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ABSTRACT

Medical deep learning models depend heavily on domain-specific knowledge to
perform well on knowledge-intensive clinical tasks. Prior work has primarily
leveraged unimodal knowledge graphs, such as the Unified Medical Language
System (UMLS), to enhance model performance. However, integrating multimodal
medical knowledge graphs remains largely underexplored, mainly due to the lack
of resources linking imaging data with clinical concepts. To address this gap,
we propose MEDMKG, a Medical Multimodal Knowledge Graph that unifies
visual and textual medical information through a multi-stage construction pipeline.
MEDMKG fuses the rich multimodal data from MIMIC-CXR with the structured
clinical knowledge from UMLS, utilizing both rule-based tools and large language
models for accurate concept extraction and relationship modeling. To ensure
graph quality and compactness, we introduce Neighbor-aware Filtering (NaF), a
novel filtering algorithm tailored for multimodal knowledge graphs. We evalu-
ate MEDMKG across five tasks under two experimental settings, benchmarking
twenty-four baseline methods and four state-of-the-art vision-language backbones
on six datasets. Results show that MEDMKG not only improves performance
in downstream medical tasks but also offers a strong foundation for developing
adaptive and robust strategies for multimodal knowledge integration in medical
artificial intelligence.

1 INTRODUCTION

Deep learning has demonstrated remarkable success in the medical domain, enabling tasks such
as health risk prediction, disease diagnosis, and mortality forecasting (Esteva et al. (2019); Wang
et al. (2024a); Miotto et al. (2018)). However, medical data often suffer from noise and missing
values, limiting the effectiveness of feature representation learning. To address these challenges,
researchers have increasingly integrated unimodal medical knowledge graphs into deep learning
frameworks. These graphs offer structured and explicit representations of domain knowledge by
encoding well-defined medical concepts and their relationships (Wang (2025); Qu (2022); Li et al.
(2020); Wu et al. (2023)). Incorporating such structured knowledge has led to notable improvements
in different tasks, including health risk prediction (Ye et al. (2021); Choi et al. (2016); Ma et al.
(2020)), adverse drug reaction prediction (Wang et al. (2021); Zhang et al. (2021); Bean et al. (2017)),
and medical coding (Luo et al. (2024); Shi et al. (2017)).

Nevertheless, many important clinical tasks require multimodal data as model inputs, such as medical
visual question answering (VQA) (Lin et al. (2023)) and text-image retrieval (Kitanovski et al. (2017)).
Relying solely on unimodal medical knowledge graphs in these contexts often fails to yield significant
performance gains, due to the absence of explicit relationships between visual data and medical
concepts. This limitation has hindered the ability of current multimodal deep learning models to fully
capitalize on domain knowledge in knowledge-intensive tasks. Addressing this gap necessitates the
development of a comprehensive multimodal medical knowledge graph. However, building such a
resource introduces the following critical challenges:

• C1: Quality Concern. A multimodal medical knowledge graph must be of high quality and
practical utility. This includes the accurate identification and representation of diverse intra- and
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Figure 1: The overview of MEDMKG construction pipeline and evaluation methods.

inter-modal relationships, which requires a carefully designed and systematically implemented
construction process.

• C2: Utility Concern. Beyond quality, it is essential to evaluate whether the graph can effectively
enhance model performance on downstream tasks. The graph must encode clinically meaningful
multimodal knowledge that directly supports a wide range of knowledge-intensive applications.

To bridge this research gap and address the identified challenges, we introduce MEDMKG, a Medical
Multimodal Knowledge Graph that unifies visual and textual medical information. To tackle C1
(Quality Concern), as shown in Figure 1, we develop a multi-stage construction pipeline that ensures
high-fidelity cross-modal integration by combining the rich visual and textual information in MIMIC-
CXR (Johnson et al. (2019)) with the structured clinical knowledge in the Unified Medical Language
System (UMLS) (Bodenreider (2004)). Our method leverages the domain accuracy of rule-based
tools together with the contextual reasoning capabilities of large language models (LLMs), enabling
precise extraction of clinical concepts and their relationships. To further ensure conciseness and
informativeness, we propose a simple yet effective Neighbor-aware Filtering algorithm (NaF) to
enhance the quality of MEDMKG by ranking and filtering medical images. Both expert qualitative
evaluations and quantitative benchmarking validate that MEDMKG achieves high quality and is
well-suited for practical downstream use.

To address C2 (Utility Concern), we conduct extensive experiments across two complementary
settings to demonstrate the practical utility of MEDMKG, as shown Figure 1. First, in the setting
of knowledge graph analysis, we assess the intrinsic quality of MEDMKG through a link predic-
tion task. Second, in the setting of knowledge graph augmentation, we integrate MEDMKG into
downstream applications, including medical text-image retrieval and visual question answering. Our
comprehensive evaluation spans 24 baselines, 4 vision-language backbones, and 6 datasets covering 5
distinct tasks. This broad evaluation framework allows us to systematically explore how MEDMKG
contributes to downstream performance. From these experiments, we derive several key insights:

• Model Choice Should Align with Graph Structure: Effective modeling of multimodal medical
knowledge graphs requires selecting well-suited network architectures to handle their heteroge-
neous and relational nature, underscoring the importance of matching model design to graph
characteristics.

• External Knowledge Improves Downstream Tasks: Incorporating structured medical knowledge
consistently enhances downstream applications such as image–text retrieval and visual question
answering, though the extent of improvement depends on the integration strategy and the underlying
model architecture.
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• Balancing Knowledge Integration and Model Robustness: While external knowledge generally
improves coverage and reasoning capability, it also introduces challenges related to precision, recall
and overfitting, highlighting the need for selective and adaptive knowledge fusion mechanisms.

• Future Work Needs Unified and Adaptive Frameworks: Advancing the field will require developing
integration strategies that are both backbone-agnostic and adaptable, enabling knowledge graphs
to be leveraged effectively across pretraining and fine-tuning stages for robust, generalizable
improvements.

In summary, our contributions are threefold:

• Construction of MEDMKG: We present MEDMKG, a new medical multimodal knowledge
graph that integrates clinical terminology and visual instances, providing a crucial resource for the
development of knowledge-intensive multimodal models.

• Effective Multimodal Knowledge Graph Filtering Algorithm: We introduce Neighbor-aware
Filtering (NaF), a targeted metric for ranking and filtering images in the context of a multimodal
knowledge graph, which helps maintain the graph’s quality and conciseness.

• Extensive Benchmarking: We conduct comprehensive evaluations spanning 5 tasks, 2 experimen-
tal settings, 24 baseline methods, 4 vision-language backbones, and 6 diverse datasets. Our results
demonstrate that MEDMKG meaningfully improves performance on knowledge-intensive medical
applications and opens the door to new adaptive fusion strategies in multimodal learning.

2 RELATED WORK

Multimodal Learning in the Medical Domain. Multimodal learning has seen widespread applica-
tion in various medical tasks, including criticality prediction (Wang et al. (2023a; 2024c); Xu et al.
(2018); Zhong et al. (2024); Feng et al. (2019); Tang et al. (2020)), readmission prediction (Yang
& Wu (2021); Wang et al. (2023a; 2024c)), adverse drug reaction prediction (Luo et al. (2023)),
and medical visual question answering (Li et al. (2024); Moor et al. (2023); Wang et al. (2024b;d)).
Despite their success, most current multimodal methods in the medical domain are predominantly
data-driven and rely on task-specific datasets rather than leveraging explicit, structured knowledge.
This reliance limits their effectiveness in addressing knowledge-intensive tasks and highlights the
need for developing robust, knowledge-reliable approaches and benchmarks.

