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Abstract

When deploying large language models (LLMs), it is important to ensure that these
models are not only capable, but also reliable. Many benchmarks have been created
to track LLMs’ growing capabilities. However, there has been no similar focus
on measuring their reliability. To understand this landscape, we first investigate
how well current benchmarks quantify model reliability. We find that pervasive
label errors compromise these evaluations, obscuring lingering model failures and
hiding unreliable behavior.
Motivated by this gap in the evaluation of reliability, we propose the construction
of so-called platinum benchmarks that are carefully curated to minimize label
errors and ambiguity. As a first attempt at constructing such benchmarks, we revise
examples from fifteen existing popular benchmarks. We evaluate a wide range of
models on these platinum benchmarks and find that indeed, frontier LLMs still
exhibit failures on simple tasks such as elementary-level math word problems.
Analyzing these failures reveals previously unidentified patterns of questions on
which frontier models consistently struggle.

1 Introduction

Large language models (LLMs) have demonstrated impressive capabilities in areas such as problem
solving [16; 28], knowledge retrieval [12], and code generation [15; 20]. Major research effort
continues to advance the frontier of LLM capabilities [1; 27]. However, these models still sometimes
exhibit failures even on tasks far simpler than these frontier capabilities [44; 25]. Practitioners might
thus be worried whether this unreliability can pose significant risks, especially in accuracy- and
safety-critical applications.

Indeed, in sectors such as healthcare, finance, insurance, and legal services, model errors can lead
to serious ramifications (e.g., jeopardizing patient outcomes or causing financial losses). In fact,
mistakes by LLMs in real-world deployments have already caused legal liability [7] and generated
controversy [24]. In light of these issues, it is important to understand when we can confidently
deploy LLMs in such situations. These concerns motivate the central question of our work:

On what kinds of tasks are frontier models actually reliable?

To identify such tasks, a natural approach would be to examine existing benchmarks on which current
models already perform well. Specifically, we might want to investigate older benchmarks (e.g.,
GLUE [40], SQuAD [31], GSM8K [11]) that tend to evaluate simpler capabilities than current ones.
These benchmarks are rarely used today due to the commonly held view that performance on them
has “saturated”—that is, that models have reached a sufficient or “human-level” performance on the
benchmark, and remaining errors can be attributed to label noise or ambiguity in the benchmark itself.
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Indeed, some recent releases of frontier LLMs have excluded evaluations on GSM8K (a dataset of
grade-school level math word problems), for example [28; 2], following concerns that it has reached
saturation [17] (current frontier models achieve ∼95% accuracy [10; 1]).

Since we are interested in reliability though, we need to ensure that models can execute tasks with
near-perfect accuracy. So, we would like to know if models are truly reliable on benchmarks once
they reach saturation (e.g., achieving 95% on GSM8K), or if we should be worried about lingering
model errors in the remaining 5%, hidden among the label noise.

1.1 Contributions

In this work, we demonstrate that, indeed, the remaining failures on these older benchmarks are not
just label errors, and more broadly, that current benchmarks are not well equipped for testing model
reliability. We then propose a new style of benchmarking to rigorously quantify model reliability, and
make an initial effort towards constructing such benchmarks.

To understand the need for this new framework, we first examine how LLM benchmarking has
evolved to disincentivize progress on reliability.

The status quo of LLM benchmarking The difficulty of LLM benchmarks has increased over
time to track the progression of their frontier capabilities. For example, the complexity of math and
science tasks that these models are evaluated on has grown from elementary and middle school level
(e.g., SVAMP [30], GSM8K [8]), to high school and college level (e.g., MATH [19], MMLU [18]),
to graduate level problems (e.g., GPQA [34]) 2.

a result of rapidly progressing model capabilities, current benchmarks (like the ones mentioned
above) follow a consistent pattern of development, progress, and eventual retirement that we refer
to as the life cycle of benchmarks. Thi Specifically, a benchmark is first created to test a frontier
capability for which current LLMs achieve a low accuracy (i.e., below 50%). Models’ performance
on the benchmark increases over time and eventually plateaus, often around 90-95%. At this point,
the benchmark faces the same fate that we discussed earlier with older benchmarks like SQuAD
and GSM8K: it is deemed “saturated,” with remaining errors attributed to label noise, and gradually
retired as the community shifts focus to newer, more difficult benchmarks.

We believe that this life cycle has led to a gap in benchmarking: since benchmarks are discarded
when models achieve a sufficient, but not perfect, performance (i.e., when they are saturated), model
developers are never encouraged to achieve proper reliability on them.

Platinum benchmarks In order to better evaluate model reliability, we introduce the concept of
platinum benchmarks that are carefully curated to minimize label errors and ambiguity, and require
100% performance to pass. Unlike traditional benchmarks, which become "saturated" when models
reach high (but imperfect) performance, platinum benchmarks remain relevant until models achieve
full reliability. While current iterations of benchmarks quantify the capabilities frontier of LLMs—the
most advanced tasks models are able to perform—platinum benchmarks allow us to identify their
reliability frontier: the most advanced tasks models can perform consistently without error.

We demonstrate our approach by constructing platinum versions of 15 “saturated” benchmarks
across six categories of capabilities by systematically re-labeling them. We find that that many of
these benchmarks are indeed riddled with errors (e.g., 5% of GSM8K). In fact, for the majority of
benchmarks we investigate, more than half of model failures can be attributed to label noise.

Despite the relative simplicity of these tasks compared to frontier challenges, on most of our platinum
benchmarks no state-of-the-art model we evaluate gets 100%. For instance, multiple frontier models,
including GPT-4o, fail at the following basic pronoun resolution task from Winograd WSC [22]:

In the sentence, "John couldn’t see the stage with Billy in front of him because he is so
short," what does "he" in "he is so short." refer to in the phrase? [A: John, B: Billy]

Moreover, our analysis of model failures reveals previously unidentified patterns of questions that
frontier models consistently struggle with. We view our work as the first step in a new practice of
quantifying LLM reliability. See Appendix A for the related work.

