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Abstract

Non-grid-structured data, e.g., citation networks, social networks, and web page networks,
is often represented as graphs. However, such data cannot fit into Convolutional Neural
Networks (CNNs) like images because of the variable size of unordered nodes and the uncer-
tain number of neighbours for each node. Thus, Graph Neural Networks (GNNs) have been
designed. They use a message-passing scheme to aggregate each node’s and its neighbours’
feature representations, regardless of the number of nodes and their order. Introducing
feature-independent encoding methods to GNNs is crucial to preserving graphs’ structural
information and making node representations more discriminative. However, local-distance-
aware methods, e.g., DE-GNN, only contain the information within subgraphs, resulting
in ambiguity when comparing two subgraphs with the same structure. In this paper, our
Global Positional Encoding Network (GPEN) is proposed to embed each node’s global po-
sitional information by calculating their distances to a set of randomly sampled referential
nodes. We employ contrastive loss on pairwise distances of different nodes to make positional
representations more discriminative while retaining the relative interactions between nodes.
We evaluate our GPEN on node classification datasets by inserting the encoding scheme into
a backbone GNN and demonstrate that it outperforms state-of-the-art encoding methods
on homophilic graph grains by up to 33.12% in accuracy.

1 Introduction

Graph Neural Networks (GNNs) have become famous for analyzing non-grid-structured data, like citation
networks, social networks, and web page networks, which can be represented as graphs Kipf & Welling (2017);
Yanardag & Vishwanathan (2015); Pei et al. (2020); Xu et al. (2019); Veličković et al. (2018); Hamilton et al.
(2017). GNNs employ a message-passing scheme to recursively aggregate a central node’s and neighbours’
features in graphs. Specifically, node/edge representations are passed through the edges to their nearby
nodes. Then, these representations are aggregated as new central node representations using permutation-
invariant functions and learnable parameters. This process is repeated k times, resulting in a feature vector
representing the central node, capturing the structural information and node feature distribution within the
central node’s k-hop neighbourhood Hamilton et al. (2017).

Although the message-passing scheme helps GNNs gather structural information based on node and edge
attributes, and enables GNNs to perform well in specific domains, that ability becomes limited when applied
to more diverse applications, such as forecasting passenger flow levels in airports, predicting airline connec-
tions, or classifying social networks that lack node and edge attributes Yanardag & Vishwanathan (2015);
Ribeiro et al. (2017); Zhang & Chen (2018). Some strategies have been proposed to address this limitation.
They rely on attribute-independent and deterministic features, such as hand-crafted rules Zhang & Chen
(2018); You et al. (2021) and random-walk-based probability Li et al. (2020), to encode the distance between
central nodes and their neighbours in a given locality. The goal is to learn the topological nature of graphs
or subgraphs as a unique representation based on the encoded distance, which can then be used for various
downstream tasks. Encoding the distance of a central-neighbour pair as a vector and combining it with
the neighbour’s attributes during message-passing can effectively learn local structural information. This
technique has been proven to enhance the accuracy of GNNs in node classification tasks Yin et al. (2020).
However, we argue that local-distance-aware encoding approaches fail to deliver discriminative features when
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Figure 1: Intuitive comparison of DE-GNN and GPEN. Central: A symmetric graph where the colour of the
nodes indicates their classes. Left: Given one central node, DE-GNN uses 2-hop random walk distance from
the central node to its neighbours as node features. In this case, the encoding method generates identical
features for the central nodes. Right: To distinguish the central nodes, GPEN generates unique global
positional embeddings through contrastive learning.

two subgraphs have a similar structure but are located in different parts of the same graph, as the left part
of Figure 1 shows. As a result, these non-discriminative features will harm the expressiveness of GNNs when
the ground truth labels of those nodes are different. Therefore, learning the global position of each node,
which contains structural information and makes similar subgraphs possible to distinguish from each other,
is more important.

In this paper, we present the Global Positional Encoding Network (GPEN), which generates a distinct
global positional embedding for each node in a graph based on graph structure without needing either
node or edge attributes, as demonstrated in Figure 1. Unlike DE-GNN Li et al. (2020) employing relative
distances between a central node and its neighbours, GPEN randomly chooses nodes from the graph as a
referential node set. Each node’s global position in the graph is determined by the set of vectors representing
random walk probabilities between the node and the referential nodes. For each node, GPEN embeds the
probability-like vectors as a positional embedding, which allows the downstream networks to learn the
structure representations. We utilize self-supervised learning He et al. (2020) to ensure that the positional
embeddings are consistent and able to distinguish between different nodes. We apply a contrastive loss to
learn the embeddings. In this approach, we consider embeddings of the same node under different reference
sets as positive pairs and aim to maximize their similarity.

In a nutshell, our contributions are summarized as follows:

1. We reveal that distance encoding approaches have limitations in providing useful graph structure
information for the node classification task on homophilic graphs.

2. We propose a framework named GPEN to generate a global positional embedding for each node
according to a referential node set, without needing either node or edge attributes.

3. We introduce contrastive learning to the progress of training the GPEN, which increases the stability
of the global positional embedding.

We use GraphSAGE as the backbone GNN and combine it with GPEN as well as various positional or distance
encoding methods. Our experiments on the node classification task have shown that GPEN significantly
improves the results for datasets facing the challenges mentioned earlier. GPEN generates global positional
embeddings that can effectively represent the structural information of a graph, even when node attributes
are absent.
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2 Related Work

GNNs. Given a central node in a graph in each layer of a GNN, the message-passing scheme generates a new
node feature by aggregating features from neighbours of the central node and mapping them to a new feature
space. Following this principle, many GNN designs are proposed and applied to various tasks. GCN maps
features by approximating a graph convolution filter Kipf & Welling (2017). GAT applies the self-attention
mechanism to the aggregation function Veličković et al. (2018). GraphSAGE concatenates central node
features and aggregates neighbour features before passing them to the mapping function Hamilton et al.
(2017). Regardless of the variety of aggregation and mapping functions, their corresponding computational
graphs determine the final node representations containing structural information, as shown in Figure 2.
Thus, the expressiveness of the GNN is limited if the computational graphs of nodes are not distinctive
enough. This limitation becomes even more significant when node/edge attributes are unavailable as input.

Figure 2: When passing a graph to a GNN, the computational graph shows the aggregation path of neigh-
bours’ features to the central node. Left: The computational graphs of the node u and v are distinctive
when having node attributes. Right: The computational graphs of the node u and v are the same when no
node attributes are available.
Distance and Positional Encoding. Introducing features independent of node/edge attributes to GNNs
is a way to enhance their ability to distinguish between different instances. Two types of representations that
meet this requirement are distance encoding (DE) and positional encoding (PE). Usually, GNNs learn local or
global structure representations from aggregating these embeddings and then use them in node/edge/graph
level tasks.