Medical Knowledge Graphs. Medical knowledge graphs have become indispensable for organizing
and interpreting complex biomedical data. Traditional medical knowledge bases have provided
critical insights across both comprehensive systems (Donnelly et al. (2006); Bodenreider (2004);
Lipscomb (2000)) and specialized domains (Wishart et al. (2006); Goh et al. (2007)). These systems
are typically built through extensive manual annotation, long development cycles, and the sustained
involvement of domain experts. However, the labor-intensive nature of annotating medical imaging
data presents significant challenges when attempting to generalize these approaches to the construc-
tion of multimodal knowledge graphs. To address scalability concerns, several automated methods
have been proposed for building medical knowledge graphs. Some works focus on constructing
comprehensive graphs (Lin et al. (2015); Chandak et al. (2023)), while others target specific subdo-
mains, such as pharmacology (Bean et al. (2017); Zhang et al. (2021); Wang et al. (2021)), broader
biomedical fields (Vlietstra et al. (2017); Fei et al. (2021); Yuan et al. (2020)), Covid-19 (Michel
et al. (2020)), etc. Although these automated approaches offer improved efficiency, they often rely on
overly simplified or outdated techniques that compromise accuracy.

Multimodal Knowledge Graphs. Recent research has begun to extend traditional unimodal knowl-
edge graphs into the multimodal realm. Existing approaches for constructing multimodal knowledge
graphs typically utilize search engines (Wang et al. (2020); Zhang et al. (2022); Liu et al. (2019)), web
crawlers (Wang et al. (2023c); Oñoro-Rubio et al. (2017)), or queries to open-source knowledge bases
such as Wikipedia (Wang et al. (2020); Zhang et al. (2022)). While these methods perform adequately
in general domains where cross-modal alignment is often achievable, the inherent limitations in
retrieval accuracy can adversely affect the quality of medical knowledge graphs. This challenge is
particularly pronounced in the medical domain, where precision and reliability are paramount.
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3 CONSTRUCTION OF MEDMKG

3.1 PROBLEM FORMULATION

Constructing a multimodal radiological knowledge graph from scratch poses significant challenges
due to the scale, complexity, and heterogeneity of data modalities. A more practical and reliable
strategy is to extend an existing unimodal knowledge graph by systematically incorporating additional
modalities. In this work, we formulate the construction of our multimodal radiological knowledge
graph as a modality-wise graph extension problem.

We begin with the Unified Medical Language System (UMLS) (Bodenreider (2004)), a comprehensive
biomedical knowledge base that standardizes and interconnects diverse health-related vocabularies via
concept unique identifiers (CUIs). UMLS offers a rich repository of medical concepts and semantic
relationships, serving as the foundational backbone for structured medical knowledge integration.
For example, the clinical relation “aspirin is used to treat myocardial infarction” is represented as a
triplet (C0011849, treats, C0020538), where “C0011849” corresponds to “Aspirin” and “C0020538”
to “Myocardial Infarction (Heart Attack)”.

We expand the UMLS graph by introducing radiological image nodes and establishing cross-modal
edges. The resulting graph contains two types of nodes: (1) clinical concepts, inherited directly
from UMLS, and (2) radiological images. It also includes two types of edges: (1) intra-modality
edges among clinical concepts (as defined in UMLS), and (2) cross-modality edges that link clinical
concepts to corresponding images.

To perform the multimodal extension, we leverage the MIMIC-CXR dataset (Johnson et al. (2019)),
which consists of paired radiology reports and chest X-ray images. Details about the preprocessing
of MIMIC-CXR is available in Appendix E.1. From each report, we extract relevant clinical concepts
and align them with their associated images, thereby establishing meaningful cross-modal connections.
This design enables the extended knowledge graph to seamlessly integrate textual and visual medical
information within a unified and structured framework.

3.2 CONCEPT EXTRACTION

A central challenge in constructing MEDMKG lies in accurately establishing cross-modal edges
between radiological images and clinical concepts. To address this, we design a two-stage pipeline
that leverages the complementary strengths of rule-based systems and large language models (LLMs).
Rule-based tools are highly effective in handling clinical terminologies and ontologies, offering broad
coverage of domain-specific entities. In contrast, LLMs provide strong contextual understanding
and disambiguation capabilities, enabling more accurate interpretation of report-level semantics.
By integrating these two approaches, our pipeline achieves both the comprehensive coverage and
semantic precision necessary for high-quality concept extraction and reliable cross-modal alignment.

Stage I – Concept Identification. We begin by applying MetaMap (Aronson & Lang (2010)),
a widely used rule-based tool, to each radiology report to identify candidate mentions of UMLS
concepts. This step produces an exhaustive set of potential concept mappings for each mention,
ensuring comprehensive coverage of clinically relevant entities. To focus on concepts with clinical
significance, we filter out irrelevant semantic types based on domain knowledge. A complete list of
excluded semantic types is provided in Appendix E.2.

Stage II – Concept Disambiguation. Next, we refine the candidate concepts using ChatGPT-
4o (OpenAI Achiam et al. (2023)) that considers both the full radiology report and the list of extracted
candidates. For each mention, the LLM is prompted to select the most contextually appropriate
concept, leveraging its strong semantic understanding to resolve ambiguity. This stage eliminates
spurious or out-of-context candidates, resulting in a clean and accurate set of disambiguated clinical
concepts aligned with each image.

This two-stage design enables precise and context-aware mapping of clinical concepts to radiological
images, ensuring the construction of high-quality cross-modal edges in the resulting knowledge
graph. Aggregating the selected concepts across all mentions in a report yields the final set of clinical
concepts associated with each image.
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3.3 RELATION EXTRACTION

With the clinical concepts identified, we further enrich the knowledge graph by establishing relations:

Intra-Modality Relations. We introduce edges between identified clinical concepts whenever a
relation is defined between them in UMLS. Only validated relations connecting distinct concepts are
added, ensuring that intra-modality relationships are medically accurate and standardized.

Cross-Modality Relations. Each image is linked to its extracted clinical concepts through cross-
modality edges. However, beyond simply linking images and concepts, we also assign a semantic
label to each edge to reflect the nature of the relationship. Specifically, each relation is categorized as
Positive, Negative, or Uncertain, indicating whether the concept is supported by, contradicted by, or
ambiguously discussed in the corresponding report.

While the intra-modality relations are extracted through querying the UMLS knowledge base, the
cross-modal relation extraction is performed jointly with concept disambiguation. During the LLM
prompting process, the model is additionally instructed to assess the semantic stance (positive,
negative, or uncertain) between the image and each concept. These relation labels are used to annotate
the edges accordingly. Details concerning the prompting procedure are available in Appendix E.3,
while the analysis on the selection of LLM can be found in Appendix E.4.

3.4 NEIGHBOR-AWARE FILTERING FOR IMAGE INFORMATIVENESS

The full construction process produces a highly comprehensive multimodal knowledge graph. How-
ever, its large scale, with numerous images and associated concepts, creates challenges for storage,
computation, and downstream analysis. In particular, many radiological images are redundant because
they capture similar and homogeneous regions (Zhou et al. (2010)). This redundancy can overwhelm
subsequent analysis and reduce graph efficiency. To improve efficiency without sacrificing knowledge
quality, we introduce a filtering strategy that prioritizes the most informative and distinctive images.

Ideally, a representative medical image should be connected to multiple clinical concepts through
diverse relations, making the number of its neighboring nodes a key indicator of informativeness.
However, relying solely on the number of neighbors may introduce noise, as some medical concepts
are linked to a large number of generic or non-discriminative images. To mitigate this, we additionally
consider the distinctiveness of an image in the context of its 2-hop neighborhood. Intuitively, if a
relation–concept pair is associated with only a few images, those images are likely to carry more
unique and clinically informative content.

