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Abstract—Dexterous robotic hands are essential for performing
complex manipulation tasks, yet remain difficult to train due to
the challenges of demonstration collection and high-dimensional
control. Thus, contemporary works in dexterous manipulation
have often bootstrapped from reference trajectories to
trajectories specify target hand poses that guide the exploration
of RL policies and object poses that enable dense, task-agnostic
rewards. However, sourcing suitable trajectories—particularly
for dexterous hands—remains a significant challenge. Our key
insight is that modern vision-language models (VLMs) already
encode the commonsense spatial and semantic knowledge needed
to specify tasks and guide exploration effectively. Given a task
description (e.g., “open the cabinet”) and a visual scene, our
method uses an off-the-shelf VLM to first identify task-relevant
keypoints (e.g., handles, buttons) and then synthesize 3D
trajectories for hand motion and object motion. Subsequently,
we train a low-level residual RL policy in simulation to track
these coarse trajectories or “scaffolds” with high fidelity. 1

I. INTRODUCTION

Dexterous manipulation is essential for a range of real-world
tasks – such as using a power-drill or twisting a door knob –
which require the fine-grained control offered by human-like
hands [2]. Despite the intrinsic advantages of dexterous hands
over simpler end-effectors, existing learning paradigms have
struggled to cope with their complexity [50]. The prevailing
approach for training generalist policies – imitation learning
from demonstrations [5, 43] – has achieved limited success
with robot hands, primarily due to the challenges of collecting
accurate data with dexterous hardware, resulting in a scarcity
of high-quality demonstrations [48, 60]. While alternative
approaches attempt to re-target demonstrations from easier
interfaces [27, 20, 65, 67, 51, 72, 47, 14], e.g., human hands,
such approaches often induce irrecoverable errors for fine-
grained tasks.

To avoid both data scarcity and the embodiment gap, a
combination of reinforcement learning (RL) and sim-to-real
transfer has emerged as a promising approach by enabling
large-scale experience generation [3]. However, using RL
simply shifts the burden from data collection to reward design.
Standard RL approaches for dexterous manipulation neces-
sitate hand-crafting complex, task-specific reward functions.
A large amount of this complexity arises from the need to
guide exploration; with large action spaces, dexterous hands
need to be coaxed towards the correct part of the observation
space to make progress on a task. Thus, various approaches

1Videos at https://sites.google.com/view/vlm-scaffolding/home
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Fig. 1: Overview of our method: a VLM generates hand and object
keypoint trajectories from a language command and scene image. A
low-level residual RL policy is trained to track these trajectories in
simulation.
have used demonstrations to bootstrap the RL process
[50, 17, 41, 16, 49]. In dexterous manipulation, this is often
done through trajectory tracking, where instead of designing
a complex reward function, a policy is rewarded for tracking
the exact wrist and object positions in a demonstration,
leaving RL to only make adjustments [7, 73]. By re-framing
dexterous manipulation as a trajectory tracking problem, such
approaches can leverage dense, task-agnostic rewards and
guide exploration by using residual policies [21, 13].

Though demonstration tracking overcomes the design chal-
lenges associated with RL, it paradoxically re-introduces the
same dependence on demonstrations we sought to avoid in the
first place. For example, prior works [7, 73] that use tracking-
based RL for dexterous manipulation often require large
prior datasets with thousands of teleoperated demonstrations
[11, 70], restricting the method to tasks for which data has
already been collected.

Our key insight is that coarse motion plans (“scaffolds”)
can be sufficient for both of these criteria. Generating
such plans only requires high-level spatial and semantic
reasoning, the exact abilities afforded by new advancements
in vision-language models (VLMs). Consequently, VLMs
have the potential to supply the high-level reward signals
and exploratory guidance needed for RL through coarse
motions. So long as these motions generally encapsulate the
desired behavior, RL can optimize per-timestep offsets and
finger motions to maximize the tracking reward, ultimately
surpassing human teleoperation in both performance and
precision, eliminating the reliance on demonstrations.

Building upon this insight, we introduce a framework for
learning manipulation policies for dexterous robot hands with
VLM-generated motion plans and residual RL. Given a natural
language instruction (e.g., “hammer once” Fig. 1) and image,
an off-the-shelf VLM first identifies relevant object keypoints.
Then, provided the initial keypoints and hand pose, the VLM
generates the associated 3D trajectories for both object and
hand motions to define the supervision targets for a “low-

https://sites.google.com/view/vlm-scaffolding/home


level” residual RL policy trained in simulation.
We evaluate our method across a suite of challenging

dexterous manipulation tasks in simulation requiring semantic
understanding, human knowledge about concepts like “ham-
mering”, and precise manipulation for difficult or articulated
objects.

II. DEXTEROUS MANIPULATION VIA VLM FEEDBACK

We focus on dexterous manipulation using robotic hands
with visual observations and natural language instructions,
with the aim of developing a general approach transferable
across diverse applications and settings. Following prior
work [7, 4], we adopt a hierarchical approach that naturally
delineates planning and control. However, instead of centering
plans around demonstrations, we leverage a VLM to produce
coarse plans sufficient to “scaffold” low-level RL. We
interface between these two components using 3D keypoints,
as they provide sufficient precision for effective manipulation
[62, 68], yet are abstract enough for VLM reasoning [12, 39]
and often used during pre-training [58, 22].

A. Problem Formulation

Our goal is to learn a hierarchical policy for dexterous
manipulation, where the high- and low-level policies inter-
face via 3D keypoint-based plans or trajectory “scaffolds”.
While several prior works assume access to ground-truth
states (often in simulation), such information is typically only
partially observable in practice. For example, it is unrealistic
to assume that one is able to precisely measure object poses
and velocities in the real world. Only the dexterous hand’s
proprioceptive state (w,q, q̇) comprised of the current wrist
pose w ∈ SE(3), finger joint positions q and velocities q̇
is exactly known. Instead of ground-truth states we assume
access to RGB images I , depth D, and a language instruction
L which communicates the task. Following standard practice
in dexterous manipulation, we use an absolute action space
comprised of desired wrist wtarg and finger joint positions qtarg,
i.e., (wtarg,qtarg) ∈ A.

