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ABSTRACT

Image retouching not only enhances visual quality but also serves as a means of
expressing personal preferences and emotions. However, existing learning-based
approaches require large-scale paired data and operate as black boxes, making
the retouching process opaque and limiting their adaptability to handle diverse,
user- or image-specific adjustments. In this work, we propose RetouchLLM, a
training-free white-box image retouching system, which requires no training data
and performs interpretable, code-based retouching directly on high-resolution
images. Our framework progressively enhances the image in a manner similar
to how humans perform multi-step retouching, allowing exploration of diverse
adjustment paths. It comprises of two main modules: a visual critic that identifies
differences between the input and reference images, and a code generator that
produces executable codes. Experiments demonstrate that our approach generalizes
well across diverse retouching styles, while natural language-based user interaction
enables interpretable and controllable adjustments tailored to user intent.

1 INTRODUCTION

Image retouching is the process of enhancing the aesthetic visual quality of an image that suffers
from photographic defects such as improper exposure, poor contrast, or color imbalance, typically
through a sequence of global and/or region-specific adjustments. Image retouching plays a vital
role in enhancing the visual quality of photographs and expressing personal emotions and aesthetics.
The preferred retouching style varies significantly from person to person (Ouyang et al., 2023; Hu
et al., 2018), and even for the same individual, it may differ depending on the subject or scene as
different visual intentions arise (Wang et al., 2023). In response to this diversity, various automated
deep learning-based image enhancement techniques (Duan et al., 2025; Ouyang et al., 2023; Wang
et al., 2022; Kosugi, 2024; He et al., 2020) have been proposed. These methods typically involve
training a model on image pairs, each consisting of an original and a retouched version in a desired
style, allowing the model to learn and replicate the corresponding retouching patterns.

However, data-driven training approaches come with several notable limitations. They often require
large-scale paired datasets for training, restricting the adaptability to new styles or environments,
especially for general users without access to curated data. In addition, it is difficult to achieve
fine-grained control that reflects specific user preferences or intentions, as the output tends to reflect
an average learned from the training distribution (Wang et al., 2023). These models also function
largely as black boxes, making it challenging to understand or intervene in the internal retouching
process. Moreover, many of these methods apply edits to downscaled versions of the input image and
later upscale the results, potentially degrading the original image quality.

In this work, we propose RetouchLLM, a training-free white-box image retouching system. Unlike
data-driven approaches, our method (i) requires no training, (ii) provides transparent code-based
retouching, and (iii) supports fine-grained adjustments through user instructions. Without relying on
large-scale datasets of style-consistent paired images, RetouchLLM adapts flexibly to user-specific and
image-specific preferences. A code-based design functions as a white-box, enabling the retouching
process to be fully understandable and modifiable by users. By generating and executing code directly
on high-resolution images without downscaling, it further enables high-fidelity enhancement suitable
for real-world applications. In addition, the system accepts natural language instructions, enabling
users to make personalized fine-grained edits in a controllable and interpretable manner.
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# Code for candidate 1
adj_img = exposure(src_img, +25%)
adj_img = contrast(adj_img, -15%)

- Photo adjustment planning
- White-box code generation

Figure 1: Overview of our training-free white-box photo adjustment system. Given a source
image and style reference images, the visual critic gives multiple candidates of difference descriptions,
and the code generator produces corresponding adjustment programs. The best candidate is selected
according to the selection score, set as the new source, and the process iteratively continues until the
stopping criterion is reached. The dashed box (GT Adjusted Image) is reference-only, outside the
pipeline. Only dark/bright are shown for brevity, though eight prompts were used.

At its core, our approach uses an iterative retouching framework to progressively refine an image
towards the target style rather than relying on one-shot edits. A selection score guides this process
by reliably capturing style cues from reference images despite content differences, ensuring stable
convergence and preventing drifting adjustments. RetouchLLM integrates two complementary
modules: a visual critic, which identifies photometric differences and describes multiple candidate
difference, and a code generator, which determines the editing sequence and produces executable
retouching code. These components operate in a closed loop, enabling coarse global edits in early
steps and fine local refinements later, thereby mirroring the natural workflow of human retouching.

We validate the effectiveness of RetouchLLM through both qualitative and quantitative experiments.
Despite operating in a training-free manner, our model demonstrates favorable performance across
various styles regardless of the backbone used. The results show that image quality improves
progressively through iterative retouching. Ablation studies confirm that our selection score reliably
captures style from reference images, even when the content differs, and both the visual critic and
the code generator play essential roles in enhancing output quality. Moreover, we find that user
interaction application via natural language instructions enables flexible and interpretable adjustments,
allowing for fine-grained retouching. We summarize our key contributions as follows:

• We propose an iterative retouching framework guided by a style-guided selection score that ensures
stable convergence toward the target style without requiring any training data.

• Our white-box, code-based design provides transparency and reproducibility, operating directly on
high-resolution images and enabling reusable editing programs.

• By leveraging language-based models, our system supports interactive refinement via natural
language instructions, enabling personalised retouching aligned with user intent.

2 RELATED WORK

Automatic photo retouching. Automatic photo retouching (Yan et al., 2016; Hu et al., 2018; Ke
et al., 2022; Wu et al., 2024; Yang et al., 2024b; Duan et al., 2025; Tseng et al., 2022; Kim et al., 2020;
Ouyang et al., 2023) has been extensively studied to automate the retouching pipeline by training
deep models, allowing non-experts to attempt what was once an exclusive domain of professionals.
These can be classified into two categories: Image-to-image translation methods and physics-based
modeling methods. Translation methods train a model to generate a retouched image in the target
style from an input image. Models such as U-Net (Ronneberger et al., 2015) and GANs (Goodfellow
et al., 2014) are commonly used in this approach, but they often come with limitations in image
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Algorithm 1 RetouchLLM. The algorithm iteratively adjusts the source image based on the given
reference images. The process stops early (i) if the same image is selected for three consecutive steps,
or (ii) if the generated descriptions suggest no additional edits are needed.
Require: Visual critic f(·), code generator g(·)
Input: Initial source image xsrc

0 , reference set Y = {yj}Mj=1, maximum iterations T , number of candidates N
Output: Adjusted image x∗

for t = 0 to T − 1 do
Generate descriptions: (d1, . . . , dN ) = f(xsrc

t ,Y)
for i = 1 to N do

Generate program: g(di)
Adjust source image: xi

t = Execute(g(di), xsrc
t )

Construct candidate list: Ct =
[
xsrc
t , x1

t , . . . , x
N
t

]
Best candidate selection: i∗ = argmini∈{0,...,N} SelectionScore(Ct[i],Y)
Update source image: xsrc

t+1 ← Ct[i∗]
if stopping condition is met then

break

return x∗ = xsrc
t+1

resolution. These models also function as black-box, making it difficult to interpret the retouching
process. Physics-based modeling treats the retouching pipeline as a combination of actual retouching
filters and reframes the problem as estimating the appropriate filter combinations and their parameters.
This makes it easier to design a more interpretable white-box system. However, most existing
methods (Dutt et al., 2025; Duan et al., 2025; Kosugi, 2024) require training a model on thousands of
paired images, which makes it difficult to incorporate new styles or filters without costly retraining. In
contrast, our system needs no training and retouches an image directly from a few reference images of
the desired style. Moreover, new filters can be flexibly incorporated without any additional retraining.

LLMs and VLMs as model agents. Large Language Models (LLMs) (Achiam et al., 2023; Chiang
et al., 2023; Touvron et al., 2023a;b; Jiang et al., 2023; Abdin et al., 2024; Team et al., 2024b; Yang
et al., 2024a) and Vision Language Models (VLMs) (Achiam et al., 2023; Dai et al., 2023; Liu et al.,
2024; 2023; Team et al., 2024a; Wang et al., 2024; Hong et al., 2024a) are capable of performing
a wide range of tasks, including question answering, information comparison and extraction, and
generating text in various formats, such as natural language, JSON, code, and equations. By
employing these models as agents, complex tasks like programming (Shinn et al., 2024; Surís et al.,
2023; Gupta & Kembhavi, 2023; Hu et al., 2024), GUI understanding (Hong et al., 2024b), and
decision making (Zhao et al., 2024), have been solved in a more organized and structured manner.

However, prior work (Dutt et al., 2025; Kosugi, 2024) utilizing LLMs or VLMs does not incorporate
any iterative feedback mechanism or support agent-like collaboration with the user, thereby limiting
flexibility, personalization, and transparency in the process. In contrast, our approach is training-free,
white-box, and supports interactive user collaboration. Specifically, we utilize a VLM as an agent
to infer the photographic differences, and an LLM as an agent to generate a retouching process in
Python code.

3 RETOUCHLLM: TRAINING-FREE WHITE-BOX IMAGE RETOUCHING

Despite the success of existing retouching approaches, their reliance on style-specific training limits
their adaptability to new domains or settings. Moreover, the black-box nature of some prior methods
makes it difficult to interpret, intervene in, or modify the retouching process. In this work, we propose
RetouchLLM, a training-free, white-box photo retouching pipeline that iteratively adjusts images, as
illustrated in Fig. 1 and summarized in Algorithm 1. We do so using a language-based foundation
model as a visual critic and a code generator. Our approach generalizes to a wide range of domains,
and provides transparency and controllability by generating interpretable retouching program.

