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Abstract

Reward models are essential for aligning language model outputs with human pref-
erences, yet existing approaches often lack both controllability and interpretability.
These models are typically optimized for narrow objectives, limiting their general-
izability to broader downstream tasks. Moreover, their scalar outputs are difficult to
interpret without contextual reasoning. To address these limitations, we introduce
R3, a novel reward modeling framework that is rubric-agnostic, generalizable
across evaluation dimensions, and provides interpretable, reasoned score assign-
ments. R3 enables more transparent and flexible evaluation of language models,
supporting robust alignment with diverse human values and use cases. Our models,
data, and code will be available as open source.

1 Introduction

Reward models play a central role in aligning language model outputs with human preferences by
assigning scalar scores to generated responses [26, 17]. However, current reward modeling approaches
suffer from two significant limitations: limited controllability and poor interpretability. First, these
models are often optimized for narrow objectives—such as helpfulness or harmlessness—resulting in
behavior that is overly tailored to specific metrics and not readily generalizable to a broader range
of downstream tasks [18, 32]. Second, the interpretability of reward scores remains unclear. For
instance, scalar values like “1” or “2” on a Likert scale are not inherently meaningful without an
explicit explanation of what those scores represent in context.

Aligning models with human preferences is crucial, but obtaining human judgments is often costly
and time-consuming [34, 20, 42]. Leveraging existing human evaluations from prior research
appears promising; however, it poses several challenges, including lack of standardization, varying
evaluation criteria, insufficient documentation, data privacy issues, and proprietary restrictions [12].
As an alternative, using model-generated outputs for reward modeling or annotation offers greater
efficiency and flexibility. This lack of generalizability and transparency presents challenges for
reliably evaluating and guiding language model behavior across diverse use cases. To address these
issues, we propose R3, a novel reward modeling framework that is rubric-agnostic, generalizable to
various evaluation dimensions, and grounded in interpretable, measurable scores. Our approach not
only supports more flexible alignment with human values but also includes explicit reasoning for
score assignments, enabling more transparent and trustworthy model evaluation.

2 Aren’t Existing Reward Models Robust Enough?

The challenge of building models that generalize across diverse tasks and domains—particularly in
evaluating quality from multiple aspects or human annotation metrics. In this section, we present the
motivation behind the need for developing new reward models.
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Figure 1: ROBUST RUBRIC-AGNOSTIC REWARD (R3) models both the input and output of a task.
It takes a prompt that includes an instruction, task description, input, response(s), and evaluation
rubrics, and generates a score along with the corresponding reasoning.

Controllability. Existing reward models, such as ArmoRM [38] and UniEval [49], offer limited
support for evaluating models on fine-grained aspects. They typically require separate training for
each aspect along with corresponding parameter weights, reducing flexibility during both training and
evaluation—especially when dealing with unseen aspects. Similarly, models like Prometheus [11, 13]
are restricted in the range of supported task types; for example, they do not accommodate binary
classification. ArmoRM is further limited in that it only supports point-wise tasks, making it unsuitable
for pair-wise comparisons. Interpretability. Scores generated by reward models—particularly those
based on generative LLMs [30, 44] or some custom classifiers [40, 41, 47] —can be difficult to
interpret. For example, a score of 0.6543 on a 0—1 scale offers little clarity: Is it measuring helpfulness,
correctness, coherence, or some opaque combination of all three? Without a clearly defined rubric or
accompanying explanation, such scores provide limited actionable insight, leaving users to guess
what aspect of quality the number is intended to capture. Limited Compatibility on Various Tasks.
Existing reward models often have limited compatibility with a diverse range of tasks. For instance,
models like RM-R1 [3] are primarily designed for pair-wise comparisons, making them less suitable
for point-wise or binary classification tasks, which limits their applicability. Similarly, Prometheus
supports point-wise and pair-wise evaluations but lacks native support for binary classification—an
approach that can be particularly effective for tasks like hallucination or toxicity detection.

3 Tasks and Datasets

The goal of our open-ended evaluation model is to assess the quality of a response according to human-
defined criteria, producing both a final score and a natural language explanation for interpretability.
Formally, given a task instruction ¢, input instance ¢, one or more candidate responses a, and an
evaluation rubric r, the model is tasked with generating an explanation e, that justifies the evaluation
and a score s that reflects the response quality under the given rubric . We define this evaluation
process as a function: f(z) = y, where x = (¢,4,a,7) and y = (e, s).

3.1 Task Formats

To support a wide range of evaluation settings, we define three task formats within our unified
framework: point-wise, pair-wise, and binary evaluation. Each format shares the same input structure
x = (t,1,a,r)and output structure y = (e, s) but differs in how the candidate responses are structured
and how the score s is defined.

Point-wise Evaluation. This format assesses the quality of a single response a; by assigning an
integer score, typically on a 1-5 scale [11]. It is suitable for open-ended generation tasks where
scalar assessments of quality are needed, such as helpfulness, relevance, coherence, etc. Formally,

a=az, fpoint—wise(taiaavr) = (678)78 S {1723374>5}'

Pair-wise Evaluation. In this setting, the model compares two candidate responses a1 and as to the
same input ¢ and selects the preferred one, along with an explanation. This format is commonly used
in preference-based training. Formally, a = (a1, a2), fpair—wise(t, i, a,7) = (e,3), s € {a1,az2}.
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Binary Evaluation. Binary task requires the model to make a definitive judgment about the
correctness or acceptability of a response a1, given the input and rubric. These tasks span a variety of
use cases, including factual verification, binary classification (e.g., determining whether a summary is
faithful), and structured reasoning (e.g., assessing the validity of a math or code solution). Formally,
a = a1, foinary(t,i,a,7) = (e, 8),s € {true, false}.

3.2 R3 Datasets

To support open-ended evaluation across diverse domains and task formats, we begin with a large
pool of publicly available datasets spanning over 3 million examples, which include general chat,
reasoning, and classification tasks, as shown in Figure 3. However, most of these datasets lack
consistent evaluation rubrics and explanation traces, which are key components to train our evaluation
model to output both scores and natural language justifications. Generating such traces, particularly
using a strong reasoning model such as DeepSeek-R1 [6], is also computationally expensive and
infeasible on a large scale. To address this, we build our training dataset in multiple stages, drawing
inspiration from Muennighoff et al. [23] to emphasize both quality and diversity of the training data
while on a limited budget. We first sample a diverse subset from the raw pool, then enrich each
example with on-the-fly rubric generation and explanation traces. Finally, we apply filtering and
refinement to produce smaller, higher-quality datasets used in supervised training, which results in
datasets of size 14k and 4k. More details about the dataset construction can be found in Appendix D.

3.3 Training

Given our generated training data, we further use supervised fine-tuning (SFT) to enhance the base
model’s reasoning capability as a reward model by minimizing the negative log-likelihood of reference
responses. Given our training dataset D = {(x(, )} | where 2(!) is prompt input previously

introduced and y(9) = (yy), e ,y(Tii)) introduced in eq. (4) is the corresponding target sequence,
the objective is the cross-entropy loss: Lspr(6) = — % Zfil 23:1 log Wg(y,gi) | yg, z™) | where

mo(yt | y<t, z) denotes the model’s conditional probability of token y; given the history y.; and
prompt x, parameterized by 6. By directly maximizing the log-likelihood of the ground-truth tokens,
this loss encourages the base model to produce high-quality reasoning traces and the desired format
for pair-wise comparisons or single-answer rewards.

4 Results and Analysis

In this section, we present the overall performance and summarize the human evaluation used to
assess the quality of reasoning traces generated by the DeepSeek-R1 model. Detailed results are
provided in the Appendix due to space constraints.

4.1 Overall Performance

Figure 2 highlights the strong performance of our R3 models, showcasing the effectiveness of R3
models in pair-wise preference scoring under a training budget. Our models deliver remarkable results
where even our smallest model, R3-QWEN3-4B, outperforms nearly all other reasoning models
from RM-R1, with the exception of RM-R1-DeepSeek-Distilled-Qwen-14B and RM-R1-DeepSeek-
Distilled-Qwen-32B. It also surpasses Prometheus-7B-v2.0, GPT-4.1 mini, and even DeepSeek-R1
as well, demonstrating its competitiveness. Furthermore, both full SFT and LoRA SFT versions of
R3-QWEN3-14B-4K outperforms RM-R1’s best model, RM-R1-DeepSeek-Distilled-Qwen-32B,
by up to 1.0 point. Between our R3-QWEN3-14B and R3-PHI-4-R™* models, R3-QWEN3-14B
models consistently outperforms R3-PHI-4- Rt models in all aspects.