The high-level policy πh produces a coarse, 3D keypoint-
based plan τ from the language instruction L and an initial
high-level observation oh1 at time t = 1 containing the
initial image I1 and wrist position w1. As we instantiate πh

using a VLM, we assume the ability to project 2D keypoints
u(i) ∈ R2 in image space to 3D keypoints x(i) ∈ R3 in
world coordinates, which is easily accomplished in practice
using depth information D and camera parameters (intrinsic
and extrinsic). The number of 3D keypoints k in the final plan
τ is specified through the instruction L. We enumerate these
keypoints as x(1), . . .x(k) and abbreviate sequences of length
T through time via the short-hand 1 : T . The final keypoint
plan τ includes k 3D keypoint sequences x

(1)
1:T , . . .x

(k)
1:T and

a sequence of predicted wrist poses w̃1:T . This coarse plan
encapsulates both information about the task via the k keypoint
sequences which can capture object movements, and informa-
tion to guide the agent’s exploration via the wrist position w.

The high-level policy can be written as:

πh(w̃1:T ,x
(1)
1:T , . . .x

(k)
1:T⏞ ⏟⏟ ⏞

τ

| I1,w1⏞ ⏟⏟ ⏞
oh1

, L) (1)

The high-level policy only provides a coarse plan for the wrist
w – not the finger joint positions q which will be learned by
the low-level policy with RL.

The low-level policy πl produces wrist and finger actions
at to execute the keypoint plan τ . We assume access to a
keypoint tracking model, which given an initial 3D keypoint
x
(i)
1 at time t = 1 is able to track its position over time

to produce estimates x̂
(i)
t . The low-level policy πl is then

optimized via RL using a reward function that encourages
consistency between the estimated 3D keypoints x̂(i)

t and those
produced by the plan τ , x(i)

t . To accomplish this task, it takes
as input both a low-level observation olt ∈ Ol, consisting
of the proprioceptive state (w,q, q̇) and estimated keypoints
x̂(i), . . . , x̂(i), and all future steps of the plan τt:T . Succinctly,

πl(wtarg
t ,qtarg

t⏞ ⏟⏟ ⏞
at

|qt, q̇t,wt⏞ ⏟⏟ ⏞
proprio

, x̂
(1)
t , . . . , x̂

(k)
t⏞ ⏟⏟ ⏞

keypoint estimates

, w̃t:T ,x
(1)
t:T , . . . ,x

(k)
t:T⏞ ⏟⏟ ⏞

plan τt:T

).

(2)
Provided the high- and low-level decomposition of our ap-
proach, we now describe each component.

B. Trajectory Generation for High-Level Policies via VLMs

We implement the high-level policy πh using a VLM, which
must be able to effectively translate the task description L and
initial image I1 into a coarse motion plan τ for πl to complete.
Keypoint Detection. First, the VLM identifies k 2D keypoints
u(1), . . . ,u(k) in the image I that are relevant to completing
the task described via text L. The VLM is prompted with
useful keypoints for the task. For example, the keypoints
include both the handle and head of a hammer for the
“hammering” task (Fig. 1) or the position of an object and
its desired location (Fig. 2) for semantic pick-place. The full
prompts used are included in Appendix H. Since the VLM
operates in the 2D image plane, we lift 2D keypoints u to 3D
world coordinates x using depth information.
Trajectory Generation. Second, provided the text description
l, the VLM generates waypoint sequences of length n < T for
each of the initial 3D keypoints x(1), . . . ,x(k) and the wrist
position w1. In total, this results in (k+1)×n 3D waypoints
which will serve as the basis of the plan τ . We include the
full prompts used in Appendix H. While the first keypoint
detection stage depends on the VLM’s image understanding,
this phase depends more on spatial understanding and rea-
soning – the VLM must translate semantic descriptions into
motions, e.g., what “hammering” implies or how a door opens,
while respecting the physical constraints between keypoints
and proximity between the hand and manipulated objects. Note
that we do not have the VLM produce keypoint trajectories
of the full horizon T , as doing so might be more difficult and
inaccurate. Instead, we posit the quality of each waypoint mat-
ters more than the number, as low-level RL can compensate
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Fig. 2: a) Training: a high-level VLM predicts 3D keypoint plans,
which a low-level policy learns to track via RL. b) Inference: new
plans are generated by the VLM, which are executed by the frozen
low-level policy.

for small mistakes in position but not large errors in reasoning.
Afterwards, we interpolate the waypoints to length T .
Few-Shot Improvement. Though VLM-generated keypoint
plans τ are often correct, they are not infallible. However,
the accuracy of VLMs can often be improved by pro-
viding in-context examples [36, 9]. Provided m successful
plans τ (1), . . . , τ (m), we can prompt the high-level policy as
πh(τ |s1, τ (1), . . . , τ (m)) to produce better plans for the low-
level policy.

C. Low-Level Control with Reinforcement Learning

The low-level policy πl ensures that the keypoint plan τ
provided by πh is effectively tracked. We learn πl using
residual reinforcement learning [21, 13], which we formalize
through a “plan” conditioned MDP on top of the low-level
observation space Ol and action space A with horizon T .
We assume the dynamics to be stochastic p(ot+1|ot, at) to
account for noise in keypoint estimation and that the initial
state ol1 ∼ pinit

τ is always consistent with the high-level plan
τ to ensure its validity. Naı̈vely, πl is optimized to maxi-
mize the expected cumulative reward provided plans sampled
from πh, maxπl Eτ∼πh(·|oh1 )Eol1:T∼πl(·|τ)[

∑︁T
t=1 rτ (o

l
t)] where

πl(·|τ) represents the distribution of full trajectories of length
T under πl and pinit

τ . In this section, we describe how we use
the plan τ to further guide the learning and exploration of
πl through the reward function, policy parameterization, and
environment termination conditions (right half of Fig. 2).