In Sec. 3.1, we describe how our method performs iterative image retouching, introduce the selection
score, and analyze the convergence behavior. In Secs. 3.2 and 3.3, we provide explanations for each
module. More details of the RetouchLLM, such as prompts, can be found in Sec. B of Appendix.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 ITERATIVE RETOUCHING

Iterative image retouching is performed by integrating the visual critic and code generator modules. At
each iteration t, a source image xsrc

t and style reference images Y = {yj}Mj=1 are passed to the visual
critic, which produces N difference descriptions. Given each description, the code generator plans
how to adjust the image accordingly and generates executable program to perform the retouching.
As a result, N programs are generated and executed, producing N retouched images x1t , ..., x

N
t .

By exploring multiple adjustment paths in parallel, the system avoids overcommitting to a single
direction, ensuring that potentially more optimal adjustment strategies are considered.

Selection score. At each iteration t, we select one retouched image from the candidate set Ct, which
consists of N + 1 images: N retouched images {xit}Ni=1 and one source image xsrc

t . We include the
source image in the set Ct to prevent degenerate updates. To select one appropriately, we propose a
SelectionScore, which identifies the most suitable image while avoiding unnecessary computational
cost. Our SelectionScore is formulated based on CLIP space alignment (Radford et al., 2021). Since
the contents of retouched images and reference images differ, we focus on extracting retouching
style using filter-related text prompts. We use K text prompts {z1, ..., zK}, constructed as pairs of
contrasting prompts for K/2 filters, where K is even. Although we employ seven filters in total, text
prompts are constructed only for the four global filters, yielding K = 8 prompts in total.

With CLIP, let the image encoder be ϕimg(·) : X → RD and the text encoder be ψtext(·) : T → RD.
The image embedding is v(y) = ϕimg(y), and the text embedding is ek = ψtext(zk). For each
candidate image xt ∈ Ct in iteration t, and reference image y ∈ Y , we compute their logits with
respect to the K text embeddings as

ℓk(xt) = ⟨v(xt), ek⟩, ℓk(y) = ⟨v(y), ek⟩. (1)

These logits can be converted to probabilities:

Pcand = pk(xt) =
exp(ℓk(xt))∑K
r=1 exp(ℓr(xt))

, qk(y) =
exp(ℓk(y))∑K
r=1 exp(ℓr(y))

. (2)

Then, we define the SelectionScore σ : X → R≥0 used by Algorithm 1 as

σ(xt, Y ) = DKL(p(xt) ∥ q̄) =
K∑

k=1

pk(xt)
(
log pk(xt)− log q̄k

)
, (3)

where Pref = q̄k = 1
M

∑M
j=1 qk(y

j) summarizes all of the reference images with respect to the text
prompts. Finally, the selected image in iteration t is obtained by

xsrct+1 ← Ct[i∗], where i∗ = arg min
i∈{0,...,N}

σ(Ct[i], Y), (4)

with Ct = [xsrct , x1t , . . . , x
N
t ] being the candidate set for the current iteration t.

Role of the source image in convergence. As iterations progress, the difference between the
source and reference images decreases, and the visual critic reports fewer differences. This dynamic
feedback enables the code generator to adjust its planning, focusing solely on the remaining elements
that require adjustment. By always including the current source image in the candidate list, the
process ensures that the selected image cannot be strictly worse than in the previous iteration.

Formally, let σt = σ(xt,Y) denote the selection score at iteration t.

σt+1 = σ(xt+1,Y) ≤ σ(xt,Y), (5)

showing that the sequence (σt) is nonincreasing. Since

σt = DKL(p(xt) ∥ q̄) ≥ 0, (6)

the sequence (σt) is bounded below by zero. By the properties of bounded monotone sequences,
(σt) therefore converges to some finite limit. Although this convergence does not imply global
optimality (since the candidate set Ct may only partially cover the search space), we observe that
further improvements beyond 10 iterations are small. We therefore fix the iteration budget to T = 10.

In summary, the iterative process continues until one of two stopping conditions holds: (1) the visual
critic reports no significant differences across all retouching elements, or (2) a predefined maximum
number of T = 10 iterations is reached.

4
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3.2 VISUAL CRITIC: DESCRIBING PHOTOMETRIC DIFFERENCES

We aim to predict the photometric differences of each filter between a source image and style
reference images in a training-free manner. Traditionally, such differences have been predicted by
training models for each style, which incurs the cost of re-collecting thousands of paired images and
retraining the model whenever a new style is needed for image adjustment. Moreover, the preferred
retouching style varies from person to person and even between images, further increasing the need
for personalized models. To address these problems, we employ a vision–language model as a visual
critic to understand diverse images and identify their differences.

Nevertheless, accurately identifying the photometric differences remains a challenge, even for
humans. Furthermore, there is often no single correct answer since preferred adjustments may vary
significantly between individuals depending on their subjective taste and intent. To mitigate this
ambiguity, we generate multiple candidate difference descriptions and propagate them for further
exploration. At each iteration t, we produce N descriptions {dit}Ni=1. This strategy increases the
chance of including a valid description. If the probability of generating a suboptimal description in the
single-candidate case is p, then the probability of success, i.e., having at least one useful description, is
P (success) = 1−pN , whereP (all suboptimal) = pN . Thus, increasingN substantially improves the
likelihood of capturing a valid adjustment direction, providing robustness against error accumulation.

Table 1: Photo adjustment
brightness range prediction.

Model Correct

Random 16.7
GPT-5 (Single) 24.3
GTP-5 (Multi) 71.3

To empirically support this intuition, we conduct a toy experiment on
brightness range prediction in Table 1 (see Sec. C.1 of Appendix for
experimental details). The probability that the search space contains
a correct direction is 24.3% with a single prediction and 71.3% with
two candidates. This simplified test highlights the effectiveness of
multi-candidate generation, supporting our theoretical analysis and
motivating its use in our iterative image retouching setting. Once
the visual critic is unable to describe the photometric differences,
the retouched image will be close to the reference images and the
retouching process will be complete (after stopping condition is met).

3.3 CODE GENERATOR: PLANNING AND IMPLEMENTING

Given the difference descriptions d, we perform actual image retouching by generating the program
g(d). However, this task introduces two significant challenges: the interdependencies among retouch-
ing elements, and the computational burden caused by high-resolution images. For example, DSLR
images often have extremely high resolution, making it computationally expensive for the model to
directly modify pixel values at full resolution (Bakhtiarnia et al., 2024). To address these issues, we
leverage the planning and executable code generation capabilities of a large language model.

The retouching program g(d) is expressed as a composition of 7 photometric operations (exposure,
contrast, saturation, temperature, highlight, shadow, texture), but the framework can be readily
extended to a larger set. The photometric operation pool is

Pθ = {exposure(θexp), . . . , texture(θtex)}. (7)

More formally, for each photometric description, the code generator selects a subset of filters h, their
ordering, and computes their arguments θ, and applies them sequentially to the source image.

h = (h1, h2, . . . ) ⊂ Permt(Pθ) → xit = (h1 ◦ h2 ◦ . . . ) (xsrct ), (8)

where Permt(·) describes permuting the order of filter operations for time-step t. Each operation
in Pθ can be applied to images of any size without additional processing. Thus, the procedure is
resolution-independent. In addition, unlike black-box models that map an input image directly to its
retouched image, our approach is fully white-box: the generated program h explicitly specifies all
operations and parameters, ensuring interpretability, editability, and reproducibility.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method using two publicly available datasets: MIT-Adobe FiveK (By-
chkovsky et al., 2011) and PPR10K (Liang et al., 2021). While traditional methods need training, our

5
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Table 2: Retouching performance across multiple styles. Gray text indicates models fine-tuned on
the target style using reference images. Black text denotes zero-shot models evaluated without any
task-specific training. Results for RetouchLLM are reported using the GPT-5 implementation.

Style Method
MIT-Adobe FiveK PPR10K

PSNR(↑) SSIM(↑) LPIPS(↓) ∆E(↓) PSNR(↑) SSIM(↑) LPIPS(↓) ∆E(↓)

1

RSFNet 18.03 0.773 0.178 18.34 17.81 0.819 0.106 19.77
PG-IA-NILUT 20.54 0.743 0.168 12.13 19.60 0.674 0.146 15.24
Z-STAR 16.01 0.607 0.397 17.70 16.13 0.662 0.325 19.63
RetouchLLM 21.68 0.900 0.072 10.89 19.31 0.817 0.150 14.95

2

RSFNet 17.89 0.754 0.188 18.09 21.93 0.870 0.079 13.21
PG-IA-NILUT 18.04 0.632 0.221 17.46 21.42 0.760 0.104 11.82
Z-STAR 16.23 0.592 0.412 19.39 16.89 0.629 0.336 16.62
RetouchLLM 21.13 0.867 0.094 12.20 20.91 0.837 0.116 12.07

3

RSFNet 17.60 0.780 0.162 17.36 21.27 0.834 0.072 13.50
PG-IA-NILUT 19.48 0.686 0.232 14.35 21.25 0.710 0.112 12.59
Z-STAR 15.40 0.597 0.379 20.54 18.38 0.679 0.321 15.50
RetouchLLM 21.32 0.897 0.081 12.17 21.49 0.853 0.105 12.27

approach does not require a training phase. Thus, we only utilize the test pairs for evaluation. To
evaluate our RetouchLLM, we construct source-reference image pairs. The pairs reflect a common
user behavior in real-world retouching workflows, where users often refer to similar content images
as references, e.g., refer to a green nature image when retouching a mountain scene. To mimic
this behavior, we utilize CLIP (Radford et al., 2021) to extract image-level logits and compute the
pairwise KL divergence across the dataset. Reference images are selected based on their similarity.

