5
R3-DEEPSEEK-DISTILLED-QWEN-14B-4K 89.7 78.7 86.0 95.5 87.5
R3-DEEPSEEK-DISTILLED-QWEN-14B-14K 92.3 77.8 86.8 95.6 88.1

Propretiary Models

GPT-5 mini 95.3 81.6 92.0 98.4 91.8
GPT-4.1 mini 96.1 75.2 87.0 89.6 87.0
GPT-o4 mini 95.3 81.8 91.6 98.4 91.8
DeepSeek-R1 93.6 79.2 86.9 97.4 89.3
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Table 9: Comparison of existing models with R3 on BBH & MMLU-STEM binary. Bolded numbers
indicate the best-performing results between R3 models and baseline models. Proprietary models are
bolded and compared independently.

Models BBH Binary MMLU-STEM
Acc. Acc.

Prometheus-7B-v2.0 54.0 56.5
Selene-1-Mini-Llama-3.1-8B 58.2 65.2
RISE-Judge-Qwen2.5-7B 63.1 76.9
RISE-Judge-Qwen2.5-32B 82.8 89.4

R3 Models (Ours)

R3-QWEN3-4B-LORA-4K 89.0 92.1
R3-QWEN3-4B-LORA-14K 88.9 92.2
R3-QWEN3-4B-4K 88.8 91.8
R3-QWEN3-4B-14K 89.3 92.0
R3-QWEN3-8B-LORA-4K 90.8 93.5
R3-QWEN3-8B-LORA-14K 90.8 93.6
R3-QWEN3-8B-4K 90.7 93.3
R3-QWEN3-8B-14K 90.7 93.6
R3-QWEN3-14B-LORA-4K 91.7 94.8
R3-QWEN3-14B-LORA-14K 91.9 94.5
R3-QWEN3-14B-4K 92.1 94.6
R3-QWEN3-14B-14K 92.1 94.8
R3-PHI-4-R+-14B-LORA-4K 91.4 93.3
R3-PHI-4-R+-14B-LORA-14K 91.3 93.5
R3-PHI-4-R+-14B-4K 91.2 93.6
R3-PHI-4-R+-14B-14K 92.2 94.4
R3-QWEN2.5-7B-LORA-4K 71.7 81.8
R3-QWEN2.5-7B-4K 79.8 86.4
R3-QWEN2.5-7B-14K 81.1 88.3
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-4K 89.9 91.9
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-14K 90.0 92.2
R3-DEEPSEEK-DISTILLED-QWEN-14B-4K 91.3 92.9
R3-DEEPSEEK-DISTILLED-QWEN-14B-14K 91.1 93.0

Propretiary Models

GPT-5 mini 95.0 96.5
GPT-4.1 mini 91.0 93.3
GPT-o4 mini 93.2 95.3
DeepSeek-R1 94.0 96.2

25



Table 10: Comparison of existing models with R3 on XSUM and FeedbackBench. Bolded numbers
indicate the best-performing results between R3 models and baseline models. Proprietary models are
bolded and compared independently.

Models XSUM FeedbackBench
Acc. Kendall Tau Kendall Tau

Faithfulness Coherence Relevance

Llama-7B 51.7 - - -
Vicuna-7B 55.5 - - -
Alpaca-7B 51.1 - - -

UniEval 84.3 0.07 0.03 -
Prometheus-7B-v2.0 60.7 0.12 0.16 0.79
Selene-1-Mini-Llama-3.1-8B 56.4 0.16 0.36 0.78
RISE-Judge-Qwen2.5-7B 66.4 0.29 0.32 0.68
RISE-Judge-Qwen2.5-32B 71.0 0.30 0.39 0.74

R3 Models (Ours)

R3-QWEN3-4B-LORA-4K 70.8 0.12 0.26 0.63
R3-QWEN3-4B-LORA-14K 70.7 0.12 0.26 0.64
R3-QWEN3-4B-4K 66.8 0.23 0.27 0.63
R3-QWEN3-4B-14K 66.7 0.25 0.31 0.63
R3-QWEN3-8B-LORA-4K 67.7 0.22 0.32 0.65
R3-QWEN3-8B-LORA-14K 69.6 0.24 0.31 0.67
R3-QWEN3-8B-4K 68.0 0.36 0.31 0.66
R3-QWEN3-8B-14K 65.8 0.37 0.32 0.71
R3-QWEN3-14B-LORA-4K 67.8 0.26 0.35 0.64
R3-QWEN3-14B-LORA-14K 69.2 0.24 0.34 0.65
R3-QWEN3-14B-4K 67.8 0.34 0.34 0.68
R3-QWEN3-14B-14K 68.5 0.33 0.36 0.71
R3-PHI-4-R+-14B-LORA-4K 64.8 0.45 0.31 0.69
R3-PHI-4-R+-14B-LORA-14K 61.8 0.40 0.30 0.68
R3-PHI-4-R+-14B-4K 67.5 0.36 0.30 0.69
R3-PHI-4-R+-14B-14K 67.3 0.35 0.34 0.67
R3-QWEN2.5-7B-LORA-4K 52.8 0.14 0.21 0.48
R3-QWEN2.5-7B-4K 65.1 0.29 0.29 0.64
R3-QWEN2.5-7B-14K 67.5 0.33 0.34 0.69
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-4K 58.4 0.21 0.31 0.64
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-14K 59.9 0.37 0.32 0.66
R3-DEEPSEEK-DISTILLED-QWEN-14B-4K 61.9 0.39 0.31 0.69
R3-DEEPSEEK-DISTILLED-QWEN-14B-14K 64.3 0.40 0.34 0.71

Proprietary Models

GPT-5 mini 68.7 0.42 0.39 0.62
GPT-4.1 mini 72.6 0.07 0.38 0.69
GPT-o4 mini 69.1 0.16 0.30 0.66
DeepSeek-R1 60.4 0.35 0.38 0.72
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