The performance of our R3 models on point-wise assessment tasks, along with binary tasks, all R3
models consistently outperform DeepSeek-R1 and Prometheus-7B-v2.0, highlighting the effectiveness
of binary assessment for R3 models. In terms of coherence and relevance, our R3-PHI-4-R™ models
perform the best among all open-source and proprietary models. For binary classification tasks, we
observe that both larger model size and greater fine-tuning data improve performance, reflecting
stronger reasoning capabilities. All of our R3 models outperform Prometheus-7B-v2.0, while R3-
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Figure 2: R3 models outperforms competitor models across differences model sizes in all data types.

QWEN3-14B models surpass GPT-4.1 mini’s performance. Overall, these results highlight the
competitive and robust performance of R3 models across a range of point-wise and binary evaluation.

4.2 Ablation Study

Table 1: Ablation studies on dataset construction, employing the R3-QWEN3-14B model trained on
a 14k-sample dataset using LoRA.

RM-Bench ~ RewardBench BBH MMLU-STEM XSUM FeedbackBench
Overall Acc.  Overall Acc.  Overall Acc. Overall Acc. Acc. Faithfulness 7 Coherence 7 Relevance T
Random Sampling 77.0 86.6 89.7 93.0 71.0 0.228 0.333 0.648
Dataset
Only Pairwise 82.1 90.2 91.5 94.4 68.4 0.205 0.329 0.662
Only Pointwise 80.0 86.0 90.1 93.4 63.5 0.236 0.318 0.639
Only Binary 81.6 88.8 91.0 94.0 67.2 0.296 0.332 0.658
No Rubric 76.3 87.9 85.1 91.9 70.3 -0.037 -0.032 0.652
No Explanation 83.1 90.2 91.7 94.5 66.4 0.198 0.353 0.651
No Reasoning 71.2 82.6 79.8 88.2 72.8 0.092 0.399 0.683
R3 835 90.2 91.9 94.5 69.2 0.245 0.336 0.654

We conduct an ablation study to assess the effectiveness of our overall dataset construction on different
sampling strategies, dataset types, and supervision signals, with results summarized in Table 1. For
efficiency, we apply LoRA [9] in all experiments using R3-QWEN3-14B. Our results indicate that
random sampling consistently underperforms compared to diversity sampling. Among dataset types,
pairwise supervision achieves the best results (82.1% on RM-Bench, 94.4% on MMLU-STEM),
surpassing pointwise and binary-only settings and improving relevance on XSUM. Supervision
signals also have distinct effects: removing the rubric lowers BBH accuracy, excluding explanations
reduces coherence, and eliminating reasoning traces causes the largest performance drop (e.g.,
71.2% RM-Bench, 79.8% BBH), underscoring the importance of reasoning data. The full model
(R3) achieves the best overall balance (83.5% RM-Bench, 94.5% MMLU-STEM, strong scores on
coherence, relevance, and FeedbackBench). Although excluding explanations has limited impact on
accuracy, we retain them in R3 to enable more interpretable outputs.

5 Conclusion

In this paper, we introduce R3, a novel reward modeling framework that is rubric-agnostic, generaliz-
able across evaluation dimensions, and capable of producing interpretable, reasoning-based score
assignments. Leveraging reasoning distillation, targeted dataset curation, and a two-stage quality
filtering pipeline, R3 addresses key limitations of prior reward models in terms of interpretability,
controllability, and generalizability. Despite using training datasets that are an order of magnitude
smaller than those of many baselines, R3 models matches or surpasses state-of-the-art performance.
Our experiments demonstrate the method’s strong training efficiency and scalability, including effec-
tive use of compute-efficient techniques. By enabling more transparent and adaptable evaluation, R3
advances robust alignment with diverse human values and real-world applications, paving the way
for more trustworthy and versatile reward models.
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A Limitations

In our experiments, we limit our exploration to models with up to 14B parameters due to resource
constraints. We also include smaller models in our study, aiming to shed light on scaling behavior
and its impact on performance. Larger models, such as those with 32B parameters or more, are left
for future investigation.

B Related Work

Rubric-Based Evaluation Models. Recent works leverage explicit rubrics to guide LLM evaluation.
Kim et al. [11] created FeedbackCollection, a fine-grained text evaluation finetuning dataset using
detailed rubric for point-wise (direct accessment) evaluation. [13] followed-up by adding pair-wise
evaluation to the training and found that weight merging performs better than training a jointly
trained model. Likewise, LLM-Rubric (Hashemi et al. [7]) prompts an LLM on a human-authored
multi-question rubric (e.g. dimensions like naturalness, conciseness, citation quality) and calibrates
its outputs via a small model to match human judges. These rubric-driven methods yield fine-grained,
interpretable assessments, but their reliance on laboriously constructed rubrics and reference solutions
limits scalability and generality ([7]; [11]). By contrast, R3 eliminates the need for external rubrics,
learning reward signals directly in a transparent form to enable broad, rubric-agnostic evaluation.

Preference-Based Reward Models. Reward models learned from (implicit or explicit) human
preferences—typically via RLHF or related methods—have become a standard alignment approach
[26]. In practice, however, learned RMs often exploit trivial cues: for instance, they tend to favor
longer or more elaborate outputs (a well-known length bias) over brevity [29], and recent analyses
show LLM evaluators even “self-recognize” and prefer their own generations over others of equal
quality [25]. Zhu et al. [50] further demonstrate “model preference bias” in RMs, whereby certain
models’ outputs are systematically overvalued. Such biases and spurious correlations undermine
fairness and generalization. New techniques mitigate these issues: Direct Preference Optimization
(DPO) recasts RLHF in a simpler optimization framework [26], and Vu et al. [34] train FLAMe
on SM+ human judgements across 100+ tasks, achieving stronger OOD generalization and even
outperforming GPT-4 on reward-modeling benchmarks. Despite these advances, preference-trained
RMs remain large, opaque models tied to specific data, motivating R3’s interpretable, rubric-free
reward formulation as a more transparent alternative.

LLM-as-a-judge Framework. Using a pretrained LLM itself as the evaluator has gained popularity
due to its zero-shot flexibility [13]. However, numerous studies reveal reliability issues. For instance,
Wang et al. [39] found that simply altering the order of candidate responses can drastically flip an LLM
judge’s ranking, making one model appear vastly superior or inferior. More broadly, LLM evaluators
suffer from hallucinations and entrenched biases; e.g., Panickssery et al. [25] show LLM judges
systematically score their own outputs higher than others’ (“self-preference” bias), and Zhu et al. [50]
observe strong model-specific scoring bias in LLM-based evaluation. These flaws undermine trust
and consistency in LLM-as-judge systems. R3 addresses these gaps by offering a fully interpretable
reward model that does not rely on opaque LLM judgments or fixed rubrics.

C Analysis

C.1 Human Evaluation of Reasoning Traces

A total of five annotators annotated approximately 2% of D, which was stratified sampled from
various dataset sources, to verify both the reliability of the reasoning traces and the quality of the
trace summarization. Details of the annotations setup, metrics we use to annotate, the experiments,
and results are in Appendix K. We find on average the reasoning traces score 2.9 £ 0.2 (out of 3,
higher better) in factual correctness, 2.8 = 0.2 in logical coherence (n=93). The faithfulness of the
summary scores averages 2.8 + (.5 and the style consistency scores 2.7 &= 0.4 (n=84). These results
confirm the high quality reasoning traces used in our dataset.
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Figure 3: Dataset sources utilized in training the R3 model.

C.2 Model Scaling and Efficiency

We observe that our R3 models consistently improve with larger model sizes across all benchmarks,
with some showing significant gains. For instance, on RM-Bench, our method achieves up to a
4.9-point improvement. In contrast, baseline models such as RM-R1 and Prometheus-7B-v2.0 do
not perform as well at similar model sizes. Notably, our models even outperform larger models
like RM-R1-DeepSeek-Distilled-Qwen-32B. Furthermore, models trained using LoRA demonstrate
performance on par with full fine-tuning, highlighting the effectiveness of our approach even in
compute-efficient training regimes. These results suggest that both our methodology and dataset are
highly effective for training reward models in resource-constrained settings.