Training-free baseline. Since existing image retouching methods typically require training, we
adopt Z-STAR (Deng et al., 2024), a zero-shot style transfer model, as our training-free baseline.
Z-STAR represents the content and style images through dual denoising paths in the latent space and
guides the denoising process of the content image using the style latent codes via cross-attention
reweighting. We use the source image to be retouched as the content image and the reference image
as the style image, and treat the resulting output as the training-free baseline results.

Implementation details. We use five reference images per sample (M = 5), and the visual critic
generates three candidate descriptions per iteration (N = 3) by default. To improve fine-grained
retouching stability, we provide the visual critic with image-level statistics, e.g., pixel mean, std,
etc, in the prompt. We implement the visual critic and code generator using four LLMs: GPT-
5 (OpenAI, 2025), Gemini-1.5-Pro (Team et al., 2024a), Qwen2.5-VL-72B (Bai et al., 2025), and
InternVL3-14B (Zhu et al., 2025). Further implementation details are provided in Sec. C of Appendix.

Metrics. Following previous work (Ke et al., 2022; Wang et al., 2022; Wu et al., 2024), we utilize
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Learned Perceptual
Image Patch Similarity (LPIPS), and ∆E, which represents the L2 distance in the CIELAB color
space. Higher PSNR and SSIM values, with lower LPIPS and ∆E values, indicate better performance.

4.2 EXPERIMENTAL RESULTS

Retouching performance across diverse styles. We evaluate RetouchLLM on diverse retouch-
ing styles against (1) Z-STAR, a training-free retouching baseline, and (2) supervised models
RSFNet (Ouyang et al., 2023) and PG-IA-NILUT (Kosugi, 2024), each fine-tuned to the target style
using reference images. Details of fine-tuned models are provided in Sec. C.2 of the Appendix.

Table 3: Retouching performance across multiple
models. All values are averaged over eight retouching
styles: five from Adobe FiveK and three from PPR10K.

Model PSNR(↑) SSIM(↑) LPIPS(↓) ∆E(↓)
RSFNet 18.69 0.798 0.144 16.82
PG-IA-NILUT 19.73 0.692 0.173 14.05
Z-STAR 16.28 0.623 0.368 18.30
RetouchLLM

w/ GPT-5 20.75 0.858 0.101 12.76
w/ Gemini-1.5-Pro 20.41 0.857 0.102 13.03
w/ Qwen2.5-VL-72B 20.00 0.844 0.103 13.68
w/ InternVL3-14B 20.72 0.857 0.106 12.75

We present the results in Table 2. Our
RetouchLLM significantly outperforms Z-
STAR in all metrics and styles. Further-
more, it outperforms the two fine-tuning
methods in all metrics in MIT-Adobe
FiveK, while reaching competitive results
in PPR10K, demonstrating the adaptabil-
ity of RetouchLLM across a wide range
of retouching styles. In addition, Table 3
highlights the extensibility of Retouch-
LLM to different model backbones, con-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Quantitative results over 10 iterations. All metrics show consistent improvement over
iterations. Higher PSNR and SSIM, and lower LPIPS and ∆E, indicate closer similarity to the GT.

Source GTProgressive Retouched Results

Figure 3: Qualitative results of progressively retouched images. In each row, the leftmost image is
the source, the rightmost is the GT, and the middle images show the progressively retouched results.

sistently yielding superior performance over existing methods regardless of the backbone used. The
style-wise full results of Table 2 and Table 3 are given in Sec. A.1 of the Appendix.

Iterative retouching. To evaluate the effectiveness of our iterative retouching framework, we
conduct experiments with the GPT-5 version of RetouchLLM. The quantitative results in Fig. 2 report
the metric-wise trend averaged over all 8 retouching styles, revealing consistent improvements as the
image is progressively retouched. The most significant changes occur in the early iterations, while
the gains diminish in later steps, suggesting convergence. This behavior indicates that RetouchLLM
performs image retouching in a coarse-to-fine manner, making significant global adjustments in
the beginning and gradually refining finer details as the iterations proceed. The qualitative results
in Fig. 3, starting from the source image on the left, show a progressive enhancement toward the
target style, as verified by comparison with the ground truth (GT) image on the right. Notably,
all retouching operations are performed directly on the original high-resolution images without
any resizing, preserving fine details throughout the iterative process. The qualitative results of
high-resolution images are provided in Figs. 7, 8, and 9 of the Appendix.

Table 4: Score consistency (mean ± standard deviation) under a
similar-content reference setting.

Method PSNR(↑) SSIM(↑) LPIPS(↓) ∆E(↓)
Exposure (Hu et al., 2018) 15.12 0.63 0.14 -
Unpaired (Kosugi & Yamasaki, 2020) 21.73 0.83 0.12 -
RSFNet (Ouyang et al., 2023) 21.85 0.88 0.08 -
InstructP2P (Brooks et al., 2023) 16.99 0.61 0.22 -
MGIE (Fu et al., 2024) 22.94 0.74 0.08 -
MonetGPT (Dutt et al., 2025) 23.75 0.90 0.07 -

RetouchLLM 25.48 0.92 0.09 7.57

Plausibility assessment.
We evaluate our method in
the plausibility assessment
setting (Dutt et al., 2025),
where each input image is
associated with five expert
retouchings and the model
output is scored against the
closest among them. This
protocol evaluates how well

7
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Table 5: Ablation of RetouchLLM modules. Z-STAR is the baseline for training-free retouching.
(a) The code generator produces the retouching code based on the statistics of images instead of using
a textual description. (b) The visual critic directly generates codes. (c) Our RetouchLLM. In the
paired setup, the ground truth retouched image corresponding to the source is available. The unpaired
setup is a more general case, where the reference images have different contents but a desirable style.

Visual
Critic

Code
Generator

Paired Unpaired
PSNR(↑) SSIM(↑) LPIPS(↓) ∆E(↓) PSNR(↑) SSIM(↑) LPIPS(↓) ∆E(↓)

Z-STAR 20.01 0.732 0.196 13.60 16.29 0.595 0.399 18.99

(a) ✗ ✓ 26.78 0.947 0.050 6.69 19.74 0.866 0.096 13.78
(b) ✓ ✗ 27.58 0.959 0.052 5.79 20.71 0.863 0.092 12.81
(c) ✓ ✓ 29.21 0.956 0.053 5.23 22.19 0.909 0.070 10.07

Source Image

Reference Image

!"#
Re-use
Code

Source Image

Adjusted Image

Ground Truth

Iter.

Figure 4: Applying the restored filter. The paired setup enables extracting a more faithful and
reusable retouching code that can be applied to other images like a preset filter.

a model can produce edits that fall within the range of human editing preferences. Following this
protocol, we evaluate our method by randomly sampling 400 images from the 500 test images in
MIT-Adobe FiveK (Bychkovsky et al., 2011) and reporting the corresponding scores. Table 4 shows
that our method achieves strong performance, suggesting that its outputs are not only quantitatively
superior to other methods but also more closely aligned with the diversity of expert-level adjustments.

Table 6: Effectiveness of the proposed selection score.
Results are reported using InternVL3 on FiveK style 1.

Selection Score PSNR(↑) SSIM(↑) LPIPS(↓) ∆E(↓)
(1) RGB hist. 21.62 0.906 0.078 11.51
(2) YUV hist. 20.94 0.894 0.078 11.66
(3) Gram matrix 21.49 0.906 0.072 11.15
(4) KL CLIP all 21.93 0.899 0.072 10.58
(5) KL CLIP global 22.19 0.909 0.070 10.07

Ablation and comparison of selection
scores. In Table 6, we evaluate the ef-
fectiveness of the proposed selection score
introduced in Sec. 3.1 against alternative
methods: (1) RGB-channel histograms, (2)
YUV-channel histograms, (3) Gram matrix
similarity commonly used in style transfer,
(4) our KL CLIP score using prompts re-
garding all filters including local ones, and (5) our default KL CLIP score using only global filters.
Details of each score are given in Sec. C.3 of the Appendix. The result shows that our proposed
method (global) achieves the best performance, demonstrating its ability to reliably capture style
characteristics from reference images even when their content differs from the source image.

Ablation of RetouchLLM modules. In Table 5, we conduct an ablation study on MIT-Adobe
FiveK style 1 using InternVL3, systematically modifying or removing modules. We design two
ablation variants: (a) we remove the visual critic and instead feed image-level statistics (e.g., mean,
standard deviation) directly to the code generator, which provides insight about how the form of
image information representation affects retouching performance; (b) we merge the visual critic and
code generator into a single VLM that directly generates retouching code by comparing the source
and reference images, without explicitly describing their differences, which examines the role of
natural language as a semantic textual bottleneck in guiding the image retouching process.
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Table 7: Ablation of the number of candidates.
(Default: N = 3)

# Cand. PSNR(↑) SSIM(↑) LPIPS(↓) ∆E(↓)
1 21.27 0.889 0.078 10.91
3 22.19 0.909 0.070 10.07
5 22.76 0.914 0.069 9.74

Table 8: Ablation of the number of style refer-
ence images. (Default: M = 5)

# Ref. PSNR(↑) SSIM(↑) LPIPS(↓) ∆E(↓)
1 20.35 0.890 0.080 11.37
3 21.80 0.904 0.070 10.13
5 22.19 0.909 0.070 10.07

Make it brighter

img = exposure(img, +30%)
img = contrast(img, +15%)
img = highlight(img, +15%)
img = shadow(img, +15%)

Make the truck 
more yellowish

img = saturation(img, +7.5%)
img = temperature(img, +30%)

Give the image a 
slightly cooler tone

img = temperature(img, -5%)

Stop

Figure 5: User interactive retouching. The user gives instructions to retouch images towards the
desired style. These retouched images can then be fed back into the pipeline for further retouching.