Dense Keypoint Rewards. Standard RL based approaches
for dexterous manipulation often require complex, hand-
crafted reward functions. However, provided a high-level
keypoint plan τ dictating how all objects should move and
interact, we can simply reward the agent for following the plan
via keypoint distances. Though similar ideas have been used
for tracking reference demonstrations [7] with ground-truth
object poses, we instead track keypoints, which do not require
full observability. Our final reward function is given by
rτ (ot) = exp

(︂
−β
k

∑︁k
i=1∥x̂

(i)
t − x̃

(i)
t ∥2

)︂
⏞ ⏟⏟ ⏞

Keypoint Tracking

+exp (−1/(Ncontact(ot) + ϵ))⏞ ⏟⏟ ⏞
Maintaining Contact

, (3)

where the first term is a function of the mean Euclidean
distance between the planned and observed keypoint positions,
and the second term Ncontact(ot) represents the number of
finger tips in contact with the environment. This reward
formulation is significantly simpler than those used in

previous RL approaches that lack trajectory supervision
[33, 54] and can be applied to any task sufficiently captured
by keypoint trajectories.

Residual Policy. To guide the agent towards the objective
specified by the high-level plan τ , we employ “residual” RL
[21, 13] in the absolute pose action space A. Specifically, the
learned low-level policy πl

θ predicts offsets ∆w to the wrist
plan w̃t instead of absolute actions wtarg. Mathematically, this
can be written as follows:

at = (w̃t +∆w,qtarg
t ), where (∆w,qtarg

t ) ∼ πl(·|ot). (4)

This guarantees that the learned policy follows the plan’s
wrist trajectory w̃1:T by default.

Termination Conditions. To improve learning effi-
ciency, we terminate episodes early if the tracking error,
1
k

∑︁k
i=1∥x̂

(i)
t − x̃

(i)
t ∥2, exceeds a threshold δ. This early

stopping criterion serves as a strong supervisory signal, en-
couraging the policy to remain close to the intended trajectory.
To further guide learning, we introduce a curriculum: the initial
threshold δinit is linearly annealed to δinit/2 over the course of
training. This facilitates broad exploration in the early stages
while promoting precise trajectory tracking later on. We select
task-specific values for δinit, provided in Appendix D.

III. EXPERIMENTS

We conduct a comprehensive suite of experiments to assess
the effectiveness, generality, and robustness of our method
across a diverse range of dexterous manipulation tasks. Our
evaluation is structured around four core questions: 1) Are
VLM scaffolds effective for a broad range of dexterous tasks?
2) How much can iterative refinement improve performance?
3) What causes VLM scaffolds to fail? 4) Can our method
successfully learn policies that transfer to the real world?

A. Experimental Setup

Task Suite We construct an evaluation suite using the Man-
iSkill simulator [56, 40] and Allegro Hand model designed
to evaluate four core dexterous manipulation capabilities for
which motion planning is difficult: i) semantic understanding,
ii) unstructured motion, iii) articulated object manipulation,
and iv) precise manipulation. Each of the eight tasks, two per
category, is depicted in Fig. 6. Instead of reward functions,
each task is specified by a language instruction L. For ex-
ample, the instruction for the “Move Apple” task is “Move
the apple to the cutting board”. The high-level VLM πh is
additionally guided by a prompt to detect specified keypoints.
Further details can be found in Appendix F. Crucially, the
capabilities evaluated by our task set are difficult to design
reward functions for (articulated object manipulation or re-
quiring complex and unstructured motion) or are challenging
to specify using classical motion planning (requiring semantic
knowledge or precision).
Methods Given the novelty of our problem setting, there are
few applicable baselines which are also language-conditioned,
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Fig. 3: Results on the simulation task suite. Success rate (in %)
is averaged across 3 seeds and uncertainty is given by the standard
error. Our method performs nearly as well as the oracle with perfectly
scripted plans.

demonstration-free, and do not require ground-truth state esti-
mation. Thus, we mainly focus our experiments on comparison
with a variety of oracles and ablations:

• Oracle Keypoints and Trajectories: This baseline uses
fixed, manually defined keypoints and hard-coded trajectories
for each task, representing an upper bound on performance
with perfect semantic understanding and keypoint detection.

• Reduced Waypoints: We artificially constrain the VLM to
produce shorter waypoint sequences, e.g., length three instead
of n = 20, reducing the complexity of motion that can be
expressed via the keypoints and wrist.

• Pre-recorded Trajectories: This method reuses pre-recorded
trajectories from the training set at test-time, eliminating
adaptability to new scenarios.

We evaluate two versions of our system: a zero-shot variant,
where the vision-language model (VLM) receives no example
plans, and a few-shot variant, where it is provided with three
examples of successful plans τ in-context (Section II-B).
Architectures. We use Gemini 2.5 Flash Thinking [57] as the
high-level policy with a thinking budget of 1000 tokens for
plan generation. The low-level policy πl is implemented as
a 3-layer MLP with hidden dimensions of size 512 and ELU
activations [8]. We sample 100 initial states and corresponding
plans τ for training πl with PPO [52].
Evaluation. For evaluation, we construct task-specific binary
success metrics (e.g., object reaches target position, door opens
to a minimum angle) to measure performance. All policy
evaluations are conducted across 100 initial states with novel
object configurations and hand poses. We run 20 trials for
each configuration for a total of 2000 evaluation episodes and
average results across three seeds.

B. How well do VLM scaffolds perform?
Simulation Results. Fig. 3 shows the success rates for the dif-
ferent simulation tasks. Our method with few-shot adaptation
achieves consistently high success rates, often approaching the
performance of the oracle with perfect scripted plans, indicat-
ing that modern VLMs are capable planners for scaffolding
dexterous policies.
Iterative Refinement. We provide the VLM with successful
trajectories from the training set as in-context examples to
improve the proposed waypoints. We iterate this process up
to three times in Fig. 4.