2The original state-of-the-art accuracies on these benchmarks were reported at below 50% (and as low as
6.2% on MATH), and today the accuracies on all of them other than GPQA have exceeded 90% (see Table B1).
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2 Cleaning Up Noisy Benchmarks

(a) Mislabeled question, SVAMP

Question: You had 14 bags with equal
number of cookies. If you had 28 cookies
and 86 candies in total How many bags of
cookies do you have?
Solution: 2

There are 14 bags, not 2.

(b) Logical contradiction, GSM8K

Ten stalls have 20 cows each. Mr. Sylas
buys 40 cows and divides them equally,
putting an equal number of the new cows
into each of the twenty stalls. How many
cows are in 8 of the stalls?

There are both ten and twenty stalls.

(c) Ambiguity, VQA v2.0

Question: Does
the baby have
socks on?3

There is no way to tell.

(d) Clear flaw / ill-posed, MMLU HS Math

A curve is given parametrically by the
equations
Options:
A) π/2 B) π C) 2 + π D) 2π

The equations for the curve are missing.

Figure 1: Examples of errors in current LLM benchmarks. (a) For mislabeled questions, we
fix the solutions and include the re-labeled examples in our benchmark. We find three common
categories of “bad” questions: (b) there is a logical contradiction in the problem statement, (c) there
is ambiguity leading to many plausible solutions, or (d) there is a clear flaw in the construction of the
question, such as missing specifications. We remove such questions when cleaning benchmarks.

To make a noisy benchmark “platinum,” we need to update it to remove or correct label errors.
In this section, we categorize common types of errors and specify our approach for detecting and
correcting them. In Section 3, we will then leverage these platinum benchmarks in order to evaluate
the reliability of frontier models.

2.1 Experimental setup

Benchmarks included We investigate fifteen benchmarks covering six categories of capabilities:
mathematics (SingleOp [36], SingleEq [21], MultiArith [35], SVAMP [30], GSM8K [8], MMLU
High School Math [18]), logic (BIG-bench Object Counting, BIG-bench Logical Deduction, BIG-
bench Navigate [37]), table understanding (TabFact [6]), reading comprehension (SQuAD2.0 [32],
HotPotQA [43], DROP [9]), commonsense reasoning (Winograd WSC [22]), and visual understanding
(VQA v2.0 [14]). For datasets with publicly available test splits with solutions, we use the test split,
otherwise we use the validation split. Many of these benchmarks are large (e.g., the VQA v2.0
validation set has over 200,000 questions). In order to ensure the quality of our cleaning process, we
select smaller subsets at random from many of these benchmarks.

Models We test several current frontier models, including popular proprietary LLMs (GPT-4o mini
and GPT-4o [27], Claude 3.5 Sonnet [1], Gemini 1.5 Flash and Gemini 1.5 Pro [33], o1-mini [28]),
open-weights LLMs (Llama 3.1 70B Instruct and Llama 3.1 405B Instruct [10], Mistral Small and
Mistral Large).

Prompting We use chain-of-thought prompting [41] (i.e., asking the model to think step-by-step),
except with o1-mini, as its official prompting guide recommends omitting this prompting technique4.
All questions are asked in a zero-shot setting. We use a temperature of 0.5, as deployed models tend
to use lower temperatures to balance coherence and creativity. The exact prompts we use are provided
in Appendix C.2.

3We mask identities for privacy.
4see https://platform.openai.com/docs/guides/reasoning/advice-on-prompting.
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Table 1: We clean examples from fifteen popular benchmarks to remove errors and ambiguities.
While some programmatically generated benchmarks are error-free, we find a significant number
of mislabeled or poorly written questions in others. The number of mislabeled examples is missing
from 2.0 as our labels follow a different format than the original benchmark, necessitating all labels
to be revised (see Appendix C.1.1 for details on VQA v2.0).
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Type Math Logic Tab RC CR Vis
# Original Questions 159 109 174 300 300 270 200 200 200 200 250 250 250 200 600

Platinum Labeling
# Bad Questions 6 6 2 31 21 3 0 8 0 26 64 82 40 4 352
# Mislabeled 0 0 3 3 0 0 0 0 0 3 5 3 3 0 —

# Platinum Questions 153 103 172 269 279 267 200 192 200 174 186 168 210 196 248

Metrics All the benchmarks we use are either multiple choice or have a single correct answer
(except for reading comprehension datasets such as SQuAD2.0, for which we manually expand the
set of correct responses—see Appendix C.1.2 for further details). Thus, we can simply compare this
answer to the model prediction to evaluate correctness. We report the number of errors rather than
accuracy to better differentiate between models, as for many benchmarks we expect models to have
accuracies in the high 90s.

2.2 Identifying Errors in Benchmarks

What makes a question bad? Before correcting errors in benchmarks, we first need to categorize
the kinds of issues we aim to resolve. Each example in a benchmark consists of a question and a
solution. Sometimes, a question can be well-written, but the solution is mislabeled. For instance,
Figure 1(a) shows a question from SVAMP for which the given solution is incorrect. For such
examples we can simply re-label the solution, allowing us to keep the example in the benchmark.

In other cases, though, the question itself is poorly written, so simply re-labeling the solution
is inadequate. Figures 1(b-d) illustrate three common categories of such issues: (1) a logical
contradiction in the problem statement, (2) ambiguity that allows for multiple plausible solutions, or
(3) a clear flaw in the question’s construction. In many cases, there is no simple way to fix the question
(for example, fixing Figure 1(d) would require coming up with a set of equations and corresponding
question from scratch). Therefore, we opt to remove poorly written examples during our cleaning
process.