We compare variants under paired and unpaired setups. In the paired setup, the target image paired
with the source serves as a reference, allowing direct validation of the generated code against
expert retouching. In the unpaired setup, which we take as the default and more general setting,
reference images with different content but similar style are used, requiring the model to generalize its
retouching logic. In Table 5, all variants outperform the baseline Z-STAR. RetouchLLM (c) achieves
the best performance across all metrics in the unpaired setup, and in the paired setup it also attains
the highest PSNR and ∆E, with the values of other metrics that are nearly indistinguishable from the
top-performing variants. This suggest that both components contribute to retouching quality. The
strong performance in the paired setup further suggests that a training-free approach can effectively
leverage prior knowledge to handle fine-grained photo retouching. In addition, Fig. 4 illustrates a
practical case of the paired setup, showing that the generated program can be reused to achieve a
similar style.

Ablation of design choices. We conduct ablation studies on two key system design choices: the
number of candidates and the number of reference images. In Table 7, as the number of candidates
increases, the performance improves, which is consistent with the explanation in Sec. 3.2 and the
results of Table 1. However, since a larger number also increases computational cost, we use three
candidates in practice. Table 8 shows that increasing the number of reference images improves
performance, with the best results obtained using five, as the model benefits from richer stylistic cues.

User study. We conducted a user study to assess perceptual preferences across methods. We
collected responses from 40 participants over 30 samples (1,200 responses in total). We ensured that
the participants cover different genders, nationalities, and come from geographically different regions.
More details are in Appendix C.4. The results show a strong preference for our method: NILUT:
16.42%, RSFNet: 9.67%, Z-STAR: 3.17%, and Ours: 70.75%. This indicates that users consistently
favored the outputs of RetouchLLM over the other baselines in terms of matching the target style.

Table 9: Score consistency (mean ± standard deviation)
under a similar-content reference setting.

PSNR(↑) SSIM(↑) LPIPS(↓) ∆E(↓)
22.34± 1.55 0.918± 0.016 0.068± 0.011 9.44± 1.04

Robustness to changes in reference
images. Users generally rely on refer-
ence images with similar content. To
evaluate the score consistency under
such conditions, we randomly select
five images from the top ten candi-
dates produced by CLIP-based retrieval and use each of them as a reference for retouching. This
procedure is repeated seven times, and we report the trimmed mean and standard deviation by exclud-
ing the maximum and minimum values. The evaluation set is identical to that used in Table 4 for the
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ablation study. Table 9 shows that the standard deviation remains small, indicating that the method
behaves reliably when the reference images contain different but semantically similar content.

However, when the reference images contain very different content, the performance may decrease
because current VLMs can struggle to consistently perceive and abstract the same style across hetero-
geneous scenes. Incorporating additional adaptation using retouching data to improve robustness in
such challenging cases would be a promising direction for future work.

4.3 APPLICATION: USER INTERACTION

We further demonstrate an application where RetouchLLM is adapted from reference-based retouch-
ing to user-interactive retouching. In this setting, reference images are replaced with natural language
instructions, and the automatic selection score is replaced with explicit user choices. This design
allows the system to more directly reflect user preferences and supports an interactive workflow in
which the retouching process can be iteratively refined through simple language commands.

The qualitative results of Fig. 5 illustrate how RetouchLLM progressively improves image quality
while reflecting the user’s intended style. We observe that the model effectively retrieves and
composes relevant filters based on user instructions, while also adjusting their intensity in a controlled
and interpretable manner. For instance, in response to an instruction such as “make the truck more
yellowish,” the model increases both saturation and color temperature to enhance the yellow tone.
When subsequently asked to “give the image a slightly cooler tone,” it reduces the temperature by a
relatively small amount (e.g., 5%). These results demonstrate that the model can faithfully interpret
and execute user-provided natural language instructions for personalized retouching. More user
interactive retouching examples can be found in Figs. 17 and 18 in the Sec. A.4 of the Appendix.

5 CONCLUSION

In this work, we present RetouchLLM, a training-free white-box system for interactive image
retouching. By integrating an iterative refinement framework with a style-guided selection score,
our approach achieves stable convergence without the need for paired training data. Extensive
experiments demonstrate that it generalizes well across diverse styles and supports high-resolution
editing with transparent, code-based operations. Beyond quantitative improvements, the ability to
follow natural language instructions enables personalized and user-aligned retouching. For future
work, we plan to extend our system with a broader set of editing filters and operations, enabling richer
adjustment paths beyond the current set of retouching tools. Another important direction is evaluating
human–AI interaction in practical workflows, studying how users issue natural language instructions
and how effectively the system adapts to their preferences. We believe these directions will push
interactive retouching toward more practical, personalized, and trustworthy real-world applications.

ETHICS STATEMENT

This work includes a user study to evaluate the quality of generated results. We collected responses
from 40 participants. Participants were volunteers who provided informed consent. We ensured
diversity in gender, nationality, and geographic region among the participants. No personally
identifiable information was collected, and no compensation was provided. The study posed no
foreseeable risk of harm and was conducted in accordance with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We take several steps to ensure the reproducibility of our work. Detailed experimental settings,
dataset descriptions, and implementation details are included in the main paper and appendix. The
core algorithm is provided in the main paper for clarity. In addition, we provide the source code and
instructions as part of the supplementary materials to facilitate replication of our results.
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In this Appendix, we include additional qualitative and quantitative results, method details, and
experimental details, which are not included in the main paper.

A ADDITIONAL RESULTS

A.1 RETOUCHING ACROSS MULTIPLE STYLES

We complement Table 2 and Table 3 in the main paper by providing evaluations across all retouching
styles in Table 10. We evaluate RetouchLLM on eight diverse retouching styles, including five
styles from the MIT-Adobe FiveK dataset and three from the PPR10K dataset. For each style, we
randomly select 30 source images for testing, and each source image is paired with five reference
images. Unlike conventional source–GT pairs that share the same content but differ in style, our
setting uses source–reference style pairs, where the content may differ and the goal is to adjust the
source image to match the reference style. As described in the main text, we construct these pairs
using CLIP (Radford et al., 2021), where we extract image-level logits and compute pairwise KL
divergence across the dataset. The list of test images will be released along with the code.

RetouchLLM retouches images without any task-specific training. We compare our method against
(1) Z-STAR (Deng et al., 2024), a training-free retouching baseline, and (2) RSFNet (Ouyang et al.,
2023) and PG-IA-NILUT (Kosugi, 2024), two supervised models fine-tuned for each style using the
corresponding reference images. The results in Table 10 demonstrate the adaptability of RetouchLLM
across a wide range of retouching styles, and extensibility to different model backbones. In addition,
we provide a qualitative comparison in Figure 6, where Z-STAR produces distorted results due to its
diffusion-based style transfer mechanism, while our method yields results most similar to the ground
truth compared to supervised methods.

A.2 HIGH-RESOLUTION IMAGE RETOUCHING RESULTS

RetouchLLM retouches the image based on Python code; thus, it can operate independently of the
image resolution. Figures 7, 8, and 9 present the retouching results on high-resolution images from
MIT-Adobe FiveK (Bychkovsky et al., 2011). RetouchLLM infers the target style from five reference
images and then applies iterative code-based adjustments to retouch the source image. The results
demonstrate that RetouchLLM effectively extracts the photometric style attributes from the reference
images and applies them to high-resolution content without degradation, confirming its capability for
resolution-agnostic and content-preserving retouching.

A.3 APPLYING RESTORED FILTER

Figure 16 presents additional examples demonstrating the practical utility of the paired setup intro-
duced in Fig. 4 of the main paper. Given a single pair of a source image and a corresponding target
image, our RetouchLLM extracts a retouching program that can be reused as a preset filter. This
enables consistent adjustments across multiple photos taken under similar conditions (e.g., the same
scene or session). The extracted program can also be applied to new images independent of image
resolution, as long as their starting point and intended target style are comparable, demonstrating the
flexibility and scalability of our approach.

A.4 USER INTERACTION RESULTS

Our default pipeline takes a source image and a set of reference images as input. Using a visual critic
and a code generator, RetouchLLM iteratively produces adjusted image candidates. Among these, the
most style-consistent image is selected via a score-based selection mechanism and then used as the
source image for the next iteration. This iterative process continues until the final result is obtained.

In contrast, the user-interaction mode replaces the reference images with user instructions as input.
Instead of automated score-based selection, the user can manually select the preferred result at each
iteration, allowing RetouchLLM to adapt to the preferences of the individual user. This interactive
loop continues until the user is satisfied with the result. This application is made possible by our
language model–based modules and iterative design, which together allow the system to flexibly
interpret user guidance.
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Table 10: Retouching performance across multiple styles (full results of Table 2 in the main
paper). Gray text indicates models fine-tuned on the target style using reference images. Black text
denotes zero-shot models evaluated without any task-specific training.