C. What Causes VLM Scaffolds To Fail?
Failure Modes. To comprehensively evaluate the failure

modes of our pipeline across all tasks, we present a Sankey di-
agram in Fig. 8, categorizing errors into three primary sources:
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(i) incorrect keypoint detection, where keypoints do not lie
on target objects, indicating deficiencies in VLM keypoint
detection; (ii) incomplete trajectory tracking by the low-level
policy, suggesting either inaccuracies in the low-level policy
or unsuitable trajectories; and (iii) tracked trajectories that
nonetheless fail to achieve success, revealing shortcomings in
VLM trajectory generation.
Number of Waypoints. In Fig. 5 (Left), we evaluate the
performance of our method using 3, 5, 10, 20, and 40
waypoints for plan generation. The results show that planning
fidelity is typically not a large source of error.
VLM Components. To ablate the impact of using a VLM
for keypoint detection and plan generation, we replace each
component with an oracle in Fig. 5 (Right). For the Keypoint
oracle, we use hand-specified keypoints for generating τ . For
the Traj. oracle, we use VLM keypoints but script plans for τ .

D. Real-World Results

To evaluate sim-to-real transfer, we deploy our system on a
real robot using the same inference pipeline as in simulation.
From a single real-world RGB-D image and a natural-language
command, the vision-language planner generates wrist and
keypoint trajectories. The low-level policy is trained entirely in
simulation using a digital twin of the real-world environment.

We perform initial experiments on two tasks with a Kuka
robot and an Allegro hand: Place Bottle onto Plate and
Slide Box to Bottle, which demonstrate semantic placement
and non-prehensile manipulation (Fig. 7). We perform 20
policy rollouts per task, and achieve 90% success rate on
the Place Bottle onto Plate task and 85% success rate on
the Slide Box to Bottle task. These results suggest that our
modular trajectory-based approach not only generalizes well
within simulation but also scales to real-world deployment,
reinforcing the practical viability of the proposed system. See
Appendix E for details on the hardware experiments.
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APPENDIX

A. Related Work

Planning with Vision-Language Models. Recent advances
have demonstrated the potential of VLMs to guide robotic
planning through their powerful semantic and spatial reasoning
capabilities. One family of approaches directly synthesizes
policies by translating natural language instructions into ex-
ecutable code using low-level perception and control APIs
[29, 53, 18, 66]. To extend this to dexterous manipulation,
[31] integrates predefined skill libraries, at the expense of
limiting generalization and behavioral diversity. Other efforts
propose using VLMs to plan actions by generating spatial
keypoint constraints [19] or directly producing waypoints
[12, 44]. However, such methods operate in an open-loop
fashion and lack the closed-loop feedback necessary for fine-
grained, adaptive control in dexterous tasks. Aside from di-
rectly learning policies, several works use VLMs to code
dense reward functions [35, 74, 59], but these approaches often
require privileged access to environment internals and result
in opaque and sometimes hard-to-interpret reward structures.
Other approaches more directly leverage the vision capabilities
of VLMs to act as success detectors [10, 25, 69], reward
functions [37], or value functions [36, 71] for RL. Often-
times, these quantities can be learned from VLM generated
preferences [63, 26, 23]. However, all of these approaches are
often too imprecise to produce the dense optimization signals
required for dexterous manipulation and are less efficient than
using the VLM to simply produce a plan.
Learned Dexterous Manipulation. Though early works
demonstrated the feasibility of deploying in-hand manipulation
policies trained in simulation on real robots [3, 15, 6, 30],
they relied on carefully crafted reward functions for each task.
Such approaches have proven most successful in locomotion
[4, 24, 1], where rewards are more easily designed and terrain
can be replicated, unlike object dynamics in manipulation.
More recent efforts scale to full-arm dexterity and multi-object
grasping [54, 33], while others incorporate human priors to
improve sample efficiency [38]. Despite these advances, most
approaches are still limited to only a set task, e.g. object
grasping or rotation [46, 61], where manually, task specific
rewards can be designed. However, this approach remains
inherently unscalable to more complex and non-cyclic tasks.
Dexterous Manipulation by Tracking Motions. When
framing dexterous manipulation as a tracking problem, dense
rewards are easy to obtain via tracking error [4, 45]. Some
systems leverage motion capture data to extract object and
wrist trajectories from human demonstrations, which are then
used to train tracking policies in simulation via residual RL
[7, 28]. Other approaches improve robustness by iteratively
adding successful rollouts to the training dataset [32]. Recent
work also shows that a single demonstration can bootstrap
effective policy learning [34]. However, all of these methods
depend on human demonstrations, which are expensive to
collect and difficult to scale.

B. Conclusion

We presented a new framework for dexterous robotic ma-
nipulation that combines VLMs with reinforcement learning
to generate and execute semantically meaningful hand-object
trajectories. By casting manipulation as a trajectory-tracking
problem using VLM-generated keypoint plans, our method
eliminates the need for human demonstrations or handcrafted
reward functions, while enabling generalization across diverse
objects, goals, and scene configurations.

Our experiments in both simulation and the real world
show that this approach reliably solves a variety of complex
manipulation tasks, including articulated objects, semantic
reasoning, and fine finger control. The system exhibits strong
generalization to novel keypoints and configurations, and
transfers effectively to physical hardware without additional
tuning or data collection.
Limitations and Future work. Our method currently assumes
rigid-body object interaction, which simplifies simulation key-
point tracking. Extending to deformable objects would require
improved simulators and the ability to track keypoints on
non-rigid surfaces (e.g., point tracking models [22]). Addi-
tionally, high-level trajectory generation is not directly aware
of the low-level controller’s capabilities, limiting the system’s
adaptiveness; closing this loop by feeding execution feedback
back into the VLM planner is a promising direction. Finally,
trajectory generation with current reasoning VLMs takes 1-2
minutes, limiting responsiveness and motivating faster VLMs.

C. Hyperparameters

PPO The hyperparameters of our PPO training are detailed in
Table I.