C.3 Robustness

Among proprietary models, GPT-4o0-mini outperforms DeepSeek-R1 on reward benchmarks involving
pair-wise scoring, while DeepSeek-R1 demonstrates stronger performance on tasks such as XSUM,
FeedbackBench, BBH, and MMLU-STEM. For open-weight models, our R3 models consistently
outperform existing reward models, such as Prometheus-7B-v2.0 and all RM-R1 variants, across
most benchmarks. The only exception is FeedbackBench, where Prometheus-7B-v2.0 performs
exceptionally well. However, this suggests that Prometheus-7B-v2.0 is highly specialized rather
than robust across tasks. In contrast, RM-R1 is more robust than Prometheus-7B-v2.0 but lacks
flexibility in supporting diverse evaluation formats such as point-wise and binary scoring; Prometheus,
meanwhile, supports only point-wise and pair-wise formats. Our R3 models offer both robustness
and versatility, making it more suitable for general-purpose reward modeling.

D Dataset Creation Details

The following sections describe each stage.

D.1 Initial Curation

We begin by curating a large collection of publicly available datasets, denoted by D;,,;;, which
spans on three broad categories: general chat, reasoning, and classification or evaluation tasks. Each
example 21) € Dy is a tuple 20 = (¢tU), §0) q(D) rozj)t), where r(();)t

original dataset.

is optional rubric from the

* General Chat and Instruction-Following: This category includes open-domain instruction
tuning and user preference data, drawn from resources such as the Tulu subset [16], Ultra-



358
359

360
361
362

363
364
365
366
367

368
369
370
371

372

373
374
375
376
377

378
379
380
381
382
383

384
385
386
387
388
389

390
391

392
393

394
395
396

397
398

399
400
401
402

Feedback [4], and Skywork Reward Preference [21]. These datasets contain point-wise and
pair-wise tasks.

* Reasoning Tasks: To support math and code reasoning evaluations, we include datasets
like Math-Step-DPO-10K [15] and AceCodePair-300K [45], which contain preference
annotations focused on correctness and reasoning quality on math and coding tasks.

* Classification and Factual Evaluation: This category consists of binary and pair-wise
tasks aimed at assessing factuality, consistency, and alignment with task rubrics. We include
GLUE [35], SuperGLUE [36], SummEval [5], FeedbackCollection [11], PreferenceCollec-
tion [13], and EVOUNA [37]. These tasks span summarization, natural language inference,
general rubric-based classification, and factual correctness.

To construct binary-labeled data that includes false scores, we need to generate negative answers,
as many datasets only provide the correct response (e.g., EVOUNA, GLUE, SuperGLUE). When
possible, we sample negative answers from existing multiple-choice options. Otherwise, we generate
negative answers using GPT-40 mini [1].

D.2 Diversity Sampling

To ensure feasibility for distilling reasoning traces while maintaining representative coverage across
domains and reducing redundancy, we downsample D;,;; to a 20k-example subset Dogr, C Dinit,
manually allocating quotas per dataset to balance task types and formats. Dataset composition details
can be found in Section E. For each dataset in D;,,;;, we perform a three-stage sampling process to
extract the most diverse examples:

1. Embedding and Preprocessing. We begin by embedding each instance using a semantic
representation that combines its task instruction and input text to capture the sample’s
semantics across topics. Specifically, we use the gte-Qwen2-7B-instruct model [19] to
compute embeddings over h(z)) = ) @4i0), where @ denotes string concatenation. The
resulting embedding Emb(h(zV))) = ¢U) is used to measure similarity and diversity in
semantic space during clustering.

2. Cluster Determination and Assignment. To identify an appropriate number of groups
k* € {kmin, - - -, Kmax }» we select the value of k that maximizes the average Silhouette
score [28]. Here we choose k,,.;,, = 3 and k,,,,, = 10. If the dataset includes labeled
subcategories (e.g., topics or task types), clustering is applied independently within each
subcategory to preserve intra-category diversity. The Silhouette score for a sample (/) is

defined as s; = —4—"i__ where v, is the mean distance between z; and other points in
J max(v;,w;) J J

the same cluster, and w; is the mean distance to the nearest cluster not containing (/). We
select the optimal number of clusters £* by

1
k* = arg max — Z Sgk), (1)

k€ {Fmin,- kmax} | D]

where sgk) is the Silhouette score of sample (/) under the clustering configuration with k

clusters.

3. Stratified Sampling with Maximal Marginal Relevance (MMR). We perform stratified
sampling from each cluster with a minimum of 10 samples per cluster. For each cluster C'
with centroid ¢¢:

* We retain the first 25% of samples based on the closest to the cluster centroid, to ensure
topical relevance, i.e., Reiosest = T0p|0.25. 1|12 € C | [|[Emb(z) — qc|l2};

* The next 75% of the samples are selected via MMR, which balances relevance and
diversity among the already selected samples. Let R denote the set of already selected
examples, in which initially R = Rjyses¢- To sample the next candidate x € C'\ R,
we compute the MMR score as:

MMR(z) = A - sim(z,qc) — (1 — A) - max sim(z, ), 2)
T €

10
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where sim(-, -) denotes cosine similarity, and A € [0, 1] is a tunable trade-off parameter,
in which we set A = 0.5 to balance relevance and diversity. The next selected example
is 2* = argmax,ec\ g MMR(2).

For binary datasets, we retain only one instance per question, either the positive or the negative, to
avoid redundancy from semantically similar content.

D.3 Rubric Generation

Many datasets lack explicit evaluation rubrics, which are essential to our framework for generating
structured supervision. To address this, we automatically generate rubrics based on task type at
inference time. Although rubrics are produced dynamically to simulate realistic deployment, they are
cached for reusability in our dataset.

Formally, for each sample 29 in Door., we transform the optional rubric r(();)t into a required rubric
79, 5o the dataset becomes Dy, = {(tVV), i), al?), r(1))}20900 The rubrics are generated based
on task type using the following methodology:

Pair-wise and Binary Tasks. We use templated prompts to generate rubric variations tailored to
each format. To encourage generalization and mitigate overfitting, we randomize the rubric phrasing
across three prompt variants. Full templates are listed in Appendices F.3 and F.4.

Point-wise Tasks. When original rubrics rgi,)t are available (e.g., in FeedbackCollection), we
reuse them. Otherwise, we generate task-specific rubrics targeting relevant evaluation criteria (e.g.,
helpfulness in UltraFeedback) using a few-shot prompting strategy with GPT-40 mini. Details on
rubric prompting are available in Appendix F.1.

D.4 Explanation Trace Generation

Given the curated dataset Dygy, = {(t), i) a9 #(1))}229% e distill natural language explana-
tions using a reasoning distillation model. Specifically, we define a function:

ReasoningModel, : (t(j)7i(j),a(j),r(j)) — (reasoning_trace(j)7 2 é(j)), 3)

where ReasoningModel, is instantiated with DeepSeek-R1 [6]. This model generates a natural
language explanation (reasoning_trace(j ) along with short response of its predicted score 5(7)
and a short justification span é), following methodologies from prior work on explanation-based
distillation [31, 34]. Prompting templates are provided in Appendix F. We define the final target for
each sample 2(/) as:

y9) = reasoning_trace) @ (31, e0)) ()]
where @ is string concatenation. Therefore, we define the dataset Doy, as Doy, = {(2(7), 4l ))}50:0100.

Approximately 20% of the reasoning traces are either overly verbose or contain repetitive content.
For any example where y/) exceeds 4,096 tokens, we apply a post-processing step using GPT-4.1
mini to summarize the reasoning trace. The summarization preserves the core explanation while
removing redundant content and maintains stylistic coherence with the original output. Details and
heuristics for this step are provided in Appendix H.

As both the reasoning traces and their summaries are machine-generated, to verify the quality of
the generated data, we conduct a human evaluation in Section C.1, where we assess the factual
correctness and logical coherence of the original reasoning traces, as well as the faithfulness and style
consistency of the trace summarizations.

D.5 Quality Filtering

Finally, to improve the quality of our training dataset while preserving the diversity of responses, we
apply a two-stage filtering pipeline to the annotated dataset Doy .

11
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Table 2: Dataset size and composition of the top 7 source datasets at each stage of filtering. FC =
Feedback Collection, PC = Preference Collection. Additional statistics are provided in Appendix E.
Count Tulu3 AceCodePair Math-step-DPO FC PC UltraFeedback Skywork

Dok 20,000 0.18 0.15 0.15 0.13  0.10 0.10 0.10
D4y, (Filter Step 1) 13,772 0.19 0.20 0.21 0.09 0.07 0.06 0.11
Dy, (Filter Step 2) 3,949 0.13 0.28 0.19 0.12  0.03 0.12 0.05

Step 1: Incorrect Prediction Filtering. We discard examples for which the predicted score differs
from the ground truth. Formally, we construct a filtered dataset D145, C Da2gx such that for each
retained example (2, y()) € Dyyy, we have 50) = 5(), where sU) is the true score for sample
x (). This ensures that all reasoning signals used for training are consistent with the gold labels. After
this step, approximately 14,000 examples remain.