Style Method PSNR(↑) SSIM(↑) LPIPS(↓) ∆E(↓)

FiveK
A

RSFNet 17.55 0.747 0.204 17.34
PG-IA-NILUT 20.00 0.713 0.189 13.46
Z-STAR 16.61 0.622 0.383 16.77
RetouchLLM (GPT-5) 21.24 0.860 0.086 12.43
RetouchLLM (Gemini-1.5-Pro) 21.08 0.862 0.082 12.27
RetouchLLM (Qwen2.5-VL) 20.04 0.856 0.084 12.69
RetouchLLM (InternVL3) 21.55 0.871 0.090 11.95

FiveK
B

RSFNet 18.03 0.773 0.178 18.34
PG-IA-NILUT 20.54 0.743 0.168 12.13
Z-STAR 16.01 0.607 0.397 17.70
RetouchLLM (GPT-5) 21.68 0.900 0.072 10.89
RetouchLLM (Gemini-1.5-Pro) 21.55 0.905 0.074 10.99
RetouchLLM (Qwen2.5-VL) 21.39 0.889 0.075 11.42
RetouchLLM (InternVL3) 22.19 0.909 0.070 10.07

FiveK
C

RSFNet 17.89 0.754 0.188 18.09
PG-IA-NILUT 18.04 0.632 0.221 17.46
Z-STAR 16.23 0.592 0.412 19.39
RetouchLLM (GPT-5) 21.13 0.867 0.094 12.20
RetouchLLM (Gemini-1.5-Pro) 21.06 0.872 0.092 12.44
RetouchLLM (Qwen2.5-VL) 20.24 0.843 0.101 13.95
RetouchLLM (InternVL3) 20.69 0.871 0.097 12.46

FiveK
D

RSFNet 17.40 0.765 0.160 16.97
PG-IA-NILUT 17.68 0.615 0.224 14.95
Z-STAR 14.60 0.593 0.391 20.27
RetouchLLM (GPT-5) 18.93 0.834 0.105 15.08
RetouchLLM (Gemini-1.5-Pro) 17.94 0.809 0.109 16.16
RetouchLLM (Qwen2.5-VL) 17.33 0.818 0.112 16.32
RetouchLLM (InternVL3) 18.30 0.812 0.114 15.95

FiveK
E

RSFNet 17.60 0.780 0.162 17.36
PG-IA-NILUT 19.28 0.687 0.222 14.79
Z-STAR 15.40 0.597 0.379 20.54
RetouchLLM (GPT-5) 21.32 0.897 0.081 12.17
RetouchLLM (Gemini-1.5-Pro) 20.22 0.882 0.084 13.22
RetouchLLM (Qwen2.5-VL) 19.06 0.864 0.092 14.71
RetouchLLM (InternVL3) 21.24 0.897 0.089 11.64

PPR10K
A

RSFNet 17.81 0.819 0.106 19.77
PG-IA-NILUT 19.60 0.674 0.146 15.24
Z-STAR 16.13 0.662 0.325 19.63
RetouchLLM (GPT-5) 19.31 0.817 0.150 14.95
RetouchLLM (Gemini-1.5-Pro) 19.62 0.828 0.144 14.67
RetouchLLM (Qwen2.5-VL) 18.98 0.804 0.148 16.15
RetouchLLM (InternVL3) 19.13 0.807 0.156 15.23

PPR10K
B

RSFNet 21.93 0.870 0.079 13.21
PG-IA-NILUT 21.42 0.760 0.104 11.82
Z-STAR 16.89 0.629 0.336 16.62
RetouchLLM (GPT-5) 20.91 0.837 0.116 12.07
RetouchLLM (Gemini-1.5-Pro) 20.82 0.855 0.117 12.10
RetouchLLM (Qwen2.5-VL) 21.17 0.845 0.113 12.26
RetouchLLM (InternVL3) 21.19 0.842 0.119 12.03

PPR10K
C

RSFNet 21.27 0.872 0.072 13.50
PG-IA-NILUT 21.25 0.710 0.112 12.59
Z-STAR 18.38 0.679 0.321 15.50
RetouchLLM (GPT-5) 21.49 0.853 0.105 12.27
RetouchLLM (Gemini-1.5-Pro) 20.96 0.842 0.116 12.39
RetouchLLM (Qwen2.5-VL) 21.78 0.831 0.101 11.93
RetouchLLM (InternVL3) 21.50 0.845 0.111 12.71

From the second iteration, we incorporate retouching history to improve the precision of the model’s
interpretation of the user’s instructions. Specifically, the visual critic receives the adjustment history,
represented as image statistics, from previous iterations. This helps narrow down the ambiguity in the
user instructions by providing contextual cues based on prior adjustments. The detailed qualitative
process of user interaction is illustrated in Fig. 17, and additional qualitative results are in Fig. 18.
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Ground Truth RSFNet PG-IA-NILUT Z-STAR Ours

Figure 6: Qualitative comparison results

In Fig. 17, the user intends to make the source image significantly brighter with a warmer tone. Since
RetouchLLM cannot determine the precise degree of adjustment in a single step, it generates three
candidate images using different adjustment strategies. Specifically, the exposure is increased by
approximately 30% to 80%, and the color temperature is raised by 15% to 50%, respectively. This
range of candidates allows the model to explore diverse interpretations of the user’s instruction. After
the user selects the most preferred image among the three candidates, the selected image is used as
the source for the next iteration of editing based on a new instruction from the user. This process
is repeated iteratively: in each iteration, RetouchLLM generates three new candidates, and the user
selects one to proceed. For simplicity, the three candidate outputs and user selections are omitted in
Fig. 6 of the main paper and Fig. 18 of the supplementary material. Instead, only the final selected
outputs for each iteration are shown to better illustrate the progressive retouching process.

In the bottom example of Fig. 18, the model reduces the saturation by 30% in the first iteration.
In the second round, the user provides a vague instruction “reduce the saturation further”, which
the model interprets as requiring a stronger adjustment relative to the previous one and applies an
80% reduction. In the third iteration, the user says “slightly lower the saturation”. Compared to
the previous 80% change, the model interprets the given instruction as a much smaller adjustment,
reducing saturation by 29%. This example demonstrates how the system leverages the retouching
history to interpret ambiguous instructions more precisely. By referencing the magnitude and context
of previous adjustments, the model can better infer relative terms such as “further” or “slightly”,
allowing for more user-aligned and consistent retouching behavior across iterations.

A.5 GENERATED DESCRIPTIONS AND CORRESPONDING CODES SAMPLES

RetouchLLM performs image retouching using difference descriptions from the visual critic and
retouching code generated by the code generator. Figures 20, 21, and 22 show examples of actual
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Adjusted Image

Ground Truth Reference Images

Figure 7: High resolution qualitative samples 1

outputs produced by both components. The visual critic generates three candidates of difference
descriptions, each of which describes the difference across all filters. Based on each description, the
code generator produces the corresponding retouching code.

In particular, rather than adjusting all components simultaneously, RetouchLLM first applies a global
brightness adjustment, followed by local brightness, color tone, and texture adjustments. Since
the effect of a given adjustment can depend on the sequence of operations, retouching workflows
typically begin with global edits such as brightness or exposure before proceeding to more fine-
grained adjustments. Our model incorporates this knowledge and plans a process for each iteration
based on both the difference description and general editing conventions. As illustrated in Fig. 19,
our method selectively applies adjustments across iterations and progressively refines the image,
resembling an interactive human workflow.
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Adjusted Image Ground Truth Reference
Images

Figure 8: High resolution qualitative samples 2

A.6 FAILURE CASES

While our system performs robustly in most cases, we do observe several types of failure cases
during the process. First, the visual critic occasionally omits the decision for further editing. If any
per-filter analysis is present but the final decision omits further editing, we proceed as if additional
retouching is still required. Second, the code generator may occasionally output code that is not
directly executable. For example, including placeholder comments such as “source_image =
... # assume source_img is already defined” can lead to execution errors. In
such cases, we re-query the model with a different temperature, allowing up to three attempts. If
all three retries fail, the system skips the current retouching and proceeds to the next iteration. In
practice, these cases are not very common at all and are often resolved by the subsequent iteration.
Both failure cases stem from the dependency on the existing external modules of VLMs and LLMs.
As these modules improve, the failure cases of the overall proposed system will be reduced.

Figure 10 illustrates failure cases observed in the final results. In the first row, although the dark
stone tomb is successfully brightened so that its boundaries become clearly visible, this also leads
to an over-exposed sky region. In the second row, while the sky is stylized well according to the
target style, the floor area becomes slightly less yellow than desired. These errors are expected to
be alleviated once mask-based local editing is incorporated in the future. The last row shows cases
where the overall adjustment does not perfectly match the ground truth, resulting in either insufficient
brightness or a slightly cool tone. Since our method infers the style from a reference image that does
not share the same content, rather than learning from paired data, the result is not identical to the
ground truth. Nevertheless, it still produces plausible adjustments compared to the original image.
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Adjusted Image

Ground Truth Reference Images

Figure 9: High resolution qualitative samples 3

A.7 APPLICABILITY FOR LOCAL IMAGE EDITING

To evaluate whether our pipeline can be extended toward localized retouching, we additionally
incorporated local editing using segmentation-based masking. Specifically, a target region mask
was obtained via SAM (Kirillov et al., 2023) and applied after the original global enhancement.
The results in Fig. 11 demonstrate that local editing further improves similarity to the ground truth
compared to using global operations alone, e.g., the first sample’s PSNR is increased from 23.79 to
29.33, indicating that the framework can be extended beyond purely global corrections by integrating
mask-guided refinements.
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Original Edited GT

Original Edited GT

Original Edited GT Original Edited GT

Figure 10: Failure cases. (Top) the sky area is overexposed. (Middle) the floor area looks less yellow.
(Bottom left) the overall exposure is a bit low. (Bottom right) the colors lean slightly cool.