DE approaches aim to define the distances between the central node and its k-hop neighbours in subgraphs.
For example, to predict the existence of a link between two target nodes, SEAL labels other nodes surrounding
target nodes according to hand-crafted rules based on the shortest path distance Zhang & Chen (2018). DE-
GNN encodes the distance between each node and a target node set in a subgraph using random walk
probabilities Li et al. (2020). The target node set is the target of the task, such as single nodes (node
classification), node pairs (link prediction), and node sets (triangle prediction). Although using positional
encoding like Laplacian eigenmaps Belkin & Niyogi (2003) to generate the positional feature for each node,
PEG maps the features between the end nodes to their edge as weights, which act as distances Wang et al.
(2022). So, we classify PEG as a distance encoding method. These local-distance-aware methods have a
common drawback: structure representations are indistinguishable in the case of similar subgraphs.

On the other hand, PE approaches lean toward a unique global positional embedding for each node, which
implicitly contains structural information while making the representation diverse. Dwivedi et al. (2020)
assigns a Laplacian eigenvector to each node as their positional encoding, but this method suffers from
instability of multiple eigenvalues, and the computational complexity limits the application on large-scale
graphs. ID-GNN colours the ego network’s central node, indicating its position You et al. (2021). P-
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GNN encodes each node’s position in the graph into a low dimensional metric space through random walk
probabilities to a randomly selected node set You et al. (2019). Following Bourgain’s Theorem Bourgain
(1985), this method provides a less computationally complex and relatively stable way to generate global
positional representations. However, the length of P-GNN’s position embeddings depends on the number of
nodes, and it only uses the embeddings on edge-level tasks, which limits its capability as a general solution.

Contrastive Learning. Contrastive Learning aims to capture the invariant representation of different data
augmentation He et al. (2020); Chopra et al. (2005); Chen et al. (2020); Chen & He (2021); Zhang et al. (2022),
e.g., low-level data augmentation of an image, while keeping the semantic meaning. Technically speaking,
it pulls the positive samples closer while pushing negative samples away to achieve such invariance through
optimizing the InfoNCE loss Oord et al. (2018). Since contrastive learning is independent of downstream
tasks, it can be naturally applied to graph-based tasks. GCC Qiu et al. (2020) samples ego networks
based on random walks to augment the graph structures for contrastive learning. MVGRL Hassani &
Khasahmadi (2020) uses graph diffusion and subgraph sampling to generate different views of the same graph.
GraphCL You et al. (2020) develops contrastive learning for GNN pre-training and proposes augmenting the
graph through edge dropping and perturbation Rong et al. (2019). Those methods adopt the InfoNCE to
find invariant feature representations via perturbing the original graph structure with different augmentation
methods, failing to find a unique position representation for each node in different graph structures.

3 Method

Figure 3: The general scheme of our Global Positional Encoding Network (GPEN). Given a graph G = (V,E),
a referential node set O ∈ 2V \∅, and a node v, GPEN uses random walk probability vectors to describe the
relative distances between v and each node in the O. Then, GPEN generates a global positional embedding zv

using a permutation-invariant aggregation function with learnable parameters. zv can either be concatenated
with the node attribute of v, hv, or as the only input feature and sent to the backbone GNN. To keep
the consistency of global positional embeddings of the same node under different selections of referential
node set, GPEN generates zi and zj for the same node from two different referential node sets O and
O′, respectively. Then, we map the embeddings to a representation space as z′

i and z′
j by a nonlinear

projection head and employ InfoNCE loss, aiming to maximise these representations’ agreement. In this
space, representations of the same node under the different referential node selections are pulled towards
each other. The representations of different nodes are pushed away.

Given a graph G = (V,E), where V is a node set and E is an edge set, we define a global positional embedding
space. In this space, all nodes are assigned a unique position that reflects their global positions in the graph.
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We propose GPEN to learn this global positional embedding space from pre-defined pair-wise node distances
in the graph, which provides a more powerful encoding for describing structural information. As Figure 3
shown, GPEN generates a global position embedding for each node based on its pair-wise node distances
to a randomly selected node set, which can be concatenated with the node attribute and sent to any GNN
model for arbitrary tasks. Additionally, we apply a contrastive learning loss to the embeddings to ensure
they are unique and consistent with each node’s global position under different node set selections.

3.1 Relative Distance in Graph

Firstly, we define the distance between any two nodes in a graph to describe the local structure. The distance
should be permutation-invariant because the same graph with different orders of the nodes’ indices can result
in different adjacency matrices.

Definition 3.1 Given any two nodes u, v ∈ V in the graph G, the k-step random walk probability from u to
v is defined as:

p(k)(v|u) = (W k)uv, (1)

(W )uv =
{

(A)uv

( ∑|V|
v=1 (A)uv

)−1
, if uv ∈ E,

0, otherwise,
(2)

where A is the adjacency matrix of G.

We add multiple random walk probabilities from node u to v with different steps to obtain more local
structure information. As W can be asymmetric, we choose a vector yuv ∈ R2k to describe the relative
distance from node u to v in graph G. yuv consists of a sequence of k-step random walk probabilities from
node u to v and v to u as:

yuv =
[
p(1)(v|u), ..., p(k)(v|u), p(1)(u|v), ..., p(k)(u|v)

]
. (3)

3.2 Global Positional Encoding Network

However, there is still a limitation that the relative distance vector yuv is insufficient to provide structural
information to distinguish any two target nodes, e.g., v1 and v2. Given two subgraphs G1 = (V1,E1) and
G2 = (V2,E2) separately around the target node v1 ∈ V1 and v2 ∈ V2 in G, where v1 ̸= v2 and G1 ̸= G2, there
is a function f : Yuv → Rn that extracts the structural information around the (u, v) pair. To achieve the
permutation-invariant property, we apply a summation to aggregate the structural information and obtain
the structural representation of node v:

h(Yuv) =
∑

y∈Yuv

f(y), (4)

where Yuv = {yuv|u ∈ V} is a multiset. When Yuv1 = {yuv1 |u ∈ V1}, Yuv2 = {yuv2 |u ∈ V2}, and
Yuv1 = Yuv2 , A GNN cannot distinguish v1 and v2 by using their structural information h(Yuv1) and
h(Yuv2) alone. This limitation will harm the representation ability when labels of v1 and v2 differ. Thus, we
design the GPEN inspired by P-GNN You et al. (2019) to address this limitation.

Definition 3.2 Selecting a set of nodes O = {o1, o2, ..., oNr
} ∈ 2V \ ∅, Nr = |O|, the global position of a

node v ∈ V in the graph G can be defined as a multiset of relative distance vectors: Yv = {yov|o ∈ O}. Nodes
composing the set O are named referential nodes.

When O is appropriately selected, Yv1 can be different to Yv2 even if h(Yuv1) = h(Yuv2). The intuition of
selecting referential nodes is that each of them is sampled from the whole graph instead of a subgraph. It

5



Under review as submission to TMLR

serves as a coordinate axis that breaks the similarity of the local structure and can be used to encode a
unique and global position for all nodes in the graph.