Step 2: Triviality Filtering via Small Model Agreement. To remove overly easy examples that
provide a limited training signal, we evaluate each example in D1 4, using our smallest model, Qwen3-
4B [43]. For each example x(/), we compute predictions across five decoding runs without chain-

of-thought reasoning as {égf, e §Eg])} = Qwen3-4B(zW)). If §E,i]) = sU) forall k € {1,...,5},

then we discard #() This results in the final dataset Dy, C Di4g, containing approximately 4,000
challenging and diverse training examples. Brief dataset statistics are provided in Table 2. We
fine-tune our R3 models with both Dy, (-4K) and D14 (-14K) to assess the impact of data size.

D.6 Evaluation Datasets

RM-Bench [22] is a reward model evaluation benchmark consisting of 1.3K instances that cover
four domains: Chat, Safety, Math, and Code. Each instance consists of three prompts categorized by
difficulty level: easy, medium, and hard. We measure the accuracy on each domain and difficulty level,
along with the overall average accuracy. RewardBench [17] is a popular reward model evaluation
benchmark consists of 3K instances of preference pairs on four categories: Chat, Chat-Hard, Safety,
Reasoning. We measure the accuracy on each category along with the overall average accuracy.
XSUM [24] is a news summarization dataset. For our evaluation, we use a subset that has been
annotated by human evaluators across three criteria: faithfulness (binary), coherence (Likert scale
1-5), and relevance (Likert scale 1-5), following the annotation protocol of Zhang et al. [46]. We
measure the Kendall-Tau [27] correlation for coherence and relevance, while we measure accuracy
for faithfulness. FeedbackBench [11] is the test split of FeedbackCollection introduced with the
Prometheus model for evaluating point-wise tasks. It contains 1K score rubrics, 200 instructions, and
1K responses that do not overlap with the train data. We measure the Kendall-Tau [27] correlation as
previously done by Kim et al. [11]. MMLU-STEM Binary [8] is a STEM-subject related subset! of
the MMLU benchmark with multiple-choice questions from various branches of knowledge. Given
four potential choices and one correct answer, we convert it to a binary evaluation task. For each
original question, we evaluate model’s response given the correct and separate a randomly selected
incorrect answer. We measure the overall accuracy, along with the accuracy on each subject. Unless
otherwise specified, all references to MMLU-STEM in this work refer to our MMLU-STEM Binary
benchmark. BBH Binary [33] is a collection of 27 non-trivial reasoning-like tasks sourced from
BigBench [2] with a total of 6.7K instances. The format of the tasks can be multiple choice or short
string completion. Similar to MMLU-STEM, we include a copy of the data with the correct response
and a copy with the incorrect response. Details of the dataset generation process is in Appendix J.
We measure the overall accuracy. Unless otherwise specified, all references to BBH in this work refer
to our BBH Binary benchmark.

E Dataset Statistics

E.1 Prompt and Response Length

In Table 3 we document the length distribution of our dataset.

"https://huggingface.co/datasets/TIGER-Lab/MMLU-STEM.
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Table 3: Length (white-space separated word count) distribution of our dataset. Response length
includes DeepSeek-R1 thinking tokens along with the short response, which contains an explanation
and the score assigned.

Prompt Length Response Length

Door 504 + 302 850 =+ 847
D4y (Filter Step 1) 497 + 413 729 + 538
Dy, (Filter Step 2) 442 + 224 851 + 599

E.2 Label Distribution

In Table E.2 we show the label distribution of our dataset across different filtering stages. Our raw
dataset has balanced distribution within each evaluation type. In D14, (Filter Step 1), binary labels
are slightly biased towards "false" and pair-wise labels are slightly biased towards "Response 1".
In Dy, (Filter Step 2), binary labels are slightly biased towards "true" and and pair-wise labels are
slightly biased towards "Response 1". Point-wise scores are also biased towards middle values (i.e.,
"3").

Table 4: Dataset label statistics distribution across the filtering process.

Binary Pair-wise Point-wise
true  false | resp. 1 resp. 2 | 1 2 3 4 5
Daok 0.024  0.026 034  0.335 | 0.047 0.053 0.055 0.058 0.062
Dy (Filter Step 1)  0.024  0.031 0.429 0.354 0.04 0.036 0.021 0.038 0.027
Dy, (Filter Step2)  0.033  0.022 | 0.365  0.304 | 0.035 0.048 0.7 0.061 0.046

F Prompt Template

F.1 Rubric Generation Template

For point-wise tasks, we generate rubric with Likert score from 1 to 5 using the following template.

Rubric generation template

You are an expert evaluator. Given a defined task, analyze the task and create a rubric using a
Likert scale from 1 to 5 to that will help to perform the given task.

Please follow these steps:

1. Explain the criteria for distinguishing between the scores (e.g., how a score of 1 differs
from a score of 5).

2. Based on your analysis, generate a rubric in JSON format with the Likert scale ranging
from 1 to 5, including descriptions for each score.

3. Ensure that the rubric is clear, actionable, and covers key aspects of the task.

### TASK
{task_instruction}

### INPUT
{input/question}

### EXAMPLE RUBRICS (Unrelated Tasks)
{sample_rubrics}

### RUBRIC FOR CURRENT TASK

13
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F.2 Point-wise Evaluation

For point-wise tasks where the judge model needs to assign a score for a response from 1-5, we use
the following template.

Pointwise evaluation prompt template

Evaluate the response based on the given task, input, response, and evaluation rubric.
Provide a fair and detailed assessment following the rubric.

### TASK
{task_instruction }

### INPUT
{input/question }

### RESPONSE
{response}

### EVALUATION RUBRIC
1: {score_of_1_description}
2: {score_of_2_description}
3: {score_of_3_description}
4: {score_of_4_description}
5: {score_of_5_description}

### OUTPUT FORMAT
Return a JSON response in the following format:

"explanation": "Explanation of why the response received a particular score",
"score": "Score assigned to the response based on the rubric between 1 to 5"

}

### EVALUATION

F.3 Pair-wise Evaluation

For pair-wise tasks where the judge model needs to compare against two responses, we use the
following template.

Pairwise evaluation prompt template

Evaluate the response based on the given task, input, two responses, and evaluation rubric.
Provide a fair and detailed assessment following the rubric.

### TASK
{task_instruction }

### INPUT
{input/question}

### RESPONSE 1
{response_1}

### RESPONSE 2
{response_2}

14
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### EVALUATION RUBRIC
Response 1: Response 1 provided better response, rejecting Response 2.
Response 2: Response 2 provided better response, rejecting Response 1.

### OUTPUT FORMAT
Return a JSON response in the following format:

{
"explanation": "Explanation of why one response is preferred over the other",
"score": "Final selection between 'Response 1’ or "Response 2’"

}
### EVALUATION

For rubrics, we include three variations and uniformly randomly sample from them when creating
our dataset.

Pairwise evaluation rubric variation 1

{

"response_1": "Response 1 is the preferred choice over Response 2.",
"response_2": "Response 2 is the preferred choice over Response 1."

}

Pairwise evaluation rubric variation 2

{

"response_1": "Response 1 provided better response, rejecting Response 2.",
"response_2": "Response 2 provided better response, rejecting Response 1."

}

Pairwise evaluation rubric variation 3

{

"response_1": "Response 1 is superior, meaning Response 2 is not chosen.",
"response_2": "Response 2 is superior, meaning Response 1 is not chosen."

}

F.4 Binary Evaluation

For binary tasks where the judge model needs to classify true or false to the response, we use the
following template.

Binary evaluation prompt template

Evaluate the response based on the given task, input, response, and evaluation rubric.
Provide a fair and detailed assessment following the rubric.

### TASK
{task_instruction }

### INPUT
{input/question }

### RESPONSE

15



{response}

### EVALUATION RUBRIC
true: The response accurately reflects the correct answer based on the input.
false: The response does not accurately reflect the correct answer based on the input.