B DETAILS OF RETOUCHLLM

B.1 PIPELINE

We summarize the full procedure of RetouchLLM in Algorithm 1. RetouchLLM employs a visual
critic based on a vision-language model (VLM) and a code generator based on a large language model
(LLM). Notably, neither model has been explicitly trained for the image retouching task. The system
performs iterative retouching until either the maximum number of iterations T is reached or the early
stopping conditions are met. We define two stopping conditions: (1) Score-based early stopping,
and (2) stop signal from the visual critic. First, if the source image is selected as the best candidate
for three consecutive iterations, we assume that no further improvement is necessary. Second, if the
visual critic explicitly includes a “stop” in the overall component of its difference description, the
process is terminated early. During the iteration, the source image of the current iteration is included
in the selection candidate set to ensure the reversibility in case the model outputs an unsatisfactory
result. In the first iteration, a rule-based adjusted image is included as a warm-start image in the
selection candidate set.

When the visual critic produces a description, we include statistics of the given images as well as
those of the source and reference images, to enable a more fine-grained and quantitative explanation
of inter-image differences. To support fine-grained analysis, we computed a set of image statistics:
pixel-level mean, median, and standard deviation; top and bottom 10% intensities; RGB channel-wise
means; Laplacian variance (for sharpness); saturation mean, standard deviation, minimum, and
maximum; and the mean values of the L and b channels.

RetouchLLM retouches an image in under two minutes without any fine-tuning, whereas both RSFNet
and PG-IA-NILUT require a very large corpus of training data and more than two days of training
(using the authors’ provided code). Fine-tuning on a smaller subset reduces this cost but severely
degrades performance, as both models are prone to overfitting when trained on a few examples.
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"The exposure of the target image is 
a bit lower than the source image."

PSNR: 23.79 PSNR: 29.33

GTLocal edited resultGlobal edited result

Mask + difference description

PSNR: 25.48 PSNR: 32.20

GTLocal edited resultGlobal edited result

PSNR: 23.91 PSNR: 26.37

GTLocal edited resultGlobal edited result

"The target images is a bit more vivid 
than the source image."

"The exposure of the target image is 
higher than the source image."

Figure 11: Local image editing. Local editing with a segmentation mask further improves similarity
to the ground truth compared to global operations alone, demonstrating the possibility of extending
our framework toward localized retouching. Note that the local region represented with white on the
mask is edited, and the mask is predicted by SAM (Kirillov et al., 2023).
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B.2 PROMPT

We provide the exact prompt used in our system below. The system prompt for the visual critic is in
12, the user prompt for the visual critic in 13, the system prompt for the code generator in 14, and the
user prompt for code generator in 15.

System Prompt for Visual Critic.

Task:
You are an advanced image analysis assistant. Multiple images will be provided along with
their color statistics. The first image is the source image, and the rest of the images are
the target images. The content and the photometric style of the source and target images
differ. The photometric styles of all the target images are the same. Your task is to compare
the source and target images in terms of the photometric style and identify how the target
images differ from the source image in the specific photometric aspects: Exposure, Contrast,
Highlight, Shadow, Saturation, Temperature, Texture.

Definition:
- Exposure refers to the overall brightness of the image. A higher factor results in a brighter
image, while a lower factor makes the image darker.
- Contrast refers to the difference in brightness between light and dark areas of an image. A
higher factor increases the difference, making the image more vivid but losing detail, while a
lower factor reduces the difference, retaining more detail but making the image look softer.
- Highlight refers to the brightest areas in an image. A higher factor brightens these regions
further, which can lead to loss of detail in overexposed areas, while a lower factor reduces
brightness, helping to recover details lost in the highlights.
- Shadow refers to the darkest areas in an image. A higher factor brightens these regions,
revealing details hidden in underexposed areas, while a lower factor darkens the shadows,
enhancing contrast and creating a more dramatic effect, which can result in a loss of detail in
the darkest areas.
- Saturation refers to the intensity of colors in an image. A higher factor enhances the
vibrancy of colors, making them more intense, while a lower factor reduces the intensity,
eventually leading to a grayscale image, where all color is removed.
- Temperature refers to the balance between warm and cool tones in an image. A higher factor
adds warmth with reddish tones, while a lower factor introduces coolness with bluish tones.
- Texture refers to the level of detail and high-frequency variations in an image, influencing
its perceived sharpness and surface characteristics. A higher factor enhances fine details and
edges, while a lower factor softens the image by reducing these variations.

Instructions:
1. Choose whether to increase, decrease, or maintain the factor for each aspect. If adjusting,
select the appropriate adjustment range from the given options, and if maintaining, write
’N/A’ for that aspect.
2. If adjustments are needed for one or more aspects, write ’go’ for the Overall part, while no
adjustments are needed for any aspect, write ’stop’.

Output Format:
- Exposure: [description of exposure difference, e.g., the brightness of the target image is
10-20% higher than the one of the source image. or N/A.]
- Contrast: [description of contrast difference, e.g., the contrast of the target image is 10-20%
higher than the one of the source image. or N/A.]
- Highlight: [description of highlight difference, e.g., the highlight of the target image is
10-20% higher than the one of the source image. or N/A.]
- Shadow: [description of shadow difference, e.g., the shadow of the target image is 10-20%
higher than the one of the source image. or N/A.]
- Saturation: [description of saturation difference, e.g., the saturation of the target image is
10-20% higher than the one of the source image. or N/A.]
- Temperature: [description of temperature difference, e.g., the temperature of the target image
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is 10-20% higher than the one of the source image. or N/A.]
- Texture: [description of texture difference, e.g., the texture of the target image is 10-20%
higher than the one of the source image. or N/A.]
- Overall: Write ’Stop’ if there is an N/A for all aspects, and ’Go’ if one or more aspects have
differences.

User Prompt for Visual Critic.

Task:
You should describe the similar parts between the source image and the target images and
generate 3 candidate descriptions. Each candidate should include the difference of all the
aspects. Compare the source image and the target images in terms of the photometric
adjustments made to the image, and describe the difference in each aspect. You can choose
the range from the following list: {range_list}%. Do not exceed the range. You can use
the color statistics and the scores between the source and target image as a guide.

Color Statistics:
- Source: {source image statistics}.
- Targets (averaged): {average of target images statistics}.

Averaged scores (PSNR, SSIM, LPIPS, Delta E):
{Scores between source and reference images}

Output Format:
Similar parts
[Description of the similar parts]

Candidate 1
[Description of the first candidate]

Candidate 2
[Description of the second candidate]

Candidate 3
[Description of the third candidate]

System Prompt for Code Generator.

Task:
You are an expert Python programmer. Your task is to generate Python code that sets
the appropriate filters and parameter values based on the given photometric aspect-wise
description of the color tone difference between the source image and the target image, and
arranges the sequence of those steps to make the source image resemble the target image.

Based on the given description, choose one of the following three options and proceed with
the corresponding photometric adjustments:
- Global Brightness Adjustment (exposure, contrast): If global brightness adjustments are
needed more than 1%, focus on modifying elements that affect overall brightness. Do not
adjust local brightness, color tone, and texture elements at this stage, only global brightness-
related factors.
- Local Brightness Adjustment (highlight, shadow): If the global brightness adjustments
are completed with less than 1% differences, focus on modifying elements that affect local
brightness. Do not adjust global brightness, color tone, and texture elements at this stage,
only local brightness-related factors.
- Color Tone and Texture Adjustment (saturation, temperature, texture): If both the global
and local brightness adjustments are completed with less than 1% differences, focus on
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modifying elements that affect color tone and texture. Do not adjust global brightness and
local brightness elements at this stage, only color tone and texture-related factors.

Code Generation Instructions

Instructions:
1. Examine the given photometric difference description to determine which option to choose,
and select only one option from the three options. Ensure that no other options are executed
in the code.
2. Select the appropriate filters for the selected adjustment option, and arrange filters in the
correct order.
3. The filter parameters can be chosen randomly within the range specified in the description.
4. The variable name of the adjusted image is "{save_adj_img_name}".

Difference Description:
{Difference description from Visual Critic}.