To encode the global position, we propose the Global Positional Encoding Network (GPEN), which generates
a global positional embedding for each node:

zv = fGP EN (Yv) = f2

( ∑
y∈Yv

f1
(
y

))
, (5)

where f1 and f2 are two two-layer MLPs with a non-linearity. zv ∈ RdGP . dGP is the dimension of the
global positional embedding. Then, global positional embeddings can be individually used or concatenated
with node attributes as new inputs of any GNNs. In this paper, we uniformly select Nr nodes at random in
a graph as referential nodes.

3.3 Contrastive Loss

Our goal is to enable GPEN to learn unique global positional embeddings for all nodes in a graph. Using
these positional embeddings, the following GNN can generate discriminative local structure representations
of subgraphs in the same graph, even if they have the same structure. Meanwhile, the referential node
set O defines the global position, which is randomly selected. Thus, maintaining consistency in the global
positional embedding of the same node is essential. To achieve these two goals, P-GNN follows Bourgain’s
Theorem and samples almost all nodes in a graph multiple times. However, P-GNN loses the flexibility of
applying the embedding to arbitrary tasks while minimizing the distortion of the positional embedding. In
contrast, we only select a small number of unrepeated nodes and employ the InfoNCE loss Oord et al. (2018)
to GPEN during the training stage to meet these two goals.

Inspired by SimCLR Chen et al. (2020), for each target node in the same minibatch with N samples, a
projection head fP roj : zv → RdP roj first maps the global positional embedding to a dP roj-dimensional
representation space:

z′
v = fP roj(zv). (6)

We choose a two-layer MLP with nonlinearity as the projection head in this paper. As Figure 3 shows,
we separately pass the same batch of nodes with two different referential node sets, O and O′, to GPEN,
then acquiring projections z′

O and z′
O′ corresponding to O and O′, resulting in a set {z′

k|k = 1, 2, ..., 2N}.
Given a pair of positive samples z′

i, z′
j ∈ {z′

k}, which are from the same node, the purpose of the contrastive
prediction task is identifying z′

j in {z′
k} \ {z′

i} for z′
i. Therefore, the InfoNCE loss is chosen to minimize the

distance of the positive pair (z′
i, z′

j) and push other negative samples away:

lNCE = 1
2N

2N∑
i=1

− log
exp

(
d(z′

i, z′
j)/τ

)∑2N
k=1,k ̸=i exp

(
d(z′

i, z′
k)/τ

) , (7)

d(z′
i, z′

j) =
z′

iz
′
j

T

∥z′
i∥

∥∥z′
j

∥∥ , (8)

where τ is a temperature parameter.

In the end, the total loss ltot is formulated as:

ltot = ltk + lNCE , (9)

where ltk is the loss used in the original task, e.g., cross-entropy loss.
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4 Experiments

4.1 Datasets

In this paper, we evaluate our models on eight public datasets for node classification tasks. All graphs are
undirected and contain self-loops. The statistics of the datasets are listed in Table 1.

Citation networks. Cora and Citeseer Sen et al. (2008) are widely used citation networks where each node
represents a paper, and edges denote the relationship of citations between papers. Node attributes are the
bag-of-words representation of papers, and node labels are the academic topics of papers.

Wikipedia network. Chameleon and Squirrel are two page-page networks from the Wikipedia network
proposed by Rozemberczki et al. (2021). Each node in the network represents a web page, and an edge
represents a mutual link between two web pages. Node attributes are the presence of particular nouns on
the web page, and the task is to classify the amount of average monthly traffic on each web page.

Actor co-occurrence network. Actor is a subgraph of the film-director-actor-writer network proposed
by Tang et al. (2009). Nodes in the graph represent actors, and their attributes correspond to keywords in
the Wikipedia pages. Edges connect nodes if actors appear on the same Wikipedia page. The target is to
predict the category of each node in terms of words on their Wikipedia page.

WebKB. Cornell, Texas, and Wisconsin belong to the WebKB 1 dataset, which collects web pages from
university computer science departments. Nodes in a graph represent web pages, and edges represent hyper-
links among them. Node attributes are the bag-of-words representation of web pages. The task is to predict
the node label from student, project, course, staff, and faculty.

To identify properties of datasets, we introduce the metric of homophilic proposed by Pei et al. (2020):

β = 1
|V|

∑
v∈V

nsame

nneighbor
, (10)

where nsame is the number of v’s neighbors whose labels are same as v, nneighbor is the number of v’s
neighbors, and 0 ≤ β ≤ 1. A dataset with a larger β value tends to be homophilous, meaning nodes with
the same label tend to connect to each other and form a cluster. In turn, a graph with a small β value is
heterophilic.

Table 1: Dataset statistics.
Dataset Cora Cite. Cham. Squi. Actor Corn. Texa. Wisc.

# Nodes 2708 3327 2277 5201 7600 183 183 251
# Edges 5429 4732 36101 217073 33544 295 309 499
# Features 1433 3703 2325 2089 931 1703 1703 1703
# Classes 7 6 5 5 5 5 5 5

4.2 Experimental Setup

To evaluate the effectiveness of our GPEN, we select various DE and PE approaches for comparison, including
DE-GNN, PEG, and P-GNN. Following DE-GNN, we use a two-layer GraphSAGE as the backbone model,
and its configuration is kept the same per dataset. DE and PE embeddings from GPEN, DE-GNN, and
P-GNN are concatenated with node attributes along the channel dimension. Particularly, the referential
node set in GPEN and the anchor-sets in P-GNN are independently sampled for each epoch as You et al.
(2019) does. Meanwhile, PEG is directly built upon GraphSAGE because it essentially is an approach that
uses Laplacian eigenmaps to generate edge weights for the backbone model. We conduct the experiments
on all datasets in two settings: 1. with node attributes and 2. without node attributes. In the case of the
setting without node attributes, we adopt the approach used in Yin et al. (2020), where the degrees of each
node replace the node attributes as the input.

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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We follow the procedure proposed by Pei et al. (2020) for all experiments. Models are trained and evaluated
with ten fixed random seeds, and splits of training, validation, and test sets provided by Pei et al. (2020). The
accuracy on the test set is recorded when the model achieves the highest accuracy on the validation set. All
results are reported in the form of average accuracy over ten fixed splits of the test set. The Adam optimizer
is adopted with β1 = 0.9, and β2 = 0.999. The temperature parameter τ used in InfoNCE loss is set to 1.
During the training, the learning rate is reduced by a factor of two after 50 epochs with no improvement
of the loss in WebKB, or ten epochs in other datasets. The training progress will stop when the learning
rate is lower than 1e − 6 or the number of epochs exceeds 500. We randomly select about 10% − 30% of
the nodes across a graph with equal probabilities to form the referential node set. Other hyper-parameters
are searched through grid search and selected according to the best evaluation set results. The appendix A
lists the search space, all final hyper-parameters, and model architectures. The code is implemented using
PyTorch Amos et al. (2018) and runs on an Nvidia Tesla V100 16GB GPU.

4.3 Results and Analysis

Table 2: Accuracy (%) of state-of-the-art and GPEN augmented models on datasets whose β ≥ 0.22. Bold:
the best results. Underline: the second-best results.