### OUTPUT FORMAT
Return a JSON response in the following format:

"explanation": "Explanation of why the answer is true or false",
"score": "Final boolean answer between true or false"

}
### EVALUATION

514

515 For rubrics, we include three variations and uniformly randomly sample from them when creating
516 our dataset.

Binary evaluation rubric variation 1

{
"true": "The answer correctly corresponds to the given input.",
"false": "The answer does not correctly correspond to the given input."
}
517
Binary evaluation rubric variation 2
"true": "The response accurately reflects the correct answer based on the input.",
"false": "The response does not accurately reflect the correct answer based on the input."
}
518
Binary evaluation rubric variation 3
"true": "The answer is appropriate and correctly derived from the input."”,
"false": "The answer is inappropriate or incorrectly derived from the input."
}
519

s20 G Example Prompts and Responses

521 G.1 Point-wise Evaluation

Prompt example for pointwise evaluation (sourced from FeedbackCollection)

Evaluate the response based on the given task, input, response, and evaluation rubric.
Provide a fair and detailed assessment following the rubric.

### TASK
Does the final conclusion drawn by the response hold up to logical scrutiny and provide a
correct solution for an instruction with a definite answer?

### INPUT

522
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524

Imagine a situation where there is a debate going on regarding the total number of prime
numbers between 1 and 100. Your task is to determine the correct count and also provide the
list. The debate is currently revolving around three different answers - 25, 26 and 27 prime
numbers.

### RESPONSE

The total number of prime numbers between 1 and 100 is definitely 30. Prime numbers are
those numbers that only have 1 and the number itself as factors. We don’t need to list down
each of them because it’s already known that there are 30 prime numbers between 1 and 100.
It’s simple mathematics, and there is no need for any debate on this matter. The discussion
around the number being 25, 26, or 27 is irrelevant and baseless. So, the conclusion is there
are 30 prime numbers between 1 and 100.

### EVALUATION RUBRIC

1: The concluding answer from the model is entirely false and devoid of logical foundation.
2: The concluding answer from the model has major flaws that seriously compromise its
validity.

3: The concluding answer from the model bears considerable mistakes that demand
significant rectification.

4: The concluding answer from the model has slight inaccuracies, but these are simple to fix
and do not greatly affect its overall validity.

5: The concluding answer from the model is wholly correct and logically sound.

### OUTPUT FORMAT
Return a JSON response in the following format:

{

"explanation": "Explanation of why the response received a particular score",
"score": "Score assigned to the response based on the rubric between 1 to 5"

}
### EVALUATION

Example response from R1 (summarized) used for SFT

<think>

Okay, let me evaluate this response. The user asked about the number of primes between 1
and 100, with the debate being 25, 26, or 27. The response says there are 30 primes, which
is definitely wrong. The actual count is 25. The response claims it’s "simple mathematics"
and dismisses the debate, but that’s incorrect. The answer provided is entirely false, and the
reasoning is flawed because they didn’t list or verify the primes. The rubric says a score of 1
is for entirely false and no logical foundation. This fits because the answer is wrong and the
logic is absent. So, score 1.

</think>

{

"explanation": "The response concludes there are 30 prime numbers between 1 and 100,
which is factually incorrect. The actual number is 25. The claim that ’it’s already known there
are 30 primes’ is baseless, and the dismissal of the debate over 25, 26, or 27 as ’irrelevant’
ignores the correct answer (25). The response fails to provide logical reasoning, a correct list,
or acknowledgment of established mathematical facts. This demonstrates a complete lack of
validity and logical foundation.",

"score": "1"

}
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G.2 Pair-wise Evaluation

Prompt example for pairwise evaluation (sourced from Tulu-3-sft)

Evaluate the response based on the given task, input, two responses, and evaluation rubric.
Provide a fair and detailed assessment following the rubric.

### TASK
Evaluate the factual accuracy of the response. Consider whether the information provided is
correct, up-to-date, and free from errors or misconceptions.

### INPUT

Come up with a question and reasoning that would justify this answer: Raphael Sbarge Your
ENTIRE response should be in Chinese, no other language is allowed. Come up with a
question and reasoning that would justify this answer: Raphael Sbarge

### RESPONSE 1
Question: (Blade) X HPUN I RAP IR A, H{E A VHITE G2 E?

Reasomng B % (Blade) & — &R 44 IR I 5 & 41 1F & . Raphael Sbargef 1‘_
EPRLEHIHE T EAV, XE-NEFERMAOMAE . B, XA R EE
5‘%3’%/\ Raphael Sbarge1F /& 1% A BRI THEE -

### RESPONSE 2
[A]RH: 178 *Once Upon a Time’ H'HY "4:Pinocchio/Archie Hopper" — f A8 517

#H H : Raphael Sbarge ;& X EEGA , M&EE L WA G Z —H 2% E B ME
’Once Upon a Time’ )4z Pinocchio/Archie Hopper -

### EVALUATION RUBRIC
Response 1: Response 1 provided better response, rejecting Response 2.
Response 2: Response 2 provided better response, rejecting Response 1.

### OUTPUT FORMAT
Return a JSON response in the following format:

{

"explanation": "Explanation of why one response is preferred over the other",
"score": "Final selection between 'Response 1’ or "Response 2’"

}
### EVALUATION

Pairwise example response from R1 (summarized) used for SFT

<think>

Ry, BIAEFEZEEMADEE, BEW NAEESSERTE LET - ESRRIER G
AR\, FITIIRA (B SR VR ~ o LIRE B R - B AR LE A AR — A Rl A
FH >R 1IE B % 28 /& Raphael Sbarge -

H Yt BResponse 1K [AI: « (Blade) XERIK M B B H, HIEFEAVATE
RAEE? ”EEEEEU‘@Raphael SbargeTL_ﬁKEﬁ%q:'bfﬁ{ﬁTE%V 157@%&“5’]7@#,
<<B1ade>> A H R I A Blade & FHWesley Snipesi#E [, TV R G218 A —HRH
% (VAR BrEMAV, EI1ZHHugo Weavmgbfﬁ{ﬁiiﬁ’] Raphael Sbargeffi=<
21 (Blade) P57 HAREHIN— ? E YR Z P, Raphael Sbargeffi S5 7£ 19984F
1) (J1% 1)  (Blade) FHET—MAE, HIFAREMAV, MEKEAEDL
Curtis Webb - Ffr LAResponse 11 (A REFIFE HZ7ERE 1%, EFEMAVIIIMTEE SR
HSbarge, X EINZFEIRAY -
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F2 T Sk B Response 20 (A& : “1Z {8 *Once Upon a Time’ H ] *4:Pinocchio/Archie
Hopper’ —FARJE Y PR H Sbarge 7R ZRBI H I3 HIX N A - MRIETTRL, Raphael
SbargeffiSEfE (%) (Once Upon a Time) H#7{# T Archie Hopper, 12 AR (H
El%i%gﬁ/‘]]\%%?& o IXMEBEAEIERIR, FrLiResponse 2[RI REAIHE FHER & 55 55 IEAf

MRIEVE > bR, DOZ R H SRR A B % - I AResponse 21E 7, TMResponse
15%5%, FItResponse 25 AL «

</think>*“‘json

{

"explanation": "Response 1TZ{EH LE5R:  (Blade) RF|HEFHIFE A VH IEHRaphael
Sbargelfifi (SEPRFHWesley Snipes?fiff) , Hi%F % H'Raphael Sbarge W Fffis /X 2
tADr. Curtis Webb - Response 2/ll| IERfi#5 HiRaphael Sbarge?E {Once Upon a Time) H7ff
{8 Archie Hopper/<zPinocchio, iIX—{ZEfF & FH X HILk R - Bk, Response 27EZFH K
R B 2 A1 T Response 1= ",

"score": "Response 2"

} 1113

G.3 Binary Evaluation

Prompt example for binary evaluation (sourced from evouna)

Evaluate the response based on the given task, input, response, and evaluation rubric.
Provide a fair and detailed assessment following the rubric.

### TASK
Your task is to determine whether the given answer response is correct based on the query
input.

### INPUT
who was the killer in the movie i know what you did last summer

### RESPONSE
Ben Willis

### EVALUATION RUBRIC
true: The response accurately reflects the correct answer based on the input.
false: The response does not accurately reflect the correct answer based on the input.