How do we efficiently identify errors in a benchmark? Cleaning large datasets can be pro-
hibitively time-consuming, especially when the questions take time to verify (e.g., challenging math
problems or retrieval tasks with long contexts). We devise a simple strategy to find problematic
questions by examining the agreement among multiple LLMs.

As described above, we divide potential issues with examples from a benchmark into two categories:
(1) mislabeled solutions, and (2) poorly written questions (e.g., ones that are ambiguous or ill-posed).
To detect these errors, we give each question to several frontier LLMs. We then manually inspect
any example on which at least one LLM makes an error. We expect that when a solution is incorrect,
frontier models will often disagree with the given solution, and when the question itself is poorly
written, models should disagree among themselves. For every example we inspect, we either mark
that example as “bad” and remove it if the question is poorly written or relabel the solution if it is
incorrect. Since this process checks all model errors, we can be confident that the errors we report are
genuine. It is possible that our count is a lower bound, as it is conceivable that both the benchmark
solution and LLM solutions are all the same and all incorrect. Further details of the cleaning protocols
used for each benchmark are in Appendix C.
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Table 2: Frontier language models are not reliable on simple tasks. Here we report the number
of errors made by each model on our platinum benchmarks, where every error is manually verified.
We observe that even after cleaning benchmarks for errors and ambiguities, almost every model
makes mistakes on almost every dataset. VQA v2.0 is only evaluated for models that support image
inputs. We color results where models demonstrate no errors or ≤2% errors . RC: Reading
comprehension, Tab: Table understanding, CR: Commonsense reasoning, Vis: Vision.
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# Platinum Questions 153 103 172 276 280 268 200 192 200 174 189 169 210 196 248

Mistral Small 1 0 0 11 24 66 27 16 39 12 10 21 27 36
Mistral Large 0 0 0 7 2 41 4 7 11 4 4 11 11 13
Gemeni 1.5 Flash 0 1 0 13 10 26 5 13 12 17 3 13 12 25 14
Gemini 1.5 Pro 0 0 1 6 5 18 2 7 12 5 1 14 7 15 13
Llama 3.1 70B Inst 2 0 0 7 6 44 4 4 13 7 1 7 9 14
Llama 3.1 405B Inst 0 0 0 3 1 28 0 2 2 1 2 4 5 7
GPT 4o mini 0 1 1 6 5 30 2 14 7 14 4 16 15 27 33
GPT 4o 0 0 0 4 3 23 0 2 2 0 1 9 6 12 11
Claude Sonnet 3.5 0 0 0 2 4 33 0 0 3 3 0 3 3 8 26
o1-mini 1 0 1 1 3 4 1 7 0 2 4 9 3 16

How noisy are saturated LLM benchmarks? In Table 1, we report the number of poorly written
and mislabeled questions we identify in each of the fifteen benchmark subsets we investigate. We
find that, indeed, many of these benchmarks have a substantial rate of errors, confirming suspicions
of flaws in these benchmarks commonly held by the community. For example, the percentage of
errors we find in examples from GSM8K, SVAMP, VQA v2.0 and TabFact exceed the percentage of
errors reported by frontier models on these benchmarks. This suggests that any error made by frontier
models on one of these benchmarks is more likely to be an issue with the benchmark itself than a
genuine model error.

For reading comprehension datasets (SQuAD2.0, HotpotQA, DROP), we identify issues with up to
30% of examples. Largely, these issues arise from questions that are sufficiently open-ended such
that it is difficult to exhaustively list all possible responses. Additionally, SQuAD2.0 intentionally
adds questions that are unanswerable from the given passage to test whether models can abstain
from answering (i.e., return N/A). However, the process of making these unanswerable questions
often leads to them being highly ambiguous or even nonsensical. For example, one such question
asks, “What isn’t the gender income inequality in Bahrain?”; this question can be traced to a worker
replacing "is" with "isn’t" from an original question within SQuAD [31]5. Following our cleaning
protocol, we omit such poorly written questions. In Appendix F, we show specific examples of bad
questions that we identify across the fifteen benchmarks.

3 Evaluating Reliability with Platinum Benchmarks

3.1 Pinpointing the Reliability Frontier

Within a given category of capabilities (e.g., math problem solving), a platinum benchmark of a
certain difficulty allows us to evaluate how reliable models are at performing tasks at that difficulty
level. However, the actual reliability frontier of a model might be less or more advanced than the tasks
in that specific benchmark. In order to identify this frontier with greater granularity, we need platinum
benchmarks at varying levels of difficulty; then, we can estimate a model’s reliability frontier by
identifying the most difficult benchmark it is able to pass (i.e., score 100% on).

5For the original question from SQuAD, see: https://huggingface.co/datasets/rajpurkar/squad/
viewer/plain_text/validation?p=74&row=7464.
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Table 3: Here we report the average number of errors across models on each benchmark before
and after our cleaning process. We exclude benchmarks for which performance was not originally
measured by accuracy, as it is difficult to draw an accurate comparison. As expected, for benchmarks
where we identified many erroneous examples, the number of model errors decreased significantly.
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Avg # errors, original 2.5 1.5 3.6 22.1 12 32.4 4.5 10.1 10.2 20.5 19.4
Avg # errors, cleaned 0.4 0.2 0.3 6 6.3 31.3 4.5 7.2 10.2 6.5 17.3

% errors caused
by bad questions 84% 87% 92% 73% 48% 3% 0% 29% 0% 68% 11%

Towards this end, among the fifteen benchmarks that we revised in Section 2 we included six
mathematics benchmarks ranging in difficulty from single operations (SingleOP [36]) to high school
math problems (MMLU High School Math [18]). We expect that models might exhibit reliability
on sufficiently simple math problems (e.g., current models can generally complete single-digit
multiplication 100% of the time). So, this range should allow is to pinpoint the difficulty at which
models begin to lose reliability.