Based on this insight, we propose a Neighbor-aware Filtering (NaF) strategy that balances both
connectivity and distinctiveness. The informativeness score of an image m is defined as:

NaF(m) =
∑

(r,c)∈Nm

log
M

|N(r,c)|
, (1)

where each triplet (m, r, c) represents a connection between image m, relation r, and concept c; Nm

denotes the 1-hop neighbors of m; M represents the number of medical images in the knowledge
graph; and N(r,c) is the set of images linked to concept c via relation r.

By combining these two dimensions, the designed NaF strategy effectively prioritizes images that
are both rich in clinical content and contribute unique, informative knowledge to the graph. After
computing the informativeness scores, we rank all images in descending order and select them from
top to bottom until the full set of concepts is covered. This strategy ensures that the final graph
retains maximal clinical richness and diversity while eliminating redundant or overly generic images,
thereby improving scalability and downstream utility. More details of the NaF strategy algorithm are
available in Appendix E.5.

3.5 QUANTITATIVE AND QUALITATIVE ANALYSIS

To acquire an intuitive understanding of MEDMKG’s statistical characteristics and soundness of
MEDMKG, we performed both quantitative and qualitative analyses.

Quantitative Analysis. MEDMKG’s statistics are detailed in Table 1. The moderate scale of
MEDMKG facilitates convenient utilization in diverse application scenarios with different com-
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Table 1: Data Statistics Summary

Statistic Count
Total Number of Edges 35,387
Number of Concepts 3,149
Number of Images 4,868
Number of Relations 262
Number of Cross-modality Edges 20,705
Number of Intra-modality Edges 14,682
Image-to-Concept Ratio 1.55
Average Edges per Image 4.25
Average Edges per Concept 11.24

Figure 2: Human assessment results.
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Figure 3: Distribution of entities involved in MEDMKG. The top 10 semantic types are shown
individually, and rare types are grouped as “Others.”

putational budgets. Additionally, images and concepts are intensively connected with intra- and
cross-modal neighbors, promoting rich multimodal reasoning. Furthermore, Figure 3 shows the
distribution of semantic types between the clinical concepts involved, indicating a broad and balanced
coverage of the areas of clinical knowledge.

Qualitative Analysis. To further assess the quality of MEDMKG, we conducted a human evaluation
with experienced radiologists. The experts reviewed a set of sampled subgraphs and assigned quality
scores across three key dimensions, each rated on a scale from 1 to 10: (1) concept coverage —
whether the graph captures the key image-related clinical concepts; (2) relation correctness —
whether the cross-modal relations are accurately identified; and (3) image diversity — whether the
linked images reflect a broad range of clinical scenarios. Higher scores indicate better performance
on each metric. As illustrated in Figure 2, MEDMKG achieves an average of approximately 80%
across all three metrics. Compared with previous studies where 60% of agreement is regarded
convincing (Schäfer et al. (2024); Kilicoglu et al. (2008)), this result indicates MEDMKG’s reliability
and practical utility as a multimodal medical knowledge source. Further details on the evaluation
protocol are provided in Appendix F. An illustration of the constructed MEDMKG is available in
Appendix E.6.

4 BENCHMARK

We evaluate MEDMKG under two complementary scenarios: knowledge graph analysis and knowl-
edge graph augmentation. In the knowledge graph analysis setting, we assess tasks that directly
utilize the internal structure and semantics of the graph, i.e., link prediction. In the knowledge graph
augmentation setting, MEDMKG is employed as auxiliary knowledge to enhance the performance of
external multimodal applications, including multimodal text-image retrieval and multimodal visual
question answering (VQA).

4.1 LINK PREDICTION

The link prediction tasks (Bordes et al. (2013)) focus on inferring missing links between entities by
predicting either the head entity, the tail entity, or the relation connecting them. Specifically, given
two known components of a triple, such as a relation and one entity, or two entities, the goal is to
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Table 2: Performance of 17 approaches on three link prediction tasks (mean±std).

Model Head Prediction Relation Prediction Tail Prediction
MR ↓ Hits@3 ↑ Hits@5 ↑ Hits@10 ↑ MR ↓ Hits@3 ↑ Hits@5 ↑ Hits@10 ↑ MR ↓ Hits@3 ↑ Hits@5 ↑ Hits@10 ↑

TransR 1505.66±36.95 1.80±0.33 3.71±0.49 7.50±0.40 106.01±5.05 5.84±0.59 10.55±0.62 19.98±1.27 887.07±33.44 3.34±0.27 6.65±0.34 13.11±0.27

TransD 1219.92±34.04 3.84±0.60 7.56±0.87 12.22±1.18 53.49±9.96 27.49±4.21 35.52±4.49 46.36±4.66 586.61±15.25 5.25±0.48 10.90±0.53 18.67±0.67

TransE 1248.36±70.15 3.36±0.64 6.33±1.20 9.93±1.92 39.74±1.48 20.13±1.16 28.79±0.99 42.45±0.88 544.79±32.35 4.99±0.80 9.20±1.59 15.14±2.66

TransH 1263.25±75.38 3.29±0.88 6.16±1.38 9.99±1.68 37.40±0.37 22.02±1.73 30.21±1.10 43.41±1.02 561.39±31.90 5.05±0.50 9.67±1.25 16.07±1.92

RotatE 1560.49±55.42 1.35±0.67 2.69±0.91 5.04±1.41 129.84±2.36 0.77±0.15 1.42±0.26 3.25±0.41 739.95±28.29 1.54±0.61 3.47±1.09 6.82±2.06

DistMult 3590.63±376.55 0.10±0.14 0.19±0.27 0.38±0.44 119.13±12.36 2.17±2.61 3.92±4.33 6.95±6.18 3582.56±386.85 0.15±0.17 0.26±0.31 0.50±0.64

SimplE 4032.57±44.70 0.01±0.01 0.04±0.03 0.10±0.04 133.16±1.43 0.63±0.14 1.19±0.18 2.95±0.35 4033.27±42.33 0.05±0.03 0.06±0.04 0.11±0.03

TuckER 1533.74±80.37 2.83±0.48 4.51±0.93 7.45±1.61 43.75±4.73 46.67±1.44 55.42±2.18 64.01±2.32 1235.88±134.15 4.31±0.25 7.12±0.53 11.71±1.21

ComplEx 3790.54±401.89 0.09±0.14 0.20±0.35 0.31±0.47 125.58±12.61 0.93±1.58 1.81±2.74 3.79±4.72 3782.86±406.27 0.12±0.16 0.23±0.38 0.40±0.63

RESCAL 3849.47±125.08 0.03±0.04 0.06±0.05 0.12±0.09 127.51±3.82 0.44±0.11 0.99±0.38 2.40±0.54 3845.42±123.70 0.02±0.03 0.03±0.04 0.07±0.06

HypER 3564.84±584.55 0.33±0.39 0.56±0.67 0.93±1.10 122.79±13.72 1.16±0.77 2.20±1.48 4.12±2.48 2933.17±1268.15 1.07±1.39 1.71±2.16 2.89±3.54

ConvE 2071.83±130.51 1.81±0.09 2.76±0.23 4.59±0.46 59.35±1.42 18.79±2.08 26.51±1.77 36.10±1.45 777.91±29.16 4.28±0.50 6.87±0.62 11.03±1.05

ConvR 2438.14±105.67 0.62±0.12 1.05±0.23 1.77±0.29 78.55±2.80 6.12±1.25 10.17±1.72 17.75±2.09 787.58±50.12 2.25±0.25 3.80±0.29 6.83±0.46

AttH 2113.85±717.20 0.36±0.30 0.86±0.75 1.66±1.46 31.69±12.50 26.94±11.39 36.91±11.65 50.45±11.41 523.86±7.46 5.72±0.89 8.90±1.19 14.10±1.58

MurE 1248.36±70.15 3.36±0.64 6.33±1.20 9.93±1.92 39.74±1.48 20.13±1.16 28.79±0.99 42.45±0.88 544.79±32.35 4.99±0.80 9.20±1.59 15.14±2.66

MurP 2771.43±1234.52 2.14±2.11 4.29±4.29 7.00±6.84 158.56±57.45 3.45±3.86 4.67±4.65 7.02±6.06 590.11±49.63 4.34±0.82 7.59±1.61 12.64±3.27

NTN 4007.11±63.65 0.01±0.01 0.02±0.03 0.06±0.04 140.38±9.31 0.14±0.11 0.29±0.25 1.02±0.92 3994.01±76.63 0.01±0.02 0.02±0.02 0.05±0.05

predict the missing element that completes the triple. This task helps improve the completeness and
utility of knowledge graphs by filling in missing entities or relations between entities.