### OUTPUT FORMAT
Return a JSON response in the following format:

{

"explanation": "Explanation of why the answer is true or false",
"score": "Final boolean answer between true or false"

}
###t EVALUATION

Prompt example for binary evaluation (sourced from evouna)

<think>

Okay, let’s tackle this evaluation. The user is asking whether the killer in the movie "I Know
What You Did Last Summer" is Ben Willis, as stated in the response. First, I need to recall the
plot of the movie to verify this. From what I remember, the movie revolves around a group of
friends who hit someone with their car and then cover it up. The killer is later revealed to
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be seeking revenge for that incident. The main antagonist is indeed Ben Willis, who is also
known as the Fisherman. He’s the father of the person they hit, and he faked his own death to
frame someone else. So, the response "Ben Willis" is correct. The answer should be true.
</think>

{

"explanation": "In the movie 'I Know What You Did Last Summer,’ the killer is revealed
to be Ben Willis, also known as the Fisherman. He is the father of the victim the group
accidentally hit with their car and covers up. Ben Willis fakes his death and seeks revenge,
making the response accurate.",

n,on

"score": "true"

}

H Explanation Trace Summarization Details

First, we perform inference using the model to obtain the initial reasoning trace. This training trace
is then passed through the model once more; conditioned on the prompt shown in "Prompt for
Summarization Tracing" to generate a concise version. The second inference produces a shortened
reasoning trace by removing redundant or unnecessary reasoning steps while preserving the original
tone, style, and logical progression.

Prompt for Reasoning Trace Summarization

Shorten the following reasoning trace by removing redundant or unnecessary thinking loops
while preserving the exact same tone, style, and progression of thought. Output only the
shortened reasoning trace without any explanation.

{DeepSeek-R1 Reasoning Trace}

I Training Hyper-parameters

For all of our experiments, we use 4 A800 80GB GPUs.

We use LLaMA-Factory [48] to perform SFT for all R3 models. We set the maximum sequence
length to 8192, with a learning rate of le—5, trained for 5 epochs using a cosine learning rate
scheduler. The batch size per device is 16. For R3 LoRA models, we use LoRA rank of 64 and
alpha of 128. For inference, we use VLLM [14] using the recommended inference configuration from
Qwen3 and Phi-4-reasoning-plus.

J Evaluation Prompt

Since RewardBench and FeedbackBench are of pair-wise and point-wise evaluation format, they do
not require extra processing to format into our prompt template. For both MMLU-STEM and BBH,
since we are converting them to binary evaluation, we need to sample negative responses to augment
the dataset.

The original MMLU-STEM consists of multiple-choice questions. We simply randomly sample a
wrong answer as the negative. For subtasks of BBH that are also in the format of multiple-choice
questions, we do the same.

There are four tasks that require custom adaptation for negative label sampling:

DyckLanguages is a task where models are tasked to complete un-closed parentheses of different
types. To sample negatives, with equal chance, we randomly delete, swap, or insert a symbol that
appears in the context.
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WordSorting is a task where models are tasked to sort a set of unordered words. We randomly
swap a pair of words from the target order to create the negative.

MultistepArithmeticTwo is a task where models are expected to perform arithmetic calculations in-
volving 8 single-digit operands. We calculate the mean and standard deviation of the label distribution,
and randomly sample a number within the distribution.

ObjectCounting is a task where models are expected to count the number of objects (possibly
a subset of all mentioned objects) mentioned in a sentence. We calculate the mean and standard
deviation of the label count distribution, and randomly sample a number within the distribution.

K Human Annotation Details

We stratified-sample 100 instances of data, and have the authors of the paper annotate the quality
of the reasoning and reasoning summarizations. In total we have 5 annotators, annotating a total of
around 2% of Dyy,.

K.1 Reliability of Reasoning Trace

To ensure reasoning trace is reliable, we define two metrics Factual Correctness and Logical
Coherence to ensure consistent labeling:

Factual Correctness (Scale: 1-3) assesses whether the statements in the reasoning trace are true
and supported by external knowledge or evidence. When scoring, treat retrievable evidence or
commonsense facts as acceptable grounding.

1. (Incorrect) Contains one or more clear factual errors or hallucinations that undermine the
trace. May lead to incorrect conclusions or mislead the model.

2. (Partially Correct) Most statements are accurate, but minor factual errors or unverifiable
claims exist. Does not change the final conclusion, but may reduce trace reliability.

3. (Fully Correct) All statements are factually accurate and supported by known facts, context,
or ground truth. No hallucinations or inaccuracies.

Logical Coherence measures whether the reasoning steps logically follow from each other and
form a coherent argument or thought process. Judge based on internal consistency, not factuality. A
trace can be factually wrong but still logically coherent.

1. (Incoherent) Trace is illogical, disjointed, or internally inconsistent. Steps may contradict,
skip crucial logic, or appear arbitrary.

2. (Somewhat Coherent) Mostly logical, but has minor gaps, unclear transitions, or weak
justifications. Still understandable, but less robust as supervision.

3. (Fully Coherent) All steps follow logically and consistently. No missing steps, contradictions,
or unjustified jumps in reasoning. A smooth, interpretable chain.

In Table 5 we show detailed annotation results across annotators.

Table 5: Human annotation results on reasoning trace factual correctness and logical coherence
(out of 3, higher better).

Annotator 1 Annotator 2 Annotator 3 Annotator 4  Average

Factual Correctness 34+0.2 340 29403 28+05 29+02
Logical Coherence 29+04 2.6 +0.7 29+03 274+05 28+02
Count 27 10 28 28 -
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K.2 Reasoning Trace Summary Quality

During dataset curation, we use GPT-4.1 mini to summarize the reasoning traces that are too long.
We want to measure faithfulness and style similarity.

Faithfulness measures how well the summary covers the ideas of the original reasoning trace

1. (Unfaithful) Omits key reasoning or introduces incorrect logic. Could mislead a model or
change the original meaning.

2. (Partially Faithful) Minor omissions or slightly altered emphasis, but preserves the general
logic and outcome. Acceptable for training.

3. (Fully Faithful) Captures all core and necessary reasoning steps accurately. No hallucinations,
distortions, or omissions of crucial logic.

non

Style Similarity includes similar tone, level of formality, structured markers ("first", "therefore"),
or domain-specific phrasing.
1. (Completely different) Omits all tone, level of formality, etc. from original trace

2. (Somewhat similar style) Somewhat similar in terms of tone, level of formality, etc. from
original trace

3. (Same style) Same style with the original reasoning trace

In Table 6 we show detailed annotation results across annotators.

Table 6: Human annotation results on reasoning trace summary faithfulness and style similarity
(out of 3, higher better).

Annotator 1  Annotator 2 Annotator 3 Annotator 4 Annotator 5  Average

Faithfulness 26+0.8 28+0.5 28+04 27+£08 3£0 28+£05
Style similarity 25£06 3+£02 27£05 28+04 2705 27+04
Count 20 26 25 6 7 -

L Other Results
L.1 RM-Bench & Reward Bench

Additional results presented in Table 7 and Table 8 are derived from the findings reported in [3].

L.2 BBH Binary & MMLU-STEM Binary

Table 9 reports additional results from our BBH Binary and MMLU-STEM Binary.

L.3 XSUM and FeedbackBench

Table 10 reports additional results, reproduced from prior work including Jia et al. [10], to provide
broader context and facilitate direct comparison across XSUM and FeedbackBench benchmarks.
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Table 7: Comparison of existing models with R3 on RM-Bench. Bolded numbers indicate the
best-performing results within each group section independently.

Model Domain Difficulty Overall
Chat Math Code Safety | Easy Medium Hard | Avg.

Scalar RMs

steerlm-70b 564 530 493 512 | 483 54.9 543 525
tulu-v2.5-70b-preference-mix-rm 582 514 555 871 | 728 65.6 50.7 63.0
Mistral-7B-instruct-Unified-Feedback 565 58.0 517 86.8 | 87.1 67.3 353 632
RM-Mistral-7B 574 570 527 872 | 8.6 67.1 349 63.5
Eurus-RM-7b 599 602 569 865 | 87.2 70.2 40.2 65.9
internlm2-7b-reward 61.7 714 497 855 | 854 70.7 45.1 67.1
Skywork-Reward-Gemma-2-27B 69.5 547 532 919 | 780 69.2 549 673
ArmoRM-Llama3-8B-v0.1 678 575 531 924 | 822 71.0 49.8 67.7
GRM-llama3-8B-sftreg 627 625 578 90.0 | 835 72.7 48.6 68.2
internlm2-20b-reward 63.1 668 56.7 86.5 82.6 71.6 50.7 68.3
Llama-3-OffsetBias-RM-8B 71.3 619 532 89.6 | 846 72.2 50.2 69.0
Nemotron-340B-Reward 712 598 594 875 | 81.0 71.4 56.1 69.5
URM-Llama-3.1-8B 712 618 541 93.1 | 84.0 73.2 53.0 70.0
Skywork-Reward-Llama-3.1-8B 69.5 606 545 95.7 | 89.0 74.7 46.6 70.1
infly/INF-ORM-Llama3.1-70B 663 656 568 948 | 918 76.1 44.8 70.9
Generative RMs

