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Abstract

Personalized federated learning (PFL) aims at learning personalized models for
users in a federated setup. We focus on the problem of privately estimating his-
tograms (in the KL metric) for each user in the network. Conventionally, for more
general problems learning a global model jointly via federated averaging, and
then finetuning locally for each user has been a winning strategy. But this can be
suboptimal if the user distribution observes diverse subpopulations, as one might
expect with user vocabularies. To tackle this, we study an alterative PFL technique:
clustering based personalization that first identifies diverse subpopulations when
present, enabling users to collaborate more closely with others from the same sub-
population. We motivate our algorithm via a stylized generative process: mixture
of Dirichlets, and propose initialization/pre-processing techniques that reduce the
iteration complexity of clustering. This enables the application of privacy mech-
anisms at each step of our iterative procedure, making the algorithm user-level
differentially private without severe drop in utility due to added noise. Finally, we
present empirical results on Reddit users data where we compare our method with
other well-known PFL approaches applied to private histogram estimation.

1 Introduction

In many modern, data-intensive applications like recommendation systems, image recognition, and
conversational AI, federated learning (FL) has become a vital component to learn from user data that
is stored on mobile phones and personal computers while preserving privacy (Konečnỳ et al., 2016).
At the same time, FL presents numerous statistical and computational challenges due to its highly
decentralized system architecture and heterogeneity in user data distributions (Li et al., 2020). In
this work, we focus on tackling the statistical heterogeneity problem through personalized federated
learning (PFL) (Wu et al., 2022). Here, the goal is to learn individual predictive models for each
user (Fallah et al., 2020). For example, given the same context sentence users would likely differ in
their preferences over the next token they may type on their mobile device (Hard et al., 2018). A step
towards learning personalized language models (Salemi et al., 2023) would be to first learn models
that accurately estimate the marginal token distribution for each user given a few tokens from the
user — which is the focus of this work.

We take a closer look at the specific PFL problem of privacy preserving personalized histogram
estimation in a federated setting. If each user had infinite samples, then this problem can be solved
locally and privately by using only user data. But in practice, user data is limited, and users
can potentially benefit significantly from collobarating with others. This is especially true if the
histograms share a latent structure, for example, if the users have similar distribution over common
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tokens and differ in rare tokens. One way of collaborating would be to share data between users,
but this violates privacy. A winning strategy for satisfying these constraints has been to learn a
single global model privately from data across all users (FedAvg (Konečnỳ et al., 2016)), and then
finetuning these models for each user locally (Cheng et al., 2021, 2023; Collins et al., 2022). For
privacy preserving personalization and multi-task learning, some works have also proposed variants
of gradient based optimization approaches that learn a single globally shared structure privately
(e.g., latent low rank subspace) before locally adapting it for each user (Jain et al., 2021; Hu et al.,
2021). But the above strategies may not be optimal for distributions with diverse and sufficiently well
concentrated subpopulations (e.g., mixture of Dirichlets), which can be expected specifically for user
histogram distributions.

In this work, we begin by introducing the problem of estimating histograms in Kullback-Leibler
(KL) divergence for users in a federated network. We follow this with a stylized model that makes
distributional assumptions on the data generative process. For this process, we understand the Bayes
optimal estimators for each user’s histogram, and define analogous estimators for typical methods
like FedAvg, and finetuning. Motivated by this, we propose an algorithm that enables a stronger
collaboration between similar cohorts of users, i.e., users having similar empirical data distributions.
At a high level, our algorithm uses clustering to identify diverse subpopulations of users and learns
a small set of diverse models for each subpopulation. These diverse models are further finetuned
(personalized) for each user. We also propose initialization and pre-processing techniques that further
reduces iteration complexity for clustering. This allows us to use standard privacy mechanisms that
preserve user-level differential privacy (DP) (Dwork, 2010) at each iteration. For appropriate privacy
parameters the full algorithm also satisfies user-level DP.

Recently, some prior works (Ghosh et al., 2020; Werner et al., 2022; Marfoq et al., 2021) proposed
clustering based methods for canonical PFL problems like optimizing a smooth/strongly convex
function over different user distributions (which may not be satisfied by KL metric). Our algorithm
can be viewed as an addition to these approaches, but specifically tailored for histogram estimation in
the KL metric, with the added benefit of ensuring a strong notion of user participation privacy.

We validate both non-private and private versions of our algorithm on the real world data distribution
of Reddit users (Caldas et al., 2018). In the non-private setting, we find that our approach yields at
least 5% gains over typical baselines: learning a single global histogram, local histograms for each
user, and their combination (finetuning). To a good extent, this validates our distributional assumption
that motivated our algorithm. In the private setting, we find that our adaptive mean estimation (per
iteration) and pre-processing techniques limit any drop in utility caused by noise addition, ensuring
the privacy mechanisms do not eat away gains we observed non-privately.