Type
Dataset Cora Cite. Cham. Squi. Actor
β 0.83 0.71 0.25 0.22 0.24
Attr. w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o

None GraphSAGE 83.58 38.67 75.25 33.4 61.23 51.51 40.07 37.23 36.57 25.49

DE DE-GNN 84.41 41.51 74.17 32.31 61.78 44.21 41.55 38.83 36.86 25.27
PEG 83.90 38.23 73.98 32.63 61.03 52.35 41.10 41.32 36.90 25.36

PE P-GNN 83.86 48.47 73.61 48.33 49.41 49.91 37.27 39.73 35.63 25.48
GPEN 86.16 71.35 74.63 49.81 68.95 66.80 48.27 51.81 36.63 24.91

Table 3: Accuracy (%) of state-of-the-art and GPEN augmented models on datasets whose β < 0.22. Bold:
the best results. Underline: the second-best results.

Type
Dataset Corn. Texa. Wisc.
β 0.11 0.06 0.16
Attr. w/ w/o w/ w/o w/ w/o

None GraphSAGE 75.14 58.92 78.92 72.43 82.75 55.49

DE DE-GNN 74.05 58.65 76.22 66.76 80.00 57.84
PEG 80.00 59.19 80.81 63.51 85.29 55.69

PE P-GNN 75.95 58.92 79.46 70.27 79.41 54.51
GPEN 71.62 55.95 76.76 69.73 78.24 57.84

We evaluate GPEN and other state-of-the-art encoding methods in scenarios where node attributes are
available or absent. We generally find that PE methods, especially GPEN, outperform DE methods on
graphs tending to be homophilous. Thus, we roughly divide the results into Table 2 and 3 for datasets with
β ≥ 0.22 and β < 0.22, respectively.

When β ≥ 0.22, DE methods can barely achieve similar results to the GraphSAGE backbone model. However,
as a PE method, P-GNN has notable accuracy on Cora and Citeseer when the node attributes are absent.
It struggles to provide meaningful positional information to supplement node features when β < 0.71. On
the contrary, GPEN has almost the highest accuracy on Cora, Citeseer, Chameleon, and Squirrel. It exceeds
P-GNN by up to 19.54% on Chameleon when using node attributes. If removing the node attributes, GPEN
even surpasses the accuracy of PEG by 33.12% on Cora. Furthermore, when comparing the results of using
node attributes on Squirrel, GPEN increases its accuracy by 3.54% after removing the node attributes.

We show the limitations of GPEN that it fails on datasets with β < 0.22, where PEG outperforms other
models. The intuitive explanation is that nodes with the same label cluster in datasets with high β values. PE
methods preserve these clusters by mapping the graph’s structure to a global positional embedding space,
resulting in more distinguishable embeddings for nodes from different clusters. On the other hand, DE
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methods generate similar features when the subgraphs’ structure between different clusters is alike, making
it difficult to distinguish between them. When the β value decreases, nodes in a graph start reflecting
their roles. For instance, in the WebKB dataset, nodes with the same role have similar local structures
surrounding them, and vice versa. Although these nodes may be distributed anywhere in the graph, they
possess specific roles. Consequently, introducing explicit local structure representations with DE methods
may perform better than PE methods.

4.4 Ablation Study

4.4.1 Visualization of Global Positional Embeddings

To support our explanation in Sec. 4.3, we generate global positional embeddings using GPEN on various
graphs and visualize them in two-dimensional space through t-SNE Van der Maaten & Hinton (2008).
To exclude the influence of node attributes, we use GPEN trained without them. We observed that the
embeddings are more distinguishable on graphs with larger β values, as shown in Figure 4. On Cora and
Chameleon, the embeddings form distinct clusters for different classes. However, GPEN fails to provide
distinguishable embeddings on Actor and Cornell, as nodes from different classes are evenly distributed in
the embedding space.

(a) (b) (c) (d)

Figure 4: Visualization of global positional embeddings generated by GPEN through t-SNE. The colour of
points represents the class of nodes.

4.4.2 Stability of Global Positional Embeddings

It is essential to examine the stability of the global positional embeddings generated by GPEN when the
referential nodes change, as they are randomly selected. Therefore, we evaluate the stability of pre-trained
GPEN, and GPEN without using InfoNCE loss (GPEN-w/o-lNCE) on all datasets. We randomly select the
referential nodes 1,000 times for each test set split. We calculate the average standard deviations (s.d.) of
the accuracy for each split to obtain the s.d. result of the dataset, as shown in Table 4 and 5.

Table 4: Ablation study on stability of global positional embeddings. Models are trained on datasets whose
β ≥ 0.22. The standard deviations (s.d.) of accuracy (%) are compared in parallel. A lower s.d. is better.
↑: higher s.d. of GPEN after using the InfoNCE loss. ↓: lower s.d. of GPEN after using the InfoNCE loss.

Dataset Cora Cite. Cham. Squi. Actor
Attr. w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o

GPEN-w/o-lNCE (Ours) 0.749 10.919 0.270 1.669 0.834 0.880 1.046 1.227 0.245 0.209
GPEN (Ours) ↓ 0.361 ↓ 7.832 ↓ 0.257 ↑ 1.888 ↓ 0.829 ↓ 0.833 ↓ 0.916 ↓ 1.090 ↓ 0.243 ↑ 0.248

According to the findings, GPEN has relatively low s.d. compared to the accuracy on most datasets with
β ≥ 0.22. Meanwhile, using the InfoNCE loss on most datasets helps enhance GPEN’s stability, highlighting
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Table 5: Ablation study on stability of global positional embeddings. Models are trained on datasets whose
β < 0.22. The standard deviations (s.d.) of accuracy (%) are compared in parallel. A lower s.d. is better.
↑: higher s.d. of GPEN after using the InfoNCE loss. ↓: lower s.d. of GPEN after using the InfoNCE loss.

Dataset Corn. Texa. Wisc.
Attr. w/ w/o w/ w/o w/ w/o

GPEN-w/o-lNCE (Ours) 2.619 3.096 3.439 3.462 1.636 3.560
GPEN (Ours) ↓ 1.922 ↓ 1.685 ↓ 2.272 ↑ 5.272 ↓ 1.477 ↓ 3.208

the importance of incorporating contrastive learning techniques. Compared to the P-GNN sampling anchor-
set based on the Bourgain theorem Bourgain (1985), our philosophy is to trade off the sampling complexity
to achieve flexibility while maintaining higher accuracy by a notable margin using a simple sampling strategy
and contrastive learning.

4.4.3 Transfer learning of GPEN

We conduct transfer learning experiments to test GPEN’s ability to learn graph structure knowledge. We
load and freeze the weights of GPEN pre-trained on the source dataset and only train the backbone model
with cross-entropy loss without using node attributes on the target dataset from scratch. We denote such
model as GPEN-source dataset. Here, we select Cora and Squirrel as the source or target dataset. Table 6
shows that although GPEN’s performance is downgraded after being transferred to the new domain, it can
still outperform P-GNN. The results suggest that GPEN can generalize the graph structure knowledge and
potentially become a general model if trained on various graphs on a large scale.