Baselines, Evaluation Metrics & Implementation. We benchmark 17 widely-used link prediction
models on our constructed KG, grouped into the following representative categories: (1) Translation-
based models: TransE (Bordes et al. (2013)), TransH (Wang et al. (2014)), TransR (Lin et al.
(2015)), TransD (Ji et al. (2015)) and RotatE (Sun et al. (2019)). (2) Tensor factorization models:
RESCAL (Nickel et al. (2011)), DistMult (Yang et al. (2014)), ComplEx (Trouillon et al. (2016)),
SimplE (Kazemi & Poole (2018)), and TuckER (Balažević et al. (2019b)). (3) Convolution-based
models: HypER (Balažević et al. (2019a)), ConvE (Dettmers et al. (2018)), and ConvR (Jiang et al.
(2019)). (4) Manifold-based models: AttH (Chami et al. (2020)), MurP (Balazevic et al. (2019)), and
MurE (Balazevic et al. (2019)). (5) Neural tensor model: NTN (Socher et al. (2013)). More details
about these baselines can be found in Appendix G.1. We evaluate the performance of the models
using widely accepted metrics for link prediction, namely Mean Rank (MR), and Hits@K (with K
set to 3, 5, and 10). Detailed descriptions of these metrics are provided in Appendix G.2. All models
are optimized using the AdamW optimizer (Loshchilov et al. (2017)) with a batch size of 2,048 and
a learning rate of 0.001. The training is run for a maximum of 500 epochs with an early stopping
mechanism (patience set to 5 epochs) to prevent overfitting. Data are split into training, validation,
and test sets with an 8:1:1 ratio.

Evaluation Results. Table 2 reports the performance of 17 link prediction baselines across head,
relation, and tail tasks on our MEDMKG. A clear performance gap emerges between head and tail
prediction: models achieve higher Hits@K scores and lower mean ranks on tail entities, which are
exclusively clinical concepts, while head entities combine images and concepts. This heterogeneity
makes head prediction more challenging, as models must align multimodal representations within a
shared embedding space. Among the baselines, translation-based models (TransD, TransE, TransH)
achieve the strongest overall results, with TransD yielding the best Hits@10 across head, relation,
and tail prediction. In contrast, tensor factorization models show mixed outcomes: while TuckER
performs relatively well on relation prediction, others (e.g., SimpIE, RESCAL) perform poorly,
indicating limited and inconsistent effectiveness in entity linking. These findings emphasize the
importance of selecting models that align with the multimodal and relational structure of medical
knowledge graphs. To enhance the overall capability of knowledge graph representation learning,
future work may explore combining translation-based and tensor factorization-based models to
leverage their complementary strengths, and proposing modality-aware link prediction module to aid
the performance in head prediction task.

4.2 KNOWLEDGE-AUGMENTED TEXT-IMAGE RETRIEVAL

The knowledge-augmented text-image retrieval task aims to enhance conventional medical text-image
retrieval (Demner-Fushman et al. (2012)) by leveraging domain knowledge encoded in a multimodal
medical knowledge graph.

Datasets & Backbone Models. We leverage two representative datasets for the medical text-image
retrieval task, i.e., OpenI (Demner-Fushman et al. (2016)) and MIMIC-CXR (Johnson et al. (2019)),
following previous work (Wang et al. (2024c)). To prevent any potential data leakage regarding
MIMIC-CXR, we only select text-image pairs that were not used during the curation of MEDMKG,
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Table 3: Results (%) on Text-image Retrieval Task for OpenI and MIMIC-CXR Datasets. Metrics
highlighted with green indicate improvement over backbone, while red refers to drop. Notable
augmentation with MEDMKG is observed, especially for KnowledgeCLIP.

Methods
OpenI MIMIC-CXR

Precision @K ↑ Recall @K ↑ Precision @K ↑ Recall @K ↑
10 20 100 10 20 100 10 20 100 10 20 100

CLIP 1.17 1.00 0.56 11.10 19.24 53.48 1.11 0.98 0.58 11.11 19.52 58.26
+ FashionKLIP 1.29 1.16 0.63 12.64 22.75 60.46 1.19 0.99 0.56 11.91 19.82 56.06
+ KnowledgeCLIP 2.63 1.99 0.79 25.56 38.83 76.16 2.33 1.73 0.74 23.32 34.53 74.37
PubMedCLIP 1.17 0.98 0.51 10.81 18.47 48.46 0.69 0.65 0.43 6.91 13.01 42.79
+ FashionKLIP 1.54 1.21 0.70 15.10 23.38 67.73 0.73 0.72 0.49 7.31 14.41 49.20
+ KnowledgeCLIP 1.49 1.17 0.61 14.33 22.61 59.41 1.26 1.13 0.60 12.61 22.62 59.96
BiomedCLIP 1.04 0.79 0.42 9.90 15.10 40.45 2.02 1.59 0.66 20.12 31.63 65.77
+ FashionKLIP 1.46 1.15 0.60 14.33 22.47 58.22 2.02 1.49 0.68 20.12 29.63 67.77
+ KnowledgeCLIP 1.26 0.95 0.49 12.50 18.61 47.54 2.64 1.94 0.71 26.33 38.74 70.77
MedCSPCLIP 1.60 1.10 0.54 15.73 21.35 52.14 3.77 2.59 0.82 37.69 51.65 81.58
+ FashionKLIP 1.81 1.36 0.60 17.84 26.54 57.65 4.02 2.69 0.85 40.19 53.75 84.98
+ KnowledgeCLIP 1.90 1.40 0.62 18.61 27.18 59.55 4.95 3.14 0.89 49.50 62.66 88.99

and we randomly sample a fixed set of 10,000 pairs from these remaining examples. Since no prede-
fined splits exist, both datasets are divided into training, validation, and test sets with an 8:1:1 ratio.
To comprehensively assess the impact of knowledge augmentation, we employ four open-sourced
vision–language models as backbones: CLIP (Radford et al. (2021)), PubMedCLIP (Eslami et al.
(2023)), BioMedCLIP (Zhang et al. (2023)), and MedCSPCLIP (Wang et al. (2024c)). Additional
details about these models are available in Appendix H.

Baselines, Evaluation Metrics & Implementation. For benchmarking, we consider two knowledge-
augmented retrieval methods: KnowledgeCLIP (Pan et al. (2022)) and FashionKLIP (Wang et al.
(2023b)). More information about these baselines is available in Appendix I.1. We comprehensively
evaluate retrieval performance using standard metrics, i.e., precision@K and recall@K, with K
set to 10, 20, and 100. Detailed metric descriptions can be found in Appendix I.2. All models are
optimized using the AdamW optimizer (Loshchilov & Hutter (2017)). The hidden state dimension
is uniformly set to 512, and the learning rate is configured to 0.0001. Training is conducted for a
maximum of 30 epochs with an early-stopping patience of 3 epochs.