3.2 Findings

In Table 2 we report the number of errors made by each model on our cleaned benchmarks, and in
Table 3 we compare the difference in errors between the cleaned and original datasets. As discussed
in Section 2, we can be confident that every model failure we report is a genuine, as all errors by
these models were manually inspected during our cleaning process. Our primary findings are:

1. Reliability challenges are significant and widespread. Almost every model makes simple
mistakes on almost every dataset, with the exception of intentionally simple math datasets
(SingleOP, SingleEq, MultiArith). For frontier models evaluated with PhD-level ques-
tions [34], it is alarming that these simple mistakes are still present, however uncommon.
Several examples of these failures are in Appendix F.

2. “Saturated” benchmarks tend to be too noisy to evaluate reliability. Table 3 confirms
significant differences in the number of errors made by models on the original and cleaned
datasets. For most of the original benchmarks, a majority of errors can actually be at-
tributed to mislabeling or bad questions. For instance, of the errors models make on the
original SVAMP benchmark, about 70% are made on poorly written or mislabeled ques-
tions. The logic datasets show few or no errors, but only because these datasets were
auto-generated [37].

3. More capable models are also more reliable. Models that are considered to be more
capable (e.g., GPT 4o is more capable than GPT4o mini, Llama 3.1 405B Instruct is more
capable than Llama 3.1 70B Instruct) tend to perform better on our benchmark. Notably,
these more capable models are able to perform perfectly on a few of the benchmarks,
whereas our least capable models cannot do so for any benchmark.

4. Models’ reliability varies depending on the specific capability. We find that o1-mini
exhibits the greatest reliability among mathematics benchmarks, while Claude Sonnet 3.5
exhibits the greatest reliability among reading comprehension benchmarks. This finding
emphasizes the importance of reliability benchmarking; depending on the specific task one
aims to deploy models for, one might want to choose a different frontier LLM.

3.3 Platinum benchmarks allow us to discover new patterns of model failures

By investigating model errors on platinum benchmarks and their corresponding chain of thought
processes, we can discover patterns of failures. We identify two patterns of questions that lead to
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consistent collapses in reasoning of frontier LLMs. We initially found an instance of each failure
mode by examining models’ reasoning processes on failures from our platinum benchmarks. We then
verify the consistency of such failures by procedurally constructing similar examples. We outline
these failure modes below, and provide further details and a more complete analysis in Appendix D.

Example pattern 1: First event bias We find that when asked: "What happened second: {some
event} or {some other event}" given some context, three models (Gemini 1.5 Flash, Gemini 1.5 Pro,
and Mistral Small) almost always answer with the first event, and will even explicitly acknowledge
they are identifying the first event rather than the second:

Question: {context paragraph} What happened second: Russians blocked Azov or Treaty
of Constantinople?
Solution: Treaty of Constantinople
Gemini 1.5 Pro: . . . we can conclude that the Russians blocking Azov happened before the
Treaty of Constantinople. Answer: Russians blocked Azov

We procedurally generate further examples in this question format and find that each of these three
models fails on over 90% of the examples (see Figure D1).

Example pattern 2: Rounding up primes We find that when Claude 3.5 Sonnet is asked to solve
grade-school math problems involving division, it often incorrectly rounds up the quotient even
though the division already resulted in a whole number, leading to an answer greater than the solution
by one:

Question: The school is planning a field trip. The school has 67 classrooms. There are 66
students in each classroom in the school. If there are 6 seats on each school bus. How many
buses are needed to take the trip?
Solution: 737
Claude 3.5 Sonnet: . . . To find the number of buses needed, we divide the total number of
students by the number of seats per bus: 4,422 ÷ 6 = 737. However, since we can’t have a
fraction of a bus, we need to round up to the next whole number to ensure all students have
a seat. Therefore, the school needs 738 buses to take all students on the trip. Answer: 738

Interestingly, we find that this behavior is significantly more common when the final answer is closer
to being prime (i.e., it has few divisors; see Figure D2). For example, when we query Claude 3.5
Sonnet on similarly constructed problems with an answer that is prime, the model makes this exact
rounding error 20% of the time.

4 Discussion and Future Work

There is a significant gap between capability and reliability. Frontier LLMs can solve graduate-
level problems (e.g., GPQA [34]), but as we find, they can still fail on basic logic tasks and elementary-
level problems. This discrepancy indicates a wide gap between the capability and reliability frontiers
that does not seem to be addressed by scaling models further.

Framing reliability as a deployment metric. Quantifying reliability is a common practice for
deployed systems. Within the context of software, for instance, an entire dedicated field of site
reliability engineering has emerged to ensure that systems are reliable, with a reliability goal measured
by the number of nines of uptime (e.g., five nines, or 99.999% uptime). We hope our work can be a
first step towards building out this level of reliability quantification for LLMs.

How do we account for prompt brittleness? A common strategy for further improving perfor-
mance of LLMs is to carefully adjust prompts, such as by tuning structure and wording individualized
to a specific target model (i.e., prompt engineering). But as long as the instructions are clearly stated
and the task is explicitly defined, it is reasonable to expect reliable models to perform well regardless
of minor variations in prompt wording. Since we are not focused on assessing how well models can
follow formatting directions, however, we experimented to choose a prompting strategy that ensures
our models do not fail due to output formatting errors. We do not further engineer prompts beyond
this; see Appendix C.2 for our specific template. Nevertheless, it is plausible that a specific choice
of prompt will affect a model’s reliability. We encourage future work to both investigate prompting
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strategies that elicit more reliable behavior, and develop models that are less brittle to specific prompt
types.

Limitations We view our work as an initial effort towards constructing platinum benchmarks. Here,
we briefly discuss the limitations of our work and areas for potential improvement by future works.

1. Capabilities and levels of difficulty covered Our set of fifteen benchmarks misses a
number of relevant capabilities of LLMs, such as coding and tool use. We attempt to cover a
wide range of difficulty levels for mathematics, but not for any other capability. We also do
not include any benchmarks that require expert-level annotations to clean, as we revise the
benchmarks for this preliminary investigation ourselves.