Table 6: Ablation study of transfer learning of GPEN. Models are trained without using node attributes.
Accuracy (%) is compared in parallel.

Dataset Transfer learning Cora Squi.

P-GNN
✗

50.02 34.94
GPEN (Ours) 71.35 51.81

GPEN-Squi. (Ours)
✓

60.08 -
GPEN-Cora (Ours) - 46.53

4.4.4 Relative Distance of Global Positional Embeddings

Section 4.3 suggests that DE methods, particularly PEG, perform better when dealing with Actor and
WebKB datasets with small values of β. PEG creates edge weights using the L2 distance of Laplacian
eigenmaps. This method is compatible with any other global positional embeddings. It is easy to test
the effectiveness of embeddings from GPEN by sending them to PEG. The model, PEG-GPEN, has been
trained on the previously mentioned datasets. According to the results in Table 7, PEG-GPEN achieves
higher accuracy than using GPEN directly in low β value graphs. As a result, the relative distances of
global positional embeddings generated by GPEN have a similar performance as Laplacian eigenmaps. This
experiment shows that GPEN has an advantage in that its global positional embeddings can be easily
extended to low β value graphs when using their relative distance.

Table 7: Influence of applying the relative distance of global positional embeddings generated by GPEN to
PEG (PEG-GPEN). Models are trained on datasets with small β. and compared with accuracy (%). Bold:
the best model. ↑: higher accuracy compared to GPEN. ↓: lower accuracy compared to GPEN.

Dataset Actor Corn. Texa. Wisc.
Attr. w/ w/o w/ w/o w/ w/o w/ w/o

PEG 36.90 25.36 80.00 59.19 80.81 63.51 85.29 55.69
PEG-GPEN ↑ 36.82 ↑ 25.07 ↑ 75.95 ↑ 58.65 ↑ 81.08 ↓ 64.86 ↑ 82.55 ↓ 55.88
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5 Conclusion and limitation

We have proposed GPEN, which generates global positional embeddings for all nodes in a graph without need-
ing either node or edge attributes. This enhances discrimination with a relatively high degree of consistency.
Our experiments have demonstrated that our global position is superior in representing structural informa-
tion compared to DE methods on homophilic graphs. Our GPEN can be integrated with any GNN approach
to effectively enhance their performance, particularly on node classification tasks on homophilous graphs
without node attributes. We demonstrate the potential of GPEN to be independently trained on various
graph structures to learn more general global positional embeddings, which can then be applied to multiple
tasks. Although directly using the global positional embeddings generated by GPEN as node features on
heterophilic graphs may harm the GNN, it is still possible that combining GPEN with local-distance-aware
methods can make the GNN take advantage of the embeddings in such circumstances. However, universal
ways of applying the embeddings to all kinds of graphs need to be explored in the future.
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A Appendix

A.1 Code

Our code2 is implemented using PyTorch Amos et al. (2018), DGL Wang et al. (2019), and following projects:

1. Benchmarking Graph Neural Networks3 Dwivedi et al. (2020);

2. Geo-GCN4 Pei et al. (2020);

3. DE-GNN5 Yin et al. (2020);

4. PEG6 Wang et al. (2022);

5. P-GNN7 You et al. (2019);

6. SimCLR8 Chen et al. (2020).

A.2 Architecture Details

The details of the models used in this paper are illustrated in the following section.

A.2.1 GraphSAGE Backbone

The GraphSAGE Hamilton et al. (2017) module in the l-th layer of GraphSAGE backbone is formulated as:

hl+1
v = ReLU

(
UConcat(hl

v, Meanu∈N (v)h
l
u)

)
, (11)

where U ∈ Rdout×2din , N (v) is the neighbours of the central node v. The architecture of the GraphSAGE
backbone used for the node classification task in this paper is illustrated in Fig. 5.

Figure 5: Architecture of the GraphSAGE backbone. hv: the node attribute of the central node v. {hN (v)}
the node attribute set of the central node v’s neighbours. din: the dimension of inputs. dhid: the dimension
of hidden layers. dclass: the number of classes. Uclass1 ∈ Rdhid×dhid . Uclass2 ∈ Rdclass×dhid .

2The source code is available at https://github.com/Anonymous/GPEN
3https://github.com/graphdeeplearning/benchmarking-gnns
4https://github.com/graphdml-uiuc-jlu/geom-gcn
5https://github.com/VeritasYin/DEGNN_node_classification
6https://github.com/Graph-COM/PEG
7https://github.com/RecLusIve-F/P-GNN-dgl
8https://github.com/Spijkervet/SimCLR
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A.2.2 DE-GNN

The DE-GNN Li et al. (2020) generates a distance embedding for each node pair using k-hop random walk
distance. Given a central node v and a node u, the embedding luv ∈ Rk is formulated as:

luv = [(W )uv, (W 2)uv, ..., (W k)uv], (12)

where (W k)uv is the k-step random walk probability from the node u to v. The architecture of the DE-GNN
with the GraphSAGE backbone used for the node classification task in this paper is illustrated in Fig. 6.

Figure 6: Architecture of the DE-GNN combined with the GrapSAGE backbone. G: the input graph. hv: the
node attribute of the central node v. {hN (v)} the node attribute set of the central node v’s neighbours. din:
the dimension of inputs. k: the number of hops of random walk. {lN (v)v}: the set of distance embeddings
from the central node v’s neighbours to the v. dhid: the dimension of hidden layers. dclass: the number of
classes. Uclass1 ∈ Rdhid×dhid . Uclass2 ∈ Rdclass×dhid .

A.2.3 PEG

The PEG Wang et al. (2022) aims to generate a stable edge weight using Laplacian eigenmaps:

ξuv = σ
(
U2U1 ∥zu − zv∥

)
, (13)

where zu and zv are p smallest eigenvectors of the node u and v, respectively. UT
1 , U2 ∈ Rdhide .

When combining the PEG with the GraphSAGE module, Eq. 11 is re-formulated as:

hl+1
v = ReLU

(
UConcat

(
hl

v, Meanu∈N (v)(ξuvhl
u)

))
. (14)

The architecture of the PEG combined with the GraphSAGE backbone used for the node classification task
in this paper is illustrated in Fig. 7.

Figure 7: Architecture of the PEG combined with the GraphSAGE backbone. hv: the node attribute of
the central node v. {hN (v)} the node attribute set of the central node v’s neighbours. zN (v): p smallest
eigenvectors of the central node v’s neighbours. zv: p smallest eigenvectors of the central node v. {ξN (v)v}:
the set of edge weights between the central node v’s neighbours and the v. din: the dimension of inputs. dhid:
the dimension of hidden layers. dclass: the number of classes. Uclass1 ∈ Rdhid×dhid . Uclass2 ∈ Rdclass×dhid .
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A.2.4 P-GNN

Given any two nodes v and u in a graph G = (V,E), P-GNN You et al. (2019) first defines their distance in
the G:

s(v, u) = 1
dq

sp(v, u) + 1 , (15)

dq
sp(v, u) =

{
dsp(v, u), if dsp(v, u) ≤ q,

∞, otherwise,
(16)

where dsp(v, u) is the shortest path between v and u. q is the longest searching hop which should be no
larger than the diameter of G.