Evaluation Results. Table 3 shows that knowledge augmentation consistently improves retrieval
performance across both OpenI and MIMIC-CXR, particularly in low-K settings. This indicates that
external knowledge enhances the model’s ability to identify the most relevant matches at top ranks.
Among the two strategies, KnowledgeCLIP (postraining-based) shows strong and consistent gains
across most settings, especially on MIMIC-CXR, while FashionKLIP (joint fine-tuning) provides
more noticeable improvements on OpenI relative to its effect on MIMIC-CXR. The overall trend
suggests that integrating external knowledge, whether through pretraining or joint fine-tuning, can
significantly benefit medical retrieval tasks. Future work may explore tighter coupling between
knowledge and model training by involving medical knowledge graphs in both pretraining and
fine-tuning stages. Such unified frameworks could offer deeper semantic grounding and more robust
generalization across diverse clinical retrieval scenarios.

4.3 KNOWLEDGE-AUGMENTED VISUAL QUESTION ANSWERING

The knowledge-augmented visual question answering task aims to improve medical visual question
answering task (Hasan et al. (2018)) by integrating domain knowledge contained in multimodal
medical knowledge graphs, enabling more accurate and clinically meaningful question answering
over medical images.

Datasets and Backbone Models. To benchmark current knowledge-augmented visual question
answering methods with our proposed MEDMKG, we adopt three widely used medical VQA datasets,
following previous work (Li et al. (2024)). These datasets include VQA-RAD (Lau et al. (2018)),
Slake (Liu et al. (2021)), and Path-VQA (He et al. (2020)). For a fair comparison, we select closed-set
questions from the datasets, which can be equally tackled by methods with different sophistication.
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Table 4: Results (%) on Medical Visual Question Answering with Knowledge Graphs. Metrics
highlighted with green indicate improvement over backbone, while red refers to drop. Augmented by
MEDMKG, most of methods achieve better performance on the task, showcasing the usefulness of
knowledge condensed in MEDMKG.

Methods VQA-RAD SLAKE PathVQA
Acc↑ Prec↑ Rec↑ F1↑ Acc↑ Prec↑ Rec↑ F1↑ Acc↑ Prec↑ Rec↑ F1↑

CLIP 64.94 62.71 62.71 62.71 65.07 62.09 74.86 67.88 81.89 88.37 76.54 82.03
+ KRISP 73.71 78.89 60.17 68.27 56.90 55.00 69.14 61.27 84.21 89.83 79.79 84.51
+ MKBN 70.12 70.87 61.86 66.06 70.14 73.47 61.71 67.08 84.68 89.35 81.33 85.15
+ K-PathVQA 66.14 62.79 68.64 65.59 69.30 73.57 58.86 65.40 84.15 85.74 84.75 85.24
+ EKGRL 67.73 65.04 67.80 66.39 70.70 71.01 68.57 69.77 84.77 86.38 85.24 85.81
+ MR-MKG 73.71 77.08 62.71 69.16 76.34 79.74 69.71 74.39 84.30 84.85 86.34 85.59

PubMedCLIP 66.14 64.35 62.71 63.52 63.94 59.59 83.43 69.52 81.26 86.65 77.20 81.65
+ KRISP 76.10 76.85 70.34 73.45 75.77 79.47 68.57 73.62 84.41 88.13 82.21 85.07
+ MKBN 67.33 67.31 59.32 63.06 70.70 75.18 60.57 67.09 84.56 90.15 80.18 84.87
+ K-PathVQA 72.51 76.34 60.17 67.30 68.17 67.03 69.71 68.35 83.76 87.62 81.44 84.42
+ EKGRL 76.49 75.21 74.58 74.89 75.49 73.40 78.86 76.03 84.59 90.41 79.96 84.86
+ MR-MKG 78.88 76.86 78.81 77.82 77.75 78.57 75.43 76.97 84.18 86.07 84.36 85.21

BioMedCLIP 66.93 61.74 77.97 68.91 70.14 70.18 68.57 69.36 84.56 94.03 76.27 84.22
+ KRISP 76.10 79.59 66.10 72.22 57.18 54.77 75.43 63.46 85.46 93.74 78.30 85.33
+ MKBN 68.53 64.66 72.88 68.53 67.89 75.63 51.43 61.22 85.78 88.32 84.91 86.58
+ K-PathVQA 65.34 71.23 44.07 54.45 70.70 73.20 64.00 68.29 85.93 90.57 82.54 86.37
+ EKGRL 75.70 71.76 79.66 75.50 86.20 89.38 81.71 85.37 85.46 89.66 82.60 85.98
+ MR-MKG 77.29 74.80 77.97 76.35 80.28 79.66 80.57 80.11 87.24 90.06 85.85 87.91

MedCSPCLIP 68.13 61.59 85.59 71.63 66.20 83.95 38.86 53.12 77.72 73.37 92.24 81.73
+ KRISP 80.08 84.00 71.19 77.06 70.70 91.76 44.57 60.00 83.19 94.71 72.96 82.43
+ MKBN 69.72 65.44 75.42 70.08 67.32 75.21 50.29 60.27 85.37 86.17 86.84 86.51
+ K-PathVQA 67.73 75.34 46.61 57.59 71.55 74.03 65.14 69.30 85.31 89.35 82.65 85.87
+ EKGRL 76.10 73.39 77.12 75.21 69.30 78.95 51.43 62.28 84.92 92.75 78.19 84.85
+ MR-MKG 78.49 77.59 76.27 76.92 83.94 83.15 84.57 83.85 86.53 89.74 84.75 87.17

We use the same set of backbone models as in Section 4.2, namely CLIP (Radford et al. (2021)),
PubMedCLIP (Eslami et al. (2023)), BioMedCLIP (Zhang et al. (2023)), and MedCSPCLIP (Wang
et al. (2024c)). For more details, please refer to Appendix H.

Baselines, Evaluation Metrics & Implementation. We evaluate five models that integrate knowl-
edge graphs to enhance visual question answering: KRISP (Marino et al. (2021)), MKBN (Huang
et al. (2023)), K-PathVQA (Naseem et al. (2023)), EKGRL (Ren et al. (2023)), and MR-MKG (Lee
et al. (2024)). Detailed descriptions of these approaches are provided in Appendix J.2. We adopt
four widely accepted metrics for the visual question answering task: Accuracy, Precision, Recall,
and F1 score. More detailed metric descriptions can be found in Appendix J.3. We use the same
implementation configuration as described in Section 4.2.

Evaluation Results. Table 4 summarizes the performance (%) of knowledge-augmented VQA models
across VQA-RAD, SLAKE, and PathVQA. Incorporating external knowledge from our multimodal
medical knowledge graph consistently improves model performance, particularly on Accuracy and
F1 metrics, confirming the utility of structured domain-specific knowledge in enhancing medical
visual reasoning. Among the evaluated methods, MR-MKG achieves the highest and most stable
performance across datasets and backbones, underscoring the effectiveness of contrastive learning in
promoting robust cross-modal alignment. Attention-based fusion methods (K-PathVQA and MKBN)
show less consistent gains, with noticeable performance degradation on smaller datasets (VQA-RAD
and SLAKE), likely due to overfitting. However, their improvements stabilize on larger datasets (e.g.,
PathVQA), suggesting that attention-driven integration requires sufficient data to avoid overfitting
to noisy or spurious knowledge signals. In conclusion, the results confirm that incorporating our
multimodal medical knowledge graph effectively enhances performance in medical VQA tasks. The
graph’s clinical specificity, image-aware relational structure, and semantic richness contribute to
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Figure 4: The ablation study on the effectiveness of NaF.

the stronger multimodal understanding. Future work should explore adaptive, backbone-agnostic
fusion mechanisms to further improve stability and generalizability across diverse datasets and model
architectures.