2 Problem Setup

For learning user-specific histograms, one can naively use just user data alone but this is statistically
inefficient since in most cases number of data points (tokens) per user is much lesser than size of
the user vocabulary. Thus, if there is any structure (e.g., distribution over common tokens) that is
shared across users, a more efficient learning algorithm will first learn the shared structure before
personalizing it for each user. One way of recovering this structure is to make some assumptions on
the distribution of user histograms, which is what we do later in this section. Before that we introduce
some common notations, provide a formal introduction of the problem , and enumerate the different
goals for any algorithm intended to solve it.

Notations. We will use P to denote a distribution, P̂ for an estimate of P , P for sets and algorithms
(clear from context), and P for random matrices where P:,i/Pi,: indexes into the ith column/row
respectively. For any iterative procedure where the variables evolve with every step, the variable p at
tth timestep is denoted with p(t). The ith axis aligned vector is ei, where ei[j] = 1 if j = i, else 0.

Setup. The histogram for user u, denoted as Qu ∈ ∆|V|−1 is a categorical distribution over a
discrete vocabulary V , where d =: |V|. Given, m samples from user u, we can estimate its empirical
distribution Q̂u where Q̂u ∼ 1/m ·Multinomial(Qu,m). There exists an unknown meta-distribution
D over user histograms Qu, from which n users are sampled IID, and sampling further from the
corresponding multinomials gives us the set S =: {Q̂u}nu=1.
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Goals. The goal is to define an algorithm A, that takes as input the set S and outputs a functional
AS . This map AS : ∆|V|−1 7→ ∆|V|−1 maps the empirical distribution Q̂u to AS(Q̂u) so that
the distance to the true distribution Qu is low in KL divergence: KL(Qu || AS(Q̂u)). There are
two specific goals that we outline: (1) utility guarantee: A looks to minimize the expected KL
divergence over D: ESEQu

EQ̂u|Qu

[
KL(Qu || AS(Q̂u))

]
; and (2) privacy guarantee: A must be

(ε, δ) user-level differentially private (see Definition 2.1).
Definition 2.1 ((ε, δ)-Differential Privacy (DP) (Dwork et al., 2016)). Given ε ≥ 0, δ ∈ [0, 1] and
a neighbouring relation ∼, a randomized mechanism M : D → Y from the set of datasets to an
output space Y is (ϵ, δ)-differentially private if for all neighboring datasets D ∼ D′ ∈ D, and all
events E ⊆ Y ,

Pr[M(D) ∈ E] ≤ eϵ · Pr[M(D′) ∈ E] + δ, (1)

where probabilities are taken over the randomness of M. When δ = 0, we refer to this as pure ε-DP.

Note that in the aforementioned setup, the algorithm AS outputs a personalized (different) histogram
estimate AS(Q̂u) for each user u. In general, outlining a personalization algorithm that is minimax
optimal for a large class of meta-distributions D may not only be challenging, but may also yield
overly pessimistic solutions. For example, when each Qu is a uniform distribution over a uniformly
random subset of V , then optimal AS does not benefit from other users’ data, where as when Qu is
identical for all users then AS(Q̂u) 7→ 1/n

∑
Q∈S Q is minimax optimal. To avoid such issues, we

shall now introduce a stylized generative model that makes some plausible assumptions on D.

2.1 Stylized generative model: mixture of Dirichlets

In this subsection, we introduce assumptions on D by outlining a probabilistic graphical model that
underpins the sampling of user vocabularies Qu. The metadistribution D is a mixture of K Dirichlet
distributions: {Dir(αP1),Dir(αP2) . . . ,Dir(αPK)}. The true histogram Qu for user u is sampled
from D in the following manner:

1. Sample the identity of the underlying Dirichlet distribution (cluster): cu,

P[cu = c] = wc, where, wc > 0,
∑
c∈[K]

wc = 1, min
c

wc = Ω(1/k).

2. Then, sample Qu ∼ Dir(αPcu).
3. Recall that for users in S, the empirical distribution Q̂u ∼ 1/m ·Multinomial(Qu,m).

As a warmup, we will first go through typical federated learning algorithms in this setup and the
closed form realizations of the corresponding estimators. Then, we introduce our estimator which
involves identifying cluster (underlying Dirichlet) membership for each user.

FedAvg. One of the most common federated learning algorithms is FedAvg (Konečnỳ et al., 2016)
which trains a single global model (single histogram Qfa) that does well on all user datapoints in the
set of train users:

Qfa =: argmin
Q∈∆(V)

∑
Q̂u∈S

KL(Q̂u || Q) (2)

Lemma 2.1 (FedAvg estimate). The FedAvg model is given by Qfa = 1
n

∑
Q̂u∈S Q̂u.