Following the Bourgain theorem Bourgain (1985), P-GNN samples anchor-sets Si,j ⊂ V, i =
1, 2, ..., ⌈log n⌉ , j = 1, 2, ..., ⌈log n⌉ , n = |V|. The total number of anchor-sets is NS = ⌈log n⌉2. For each
anchor-set Si,j , P-GNN independently sample each node from V with probability 1

2i .

For each node v ∈ V in the l-th layer of the P-GNN module, a matrix M l ∈ Rdhid×NS of anchor-set messages
is generated based on anchor-sets. Each column of M l is an anchor-set message M l

i formulated as:

M l
i = ReLU

(
s(v, u)U l

1Concat(hl
v, hl

u)
)
, ∀u ∈ arg min

u∈Si,j

d(v, u), i = 1, 2, ..., ⌈log n⌉ , j = 1, 2, ..., ⌈log n⌉ , (17)

where U l
1 ∈ Rdout×2din . Then, we can obtain the position-aware embedding zl

v and the message hl+1
v for the

node v:

zl
v = U l

2M l, (18)
hl+1

v = Meani∈{1,2,...,NS}M l
i , (19)

where U l
2 ∈ Rdout .

Following the original paper, we use two layers of the P-GNN module. The architecture of the P-GNN
combined with the GraphSAGE backbone used for the node classification task in this paper is illustrated in
Fig. 8.

Figure 8: Architecture of the P-GNN combined with the GraphSAGE backbone. hv: the node attribute of
the central node v. {hN (v)} the node attribute set of the central node v’s neighbours. h2

v: the second layer
input message of the central node v. h2

N (v): the set of the second layer input messages of the central node
v’s neighbours. dm: the dimension of the messages. z2

v : the second layer output position-aware embedding
of the node v. {z2

N (v) }: the set of the second layer output position-aware embeddings of the central
node v’s neighbours. din: the dimension of inputs. dm: the dimension of output messages in the P-GNN.
NS: the total number of anchor-sets. dhid: the dimension of hidden layers. dclass: the number of classes.
Uclass1 ∈ Rdhid×dhid . Uclass2 ∈ Rdclass×dhid .

A.2.5 GPEN

As Fig. 9 shows, our GPEN consists of two two-layer MLPs and summation aggregation to generate the global
positional embeddings for each node. Fig. 10 illustrates the projection head that maps the global positional
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embeddings to a representation space where the InfoNCE loss Oord et al. (2018) trains the GPEN. The
architecture of the GPEN combined with the GraphSAGE backbone used for the node classification task in
this paper is shown in Fig. 11.

Figure 9: Architecture of the GPEN. k: the number of steps of random walk. Yv: The k-step random walk
probability vector set representing distances from referential nodes to node v. Nr: the number of referential
nodes. dGP E : the dimension of the global positional embedding. zv: the global positional embedding of the
node v. UGP EN1 ∈ R2k×2dGP E . UGP EN2, UGP EN3 ∈ R2dGP E×2dGP E . UGP EN4 ∈ R2dGP E×dGP E

Figure 10: Architecture of projection head. zv: the global positional embedding of the node v. dGP E : the
dimension of the global positional embedding. dP roj : the output dimension of the projection head. z′

v: the
projection of the node v’s global positional embedding. UP roj1 ∈ RdGP E×dP roj . UP roj2 ∈ RdP roj×dP roj .

Figure 11: Architecture of the GPEN combined with the GrapSAGE backbone. O, O′: the referential node
sets with different node selections. G: the input graph. hv: the node attribute of the central node v.
{hN (v)} the node attribute set of the central node v’s neighbours. din: the dimension of inputs. dGP E : the
dimension of the global positional embedding. zO

v , zO′

v : the global positional embedding of the node v under
the corresponding referential node set. {zO

N (v)}, {zO′

N (v)}: the set of the global positional embeddings of the
central node v’s neighbours under the corresponding referential node set. dP roj : the output dimension of the
projection head. dhid: the dimension of hidden layers. dclass: the number of classes. Uclass1 ∈ Rdhid×dhid .
Uclass2 ∈ Rdclass×dhid .
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A.2.6 PEG-GPEN

We replace the eigenvectors used in PEG with the global positional embeddings generated by GPEN and
name the architecture PEG-GPEN. The design of PEG-GPEN combined with the GraphSAGE backbone is
illustrated in Fig. 12.

Figure 12: Architecture of the PEG combined with the GrapSAGE backbone using the global positional
embeddings generated by the GPEN. O, O′: the referential node sets with different node selections. G:
the input graph. hv: the node attribute of the central node v. {hN (v)} the node attribute set of the
central node v’s neighbours. din: the dimension of inputs. dGP E : the dimension of the global positional
embedding. zO

v , zO′

v : the global positional embedding of the node v under the corresponding referential
node set. {zO

N (v)}, {zO′

N (v)}: the set of the global positional embeddings of the central node v’s neighbours
under the corresponding referential node set. {ξON (v)v}: the set of edge weights between the central node
v’s neighbours and the v under the corresponding referential node set. dP roj : the output dimension of the
projection head. dhid: the dimension of hidden layers. dclass: the number of classes. Uclass1 ∈ Rdhid×dhid .
Uclass2 ∈ Rdclass×dhid .

A.3 Hyper-parameter Details

The hyper-parameter search space of all experiments conducted by ourselves is listed as Table 8.
After the grid search, we select the final hyper-parameters for each experiment according to its
best validation set result. The final hyper-parameters of each experiment are listed as Ta-
ble 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, and 24.

Table 8: Hyper-parameter search space of all experiments conducted by ourselves. wd: weight decay. drop:
dropout rate. k: the number of steps of random walk. Nr factor: percentage of referential nodes compared
to total nodes in a graph. lrinit: initial learning rate.

Hyperparameter Search space Dataset
wd 1e-6, 5e-5

Alldrop 0.2, 0.4
k 5, 10, 20

Nr factor
10%, 20%, 30% Cora, Cite., Cham., Corn., Texa., Wisc.
10%, 15% Actor
10%, 20% Squi.

lrinit

1e-3, 5e-3, 1e-2 Corn., Texa., Wisc.
1e-4, 5e-4, 1e-3 Cham., Squi.
5e-4, 1e-3, 5e-3 Cora, Cite., Actor
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Table 9: Final hyper-parameters of the GraphSAGE using node attributes. lrinit: initial learning rate. wd:
weight decay. bs: batch size. drop: dropout rate. dhid: the number of hidden units.