4.4 ABLATION ON NAF

To understand how NaF improves the utility of MEDMKG, we conduct an ablation study using
KRISP on the PathVQA dataset with three versions of the graph: (i) the graph filtered by our proposed
NaF algorithm, (ii) a graph obtained via random sampling to match NaF’s size, and (iii) an unfiltered
graph. The results are shown in Figure 4.

The model that relies on the unfiltered graph struggles to extract useful signals due to severe redun-
dancy and noise. As a result, it tends to adopt an overly conservative prediction strategy, yielding
high precision but substantially worse recall, and ultimately performs poorly on overall accuracy and
F1. Random filtering, by contrast, reduces redundancy and helps the model access more relevant
information, but it also removes informative nodes and relations indiscriminately, degrading graph
quality and leading to suboptimal performance.

NaF achieves the best results among all three settings. By selectively removing redundant structure
while preserving essential graph informativeness by design, NaF provides a cleaner and more
discriminative knowledge graph. This confirms NaF’s effectiveness in reducing structural redundancy
and noise, consistent with our discussion in Section 3.4.

5 CONCLUSION

In this work, we present MEDMKG, a novel multimodal medical knowledge graph that integrates
clinical text and medical imaging data to capture rich inter- and cross-modality relationships. To
ensure the graph’s quality and conciseness, we introduce a novel neighbor-aware filtering algorithm
tailored to multimodal knowledge graphs. Extensive experiments on knowledge graph analysis and
downstream augmentation tasks validate the effectiveness of MEDMKG and highlight its value
in enhancing medical knowledge representation. Beyond serving as a valuable resource that can
be continuously expanded with data from more diverse patient populations and imaging devices,
MEDMKG also opens up new research opportunities. It highlights the need for adaptive and efficient
strategies to integrate multimodal knowledge into real-world clinical applications such as report
generation, diagnostic reasoning, and temporal prediction.
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ETHICS STATEMENT

This work is guided by the principles of contributing to human well-being and avoiding harm. While
MEDMKG is intended to advance socially responsible and equitable research, we acknowledge
potential risks such as diagnostic errors, biased decision support, or reinforcement of health disparities
if models trained on it are misused. To minimize such harms, we stress the importance of expert
validation, continuous monitoring of deployed systems, and safeguards against unverified clinical
use. We further encourage broad, responsible accessibility of the resource, prioritizing the needs
of less advantaged groups and ensuring that its use respects diversity, privacy, and safety across
socio-economic contexts.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. A detailed description of the knowl-
edge graph curation process is provided in the Appendix to allow others to replicate the data
construction pipeline. The full implementation of our methods and experiments is released at
https://anonymous.4open.science/r/MedMKG-525F. To further support replicability,
we control for randomness by setting fixed random seeds across all experiments. Together, these
efforts provide transparency and enable the community to verify and build upon our results.
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A LLM USAGE STATEMENT

In this work, large language models (LLMs) played two complementary roles. First, GPT-4o was
directly incorporated into the research pipeline as a tool for biomedical concept extraction and
relation identification. These extracted elements served as the basis for constructing and analyzing
our knowledge graph, and thus represent an essential component of the technical contributions of
this paper. The integration of LLMs into these processes was carefully monitored, and the resulting
outputs were cross-checked to ensure alignment with domain knowledge and study objectives.

Second, we employed GPT-4o in a supportive capacity during manuscript preparation. This usage
was limited to surface-level improvements such as refining word choice, correcting grammar, and
enhancing overall readability. The scientific ideas, experimental design, and interpretations reported
in this paper remain entirely those of the authors.

Across both research and writing contexts, all LLM-generated outputs were reviewed for accuracy
and appropriateness. The authors take full responsibility for the validity and integrity of the final
content.

B COMPUTE AND ENVIRONMENT CONFIGURATION

All experiments were conducted on an NVIDIA A100 GPU with CUDA version 12.0, running on an
Ubuntu 20.04.6 LTS server.

C DATASET REPOSITORY

We have provided a anonymous dataset repository for MEDMKG, available at https://
anonymous.4open.science/r/MedMKG-525F. The MEDMKG dataset can be loaded
alongside the MIMIC-CXR dataset, which requires separate download following the instructions
provided in the repository README file. The repository also includes runnable code for data
processing, baseline models, environment configuration, and example execution scripts. We are
committed to publication of the repository after the acceptance of this study, as well as regularly
updating the repository with additional modalities, datasets, and tasks to further support the research
community.

D DEPLOYMENT AND UPDATING

MEDMKGsupports three categories of updates:

1. Foundational knowledge updates (e.g., incorporating new UMLS releases).

2. Imaging dataset updates (e.g., newly added MIMIC–CXR studies or revised radiology
reports).

3. Multimodal extensions (e.g., integration of CT, MRI, ultrasound, or EHR-derived features).

Because the construction pipeline is highly efficient, typically requiring only a few hours with API-
based processing, the entire workflow can be re-executed whenever new data or modalities become
available, thereby enabling continuous and real-time maintenance of MEDMKG.

E DETAILS OF KNOWLEDGE GRAPH CONSTRUCTION

E.1 PRE-PROCESSING OF MIMIC-CXR

To ensure the quality of the constructed multimodal knowledge graph, we perform targeted pre-
processing on the raw data in the MIMIC-CXR database. Each radiological report may correspond to
images in different views, including anteroposterior, posteroanterior, lateral, etc. Involving multiple
images with the same set of concepts could result in significant redundant edges within the knowledge
graph. Therefore, we only maintain images in the anteroposterior view for graph conciseness;
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Table 5: Filtered Semantic Types. The semantic types listed below are disallowed; all others are
considered allowable.

Occupation or Discipline Intellectual Product Age Group
Biomedical Occupation or Discipline Classification Patient or Disabled Group
Organization Regulation or Law Geographic Area
Health Care Related Organization Language Conceptual Entity
Professional Society Group Attribute Idea or Concept
Self-help or Relief Organization Group Temporal Concept
Professional or Occupational Group Qualitative Concept Quantitative Concept
Population Group Functional Concept Body System
Family Group

similarly, radiological reports usually contain abundant information such as diagnostic history that
is not directly relevant to the content of the corresponding radiological image, therefore, extracting
concepts from these similar reports can also result in redundancy.

To mitigate this problem, we only preserve sections of Impression and Findings, two major sections
that contain the most informative content, and stick to existing works in clinical report analysis (Luo
et al. (2024)). We perform semantic filtering using DBSCAN (Ester et al. (1996)) and MedCSP-
CLIP (Wang et al. (2024c)). To be specific, we encode all the radiological reports with the text
encoder of MedCSPCLIP, then perform clustering on the reports based on their semantics. Based on
the clustering results, we select the ones near the centroid of each cluster as representative of a group
of similar radiological reports.

These approaches function together, ensuring that our pipeline referred to in Section 3 receives high-
quality data for processing, producing the multimodal knowledge graph with sufficient information,
negligible noise, and minimal redundancy.

E.2 FILTERING PER SEMANTIC TYPE OF MEDICAL CONCEPTS

In order to eliminate concepts that are overly abstract or lack practical value, we filter concepts based
on their semantic types. Table 5 lists the semantic types that are not preferred thus filtered, while all
other semantic types in the UMLS vocabulary 1 are allowed.