2. Number of examples per benchmark Some of our revised benchmarks include as little as
100 examples, often limited by the size of the original benchmark. This limits our ability to
quantify reliability with certainty: there may not be a large gap between models that have
zero percent or one percent error rate on such a small sample size.

3. Only re-labeling errors As we re-label all examples for which some model failed, we
can be confident that every error we report is genuine. However, there may still be poorly
written questions in our platinum benchmarks among those we did not revise, where, despite
error or ambiguity, all models agreed with the stated ground truth.

4. Benchmark difficulty As of today, frontier LLMs still fail on sufficiently simple questions
that their errors can be quantified without specific expertise. For example, the most difficult
task we annotate is high school level mathematics. However, once the reliability frontier of
models is sufficiently advanced, expensive expert annotation will be required to construct
platinum benchmarks for expert capabilities.

5 Conclusion

In this work, we propose the construction of highly cleaned platinum benchmarks to test the reliability
of LLMs, and make an initial effort to create such benchmarks by cleaning fifteen existing datasets.
We demonstrate that frontier models continue to exhibit failures on basic tasks from these “saturated”
benchmarks, showing a gap in current benchmarking practices. We hope that our paper motivates
the adoption of platinum benchmarks in evaluating LLMs to ensure they meet the high reliability
standards required for real-world applications.
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A Related Work

Errors in machine learning benchamarks Previous works have studied the identification of errors
in machine learning benchmarks, as well as the resulting impact of these label errors on the quality
of model evaluations. Tsipras et al. [39] investigate the original ImageNet labeling process and
identify issues in the resulting labels resulting from (1) the presence of multiple correct classes in a
single image, and (2) biases in the label validation process. They also release a refined, multi-label
re-labeling of the ImageNet validation set. Northcutt et al. [26] first systematically identify errors
in commonly used machine learning benchmarks, and then find that evaluating on benchmarks
with significant rates of errors can lead practitioners to incorrectly select less performant models,
demonstrating the value of such label cleaning processes. Bowman and Dahl [4] raise concerns similar
to our over issues in benchmarking for NLP tasks, and lay out a set of criteria that good benchmarks
should satisfy (e.g., benchmarks should reveal plausibly harmful social impact, be accurate and
unambiguous, and offer adequate statistical power). However, they focus on overall design and social
impact of benchmarks, whereas we focus solely on better assessing model reliability.

Recently, Gema et al. [13] released MMLU-Redux, a re-annotated subset of the MMLU bench-
mark [18] created through manual assessment from 14 human experts. Our re-labeling of the MMLU
high school mathematics subset actually intersects with MMLU-Redux over 100 examples. Our re-
vised annotations align with MMLU-Redux on all but one example, on which we find that one of their
human experts accidentally re-annotated a correct solution to make it incorrect6. This slight remaining
inconsistency highlights the difficulty of avoiding errors when creating and revising benchmarks.

LLM failures on simple tasks It is generally known and often discussed that LLMs fail in
surprising and unintuitive ways on simple tasks. For example, the common example pf LLMs failing
on the query “how many r’s are there in the word strawberry” has circulated both social media and
news outlets. Previous works have investigated specific instantiations of such failures. Yang et al.
[44] find that models frequently fail on simple problems even when they can solve harder versions of
these same problems, suggesting inconsistency in their reasoning abilities. Nezhurina et al. [25] raise
similar concerns over breakdowns in LLM reasoning behavior by identifying a specific category of
logic tasks on which current frontier LLMs fails consistently.

Adversarial examples Adversarial attacks are small, sometimes imperceptible perturbations to
model inputs that can drastically change their behavior, especially in ways that are unlikely to
affect humans—these lightly perturbed inputs are known as adversarial examples. There has been
significant work studying adversarial attacks and defenses against them in computer vision domains
[38; 5; 23; 29], and recent work has demonstrated successful adversarial attacks on LLMs, especially
in the context of breaking safety alignment [46; 42]. One possible approach to identifying LLM
failures on simple queries might be to adversarially optimize for queries that result in model failures.
However, we aim for our benchmark to assess whether models can be deployed reliably on real-world
tasks, and adversarial examples generally do not align with the ‘corner-cases’ that models face in the
real world (unless the users themselves adversarially optimize their own inputs).

6see the question marked “wrong_groundtruth” here: https://huggingface.co/datasets/
edinburgh-dawg/mmlu-redux/viewer/high_school_mathematics?row=52
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B The Life Cycle of Benchmarks

As we discuss in the introduction, benchmarks follow a common pattern of development, progress,
and eventual retirement when they are demed saturated. In Table B1 we show the accuracies upon
release and currently for a number of math and science benchmarks that appear to follow this life
cycle.

Table B1: Accuracies on popular academic LLM benchmarks at their release time and currently.

Dataset Year Released Accuracy (Released) Accuracy (Current)

SVAMP [30] 2021 43.8% 93.7% [45]
GSM8K [8] 2021 ≈34%7 96.8% [10]
MMLU [18] 2020 48.9% 92.3% [28]
MATH [19] 2021 6.2% 94.8% [28]
GPQA [34] 2023 38.8% 77.3% [28]

7The paper that original released GSM8K only reports accuracies in charts, so we approximate accuracy
based on Figure 2 in [8].
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C Experimental details

C.1 Benchmark processing

Here, we discuss additional processing and cleaning steps specific to certain of the chosen benchmarks.

C.1.1 VQA v2.0

Re-labeling Rather than a single ground truth label per example, the VQA [3] and updated VQA
v2.0 [14] datasets collect ten separate crowd-annotated labels per image-question query. Their
accuracy metric then assigns a score to a model prediction based on the overlap between the prediction
and these ten labels. As we assign a single ground-truth label to each question, we manually re-label
all the VQA v2.0 queries we include in our revised subset rather than only inspecting ones for which
some model failed.