tulu-v2.5-dpo-13b-chatbot-arena-2023 649 523 505 623 | 828 60.2 29.5 575
tulu-v2.5-dpo-13b-nectar-60k 563 524 526 738 | 86.7 643 254 58.8
stablelm-2-12b-chat 672 549 516 652 | 69.1 63.5 46.6 59.7
tulu-v2.5-dpo-13b-stackexchange-60k 664 499 542  69.0 | 795 63.0 37.2 59.9
Nous-Hermes-2-Mistral-7B-DPO 588 556 513 739 | 695 61.1 49.1 59.9
Claude-3-5-sonnet-20240620 625 626 545 644 | 738 63.4 45.9 61.0
tulu-v2.5-dpo-13b-hh-rlhf-60k 684 511 523 765 | 53.6 63.0 69.6 62.1
tulu-2-dpo-13b 664 514 518 854 | 869 66.7 37.7 63.8
SOLAR-10.7B-Instruct-v1.0 78.6 523 496 789 | 575 67.6 69.4 64.8
Llama3.1-70B-Instruct 643 673 475 83.0 | 747 67.8 54.1 65.5
Skywork-Critic-Llama-3.1-70B 714 646 568 94.8 | 856 73.7 56.5 719
GPT-40-0806 672 675 636 917 | 834 75.6 58.7 725
Gemini-1.5-pro 71.6 739 637 913 | 83.1 71.6 64.7 75.2
Prometheus-7B-v2.0 460 526 476 739 | 68.8 54.9 41.3 55.0
JudgeLRM 599 599 519 873 | 732 76.6 54.8 64.7
RM-R1-Qwen-Instruct-7B 66.6 67.0 54.6 92.6 | 79.2 71.7 59.7 70.2
RM-R1-DeepSeek-Distilled-Qwen-7B 640 839 562 853 | 759 73.1 68.1 724
RM-R1-Qwen-Instruct-14B 75.6 754 606 93.6 | 826 71.5 68.8 76.1
RM-R1-Qwen-Instruct-32B 753 802 668 939 | 863 80.5 70.4 79.1
RM-R1-DeepSeek-Distilled-Qwen-14B 71.8 905 695 941 | 862 83.6 74.4 81.5
RM-R1-DeepSeek-Distilled-Qwen-32B 742 918 741 954 | 895 85.4 76.7 83.9
R3 Models (Ours)

R3-QWEN3-4B-LORA-4K 682 934 726 854 | 874 81.3 71.1 79.9
R3-QWEN3-4B-LORA-14K 669 922 727 865 | 869 81.5 70.3 79.6
R3-QWEN3-4B-4K 689 923 725 865 | 865 814 72.3 80.0
R3-QWEN3-4B-14K 679 930 747 869 | 8.8 81.9 71.1 80.6
R3-QWEN3-8B-LORA-4K 689 935 752 881 88.2 83.8 72.4 81.4
R3-QWEN3-8B-LORA-14K 689 929 750 889 | 89.0 832 72.1 814
R3-QWEN3-8B-4K 70.8 929 742 892 | 879 83.4 74.0 81.8
R3-QWEN3-8B-14K 69.1 932 759 876 | 89.0 834 71.9 814
R3-QWEN3-14B-LORA-4K 746 939 787  89.8 | 90.2 86.3 76.2 842
R3-QWEN3-14B-LORA-14K 73.8 936 774 89.0 | 89.7 859 74.8 835
R3-QWEN3-14B-4K 740 937 712 893 | 89.7 853 75.6 83.6
R3-QWEN3-14B-14K 734 938 79.1 89.5 | 90.3 86.6 74.9 84.0
R3-PHI-4-R*-14B-LORA-4K 714 944 782 862 | 8.7 843 74.7 825
R3-PHI-4-R*-14B-LORA-14K 732 909 737 853 | 877 829 71.7 80.8
R3-PHI-4-R*-14B-4K 749 907 741 86.6 | 87.9 833 73.5 81.6
R3-PHI-4-R*-14B-14K 745 930 715 848 | 893 84.7 733 825
R3-QWEN2.5-7B-LORA-4K 59.6 602 494 763 | 712 63.1 49.8 61.4
R3-QWEN2.5-7B-4K 69.6 755 598 869 | 80.2 742 64.5 73.0
R3-QWEN2.5-7B-14K 66.8 820 650 87.0 | 838 76.8 64.9 75.2
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-4K 69.0 903 70.5 858 | 859 81.6 69.3 78.9
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-14K  68.0 90.8 71.2 86.7 87.0 81.8 68.9 79.2
R3-DEEPSEEK-DISTILLED-QWEN-14B-4K 73.0 922 771 86.3 88.5 84.1 73.9 82.1
R3-DEEPSEEK-DISTILLED-QWEN-14B-14K 717 93.0 784 86.4 89.3 84.7 73.1 82.4
Proprietary Models

GPT-5 mini 88.0 929 911 780 | 774 85.8 96.4 92.4
GPT-4.1 mini 676 730 713  90.7 | 87.0 78.4 61.7 75.7
GPT-04 mini 776  93.0 808 934 | 92.0 88.7 78.0 86.2
DeepSeck-R1 786 662 819 887 | 869 822 673 78.8
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Table 8: Comparison of existing models with R3 on RewardBench using pair-wise scoring. Bolded
numbers indicate the best-performing results within each group section independently.

Models Chat Chat Hard Safety Reasoning \ Avg.
Scalar RMs

Eurus-RM-7b 98.0 65.6 81.4 86.3 82.8
Internlm2-7b-reward 99.2 69.5 87.2 94.5 87.6
SteerLM-RM 70B 91.3 80.3 92.8 90.6 88.8
Cohere-0514 96.4 71.3 92.3 97.7 89.4
Internlm2-20b-reward 98.9 76.5 89.5 95.8 90.2
ArmoRM-Llama3-8B-v0.1 96.9 76.8 90.5 97.3 90.4
Nemotrom-4-340B-Reward 95.8 87.1 91.5 93.6 92.0
Skywork-Reward-Llama-3.1-8B 95.8 87.3 90.8 96.2 92.5
Skywork-Reward-Gemma-2-27B 95.8 91.4 91.9 96.1 93.8
infly/INF-ORM-Llama3.1-70B 96.6 91.0 93.6 99.1 95.1
Generative RMs

Llama3.1-8B-Instruct 85.5 48.5 75.6 72.1 70.4
Llama3.1-70B-Intruct 97.2 70.2 82.8 86.0 84.0
Llama3.1-405B-Intruct 97.2 74.6 77.6 87.1 84.1
Claude-3-5-sonnet-20240620 96.4 74.0 81.6 84.7 84.2
GPT-40-0806 96.1 76.1 86.6 88.1 86.7
Gemini-1.5-pro 92.3 80.6 87.9 92.0 88.2
Self-taught-evaluator-llama3.1-70B 96.9 85.1 89.6 88.4 90.0
SFR-LLaMa-3.1-70B-Judge-r 96.9 84.8 91.6 97.6 92.7
Skywork-Critic-Llama-3.1-70B 96.6 87.9 93.1 95.5 93.3
Prometheus-7B-v2.0 90.2 45.6 75.8 74.6 71.6
m-Prometheus-14B 93.6 59.0 85.1 84.8 80.6
JudgeLRM 92.9 56.4 78.2 73.6 75.2
SynRM 38.0 82.5 74.1 87.1 70.4
RM-R1-DeepSeek-Distilled-Qwen-7B 88.9 66.2 78.4 87.0 80.1
RM-R1-Qwen-Instruct-7B 94.1 74.6 85.2 86.7 85.2
RM-R1-Qwen-Instruct-14B 93.6 80.5 86.9 92.0 88.2
RM-R1-DeepSeek-Distilled-Qwen-14B 91.3 79.4 89.3 95.5 88.9
R3 Models (Ours)