E.3 PROMPT FOR CONCEPT DISAMBIGUATION AND RELATION EXTRACTION

To leverage the LLM’s contextual understanding for effective concept disambiguation and relation
extraction, we designed an instructive prompt that guides the model through these tasks. The prompt
is presented in Example E.3.

E.4 SELECTION OF LLM

In this study, GPT-4o (OpenAI Achiam et al. (2023)) is selected for disambiguation, as prior research
has demonstrated its superior performance in biomedical comprehension (Silberg et al. (2024);
Dataset) and its effectiveness in resolving medical terminology ambiguity (Kugic et al. (2024)),
compared with other LLMs. To further substantiate this choice, we conduct a case study to evaluate
the suitability of GPT-4o for curating MEDMKG, as shown in Example E.4.

The analysis reveals that GPT-4o outperforms other advanced LLM backbones, i.e., Gemini-2.5 (Co-
manici et al. (2025)) and LLaMA-3.1-8B-Instruct (Grattafiori et al. (2024)), by extracting more
accurate concepts of interest while generating fewer hallucinations. These findings reinforce our
decision to adopt GPT-4o for concept and relation extraction.

1https://www.nlm.nih.gov/research/umls/META3_current_semantic_types.html
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Prompt for Concept Disambiguation and Relation Extraction (E.3)

Report Text: [Report Text]
Candidate Concepts: [Candidate Concepts]
For each phrase, evaluate the concept candidates and select the most relevant concept based
on the context provided in the report. Your decision should account for the specific context of
a radiological image.
After selecting the appropriate concept for each phrase, classify the relation between the
selected concept and the image using the following categories:
Positive - The concept is clearly represented in the image (e.g., anatomical structures, specific
findings).
Neutral - Concepts that are structural, general terms (like "findings", "normal", "changes"),
meta-concepts, adjectives, or unrelated to clinical insight.
Negative - The concept is the opposite of what is shown in the image (e.g., when the image
shows no abnormalities but the concept implies pathology).
Uncertain - The concept’s presence in the image is unclear based on the report (e.g., the
reporter uses language like "possible" or "could be").
Return only concepts with a positive, negative, or uncertain relation. Do not include any
neutral concepts in the final output.
Provide the final output in the following format: ***start***
(Concept ID only (digits start with C), Relation)
***end***
Ensure that:
• Neutral concepts are excluded entirely from the output.
• Concepts like "findings" and any general or structural terms are categorized as neutral and

omitted.
• Double-check that each remaining concept is evaluated accurately based on the context of

the radiological image.

E.5 NAF ALGORITHM

We propose the Neighbor-Aware Filtering (NaF) algorithm for effective image filtering to boost the
conciseness of MEDMKG. More details are presented in Algorithm 1.

E.6 ILLUTRATION OF MEDMKG

Figure 5 shows a subgraph of MEDMKG, provided to facilitate a better understanding of its structure
and content. As shown in Figure 5, the medical multimodal knowledge graph integrates both intra-
and cross-modal edges, offering rich multimodal medical knowledge that can potentially support a
wide range of applications.

F DETAILS OF HUMAN ASSESSMENT

F.1 ASSESSMENT CRITERIA

We conducted a human evaluation to assess the quality of MEDMKG. Three key metrics were used:

• Concept Coverage measures how comprehensively the extracted concepts capture the clinically
meaningful findings present in the image.

• Relation Correctness assesses whether the relationships between images and extracted concepts
are accurately modeled, correctly identified with positive, negative, or uncertain associations.

• Image Diversity evaluates whether the set of images associated with each concept reflects a diverse
range of clinical scenarios, rather than highly homogeneous ones.
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Algorithm 1 Neighbor-Aware Filtering Algorithm

1: Input:
• A set of imagesM = {m1,m2, . . . ,mN}.
• For each image mi, its associated triplets Ti = {(mi, rij , cij)}.
• The set of filtered clinical concepts C.

2: Output: Selected image setM∗.
3: M∗ ← ∅ and C∗ ← ∅.
4: for each image mi ∈M do

5: Compute Score(mi)←
∑

(r,c)∈Ti

log
N

N(r,c)
.

6: end for
7: SortM in descending order by Score(mi).
8: for each image mi in sorted order do
9: if C∗ ̸= C then

10: M∗ ←M∗ ∪ {mi}.
11: C∗ ← C∗ ∪ {c | ∃ r such that (r, c) ∈ Ti}.
12: else
13: break
14: end if
15: end for
16: returnM∗.
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Mediastinum

Mass of 
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Collapse of 
Lung
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negative

negative
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Figure 5: An illustration of MEDMKG.

These metrics were selected to capture complementary aspects of performance: Concept Coverage
ensures clinical relevance and completeness; Relation Correctness ensures accurate representation
of image-concept associations; and Image Diversity: ensures the robustness and generalizability of
concept representations. Together, they provide a holistic evaluation of both precision and breadth of
MEDMKG.

F.2 ASSESSMENT PROCEDURE

For the metrics of concept coverage and relation correctness, we randomly sample 30 images in
MEDMKG, choose all their concept neighbors, and the relation connecting them for assessment.
For image diversity, we randomly choose 30 concepts in MEDMKG and provide all the images
positively linked with them to the evaluator. The evaluator performs the assessment along with
detailed guidance.
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Entity & Relation Extraction Comparison Across LLMs (E.4)

Radiological Report:
As compared to the previous radiograph, there is a further increase in extent of the
opacities in the right lung. The left lung is constant. Changed nasogastric tube. Moderate
cardiomegaly with extensive retrocardiac atelectasis.

Results:

Gemini-2.5

C0032285:Pneumonia, Uncertain
C0225706:Right Lung, Positive
C0029053:opacities, Positive
C0225730:Left Lung, Positive
C0018800:Cardiomegaly, Positive
C0004144:Atelectasis, Positive

LLaMA-3.1

C0032285:PNEUMONIA (Pneumonia), Positive
C0264716:Chronic heart failure, Positive
C0476273:Distress, Respiratory (Respiratory distress),
Positive

GPT-4o

C0029053:opacities (Decreased translucency), Positive
C0225706:Right Lung (Right lung), Positive
C0085678:Nasogastric Tube (Nasogastric tube), Positive
C0018800:CARDIOMEGALY (Cardiomegaly), Positive
C0004144:ATELECTASIS (Atelectasis), Positive

G DETAILS OF LINK PREDICTION

G.1 LINK PREDICTION BASELINES

We benchmark MEDMKG with the following baseline models in the task of link prediction:

• AttH (Chami et al. (2020)) is a hyperbolic knowledge graph embedding model designed to capture
hierarchical structures by leveraging the Lorentz model.

• DistMult (Yang et al. (2014)) is a bilinear factorization model for knowledge graphs that represents
relations as diagonal matrices, enabling efficient computation.

• TransR (Lin et al. (2015)) extends TransE by introducing separate relation-specific entity spaces,
allowing better modeling of diverse relationships.

• HypER (Balažević et al. (2019a)) applies hypernetworks to generate relation-dependent transfor-
mation matrices for entity embeddings, improving flexibility.

• SimplE (Kazemi & Poole (2018)) is an extension of Canonical Polyadic (CP) decomposition that
enables each entity representation to be used in two different ways.

• TuckER (Balažević et al. (2019b)) is based on Tucker decomposition and factorizes the knowledge
graph tensor into entity and relation embeddings with a core interaction tensor.

• MurP (Balazevic et al. (2019)) embeds knowledge graphs in the Poincaré ball model, enabling
effective representation of hierarchical data.
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• MurE (Balazevic et al. (2019)) embeds knowledge graphs in Euclidean space using multiple
relational constraints to improve predictive performance.