TABLE I: PPO Hyperparameters

Hyperparameter Value

Normalize Advantage per Mini-Batch True
Value Loss Coefficient 1.0
Clip Parameter 0.2
Use Clipped Value Loss True
Desired KL 0.01
Entropy Coefficient 0.01
Discount Factor (Gamma) 0.99
GAE Lambda (Lam) 0.95
Max Gradient Norm 1.0
Learning Rate 0.0003
Number of Learning Epochs 5
Number of Mini-Batches 16
Schedule Adaptive
Policy Class Name ActorCritic
Activation Function ELU
Actor Hidden Dimensions [512, 512, 512]
Critic Hidden Dimensions [512, 512, 512]
Initial Noise Std 1.0
Noise Std Type Scalar
Number of Steps per Environment 24
Max Iterations 2000
Empirical Normalization True
Number of Environments 2048

Simulation We use Maniskill3 [56] for our simulations. Our
hyperparameters are listed in Table II. We situate our tasks in



simulated scenes from the ReplicaCAD dataset [55]. Some of
the objects in the tasks are from the RoboCasa project [42].

TABLE II: Simulation and Control Settings

Setting Value

Action Exponential Average Gamma 0.9
Simulation Frequency 120 Hz
Control Frequency 60 Hz
Max Rigid Contact Count 2048× 2048× 8
Max Rigid Patch Count 2048× 2048× 2
Found Lost Pairs Capacity 227

Gravity [0, 0, -9.81]
Bounce Threshold 2.0
Solver Position Iterations 8
Solver Velocity Iterations 0
Default Dynamic Friction 1.0
Default Static Friction 1.0
Restitution 0
Finger Static Friction 2.0
Dummy Joint Stiffness 2000
Dummy Joint Damping 100
Dummy Joint Force Limits 1000
Finger Joint Stiffness 10
Finger Joint Damping 0.3
Finger Joint Force Limit 10
Controller Type PD Joint Targets

VLM
We detail our query settings in Table III.

TABLE III: VLM Configuration

Hyperparameter Value

Image Size 800 × 800
Trajectory Query Thinking Budget 1000
Keypoint Query Temperature 0.5
Trajectory Query Code Execution Enabled

D. Environment

Observation Space
Table IV details the components of our observation space.

Importantly, our policy does not rely on privileged information
such as contact forces during training, making the observation
space more amenable to real-world deployment.

TABLE IV: Observation Space Configuration

Observation Type Dimension

Joint Position (Dummy Joints + Fingers) 22
Joint Velocity (Dummy Joints + Fingers) 22
Exponential Average Action 22
Finger Poses 4× 7 = 28
Initial Keypoint Positions 3× k
Current Keypoint Positions 3× k
Planned Future Keypoint Positions 3× 15× k
Current Wrist Pose 6
Planned Future Wrist pose 6× 15 = 30

Total 130 + 6× k + 3× 15× k

Action Space
We use a residual action space on the wrist pose, and

directly control the fingers. We normalized the action space

Precise Manipulation

Articulated Object Manipulation

Unstructured Motion

Semantic Understanding
Move Apple Move Bottle

Hammer Wipe with Sponge

Open Drawer Open Fridge

Close Scissors Close Pliers

Fig. 6: A depiction of the eight tasks used for evaluation. Each task
belongs to one of four overarching categories.

Slide Box to Bottle (85%)

Place Bottle onto Plate (90%)

Fig. 7: Real-world rollouts of Place Bottle onto Plate and Slide Box
to Bottle.

to the range [-1, 1]. A ”zero” action corresponds to following
the reference trajectory precisely with an entirely open hand.

We only control the fingers individually for the scissors and
pliers tasks since we did not see any benefit for the other tasks.
For the scissors and pliers task we have one action for every
finger (instead of every joint). This makes hand action space
four dimensional for the allegro hand. For all other tasks we
control all fingers with one action, only opening or closing the
entire hand.
Termination Thresholds

We detail our initial termination thresholds per task in
Table V. The initial thresholds are linearly reduced to half
of their initial value over the course of training.

E. Hardware Experiment Details

Inference-Time Pipeline Details



TABLE V: Initial Termination Thresholds for Manipulation Tasks

Object Threshold (cm)

Apple 10
Bottle 10
Hammer 8
Drawer 15
Sponge 8
Plier 5
Scissors 3
Fridge 20

At inference-time, we run our policy in the real-world as
follows:

1) Capture an RGB-D image of the scene.
2) Query the VLM for 2D keypoints, given the RGB image

and natural language command.
3) Backproject the 2D keypoints into 3D keypoints using

the depth camera and camera intrinsics.
4) Transform the 3D keypoints from camera frame to world

frame using camera extrinsics.
5) Query the VLM for a wrist pose trajectory and keypoint

trajectories, given the initial wrist pose and 3D keypoints.
6) Run FoundationPose [64] to track the objects, which

allows us to track their associated keypoints (we assume
the keypoint does not move relative to the object frame)

7) Run the low-level policy, given the base wrist pose
trajectory and tracked keypoints.

Mapping Wrist Actions to Arm Joints
In simulation-only experiments, we control a floating (non-

physical) hand whose wrist pose can be commanded directly.
To train a policy in simulation that can be executed on a real
robot, the wrist is attached to a 7-DoF KUKA LBR iiwa 14
arm, so the residual wrist-pose action produced by the policy
must be converted into incremental arm joint commands. We
perform this conversion with damped–least–squares inverse
kinematics (DLS-IK).

Let J ∈ R6×Narm be the analytical Jacobian of the arm
(Narm = 7 in our setup), evaluated at the current joint con-
figuration θ ∈ RNarm , and let e ∈ R6 be the 6-D spatial error
twist (concatenated position and orientation error) between the
current wrist pose and the target wrist pose. The arm joint
update ∆θ ∈ RNarm is computed as:

∆θ = J⊤(︁JJ⊤ + λ2I6
)︁−1

e, (5)

where λ = 0.5 is a constant damping factor. Equation (5) im-
plements the damped pseudoinverse J†

λ = J⊤(JJ⊤+λ2I6)
−1,

yielding the minimum-norm solution to J∆θ = e while
regularising the update near kinematic singularities. Lastly, we
compute a joint position target θtarget = θ + ∆θ, clamp this
to stay within the joint limits, and then send this as the target
to a low-level joint-position PD controller running at 200 Hz.