R3-QWEN3-4B-LORA-4K 91.1 74.4 85.6 95.5 86.7
R3-QWEN3-4B-LORA-14K 90.4 75.2 85.7 96.1 86.9
R3-QWEN3-4B-4K 88.3 774 86.1 95.3 86.8
R3-QWEN3-4B-14K 92.4 76.0 85.8 95.7 87.5
R3-QWEN3-8B-LORA-4K 93.2 76.6 87.0 96.3 88.3
R3-QWEN3-8B-LORA-14K 93.0 76.2 87.6 96.4 88.3
R3-QWEN3-8B-4K 91.6 79.8 87.7 95.8 88.7
R3-QWEN3-8B-14K 93.8 78.6 86.3 96.7 88.8
R3-QWEN3-14B-LORA-4K 93.6 85.1 88.7 96.8 91.0
R3-QWEN3-14B-LORA-14K 92.9 82.8 88.2 96.9 90.2
R3-QWEN3-14B-4K 92.6 81.0 88.4 96.6 89.7
R3-QWEN3-14B-14K 93.3 79.7 88.4 96.9 89.6
R3-PHI-4-RT-14B-LORA-4K 90.6 76.5 86.8 96.5 87.6
R3-PHI-4-RT-14B-LORA-14K 93.4 79.1 85.2 94.3 88.0
R3-PHI-4-R*-14B-4K 92.6 79.0 85.8 96.3 88.4
R3-PHI-4-R*-14B-14K 94.5 78.0 86.6 96.5 88.9
R3-QWEN2.5-7B-LORA-4K 83.1 67.0 79.4 73.2 75.7
R3-QWEN2.5-7B-4K 85.9 75.3 85.5 85.1 82.9
R3-QWEN2.5-7B-14K 91.4 73.8 85.1 90.6 85.2
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-4K 90.8 75.6 84.6 93.1 86.0
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-14K  92.4 75.2 84.7 93.8 86.5
R3-DEEPSEEK-DISTILLED-QWEN-14B-4K 89.7 78.7 86.0 95.5 87.5
R3-DEEPSEEK-DISTILLED-QWEN-14B-14K 92.3 77.8 86.8 95.6 88.1
Propretiary Models

GPT-5 mini 95.3 81.6 92.0 98.4 91.8
GPT-4.1 mini 96.1 75.2 87.0 89.6 87.0
GPT-04 mini 95.3 81.8 91.6 98.4 91.8
DeepSeek-R1 93.6 79.2 86.9 97.4 89.3
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Table 9: Comparison of existing models with R3 on BBH & MMLU-STEM binary. Bolded numbers
indicate the best-performing results between R3 models and baseline models. Proprietary models are
bolded and compared independently.

Models BBH Binary MMLU-STEM
Acc. Acc.
Prometheus-7B-v2.0 54.0 56.5
Selene-1-Mini-Llama-3.1-8B 58.2 65.2
RISE-Judge-Qwen2.5-7B 63.1 76.9
RISE-Judge-Qwen2.5-32B 82.8 89.4
R3 Models (Ours)
R3-QWEN3-4B-LORA-4K 89.0 92.1
R3-QWEN3-4B-LORA-14K 88.9 92.2
R3-QWEN3-4B-4K 88.8 91.8
R3-QWEN3-4B-14K 89.3 92.0
R3-QWEN3-8B-LORA-4K 90.8 93.5
R3-QWEN3-8B-LORA-14K 90.8 93.6
R3-QWEN3-8B-4K 90.7 93.3
R3-QWEN3-8B-14K 90.7 93.6
R3-QWEN3-14B-LORA-4K 91.7 94.8
R3-QWEN3-14B-LORA-14K 91.9 94.5
R3-QWEN3-14B-4K 92.1 94.6
R3-QWEN3-14B-14K 92.1 94.8
R3-PHI-4-RT-14B-LORA-4K 91.4 93.3
R3-PHI-4-RT-14B-LORA-14K 91.3 93.5
R3-PHI-4-Rt-14B-4K 91.2 93.6
R3-PHI-4-Rt-14B-14K 92.2 94.4
R3-QWEN2.5-7B-LORA-4K 71.7 81.8
R3-QWEN2.5-7B-4K 79.8 86.4
R3-QWEN2.5-7B-14K 81.1 88.3
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-4K 89.9 91.9
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-14K 90.0 92.2
R3-DEEPSEEK-DISTILLED-QWEN-14B-4K 91.3 929
R3-DEEPSEEK-DISTILLED-QWEN-14B-14K 91.1 93.0
Propretiary Models
GPT-5 mini 95.0 96.5
GPT-4.1 mini 91.0 93.3
GPT-04 mini 93.2 95.3
DeepSeek-R1 94.0 96.2
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Table 10: Comparison of existing models with R3 on XSUM and FeedbackBench. Bolded numbers
indicate the best-performing results between R3 models and baseline models. Proprietary models are
bolded and compared independently.

Models XSUM FeedbackBench
Acc. Kendall Tau Kendall Tau
Faithfulness Coherence Relevance
Llama-7B 51.7 - - -
Vicuna-7B 55.5 - - -
Alpaca-7B 51.1 - - -
UniEval 84.3 0.07 0.03 -
Prometheus-7B-v2.0 60.7 0.12 0.16 0.79
Selene-1-Mini-Llama-3.1-8B 56.4 0.16 0.36 0.78
RISE-Judge-Qwen2.5-7B 66.4 0.29 0.32 0.68
RISE-Judge-Qwen2.5-32B 71.0 0.30 0.39 0.74
R3 Models (Ours)
R3-QWEN3-4B-LORA-4K 70.8 0.12 0.26 0.63
R3-QWEN3-4B-LORA-14K 70.7 0.12 0.26 0.64
R3-QWEN3-4B-4K 66.8 0.23 0.27 0.63
R3-QWEN3-4B-14K 66.7 0.25 0.31 0.63
R3-QWEN3-8B-LORA-4K 67.7 0.22 0.32 0.65
R3-QWEN3-8B-LORA-14K 69.6 0.24 0.31 0.67
R3-QWEN3-8B-4K 68.0 0.36 0.31 0.66
R3-QWEN3-8B-14K 65.8 0.37 0.32 0.71
R3-QWEN3-14B-LORA-4K 67.8 0.26 0.35 0.64
R3-QWEN3-14B-LORA-14K 69.2 0.24 0.34 0.65
R3-QWEN3-14B-4K 67.8 0.34 0.34 0.68
R3-QWEN3-14B-14K 68.5 0.33 0.36 0.71
R3-PHI-4-RT-14B-LORA-4K 64.8 0.45 0.31 0.69
R3-PHI-4-RT-14B-LORA-14K 61.8 0.40 0.30 0.68
R3-PHI-4-Rt-14B-4K 67.5 0.36 0.30 0.69
R3-PHI-4-RT-14B-14K 67.3 0.35 0.34 0.67
R3-QWEN2.5-7B-LORA-4K 52.8 0.14 0.21 0.48
R3-QWEN2.5-7B-4K 65.1 0.29 0.29 0.64
R3-QWEN2.5-7B-14K 67.5 0.33 0.34 0.69
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-4K 58.4 0.21 0.31 0.64
R3-DEEPSEEK-DISTILLED-QWEN-14B-LORA-14K 59.9 0.37 0.32 0.66
R3-DEEPSEEK-DISTILLED-QWEN-14B-4K 61.9 0.39 0.31 0.69
R3-DEEPSEEK-DISTILLED-QWEN-14B-14K 64.3 0.40 0.34 0.71
Proprietary Models
GPT-5 mini 68.7 0.42 0.39 0.62
GPT-4.1 mini 72.6 0.07 0.38 0.69
GPT-04 mini 69.1 0.16 0.30 0.66
DeepSeek-R1 60.4 0.35 0.38 0.72

26



	Introduction
	Aren't Existing Reward Models Robust Enough?
	Tasks and Datasets
	Task Formats
	R3 Datasets
	Training

	Results and Analysis
	Overall Performance
	Ablation Study

	Conclusion
	Limitations
	Related Work
	Analysis
	Human Evaluation of Reasoning Traces
	Model Scaling and Efficiency
	Robustness

	Dataset Creation Details
	Initial Curation
	Diversity Sampling
	Rubric Generation
	Explanation Trace Generation
	Quality Filtering
	Evaluation Datasets

	Dataset Statistics
	Prompt and Response Length
	Label Distribution

	Prompt Template
	Rubric Generation Template
	Point-wise Evaluation
	Pair-wise Evaluation
	Binary Evaluation

	Example Prompts and Responses
	Point-wise Evaluation
	Pair-wise Evaluation
	Binary Evaluation

	Explanation Trace Summarization Details
	Training Hyper-parameters
	Evaluation Prompt
	Human Annotation Details
	Reliability of Reasoning Trace
	Reasoning Trace Summary Quality

	Other Results
	RM-Bench & Reward Bench
	BBH Binary & MMLU-STEM Binary
	XSUM and FeedbackBench