Selection of queries The VQA v2.0 dataset is designed to mitigate common biases in visual
question answering datasets by balancing the original VQA dataset with complementary images that
break a given bias. To maintain this construction, we randomly select from these image pairs in VQA
v2.0, and reject a given pair if either image deemed ambiguous.

To further improve the clarity and ease of labeling of our samples, we also limit our subset to only
‘yes/no’ questions within VQA v2.0, as open-ended queries have a greater potential for ambiguity
and can often have multiple correct answers.

C.1.2 Reading Comprehension Benchmarks

Re-labeling to account for multiple correct responses SQuAD2.0 [32], HotPotQA [43], and
DROP [9] are all question answering benchmarks based on background knowledge provided
in-context. Most of these questions are open-ended, so there are often multiple valid responses. For
instance, consider the following example from HotPotQA:

Paragraph A: Ethel Houbiers
Ethel Houbiers is a French voice actress. She is the French voice of Penélope Cruz and Salma
Hayek.

Paragraph B: Salma Hayek
Salma Hayek Pinault ( Hayek Jiménez) (born September 2, 1966), known profession-
ally as Salma Hayek, is a Mexican and American film actress, producer, and former
model. . . [continued]

Question: which Mexican and American film actress is Ethel Houbiers French voice of?

Answer: Salma Hayek Pinault

While “Salma Hayek Pinault” is a valid answer, “Salma Hayek” is a second answer that should also
be considered valid. To address these cases, when re-labeling examples we comprehensively list all
reasonable valid responses. If the question is sufficiently open-ended and ambiguous that too many
possible options might be valid, we mark the question as bad.

C.2 Chain-of-Thought prompt template

We use a chain-of-thought prompt for evaluation on all datasets except for VQA V2.0 [14], for which
there is general no need for multiple reasoning steps. The specific prompt varies slightly between
benchmarks, however the general templates are as follows:

Open-ended Question:
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Answer the following {category} question.

{question}

Think step-by-step. Then, answer in the format "Answer: XXX".

Multiple-Choice Question:

Answer the following {category} question.

{question}

Options:
A) {option A}
B) {option B}
C) {option C}
D) {option D}

Think step-by-step. Then, answer in the format "Answer: A".

For BIG-bench [37], we use (A) instead of A) for multiple choice style to align with the prompt
used by the original authors. For open-ended math questions, we additionally specify to respond
with an integer and to exclude additional formatting, as model often style outputs with latex styling.
We exclude chain-of-thought prompting for VQA v2.0, as the questions rarely require any explicit
reasoning to answer. We also find that, in practice, models rarely actually think step-by-step for
simple visual reasoning questions, even when prompted to do so.
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D Patterns that lead to frequent model failures

Using our platinum benchmarks, we identify failures on frontier LLMs on tasks far simpler than their
most advanced capabilities. By inspecting the chain-of-thought reasoning processes of models when
they fail on these simple tasks, we can better understand the why such failures occur. In particular,
we identify two patterns of examples that lead to consistent reasoning collapses on frontier LLMs.

D.1 First event bias

When inspecting model failures on DROP [9], a reading comprehension dataset, we identified a
particular example on which multiple LLMs failed due to the same failure in reasoning:

Question: {Context paragraph} What happened second: Russians blocked Azov or Treaty of Con-
stantinople?
Solution: Treaty of Constantinople

Claude 3.5 Sonnet

. . . Given this sequence of events, we can conclude that the Russians blocking Azov happened
before the Treaty of Constantinople. Answer: Russians blocked Azov

Mistral Small

. . . Therefore, the Russians blocked Azov first, and the Treaty of Constantinople was signed
later. Answer: The Russians blocked Azov second.

Mistral-Large

. . . Therefore, the Russians blocking Azov happened first. Answer: Russians blocked Azov

Gemini 1.5 Pro

. . . Since the Treaty of Constantinople followed the events at Azov and the Dnieper campaign,
the blockade of Azov happened first. Answer: Russians blocked Azov

Gemini 1.5 Flash

. . . Step 2: The passage mentions the Treaty of Constantinople later, after the unsuccessful sieges
of Azov and the Dnieper campaign. Answer: Russians blocked Azov

Even though the question asks what happened second between two events, each model not only
answers with the first event, but even explicitly states that it identified the event that happened first.

To further investigate this failure, we construct 50 additional examples in the same format. To
construct each example, we use GPT-4o to generate a paragraph-long context describing a historical
topic with a sequence of events, and ask it to select two events within this context that have a clear
chronological order. To avoid bias stemming from the ordering of the events in the question, we
repeat each example twice with the event orders flipped (i.e., “what happened second: X or Y” and
“what happened second: Y or X”), leading to 100 total examples.

We find that three models—Gemeni 1.5 Flash, Gemeni 1.5 Pro, and Mistral Small—fail on over 90%
of the examples, despite random guessing achieving 50%. Almost all other models exhibit an error
rate of at least 25%, whereas the median accuracy on the overall DROP benchmark with questions of
similar difficulty was under 5% (see Figure D1).
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Figure D1: First event bias. Accuracy of models on synthetically generated questions of the form
“what happened second: X or Y” given a context. All models other than o1-mini exhibit frequent
failures on these problems despite their relative simplicity, and three models (Gemini 1.5 Flash and
Pro, Mistral Small) almost always respond with the first event instead.