Dataset Cora Cite. Cham. Squi. Actor Corn. Texa. Wisc.

lrinit 5e-3 1e-3 1e-3 1e-3 5e-4 5e-3 1e-2 1e-2
wd 1e-6 1e-6 1e-6 1e-6 1e-6 5e-5 5e-5 5e-5
bs 32 32 32 8 16 16 16 16
drop 0.4 0.4 0.2 0.2 0.4 0.4 0.4 0.4
dhid 32 32 64 32 32 64 64 64

Table 10: Final hyper-parameters of the GraphSAGE without using node attributes. lrinit: initial learning
rate. wd: weight decay. bs: batch size. drop: dropout rate. dhid: the number of hidden units.

Dataset Cora Cite. Cham. Squi. Actor Corn. Texa. Wisc.

lrinit 5e-3 5e-3 1e-3 1e-3 1e-3 1e-3 5e-3 1e-2
wd 1e-6 1e-6 1e-6 1e-6 1e-6 5e-5 5e-5 5e-5
bs 32 32 32 8 16 16 16 16
drop 0.4 0.4 0.2 0.2 0.4 0.4 0.4 0.4
dhid 32 32 64 32 32 64 64 64

Table 11: Final hyper-parameters of the DE-GNN combined with the GrapSAGE backbone using node
attributes. lrinit: initial learning rate. wd: weight decay. bs: batch size. drop: dropout rate. k: the number
of steps of random walk. dhid: the number of hidden units.

Dataset Cora Cite. Cham. Squi. Actor Corn. Texa. Wisc.

lrinit 5e-3 1e-3 5e-4 1e-3 5e-4 1e-2 5e-3 5e-3
wd 1e-6 1e-6 1e-6 1e-6 1e-6 5e-5 5e-5 5e-5
bs 32 32 32 8 16 16 16 16
drop 0.4 0.4 0.2 0.2 0.4 0.4 0.4 0.4
k 10 5 5 20 20 10 5 5
dhid 32 32 64 32 32 64 64 64

Table 12: Final hyper-parameters of the DE-GNN combined with the GrapSAGE backbone without using
node attributes. lrinit: initial learning rate. wd: weight decay. bs: batch size. drop: dropout rate. k: the
number of steps of random walk. dhid: the number of hidden units.

Dataset Cora Cite. Cham. Squi. Actor Corn. Texa. Wisc.

lrinit 5e-3 1e-3 1e-3 1e-3 5e-4 1e-3 1e-2 1e-2
wd 1e-6 1e-6 1e-6 1e-6 1e-6 5e-5 5e-5 5e-5
bs 32 32 32 8 16 16 16 16
drop 0.4 0.4 0.2 0.2 0.4 0.4 0.4 0.4
k 5 10 20 5 5 5 10 10
dhid 32 32 64 32 32 64 64 64
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Table 13: Final hyper-parameters of the PEG combined with the GrapSAGE backbone using node attributes.
lrinit: initial learning rate. wd: weight decay. bs: batch size. drop: dropout rate. p smallest eigenvectors.
dhide : the number of hidden units in PEG. dhid: the number of hidden units in other parts of the model.

Dataset Cora Cite. Cham. Squi. Actor Corn. Texa. Wisc.

lrinit 5e-3 5e-4 5e-4 1e-3 1e-3 1e-2 1e-2 1e-2
wd 1e-6 1e-6 1e-6 1e-6 1e-6 5e-5 5e-5 5e-5
bs 32 32 32 8 16 16 16 16
drop 0.4 0.4 0.2 0.2 0.4 0.4 0.4 0.4
p 128 128 128 128 128 128 128 128
dhide 32 32 32 32 32 32 32 32
dhid 32 32 64 32 32 64 64 64

Table 14: Final hyper-parameters of the PEG combined with the GrapSAGE backbone without using node
attributes. lrinit: initial learning rate. wd: weight decay. bs: batch size. drop: dropout rate. p: p smallest
eigenvectors. dhide

: the number of hidden units in PEG. dhid: the number of hidden units in other parts of
the model.

Dataset Cora Cite. Cham. Squi. Actor Corn. Texa. Wisc.

lrinit 5e-3 5e-3 1e-3 1e-3 5e-3 5e-3 1e-2 1e-2
wd 1e-6 1e-6 1e-6 1e-6 1e-6 5e-5 5e-5 5e-5
bs 32 32 32 8 16 16 16 16
drop 0.4 0.4 0.2 0.2 0.4 0.4 0.4 0.4
p 128 128 128 128 128 128 128 128
dhide 32 32 32 32 32 32 32 32
dhid 32 32 64 32 32 64 64 64

Table 15: Final hyper-parameters of the P-GNN combined with the GrapSAGE backbone using node at-
tributes. lrinit: initial learning rate. wd: weight decay. bs: batch size. drop: dropout rate. dm: the
dimension of output messages in the P-GNN. dhid: the number of hidden units.

Dataset Cora Cite. Cham. Squi. Actor Corn. Texa. Wisc.

lrinit 5e-3 5e-3 1e-3 1e-3 5e-4 1e-2 1e-2 1e-2
wd 1e-6 1e-6 1e-6 1e-6 1e-6 5e-5 5e-5 5e-5
bs 32 32 32 8 16 16 16 16
drop 0.4 0.4 0.2 0.2 0.4 0.4 0.4 0.4
dm 32 32 64 32 32 64 64 64
dhid 32 32 64 32 32 64 64 64

Table 16: Final hyper-parameters of the P-GNN combined with the GrapSAGE backbone without using
node attributes. lrinit: initial learning rate. wd: weight decay. bs: batch size. drop: dropout rate. dm: the
dimension of output messages in the P-GNN. dhid: the number of hidden units.

Dataset Cora Cite. Cham. Squi. Actor Corn. Texa. Wisc.

lrinit 5e-3 5e-3 5e-4 1e-3 5e-4 1e-3 1e-3 1e-3
wd 1e-6 1e-6 1e-6 1e-6 1e-6 5e-5 5e-5 5e-5
bs 32 32 32 8 16 16 16 16
drop 0.4 0.4 0.2 0.2 0.4 0.4 0.4 0.4
dm 32 32 64 32 32 64 64 64
dhid 32 32 64 32 32 64 64 64
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Table 17: Final hyper-parameters of the GPEN combined with the GrapSAGE backbone using node at-
tributes. Nr factor: percentage of referential nodes compared to total nodes in a graph. lrinit: initial
learning rate. wd: weight decay. bs: batch size. drop: dropout rate. k: the number of steps of random
walk. dGP E : the dimension of the global positional embeddings. dhid: the number of hidden units. dP roj :
the output dimension of the projection head.

Dataset Cora Cite. Cham. Squi. Actor Corn. Texa. Wisc.