Available Functions:
- "filter.exposure(f_exp: float) -> np.ndarray": Adjusts the exposure (overall brightness) of an
image. The f_exp parameter is an exposure adjustment factor, ranging from -1 to 1. The
positive f_exp values brighten the overall image, while negative values darken it.
- "filter.contrast(f_cont: float) -> np.ndarray": Adjusts the contrast of an image by scaling its
pixel values relative to the mean brightness of the image. The f_cont parameter is a contrast
adjustment factor, ranging from -1 to 1. Positive f_cont values increase the contrast, making
the image more vivid but potentially losing detail in bright and dark areas, while negative
values reduce the contrast, retaining more detail but making the image look softer.
- "filter.highlight(f_high: float) -> np.ndarray": Adjusts the brightness of the bright areas of
an image. The f_high parameter is a highlight adjustment factor, ranging from -1 to 1. The
positive f_high values intensify the highlights, and negative values reduce them to recover
details.
- "filter.shadow(f_shad: float) -> np.ndarray": Adjusts the brightness of the dark areas of
an image. The f_shad parameter is a shadow adjustment factor, ranging from -1 to 1. The
positive f_shad values brighten the shadows and negative values deepen them.
- "filter.saturation(f_sat: float) -> np.ndarray": Adjusts the saturation of an image. The f_sat
parameter is a saturation adjustment factor, ranging from -1 to 1. The positive f_sat values
increase color vibrancy, while negative values desaturate the image towards grayscale.
- "filter.temperature(f_temp: float) -> np.ndarray": Adjusts the color temperature of an image
by modifying the balance between warm and cool tones in the RGB color space. The f_temp
parameter is a temperature adjustment factor, ranging from -1 to 1. The positive f_temp
values shift colors toward warmer tones by increasing red, while negative values shift colors
toward cooler tones by enhancing blue.
- "filter.texture(f_text: float) -> np.ndarray": Adjusts the texture of an image by modifying its
high-frequency details using Gaussian blur. The f_text parameter is a texture adjustment
parameter, ranging from -1 to 1. The positive f_text values enhance texture by amplifying
high-frequency details, while negative values soften texture.

Please return the code directly without any imports or additional explanations.
Ensure the code is clear, correct, and follows the steps logically.

B.3 SELECTION SCORE

At each iteration, we generate three candidate images and select one as the source image for the next
iteration. For the selection process, we employ a CLIP (Radford et al., 2021)-based scoring method.
Specifically, we compute the probabilities of alignment between each image in the candidate set and
the reference image with respect to eight textual prompts from four global filters: “a dark light
photo” and “a bright light photo” from the exposure, “a low-contrast photo”
and “a high-contrast photo” from the contrast, “a desaturated colours photo”
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and “a vivid colours photo” from the saturation, and “a cool-toned photo” and “a
warm-toned photo” from the temperature. We then calculate the KL Divergence between the
probability distribution of each candidate image and that of the reference image. The image with
the lowest score is selected. If multiple reference images are provided, we average their probability
distributions before computing the error.

While we use CLIP-based similarity as selection scores in our experiments, exploring more sophis-
ticated or perceptually aligned scoring metrics remains an open direction. For example, learning a
task-specific scoring model may improve candidate selection and overall retouching quality. Devel-
oping an adaptive selection criterion that better aligns with user preferences or aesthetic judgments
could further enhance the robustness and flexibility of the system.

B.4 REFERENCE IMAGE SET CONSTRUCTION

We construct source–reference image pairs that simulate realistic user behavior in image retouching.
In practice, users often choose reference images with semantically similar content. To mimic this
behavior, we use CLIP (Radford et al., 2021) to extract image-level embeddings and compute pairwise
KL divergence across the dataset. Reference images are selected based on similarity in the embedding
space. Examples of such source–reference pairs are shown in Fig. 23.

C DETAILS OF EXPERIMENTS

C.1 BRIGHTNESS RANGE PREDICTION TEST

In Table 1 of the main paper, the vision language model (VLM) with GPT-5 (OpenAI, 2025) is
evaluated on its ability to infer the brightness adjustment range given a pair of images: the original
and a manually brightened version. The task is framed as a classification problem over six predefined
discrete intervals: (0–5), (5–10), (10–20), (20–40), (40–60), and (60–100). Given this setup, the
accuracy of random guessing is approximately 16.7%. The prompt used for VLM can be found in 24.

VLM prompt for range prediction test

System Prompt: You are an image comparison model. Given two images, determine
the brightness difference between them and choose the appropriate difference range from
the following list: [(0,5), (5,10), (10,20), (20,40), (40,60), (60,100)]. For example, if the
brightness difference is approximately 15%, respond with "(10,20)". Do not provide any
additional explanations or details.
User Prompt: (Single) Choose the two most appropriate brightness difference range between
the two images. (Multi) Choose the appropriate brightness difference range between the
two images. The pixel means of the first image is {The mean pixel value of the
original image} and the second image is {The mean pixel value of the
manually brightened image}.

C.2 FINE-TUNING SUPERVISED MODELS

To provide a fair and comprehensive comparison, we fine-tune the RSFNet (Ouyang et al., 2023) and
PG-IA-NILUT (Kosugi, 2024) models on the same set of reference images used in our training-free
photo retouching pipeline. Importantly, the supervised baselines are not trained from scratch using
only five examples. Instead, they are fully trained in the standard manner on other styles, and the five
target-style images are used solely for adaptation. For the MIT-Adobe FiveK evaluation, we initialize
the baselines from weights trained on the PPRK10K dataset and adapt them using the five reference
images from the target style of MIT-Adobe FiveK; conversely, for the PPRK10K evaluation, we start
from weights trained on MIT-Adobe FiveK and adapt using the five reference images from the target
style of PPRK10K. The results are shown in Table 10, where we look at five different styles for
MIT-Adobe FiveK and three different styles for PPRK10K.

We use the exact same training parameters provided by the authors’ code. For PG-IA-NILUT this
involves three training stages and for RSFNet this involves just a single training stage. Due to the
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smaller training set, we determined the number of training iterations through experimentation to
avoid overfitting. For RSFNet, we used 100 iterations, and for PG-IA-NILUT we used 200 iterations.
Training for longer resulted in degraded performance. However, despite this advantage, our training-
free approach is still competitive or even outperforms both of these fine-tuned baselines across all
evaluation metrics.

C.3 OTHER SELECTION SCORES

In Table 6 in the main text, we compare our selection score with alternative methods: (1) RGB-
channel histograms, (2) YUV-channel histograms, (3) Gram matrix similarity commonly used in
style transfer, (4) our KL CLIP score using prompts regarding all filters including local ones, and (5)
our default KL CLIP score using only global filters.

For (1) RGB-channel and (2) YUV-channel histogram-based scores, we compute the channel-wise
histogram matching loss L between the images from the candidate set xi ∈ C and the reference
images Y = {yj}Mj=1, and add all of them to get the distance

DRGB
i =

1

M

M∑
j=1

(
LR
ij + LG

ij + LB
ij

)
, DY UV

i =
1

M

M∑
j=1

(
LY
ij + LUV

ij

)
. (9)

For (3) gram matrix similarity, for each layer ℓ ∈ L, where L is a set of layers in VGG (Simonyan &
Zisserman, 2015), the feature map of image I is

Fℓ(I) ∈ RCℓ×(HℓWℓ), Gℓ(I) =
1

CℓHℓWℓ
Fℓ(I)Fℓ(I)

⊤. (10)

The Gram-based style distance between source xi and target yj is

DGram
i =

1

M

M∑
j=1

∑
ℓ∈L

∥∥Gℓ(x
i)−Gℓ(y

j)
∥∥2
F
. (11)

Finally, the candidate with the smallest distance is selected:

i∗ = argmin
i
Di. (12)

For (4), we additionally incorporate six prompts corresponding to three local filters, e.g., highlight,
shadow, and texture, when computing the CLIP alignment probabilities Radford et al. (2021).
The prompts are: “a photo with dim highlights” and “a photo with bright
highlights” for the highlight filter, “a photo with dark shadows” and “a photo
with bright shadows” for the shadow filter, and “a smooth photo” and “a sharp
photo” for the texture filter. All equations remain the same as in Sec. 3.1, except that the number of
prompts K is increased from 8 to 14.

C.4 USER STUDY

In each question, users were shown five reference style images, one ground-truth image (for reference
only), and four retouched results produced by different models. The order of the four candidate
images was randomly shuffled to avoid positional bias. Participants were asked: “Which image best
reflects the retouching style of the given reference images?” Each participant selected the single best
result from the four options.
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Source Image

Reference Image

!"#
Re-use
Code

Source Image

Adjusted Image

Ground Truth

Iter.

Source Image

Reference Image

!"#
Re-use
Code

Source Image

Adjusted Image

Ground Truth

Iter.

Figure 16: Additional qualitative results for applying the restored filter, corresponding to Fig. 4
in the main paper. The paired setup enables extracting a reusable retouching code that can be applied
to other images like a preset filter. As shown, the code extracted from the left image pair can be
reused to retouch other images, achieving a style similar to the GT without additional supervision.

Make it much brighter 
and give it a warmer feel

img = exposure(img, +80%)
img = contrast(img, +7%)
img = highlight(img, +15%)
img = shadow(img, +15%)
img = saturation(img, +7%)
img = temperature(img, +50%)

img = exposure(img, +50%)
img = contrast(img, +15%)
img = highlight(img, +30%)
img = shadow(img, +30%)
img = saturation(img, +15%)
img = temperature(img, +30%)

img = exposure(img, +30%)
img = contrast(img, +30%)
img = highlight(img, +50%)
img = shadow(img, +50%)
img = saturation(img, +30%)
img = temperature(img, +15%)

Slightly reduce the 
contrast

img = contrast(img, -15%)

Stop

Source Image

Candidate Image 1

Candidate Image 2
(User selected)

Candidate Image 3

Result Image

Figure 17: User interactive retouching with user selection (qualitative process of user interaction
corresponding to Fig. 5 in the main paper). The user can provide natural language instructions to
retouch images towards the desired style and select a preferred image among the adjusted candidates.
At each iteration, RetouchLLM generates three new candidates, and the user selects one to proceed.
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Increase the contrast 
but lower the 
saturation to create 
a moodier look

img = contrast(img, +15%)
img = saturation(img, -30%)

Reduce the saturation 
further to give it an 
almost monochrome feel

img = saturation(img, -80%)

Slightly lower the 
saturation and add 
some texture to give 
it a vintage feel

img = saturation(img, -29%)
img = texture(img, +24%)

Stop

Give the image a 
more warmer tone

img = temperature(img, +30%)

Increase the contrast 
of the image a lot

img = contrast(img, +80%)

Make it slightly 
brighter

img = exposure(img, +12%)
img = highlight(img, +1.7%)
img = shadow(img, +4.7%)

Stop

Figure 18: Additional examples of user interactive retouching, corresponding to Fig. 5 in the
main paper. The user can provide instructions to retouch images towards the desired style.