D.2 Rounding up primes

When inspecting model failures on SVAMP [30] and GSM8K [8], we found two cases in which
Claude 3.5 Sonnet rounded up its answer following a division even though the quotient was already a
whole number:

Question: The school is planning a field trip. The school has 67 classrooms. There are 66 students in
each classroom in the school. If there are 6 seats on each school bus. How many buses are needed to
take the trip?
Solution: 737

Claude 3.5 Sonnet

. . . To find the number of buses needed, we divide the total number of students by the number
of seats per bus: 4,422 ÷ 6 = 737. However, since we can’t have a fraction of a bus, we need
to round up to the next whole number to ensure all students have a seat. Therefore, the school
needs 738 buses to take all students on the trip. Answer: 738

Question: Cecilia just bought a new puppy. According to her veterinarian, she has to feed the puppy 1
cup of dog food every day for the first 180 days. Then she has to feed the puppy 2 cups of dog food
every day for the rest of its life. If one bag of dog food contains 110 cups, how many bags of dog food
will Cecilia use in the first year?
Solution: 5

Claude 3.5 Sonnet

. . . Calculate how many bags of dog food this equals: 550 cups ÷ 110 cups per bag = 5 bags.
However, since Cecilia can’t buy a fraction of a bag, she’ll need to round up to the next whole
bag. Answer: 6

Interestingly, the solutions to these questions both have few divisors (5 is prime, and 737 is the
product of 11 and 67, two primes). So, we investigate whether this failure is related to the “closeness”
of the solution to being prime. Specifically, we create three examples similar to the bus question
above that require only a single division, such as the following:

17



0 pairs (prime) 1 pair 2 pairs 3 pairs 4+ pairs
# of non-trivial divisor pairs

0

5

10

15

20

25

Fa
ilu

re
s (

%
)

20.0%

14.0%

8.3%

2.5% 1.9%

Figure D2: Rounding up primes. Frequency of failures of Claude Sonnet 3.5 on procedurally
generated questions involving only a single division step, when the quotient (i.e., the result of the
division) has a given number of non-trivial divisor pairs. We filter out failures caused by a failed
division, to only include cases where the model intentionally (and incorrectly) rounds up a whole
number.

Question: A tour group with {n ∗ k} people needs to hire buses to travel to their next
destination. If each bus can fit {k} people, how many buses does the tour group need?
Solution: n

We randomly select values of n ranging from 3 to 300, with 0, 1, 2, or 3 non-trivial divisor pairs and
measure the average number of failures when varying k from 3 to 9. We isolate only errors caused
from incorrectly rounding the whole number quotient by filtering our failures caused by an incorrect
division. We find that indeed, the less non-trivial divisor pairs n has (i.e., the closer it is to being
prime), the more frequently this failure mode occurs (see Figure D2).
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E Examples of benchmark label errors

As part of our revision process, we identify label errors within fifteen different benchmarks. Here,
we show examples some these mislabeled or poorly written examples. In Figure E1, Figure E2, and
Figure E3, we show examples of label errors within mathematics benchmarks (GSM8K, SVAMP),
reading comprehension benchmarks (SQuAD2.0, DROP, HotPotQA), and visual question answering
benchmarks (VQA v2.0), respectively.

Mislabeled question, SVAMP

Question: Allan brought 5 balloons and
Jake brought 6 balloons to the park. Jake
then bought 3 more balloons at the park.
How many balloons did Jake bring to the
park?
Solution: 9

The solution should be 6.

Logical contradiction, SVAMP

Question: Zachary did 15 push-ups in
gym class today. David did 39 more push-
ups than Zachary. John did 9 push-ups less
than David. How many more push-ups did
Zachary do than John?
Solution: 30

Zackary did less push-ups than John, not more.

Clear flaw / ill-posed, SVAMP

Question: The grasshopper and the frog
had a jumping contest. The grasshop-
per jumped 13 inches. The grasshopper
jumped 2 inches farther than the grasshop-
per. How far did the frog jump?
Solution: 11

The question likely meant compare the frog to
the grasshopper but it is miswritten.

Clear flaw / ill-posed, SVAMP

Question: Frank was reading through his
favorite book. The book had 2 chapters
each with 405 pages. It took frank 664
days to finish the book. How many chap-
ters did he read per day?
Solution: 332

The question likely meant to ask: “how many
days did it take to read each chapter?”

Ambiguity, GSM8K

Question: Anakin and Locsin went to the
beach today. Anakin caught 10 starfish, 6
sea horses, and 3 clownfish. While Loc-
sin caught 5 fewer starfish than Anakin, 3
fewer sea horses than Anakin, and 2 more
clownfish than Anakin. How many fish
were they able to catch?
Solution: 32

Is a starfish a fish?

Ambiguity, GSM8K

Question: Steve decides to start eating
more tomatoes and decides to grows his
own cherry tomatoes. He eats twice as
much as his girlfriend. He eats 6 per day.
If a vine can produce 3 tomatoes per week
how many vines does he need?
Solution: 21

Does Steve need tomatoes for just himself or
also for his girlfriend?

Figure E1: Examples of mislabeled or poorly written questions from mathematics benchmarks.
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Ambiguous question, SQuAD2.0

Context: [. . . ] The Edict reaffirmed Catholicism as the state religion of France, but granted the
Protestants equality with Catholics under the throne and a degree of religious and political freedom
within their domains. The Edict simultaneously protected Catholic interests by discouraging the
founding of new Protestant churches in Catholic-controlled regions.
Question: What did the Edict do for Huguenots in France?

This question is open-ended and has no clear set of possible solutions.

Mislabeled question, DROP

Context: [. . . ] On September 29, the battle ended with up to 1600 marauders killed in the estate,
and Xu Hai’s body was found in a nearby stream. On October 10, Chen Dong, Ye Ma, and Xu
Hai’s hostage brother were all executed in Jiaxing, marking the end of the wokou invasion of
1556.
Question: How many days after the battle ended were Chen Dong, Ye Ma, and Xu Hai’s hostage
brother were all executed in Jiaxing?
Solution: 12

The hostages were executed ended 11 days after, not 12.

Mislabeled question, DROP

Context: [. . . ] The 15th Nepal China’s Tibet Economic and Trade Fair was held on 17-22
November 2015 in Bhrikutimandap, Kathmandu Nepal.
Question: How many days 15th Nepal China’s Tibet Economic and Trade Fair was held in 2015?
Solution: 5

The fair was was held for 6 days, not 5.