By default, the target wrist pose is specified by the wrist
pose trajectory generated by the VLM. The policy outputs a
residual wrist pose action that modifies this target, allowing
fine-grained corrections. The resulting target is then used to
compute the spatial error e. By construction, if the residual

wrist pose action is 0, the error e corresponds exactly to
the difference between the current wrist pose and the original
VLM-generated trajectory, so the arm will simply follow the
given wrist pose trajectory.
Tasks

We evaluate our system on two real-world manipulation
tasks:

• Slide Box to Bottle: The goal is to push the box to
the bottle. The box starts from a face-down orientation
approximately 35cm away from the bottle. A trial is
considered successful if the box makes contact with the
bottle.

• Place Bottle onto Plate: The goal is to grasp the bottle
and place it onto a plate. The bottle starts from an upright
orientation approximately 42cm away from the plate. The
task is considered successful if the bottle is lifted and
makes contact with the top surface of the plate.

For each task, we run 20 trials across 4 VLM-generated
trajectories. The procedure is as follows: We first initialize the
objects in random positions with the same range as used in
simulation training. Next, we capture an RGB-D image of the
scene, and then query the VLM to generate a wrist trajectory
and keypoint trajectories based on the image and a natural
language instruction. Each generated trajectory is tested in 5
repeated trials, resetting the objects to similar initial poses
before each attempt. This process is repeated 4 times with
new randomized object positions and new trajectory queries,
resulting in 20 total trials per task.
Domain Randomization

We improve the policy’s ability to transfer to the real world
in a zero-shot setting through domain randomization. This
enables robustness to physical parameters that are unknown,
noisy, or inaccurately modeled in the real environment. Specif-
ically, we apply the following randomizations during training:

• Joint stiffness and damping are multiplied from their
default values by a factor sampled from a uniform distri-
bution: U(0.3, 3.0). These parameters are sampled once
at the start of training (independently for each parallel
environment) and remain fixed throughout training.

• Observation noise is added to each of the robot pro-
prioception observations, sampled independently from a
normal distribution: N (0, 0.052). This is uncorrelated
noise that is sampled at every control timestep.

• Action noise is added to exponential average action,
sampled from: N (0, 0.052). This is uncorrelated noise
that is sampled at every control timestep.

Additional Adjustments
• The observation space is nearly identical to that described

in Table IV, except that the dummy joints used to
control the floating-hand wrist pose are replaced with
the arm’s actual joints (for joint positions, velocities, and
exponentially averaged actions).

• We increase the exponential smoothing factor for the
action average to γ = 0.98 to produce smoother motions
and reduce jitter in the executed actions.



• We adjusted the trajectories to be twice as long for real-
world experiments to effectively slow the robot motion
down. We found that higher-speed motions typically
resulted in less reliable policies, as this likely worsened
the sim-to-real gap.

• To prevent significant collisions between the hand and
the table, we clamp the z-coordinate of the target wrist
pose to remain above the table height.

Digital Twin Construction
Our digital twin simulation environment consisted of a

robot, table, and two objects per task. The robot URDF and
physics parameters were acquired by standard open-source
repositories. We measured the dimensions of the table and
its position relative to the robot with a measuring tape, which
took about 5 minutes. The objects were scanned using an off-
the-shelf 3D LiDAR scanning app called Kiri Engine, which
took about 3 minutes per object.
Additional Qualitative Analysis

• We found that VLM keypoint detection worked signifi-
cantly better on real world images, as they are more likely
to be in-distribution than simulation images.

• As the low-level policy operates in a closed-loop fashion,
we find it to be robust to dynamics differences between
simulation and reality.

• The low-level RL policy appeared to optimize the task
objective (moving the object keypoint along the generated
keypoint trajectory) very well. For example, on the Slide
Box to Bottle task, when the predicted box keypoint was
on the bottom side of the box, the policy would not only
push the box to the bottle, but rotate the box so that the
bottom side of the box would be as close as possible to
the bottle. On the Place Bottle onto Plate task, when
the predicted bottle keypoint was on the upper half of
the bottle, the policy would often place the bottle on its
side so that the keypoint would be as close to the plate
as possible.

• The most common failure mode came from the keypoint
tracking errors. While the initial predicted keypoints were
accurate, our pose tracker was only reliable when the
object was completely unoccluded. The pose predictions
got worse when the object was occluded and occasionally
got very bad when highly occluded, which degraded
policy performance.

• We performed preliminary experiments testing our policy
on unseen objects with different but similar geometry
(e.g., replacing the bottle with a mustard bottle or tall
cup, replacing the plate with a different sized plate).
The policy still worked reasonably well on these unseen
objects due to the VLM’s common-sense understanding
to select good keypoints and the RL policy’s state-based
observations.

F. Tasks

We provide brief descriptions of the eight simulated tasks
we evaluated:

Fig. 8: Error decomposition across failure cases. Most errors stem
from incomplete trajectory tracking, followed by keypoint detection
issues.

• Move Apple: An apple and a cutting board are placed
on a kitchen counter. The keypoints are the apple and
the cutting board. The agent’s objective is to pick up the
apple and place it on top of the cutting board.

• Move Bottle: A bottle is positioned on a kitchen counter
next to a sink. The keypoints are the bottle and a target
point on the counter across the sink. The goal is for the
agent to pick up the bottle and move it to the other side
of the sink.

• Open Drawer: A closed cupboard with multiple drawers
is located in a living room. The handle of the top drawer
serves as the sole keypoint. The objective is to open this
drawer by at least 20 cm.

• Open Fridge: A closed refrigerator is situated in a
kitchen. The handle of the fridge is the only keypoint.
The agent’s task is to open the fridge door by at least 60
degrees.

• Hammer: A hammer rests on a kitchen counter, with the
head and handle defined as keypoints. The goal is for the
agent to pick up the hammer and perform a hammering
motion with at least three swings. A swing is defined as
an upward and downward movement of at least 5 cm.