Nr factor 10% 30% 20% 20% 10% 10% 10% 20%
lrinit 1e-3 1e-3 5e-4 1e-4 1e-3 1e-3 1e-2 1e-2
wd 1e-6 1e-6 1e-6 1e-6 1e-6 5e-5 5e-5 5e-5
bs 32 32 32 8 16 16 16 16
drop 0.4 0.4 0.2 0.2 0.4 0.4 0.4 0.4
k 5 10 5 10 20 5 5 10
dGP E 32 32 64 32 32 64 64 64
dhid 32 32 64 32 32 64 64 64
dP roj 32 32 64 32 32 64 64 64

Table 18: Final hyper-parameters of the GPEN combined with the GrapSAGE backbone without using
node attributes. Nr factor: percentage of referential nodes compared to total nodes in a graph. lrinit: initial
learning rate. wd: weight decay. bs: batch size. drop: dropout rate. k: the number of steps of random
walk. dGP E : the dimension of the global positional embeddings. dhid: the number of hidden units. dP roj :
the output dimension of the projection head.

Dataset Cora Cite. Cham. Squi. Actor Corn. Texa. Wisc.

Nr factor 30% 20% 30% 20% 15% 30% 10% 20%
lrinit 5e-3 5e-3 1e-3 1e-3 1e-3 1e-4 1e-3 1e-3
wd 1e-6 1e-6 1e-6 1e-6 1e-6 5e-5 5e-5 5e-5
bs 32 32 32 8 16 16 16 16
drop 0.4 0.4 0.2 0.2 0.4 0.4 0.4 0.4
k 20 10 20 5 10 5 5 20
dGP E 32 32 64 32 32 64 64 64
dhid 32 32 64 32 32 64 64 64
dP roj 32 32 64 32 32 64 64 64

Table 19: Final hyper-parameters of the GPEN combined with the GrapSAGE backbone using node at-
tributes and without using InfoNCE loss. Nr factor: percentage of referential nodes compared to total nodes
in a graph. lrinit: initial learning rate. wd: weight decay. bs: batch size. drop: dropout rate. k: the number
of steps of random walk. dGP E : the dimension of the global positional embedding. dhid: the number of
hidden units. dP roj : the output dimension of the projection head.

Dataset Cora Cite. Cham. Squi. Actor Corn. Texa. Wisc.

Nr factor 20% 20% 30% 20% 10% 10% 10% 10%
lrinit 5e-4 5e-4 5e-4 1e-4 1e-3 5e-3 5e-3 5e-3
wd 1e-6 1e-6 1e-6 1e-6 1e-6 5e-5 5e-5 5e-5
bs 32 32 32 8 16 16 16 16
drop 0.4 0.4 0.2 0.2 0.4 0.4 0.4 0.4
k 20 10 5 5 5 5 5 20
dGP E 32 32 64 32 32 64 64 64
dhid 32 32 64 32 32 64 64 64
dP roj 32 32 64 32 32 64 64 64
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Table 20: Final hyper-parameters of the GPEN combined with the GrapSAGE backbone without using node
attributes and InfoNCE loss. Nr factor: percentage of referential nodes compared to total nodes in a graph.
lrinit: initial learning rate. wd: weight decay. bs: batch size. drop: dropout rate. k: the number of steps of
random walk. dGP E : the dimension of the global positional embedding. dhid: the number of hidden units.
dP roj : the output dimension of the projection head.

Dataset Cora Cite. Cham. Squi. Actor Corn. Texa. Wisc.

Nr factor 20% 30% 30% 20% 10% 10% 30% 20%
lrinit 5e-3 5e-3 1e-3 5e-4 1e-3 1e-2 5e-3 1e-2
wd 1e-6 1e-6 1e-6 1e-6 1e-6 5e-5 5e-5 5e-5
bs 32 32 32 8 16 16 16 16
drop 0.4 0.4 0.2 0.2 0.4 0.4 0.4 0.4
k 20 10 10 10 20 20 10 10
dGP E 32 32 64 32 32 64 64 64
dhid 32 32 64 32 32 64 64 64
dP roj 32 32 64 32 32 64 64 64

Table 21: Final hyper-parameters of the PEG-GPEN combined with the GrapSAGE backbone using node
attributes. Nr factor: percentage of referential nodes compared to total nodes in a graph. lrinit: initial
learning rate. wd: weight decay. bs: batch size. drop: dropout rate. k: the number of steps of random walk.
dGP E : the dimension of the global positional embedding. dhide : the number of hidden units in PEG. dhid:
the number of hidden units in other parts of the model. dP roj : the output dimension of the projection head.

Dataset Actor Corn. Texa. Wisc.

Nr factor 10% 20% 20% 10%
lrinit 1e-3 1e-3 1e-2 5e-3
wd 1e-6 5e-5 5e-5 5e-5
bs 16 16 16 16
drop 0.4 0.4 0.4 0.4
k 5 5 10 20
dGP E 32 64 64 64
dhide 32 32 32 32
dhid 32 64 64 64
dP roj 32 64 64 64

Table 22: Final hyper-parameters of the PEG-GPEN combined with the GrapSAGE backbone without using
node attributes. Nr factor: percentage of referential nodes compared to total nodes in a graph. lrinit: initial
learning rate. wd: weight decay. bs: batch size. drop: dropout rate. k: the number of steps of random walk.
dGP E : the dimension of the global positional embedding. dhide

: the number of hidden units in PEG. dhid:
the number of hidden units in other parts of the model. dP roj : the output dimension of the projection head.

Dataset Actor Corn. Texa. Wisc.

Nr factor 15% 20% 20% 10%
lrinit 5e-4 1e-3 1e-2 1e-2
wd 1e-6 5e-5 5e-5 5e-5
bs 16 16 16 16
drop 0.4 0.4 0.4 0.4
k 20 10 5 10
dGP E 32 64 64 64
dhide 32 32 32 32
dhid 32 64 64 64
dP roj 32 64 64 64
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Table 23: Final hyper-parameters of the pre-trained GPEN combined with the GrapSAGE backbone without
using node attributes. The weights of GPEN are pre-trained on Squirrel and frozen. The GraphSAGE back-
bone is trained on Cora only using cross-entropy loss. Nr factor: percentage of referential nodes compared
to total nodes in a graph. lrinit: initial learning rate. wd: weight decay. bs: batch size. drop: dropout rate.
k: the number of steps of random walk. dGP E : the dimension of the global positional embedding. dhid: the
number of hidden units.

Dataset Cora

Nr factor 30%
lrinit 5e-3
wd 1e-6
bs 32
drop 0.4
k 5
dGP E 32
dhid 32

Table 24: Final hyper-parameters of pre-trained GPEN combined with the GraphSAGE backbone without
using node attributes. The weights of GPEN are pre-trained on Cora and frozen. The GraphSAGE backbone
is trained on Squirrel only using cross-entropy loss. Nr factor: percentage of referential nodes compared to
total nodes in a graph. lrinit: initial learning rate. wd: weight decay. bs: batch size. drop: dropout rate.
k: the number of steps of random walk. dGP E : the dimension of the global positional embedding. dhid: the
number of hidden units.

Dataset Squi.

Nr factor 20%
lrinit 1e-3
wd 1e-6
bs 32
drop 0.4
k 20
dGP E 32
dhid 32
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