Mislabeled question, HotPotQA

Paragraph A, Mwabvi Wildlife Reserve: [. . . ] Buffalo still bathe in the Mwabvi river, and,
although [. . . ]
Paragraph B, African buffalo: The African buffalo or Cape buffalo ("Syncerus caffer") is a
large African bovine. [. . . ]
Question: What river can a large African bovine be seen bathing in in the Mwabvi Wildlife
Reserve?
Solution: Buffalo

The correct solution is the Mwabvi river.

Figure E2: Examples of mislabeled or poorly written questions from reading comprehension bench-
marks.
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Question: Do these
poeple know each
other?

We don’t know anything about them.

Question: Was this
taken during the
summertime?

It could be any season.

Question: Do you
think the guy with
the bike is tired?

We can’t know how he is feeling.

Question: Are there
people watching?

We would need to see beyond the camera view.

Question: Is the
man working?

There is no way to tell.

Question: Is he right
handed?

He is using both of his hands.

Figure E3: Examples of ambiguous questions from VQA V2.0.
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F Examples of model failures

To highlight the simple types of questions frontier LLMs still fail on, below we show examples of
model failures on examples from the revised benchmarks.

Logical Deductions 3 Object

The following paragraphs each describe a set of three objects arranged in a fixed order. The
statements are logically consistent within each paragraph. In an antique car show, there are
three vehicles: a motorcyle, a minivan, and a tractor. The minivan is older than the tractor.
The minivan is the second-newest.

Options:
(A) The motorcyle is the newest
(B) The minivan is the newest
(C) The tractor is the newest

Answer: (C)

GPT-4o-mini: (A)
o1-mini: (A)

Winograd

Phrase: John couldn’t see the stage with Billy in front of him because he is so short.

Question: What does "he" in "he is so short." refer to in the phrase?

Option A: John
Option B: Billy

Answer: (A)

GPT-4o: (B)
GPT-4o-mini: (B)
Llama 3.1 70B Instruct: (B)
Llama 3.1 405B Instruct: (B)

Winograd

Phrase: Since it was raining, I carried the newspaper over my backpack to keep it dry.

Question: What does "it" in "keep it dry" refer to in the phrase?

Option A: The newspaper
Option B: The backpack

Answer: (B)

GPT-4o-mini: (A)
Llama 3.1 70B Instruct: (A)
Llama 3.1 70B Instruct: (A)
Gemeni 1.5 Flash: (A)
Gemeni 1.5 Pro: (A) Mistral Small: (A) o1-mini: (A)
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GSM8K

Jean is two years older than Mark. Two years ago Mark was 5 years older than half Jan’s age.
If Jan is 30 how old is Jean?

Answer: 23

GPT-4o: 24
Claude 3.5 Sonnet 24

SVAMP

Christina is planning a birthday party and needs .75 gift bags per invited guest, because 1/4 of
attendees don’t show up. She invited 16 friends. Gift bags are $2 each. How much will she
spend?

Answer: 24

GPT-4o: 18
Llama 3.1 70B Inst: 18
Llama 3.1 405B Inst: 18
Gemini 1.5 Flash: 18
Gemini 1.5 Pro: 18
Mistral Small: 18

SVAMP

If a bag of marbles costs $20 and the price increases by 20% of the original price every two
months, how much would a bag of marbles cost after 36 months?

Answer: 92

GPT-4o: 767
Llama 3.1 405B Inst: 532
Gemini 1.5 Pro: 800
Mistral Small: 219
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DROP

Context: After a tough loss at home, the Bengals would remain at home for a game against
the Bears. In the first quarter, the Bears took an early lead when Jordan Howard ran for a
21-yard touchdown (with a failed PAT) to make it 6-0. The Bengals however took the lead
later on in the quarter when Andy Dalton found Brandon LaFell on a 14-yard pass to make it
7-6. The Bears retook the lead in the second quarter when Mike Nugent kicked 2 field goals:
From 34 and 27 yards out to make it 9-7 and then 12-7 at halftime. The Bears then shut out
the Bengals the entire second half while they score themselves: In the third quarter Mitchell
Trubisky ran for a 4-yard touchdown to make it 19-7 for the only score of the third quarter.
In the fourth quarter, they wrapped up the scoring when Trubisky found Adam Shaheen on
a 1-yard pass to make it 26-7. Howard then ran for an 8-yard touchdown to make the final
score 33-7. With the loss, the Bengals dropped to 5-8. The team is also assured their second
straight non-winning season.
Question: How many points in total were scored in the second half?

Answer: “21” or “21 points”

GPT-4o-mini: 18 points
Llama 3.1 70B Inst: 20
Gemini 1.5 Flash: 33
Mistral Small: 24
Mistral Large: 19 points

SQuAD2.0

Context: Before the foundation can be dug, contractors are typically required to verify and
have existing utility lines marked, either by the utilities themselves or through a company
specializing in such services. This lessens the likelihood of damage to the existing electrical,
water, sewage, phone, and cable facilities, which could cause outages and potentially haz-
ardous situations. During the construction of a building, the municipal building inspector
inspects the building periodically to ensure that the construction adheres to the approved plans
and the local building code. Once construction is complete and a final inspection has been
passed, an occupancy permit may be issued.
Question: What does digging a foundation prevent damage to?

Answer: N/A
The verification steps prevent damage, not the digging. This question is unanswerable from
the context.

GPT-4o: Utility lines
GPT-4o-mini: Utility lines
Llama 3.1 70B Inst: Electrical, water, sewage, phone, and cable facilities
Llama 3.1 405B Inst: Existing utility lines
Gemini 1.5 Flash: Utility lines
Mistral Small: electrical, water, sewage, phone, and cable facilities
Mistral Large: Existing utility lines
o1-mini: Existing utility lines
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