• Wipe with Sponge: A sponge is located on a kitchen
counter, acting as the sole keypoint. The task is to perform
a wiping motion on the counter, with success defined as
moving the sponge at least 30 cm on the counter.

• Close Scissors: An open pair of scissors is situated on
a kitchen counter, with the handles serving as keypoints.
The goal is to close the scissors until the blades form an
angle of less than 5 degrees.

• Close Pliers: An open pair of pliers is positioned on a
kitchen counter, with the handles defined as keypoints.
The objective is to close the pliers until the handles form
an angle of less than 5 degrees.

G. Compute Resources

Our training is performed on NVIDIA GPUs, ranging from
A5000s to L40s. Depending on the specific task and hardware
configuration, training durations vary between 1.5 and 6 hours.
For real-world inference, we utilize two RTX 4090 GPUs.

H. Prompt Examples

Move Apple
Keypoint Prompt



Point to the apple and the cutting board in
the image.
The answer should follow the json format: [{"
name": "apple", "point": [...]}, {"name": "
cutting board", "point": [...]}]
The points are in [y, x] format normalized to
0-1000.

Trajectory Prompt

Your are controlling a robot hand to pick up
an apple and put it on a cutting board.
The coordinates are measured in meters.
The x axis is forward, the y axis is left and
the z axis is up.
First move the robot hand towards the apple.
Then grasp the apple and lift it up.
Finally move the apple on the cutting board
and put it down.
Describe a very realistic trajectory of
exactly 20 waypoints.
Use code to generate the output.
The initial position of the apple is [0.00,
0.00, 0.00].
The initial position of the cutting board is
[-0.01, -0.38, -0.05].
The initial position of the hand is [-0.07,
-0.09, 0.26].
Use the following json format for the
trajectory:
[{
"waypoint_num": 0,
"apple": {"x": float, "y": float, "z": float},
"cutting board": {"x": float, "y": float, "z":
float},

"hand": {"x": float, "y": float, "z": float}
} ...]
**Only** print the json output. Do **not**
print anything else with the code.

Move Bottle
Keypoint Prompt

Point to the water bottle on the kitchen
counter, and pinpoint a point on the kitchen
counter to the right of the kitchen sink in
the image.
The answer should follow the json format: [{"
name": "bottle", "point": [...]}, {"name": "
point", "point": [...]}]
The points are in [y, x] format normalized to
0-1000.

Trajectory Prompt

Your are controlling a robot hand to move a
bottle to the target position called "point"
on the kitchen counter.
The coordinates are measured in meters.
The x axis is forward, the y axis is left and
the z axis is up.
First move the robot hand towards the bottle.
Then grasp the bottle and lift it up.
Finally move the bottle to the target position
called "point" and put it down.

Describe a very realistic trajectory of
exactly 20 waypoints.

Use code to generate the output.
The initial position of the bottle is [0.00,
0.00, 0.00].
The initial position of the point is [-0.22,
0.80, -0.13].
The initial position of the hand is [0.25,
-0.08, 0.20].
Use the following json format for the
trajectory:
[\{
"waypoint_num": 0,
"bottle": {"x": float, "y": float, "z": float
},
"point": {"x": float, "y": float, "z": float},
"hand": {"x": float, "y": float, "z": float}
\} ...]
**Only** print the json output. Do **not**
print anything else with the code.

Open Drawer
Keypoint Prompt

Point to the handle of the top cabinet drawer
in the image.
The answer should follow the json format: [{"
name": "handle", "point": [...]}]
The points are in [y, x] format normalized to
0-1000.

Trajectory Prompt

Your are controlling a robot hand to pull open
a cabinet drawer.

The coordinates are measured in meters.
The x axis is forward, the y axis is left and
the z axis is up.
First move the robot hand towards the handle
of the drawer.
Then grasp the handle.
Finally pull the drawer open by at least 30cm.
Describe a very realistic trajectory of
exactly 20 waypoints.
Use code to generate the output.
The initial position of the handle is [0.00,
0.00, 0.00].
The initial position of the hand is [0.32,
-0.05, 0.12].
Use the following json format for the
trajectory:
[{
"waypoint_num": 0,
"handle": {"x": float, "y": float, "z": float
},
"hand": {"x": float, "y": float, "z": float}
} ...]
**Only** print the json output. Do **not**
print anything else with the code.

Open Fridge
Keypoint Prompt

Point to the top handle of the refrigerator
door in the image.
The answer should follow the json format: [{"
name": "handle", "point": [...]}]
The points are in [y, x] format normalized to
0-1000.



Trajectory Prompt

Your are controlling a robot hand to open a
refrigerator door.
The coordinates are measured in meters.
The x axis is forward, the y axis is left and
the z axis is up.
The refrigerator faces in x direction.
The y axis points to the right, and the z axis
points up.

First figure out how large the door is.
Then describe how the x and y coordinates of
the handle change as the door is opened.
Now move the robot hand towards the handle.
Then grasp the handle.
Finally fully open the door.
Describe a very realistic trajectory of
exactly 20 waypoints.
Use code to generate the output.
The initial position of the handle is [0.00,
0.00, 0.00].
The initial position of the hand is [0.50,
0.00, -0.22].
Use the following json format for the
trajectory:
[{
"waypoint_num": 0,
"handle": {"x": float, "y": float, "z": float
},
"hand": {"x": float, "y": float, "z": float}
} ...]
**Only** print the json output. Do **not**
print anything else with the code.

Hammer
Keypoint Prompt

Point to the brown handle and the metal head
of the hammer in the image.
The answer should follow the json format: [{"
name": "handle", "point": [...]}, {"name": "
head", "point": [...]}]
The points are in [y, x] format normalized to
0-1000.