# 4th iteration
img = shadow(img, -40%)
img = highlight(img, +2%)

Source GTResult# 1st iteration
img = exposure(img, +50%)
img = contrast(img, +50%)

# 2nd iteration
img = exposure(img, +15%)
img = contrast(img, +35%)

# 3rd iteration
img = saturation(img, +15%)
img = temperature(img, -3%)
img = texture(img, + 80%)

Figure 19: Qualitative results for code generation. The code generator plans the coarse-to-fine
retouching process by starting with global adjustments and then focusing on the finer details.
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# Local Brightness Adjustment
source_img = ...  # Assume source_img is already defined

# Adjust highlight
highlight_adjustment = 0.07  # Randomly chosen within 5-10% range
adjusted_img_32 = filter.highlight(highlight_adjustment)

# Adjust shadow
shadow_adjustment = 0.08  # Randomly chosen within 5-10% range
adjusted_img_32 = filter.shadow(shadow_adjustment)

# Global Brightness Adjustment
source_img = ...  # Assume source_img is already defined

# Adjust exposure
exposure_adjustment = 0.04  # Randomly chosen within 3-5% range
adjusted_img_31 = filter.exposure(exposure_adjustment)

# Adjust contrast
contrast_adjustment = 0.07  # Randomly chosen within 5-10% range
adjusted_img_31 = filter.contrast(contrast_adjustment)

# Global Brightness Adjustment
source_img = ...  # Assume source_img is already defined

# Adjust exposure
exposure_adjustment = 0.07  # Randomly chosen within 5-10% range
adjusted_img_30 = filter.exposure(exposure_adjustment)

# Adjust contrast
contrast_adjustment = 0.04  # Randomly chosen within 3-5% range
adjusted_img_30 = filter.contrast(contrast_adjustment)

[3rd Iteration]

**Similar parts**

The source and target images share a natural landscape theme, with elements like trees, 
water, and sky. Both sets of images exhibit a range of lighting conditions and color 
variations, contributing to a dynamic visual experience.

**Candidate 1**

- Exposure: The brightness of the target images is 5-10% higher than the source image.
- Contrast: The contrast of the target images is 3-5% higher than the source image.
- Highlight: The highlight of the target images is 1-3% higher than the source image.
- Shadow: The shadow of the target images is 3-5% higher than the source image.
- Saturation: The saturation of the target images is 1-3% higher than the source image.
- Temperature: The temperature of the target images is 3-5% higher than the source image.
- Texture: The texture of the target images is 5-10% higher than the source image.
- Overall: Go

**Candidate 2**

- Exposure: The brightness of the target images is 3-5% higher than the source image.
- Contrast: The contrast of the target images is 5-10% higher than the source image.
- Highlight: The highlight of the target images is 3-5% higher than the source image.
- Shadow: The shadow of the target images is 1-3% higher than the source image.
- Saturation: The saturation of the target images is 3-5% higher than the source image.
- Temperature: The temperature of the target images is 1-3% higher than the source image.
- Texture: The texture of the target images is 3-5% higher than the source image.
- Overall: Go

**Candidate 3**

- Exposure: The brightness of the target images is 1-3% higher than the source image.
- Contrast: The contrast of the target images is 3-5% higher than the source image.
- Highlight: The highlight of the target images is 5-10% higher than the source image.
- Shadow: The shadow of the target images is 5-10% higher than the source image.
- Saturation: The saturation of the target images is 1-3% higher than the source image.
- Temperature: The temperature of the target images is 5-10% higher than the source image.
- Texture: The texture of the target images is 1-3% higher than the source image.
- Overall: Go

!"#

Reference ImagesSource Image Adjusted Image Ground Truth

Figure 20: Generated descriptions and corresponding codes samples 1
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# Color Tone and Texture Adjustment
adjusted_img_22 = filter.saturation(0.07)
adjusted_img_22 = filter.temperature(-0.02)
adjusted_img_22 = filter.texture(-0.08)

# Global Brightness Adjustment
adjusted_img_21 = filter.exposure(0.04)
adjusted_img_21 = filter.contrast(0.03)

# Global Brightness Adjustment
adjusted_img_20 = filter.exposure(0.07)
adjusted_img_20 = filter.contrast(0.06)

[2nd Iteration]

**Similar parts**

The source and target images share a similar range in saturation, with both having a saturation max of 
255.00 and a saturation min of 0.00. This indicates that both sets of images have areas of full color 
intensity and areas with no color, maintaining a similar color range.

**Candidate 1**

- Exposure: The brightness of the target images is 5-10% higher than the source image.
- Contrast: The contrast of the target images is 5-10% higher than the source image.
- Highlight: The highlight of the target images is 5-10% higher than the source image.
- Shadow: The shadow of the target images is 5-10% higher than the source image.
- Saturation: The saturation of the target images is 1-3% higher than the source image.
- Temperature: The temperature of the target images is 5-10% lower than the source image.
- Texture: The texture of the target images is 1-3% lower than the source image.

**Candidate 2**

- Exposure: The brightness of the target images is 3-5% higher than the source image.
- Contrast: The contrast of the target images is 3-5% higher than the source image.
- Highlight: The highlight of the target images is 3-5% higher than the source image.
- Shadow: The shadow of the target images is 3-5% higher than the source image.
- Saturation: The saturation of the target images is 3-5% higher than the source image.
- Temperature: The temperature of the target images is 3-5% lower than the source image.
- Texture: The texture of the target images is 3-5% lower than the source image.

**Candidate 3**

- Exposure: The brightness of the target images is 1-3% higher than the source image.
- Contrast: The contrast of the target images is 1-3% higher than the source image.
- Highlight: The highlight of the target images is 1-3% higher than the source image.
- Shadow: The shadow of the target images is 1-3% higher than the source image.
- Saturation: The saturation of the target images is 5-10% higher than the source image.
- Temperature: The temperature of the target images is 1-3% lower than the source image.
- Texture: The texture of the target images is 5-10% lower than the source image.

!"#

Reference ImagesSource Image Adjusted Image Ground Truth

Figure 21: Generated descriptions and corresponding codes samples 2

# Local Brightness Adjustment
adjusted_img_12 = filter.highlight(-0.07)  # 
Randomly chosen within -5 to -10% range
adjusted_img_12 = filter.shadow(0.02)  # 
Randomly chosen within 1-3% range

# Global Brightness Adjustment
adjusted_img_11 = filter.exposure(0.04)  # 
Randomly chosen within 3-5% range
adjusted_img_11 = filter.contrast(-0.07)  # 
Randomly chosen within -5 to -10% range

# Global Brightness Adjustment
adjusted_img_10 = filter.exposure(0.07)  # 
Randomly chosen within 5-10% range
adjusted_img_10 = filter.contrast(-0.04)  # 
Randomly chosen within -3 to -5% range

[1st Iteration]

**Similar Parts**

Both the source and target images share a warm, elegant atmosphere with a focus on wedding themes. The 
lighting in both sets of images is soft and romantic, enhancing the overall mood.

**Candidate 1**

- Exposure: The brightness of the target images is 5-10% higher than the source image.
- Contrast: The contrast of the target images is 3-5% lower than the source image.
- Highlight: The highlight of the target images is 1-3% lower than the source image.
- Shadow: The shadow of the target images is 5-10% higher than the source image.
- Saturation: The saturation of the target images is 5-10% lower than the source image.
- Temperature: The temperature of the target images is 1-3% lower than the source image.
- Texture: The texture of the target images is 3-5% lower than the source image.

**Candidate 2**

- Exposure: The brightness of the target images is 3-5% higher than the source image.
- Contrast: The contrast of the target images is 5-10% lower than the source image.
- Highlight: The highlight of the target images is 3-5% lower than the source image.
- Shadow: The shadow of the target images is 3-5% higher than the source image.
- Saturation: The saturation of the target images is 3-5% lower than the source image.
- Temperature: The temperature of the target images is 5-10% lower than the source image.
- Texture: The texture of the target images is 1-3% lower than the source image.

**Candidate 3**

- Exposure: The brightness of the target images is 1-3% higher than the source image.
- Contrast: The contrast of the target images is 1-3% lower than the source image.
- Highlight: The highlight of the target images is 5-10% lower than the source image.
- Shadow: The shadow of the target images is 1-3% higher than the source image.
- Saturation: The saturation of the target images is 1-3% lower than the source image.
- Temperature: The temperature of the target images is 3-5% lower than the source image.
- Texture: The texture of the target images is 5-10% lower than the source image.

!"#

Reference ImagesSource Image Adjusted Image Ground Truth

Figure 22: Generated descriptions and corresponding codes samples 3

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Source Image Reference Images

Figure 23: Constructed reference image set examples from MIT-Adobe FiveK.
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