• NTN (Socher et al. (2013)) introduces a neural tensor network for knowledge graph embedding,
modeling entity interactions through a bilinear tensor layer.

• TransD (Ji et al. (2015)) extends TransE and TransH by introducing entity- and relation-specific
projection matrices for dynamic embedding transformation.

• TransE (Bordes et al. (2013)) models relationships as translations in the embedding space, assuming
that the sum of the head and relation embeddings approximates the tail embedding.

• RESCAL (Nickel et al. (2011)) models multi-relational data using a bilinear tensor factorization
approach that captures pairwise interactions.

• RotatE (Sun et al. (2019)) represents relations as rotations in a complex vector space, capturing
symmetric and antisymmetric relations effectively.

• TransH (Wang et al. (2014)) introduces relation-specific hyperplanes to improve the representation
of diverse relational properties.

• ConvE (Dettmers et al. (2018)) applies 2D convolutional neural networks to entity embeddings,
capturing complex interactions between entities and relations.

• ComplEx (Trouillon et al. (2016)) extends DistMult by using complex-valued embeddings, en-
abling the representation of asymmetric relations.

• ConvR (Jiang et al. (2019)) applies relation-specific convolutional filters to entity embeddings,
enhancing the modeling of complex interactions.

G.2 EVALUATION METRICS

For the link prediction tasks, we utilize Mean Rank (MR) and Hits@K for assessing the baselines.
Let T denote the set of test triples and, for each test case i, let ri be the rank of the ground-truth
entity among all candidate entities (with a lower rank indicating better performance). The metrics are
defined as follows:

Mean Rank (MR) The Mean Rank is the average rank of the ground-truth entities over all test
cases:

MR =
1

|T |

|T |∑
i=1

ri. (2)

Hits@K Hits@K measures the proportion of test cases for which the ground-truth entity is ranked
within the top K predictions:

Hits@K =
1

|T |

|T |∑
i=1

I(ri ≤ K), (3)

where I(·) is the indicator function that returns 1 if the condition is true and 0 otherwise.

A lower MR and a higher MRR or Hits@K value indicate better performance.

H BACKBONE MODELS IN KNOWLEDGE-AUGMENTED TASKS

The following advanced visual language models are adapted as the standard backbone for knowledge-
augmented methods:

• CLIP (Radford et al. (2021)) is a vision-language model trained on large-scale internet data using
contrastive learning. It aligns images and text embeddings in a shared latent space, enabling
zero-shot image classification and retrieval. The model is under the MIT License.

• PubmedCLIP (Eslami et al. (2023)) is a domain-specific adaptation of CLIP trained on PubMed
articles and biomedical images. It enhances the alignment of biomedical images with textual
descriptions, improving zero-shot performance in medical imaging tasks. The model is under the
MIT License.
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• BioMedCLIP (Zhang et al. (2023)) is a biomedical contrastive pretraining model trained on a large-
scale corpus of biomedical images and text. It is designed to improve multimodal understanding in
healthcare applications, particularly for retrieval and classification tasks. The model is under the
MIT License.

• MedCSPCLIP (Wang et al. (2024c)) is a medical-specific adaptation of CLIP that incorporates
the MedCSP framework for contrastive scalable pretraining. It learns generalizable medical
image representations, enabling improved zero-shot performance and transfer learning in clinical
applications. The model is under the MIT License.

I DETAILS OF KNOWLEDGE-AUGMENTED IMAGE-TEXT RETRIEVAL

I.1 BASELINES

In the task of knowledge-augmented image-text retrieval, we benchmark with the following baseline
models:

• KnowledgeCLIP (Pan et al. (2022)): This model extends CLIP by integrating external knowledge
graphs. By adding knowledge-based objectives during pre-training, it leverages structured relational
data (e.g., from ConceptNet or VisualGenome) to improve semantic alignment between images
and text.

• FashionKLIP (Wang et al. (2023b)): Designed for the fashion domain, FashionKLIP automatically
constructs a multimodal conceptual knowledge graph (FashionMMKG) from large-scale fashion
data. By injecting domain-specific knowledge into the pre-training process, it learns fine-grained
representations that enhance image-text alignment and retrieval performance.

I.2 EVALUATION METRICS

For this task, we leverage Precision k and Recall k as the metrics for evaluation. Let Q denote the set
of queries. For each query q ∈ Q, let R(q) be the set of relevant items, and let R̂k(q) be the set of
top-k items retrieved by the model. Then, the metrics are defined as follows:

Precision k Precision k is the fraction of the top-k retrieved items that are relevant. Formally, it is
given by:

Precision@k =
1

|Q|
∑
q∈Q

|R̂k(q) ∩R(q)|
k

. (4)

Recall k Recall k is the fraction of the relevant items that are retrieved in the top-k results. It is
defined as:

Recall@k =
1

|Q|
∑
q∈Q

|R̂k(q) ∩R(q)|
|R(q)|

. (5)

A higher Precision k indicates that a larger proportion of the retrieved items are relevant, whereas a
higher Recall k suggests that a greater proportion of all relevant items have been retrieved. These
metrics together provide a comprehensive evaluation of the retrieval performance.

J DETAILS OF KNOWLEDGE-AUGMENTED VISUAL QUESTION ANSWERING

J.1 DATASETS

We compare the baselines on three medical visual question answering dataset, including VQA-RAD,
SLAKE and PathVQA. We extract closed questions in these datasets for benchmarking.

J.2 BASELINES

In the task of knowledge-augmented visual question answering, we evaluate five models that incorpo-
rate external knowledge graphs to improve visual reasoning and answer prediction:
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• KRISP (Marino et al. (2021)): This model integrates structured knowledge graphs into the VQA
pipeline, refining both image representations and question understanding to boost answer accuracy.

• MKBN (Huang et al. (2023)): Originally designed for medical VQA, MKBN leverages domain-
specific knowledge graphs to align visual and textual features, thus enhancing performance in
specialized settings.

• K-PathVQA (Naseem et al. (2023)): By incorporating multi-hop reasoning over a knowledge
graph, K-PathVQA enables the model to infer complex relationships and answer questions that
require multi-step deductions.

• EKGRL (Ren et al. (2023)): This framework combines graph-based representation learning with
reinforcement learning to effectively integrate external knowledge, thereby improving reasoning
capabilities in visual question answering.

• MR-MKG (Lee et al. (2024)): MR-MKG utilizes contrastive loss to capture diverse semantic
interactions between visual content and questions, leading to enhanced cross-modal alignment and
VQA performance.

J.3 EVALUATION METRICS

For the visual question answering task, we adopt four standard metrics: Accuracy, Precision, Recall,
and F1 score. Let D denote the set of VQA examples. For each example i ∈ D, let yi be the
ground-truth answer and ŷi the predicted answer. The metrics are defined as follows:

Accuracy Accuracy measures the proportion of correctly answered questions:

Accuracy =
1

|D|
∑
i∈D

I(ŷi = yi), (6)

where I(·) is the indicator function.

Precision Precision is the fraction of true positive answers among all answers predicted as positive.
In a binary (or thresholded) setting, it is given by:

Precision =
TP

TP + FP
, (7)

with TP and FP denoting the numbers of true positives and false positives, respectively.

Recall Recall is defined as the fraction of true positive answers among all actual positive answers:

Recall =
TP

TP + FN
, (8)

where FN represents false negatives.

F1 Score The F1 score is the harmonic mean of Precision and Recall:

F1 = 2 · Precision · Recall
Precision + Recall

. (9)

Together, these metrics provide a comprehensive evaluation of model performance on the knowledge-
augmented visual question answering task.
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