Trajectory Prompt

Your are controlling a robot hand to make a
hammering motion.
The coordinates are measured in meters.
The x axis is forward, the y axis is left and
the z axis is up.
First move the robot hand towards the handle.
Then grasp the handle.
Finally hit on the kitchen counter 3 times.
Describe a very realistic trajectory of
exactly 20 waypoints.
Use code to generate the output.
The initial position of the handle is [0.00,
0.00, 0.00].
The initial position of the head is [-0.02,
-0.15, 0.03].
The initial position of the hand is [0.01,
0.06, 0.27].
Use the following json format for the
trajectory:
[{
"waypoint_num": 0,

"handle": {"x": float, "y": float, "z": float
},
"head": {"x": float, "y": float, "z": float},
"hand": {"x": float, "y": float, "z": float}
} ...]
**Only** print the json output. Do **not**
print anything else with the code.

Wipe with Sponge
Keypoint Prompt

Point to the green yellow sponge on the
kitchen counter in the image.
The answer should follow the json format: [{"
name": "sponge", "point": [...]}]
The points are in [y, x] format normalized to
0-1000.

Trajectory Prompt

Your are controlling a robot hand to wipe a
kitchen counter with a sponge.
The coordinates are measured in meters.
The x axis is forward, the y axis is left and
the z axis is up.
First move the robot hand towards the sponge.
Then grasp the sponge.
Finally wipe the kitchen counter with the
sponge.
Describe a very realistic trajectory of
exactly 20 waypoints.
Use code to generate the output.
The initial position of the sponge is [0.00,
0.00, 0.00].
The initial position of the hand is [0.26,
0.03, 0.29].
Use the following json format for the
trajectory:
[{
"waypoint_num": 0,
"sponge": {"x": float, "y": float, "z": float
},
"hand": {"x": float, "y": float, "z": float}
} ...]
**Only** print the json output. Do **not**
print anything else with the code.

Close Scissors
Keypoint Prompt

Point to the two loops of the scissors in the
image.
The answer should follow the json format: [{"
name": "loop 1", "point": [...]}, {"name": "
loop 2", "point": [...]}]
The points are in [y, x] format normalized to
0-1000.

Trajectory Prompt

Your are controlling a robot hand to close a
pair of scissors.
The coordinates are measured in meters.
The x axis is forward, the y axis is left and
the z axis is up.
First move the robot hand towards the scissors
.



Then grasp the two loops and entirely close
the scissors.
Describe a very realistic trajectory of
exactly 20 waypoints.
Use code to generate the output.
The initial position of the loop 1 is [0.00,
0.00, 0.00].
The initial position of the loop 2 is [-0.07,
0.07, 0.01].
The initial position of the hand is [0.03,
-0.06, 0.33].
Use the following json format for the
trajectory:
[{
"waypoint_num": 0,
"loop 1": {"x": float, "y": float, "z": float
},
"loop 2": {"x": float, "y": float, "z": float
},
"hand": {"x": float, "y": float, "z": float}
} ...]
**Only** print the json output. Do **not**
print anything else with the code.

Close Pliers
Keypoint Prompt

Point to the left and right handles of the
plier in the image.
The answer should follow the json format: [{"
name": "handle left", "point": [...]}, {"name
": "handle right", "point": [...]}]
The points are in [y, x] format normalized to
0-1000.

Trajectory Prompt

Your are controlling a robot hand to close a
plier.
The coordinates are measured in meters.
The x axis is forward, the y axis is left and
the z axis is up.
First move the robot hand towards the plier.
Then grasp the left and right handles and
entirely close the plier.
Describe a very realistic trajectory of
exactly 20 waypoints.
Use code to generate the output.
The initial position of the handle left is
[0.00, 0.00, 0.00].
The initial position of the handle right is
[-0.05, 0.16, 0.00].
The initial position of the hand is [0.01,
-0.08, 0.31].
Use the following json format for the
trajectory:
[{
"waypoint_num": 0,
"handle left": {"x": float, "y": float, "z":
float},
"handle right": {"x": float, "y": float, "z":
float},
"hand": {"x": float, "y": float, "z": float}
} ...]
**Only** print the json output. Do **not**
print anything else with the code.

Place Bottle onto Plate
Keypoint Prompt

Point to the middle of the bottle and the
plate on the table in the image.
The answer should follow the json format: [{"
name": "bottle", "point": [...]}, {"name": "
plate", "point": [...]}]
The points are in [y, x] format normalized to
0-1000.

Trajectory Prompt

Your are controlling a robot hand to move a
bottle onto a plate.
The coordinates are measured in meters.
The x axis is forward, the y axis is left and
the z axis is up.
First move the robot hand towards the bottle.
Then grasp the bottle and lift it up.
Then place the bottle on to the plate.
Describe a very realistic trajectory of
exactly 20 waypoints.
Use code to generate the output.
The initial position of the bottle is [0.00,
0.00, 0.00].
The initial position of the plate is [0.30,
0.38, -0.15].
The initial position of the hand is [-0.15,
-0.29, 0.09].
Use the following json format for the
trajectory:
[{
"waypoint_num": 0,
"bottle": {"x": float, "y": float, "z": float
},
"plate": {"x": float, "y": float, "z": float},
"hand": {"x": float, "y": float, "z": float}
} ...]
**Only** print the json output. Do **not**
print anything else with the code.

Slide Box to Bottle
Keypoint Prompt

Point to the box and the bottle on the table
in the image.
The answer should follow the json format: [{"
name": "box", "point": [...]}, {"name": "
bottle", "point": [...]}]
The points are in [y, x] format normalized to
0-1000.

Trajectory Prompt

Your are controlling a robot hand to slide the
box over the table to the bottle.

The coordinates are measured in meters.
The x axis is forward, the y axis is left and
the z axis is up.
First move the robot hand towards the box.
Then slide the box over the table to the
bottle.
Describe a very realistic trajectory of
exactly 20 waypoints.
Use code to generate the output.
The initial position of the box is [0.00,
0.00, 0.00].



The initial position of the bottle is [0.17,
0.23, 0.08].
The initial position of the hand is [-0.22,
-0.29, 0.19].
Use the following json format for the
trajectory:
[{
"waypoint_num": 0,
"box": {"x": float, "y": float, "z": float},
"bottle": {"x": float, "y": float, "z": float
},
"hand": {"x": float, "y": float, "z": float}
} ...]
**Only** print the json output. Do **not**
print anything else with the code.
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