Finetuning. Given a a global model, a popular method to personalize the model for each user is to
finetune (Collins et al., 2022; Cheng et al., 2023). In our setup, we use the term finetuning Q for user
u for any estimator that takes in Q, Q̂u and outputs: λQ+ (1− λ)Q̂u for λ ∈ [0, 1]. For example, in
this case finetuning the FedAvg model would mean that the output for user u is: λQfa + (1− λ)Q̂u.
Lemma 2.2 (Bayes optimal estimator). Given Pcu , α the Bayes optimal estimator is: ( α

α+m )Pu +

( m
α+m )Q̂u, i.e., EQu|Pcu

EQ̂u|Qu

[
KL(Qu || (( α

α+m )Pu + ( m
α+m )Q̂u))

]
, matches the loss of the

optimal algorithm for Pcu .
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Intractability of Bayes optimal estimator. From Lemma 2.2, we can see that the Bayes optimal
predictor finetunes the cluster center Pcu for each user. The problem here is that the cluster centers
{P1, . . . , PK}, as well as the memberships cu are unknown. In general, if we can compute the poste-
rior distribution over Qu | Q̂u,S, the mean of this posterior is the optimal predictor we are looking
for (see Appendix A). But computing such a posterior is intractable, even if we assume reasonable
priors over {P1, . . . , PK}. To overcome this challenge, we propose the following approximation.

Proposed estimator. Using the training set S, and knowledge of number of clusters K, we can
compute the maximum likelihood estimates (MLE) P̂1, . . . , P̂K for the cluster centers. Then, given
the empirical data Q̂u for a test user, we can compute the MLE for the membership variable ĉu,
conditioned on the estimates P̂1, . . . , P̂K . Note that computing MLE estimates P̂1, . . . , P̂K involves
solving a non-concave maximization problem for mixture of Dirichlets, even when Q̂u = Qu for the
train users. Typically, this is done using Expectation-Maximization algorithms (EM) (Balakrishnan
et al., 2017). In our setting, the distribution Qu for each user belongs to only one cluster cu. Hence,
we model this as a latent variable and given the maximum likelihood estimate ĉu for this variable,
with Ck =: {u : ĉu = k}, the MLE estimate for P̂k is: 1/|Ck|

∑
Q̂u∈Ck

Q̂u. Based on this simple
reduction, we can conclude that the solution for the following clustering problem is realized by the
MLE estimates.

min
P̂1,P̂2,...,P̂K

∑
u∈S

min
k∈[K]

KL(Q̂u || P̂k) (3)

Since P̂k is the cluster averaged model for cluster k, we can personalize the cluster model P̂ĉu by
finetuning: Q̂u 7→ λP̂ĉu + (1 − λ)Q̂u, where λ is a hyperparameter tuned on a validation set of
users. Based on the above principle, in the next section we discuss an iterative algorithm to discover
the cluster the empirical distributions in S, and then estimate the cluster centers by averaging the
distributions in each cluster.

3 Non-private and Private Algorithms for Histogram Clustering

We are now ready to introduce iterative algorithms for clustering the empirical distributions in S
(objective in Equation 3), and recover the cluster centers. We first present a non-private algorithm,
along with a k-means++ (Arthur and Vassilvitskii, 2007) style initialization scheme. Then, we
shall discuss the private version of it, with some pre-processing steps that are crucial in reducing the
dimensionality of the problem, and the iteration complexity of the clustering procedure.

First, we use Algorithm 1 to give us well-separated initial cluster centers P̂ (0)
1 , . . . , P̂

(K)
1 . It takes as

input the data matrix S ∈ Rn×d (constructed from S by ordering clients and slotting their data in
the matrix), where row u Su,: = Q̂u ∈ ∆(V) is the empirical distribution for user u. It also takes
as input the number of clusters k, and a scalar temperature τ > 0. The algorithm begins by picking
the first cluster uniformly from the set S. Then, it picks the next cluster from a distribution over the
set S, which up weights user u if their data Q̂u is not close to any of the already picked centers. It
proceeds this way until all K initial centers are chosen. The temperature τ scales the smoothness
of the distribution at each iteration. When τ → 0, we pick the center from a uniform distribution
(random initialization), and when τ → ∞, we pick the most underfit user with probability → 1.

Algorithm 1 Cluster Initialization
Require: S ordered dataset ∈ Rn×d, number of clusters K, temperature τ > 0.
Ensure: Initial cluster centers P̂ (0)

1 , . . . , P̂
(0)
K .

1: Sample j ∼ Uniform({1, . . . , n}) and set P̂ (0)
1 ← Sj,:.

2: Initialize k ← 1.
3: while k < K do
4: k ← k + 1.

5: Sample j from {1, . . . , n} where Prob(j = u) ∝ exp
(
τ ·minj′∈[k] KL(P̂

(0)

j′ || Q̂u)
)

.

6: P̂
(0)
k ← Sj,:.

7: end while
8: Return P̂

(0)
1 , . . . , P̂

(0)
K .
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Next, we use Algorithm 2 to run multiple rounds of the following two steps: (1) re-centering
of clusters (step 5), and (2) re-assignement of user distributions to clusters (step 7). Each step
greedily reduces the objective value in Equation equation 3. In addition to S, k it also takes as
input the maximum number of clustering iterations. Note that this algorithm is similar to LLoyd’s
k-means (Ostrovsky et al., 2013), except that the re-assignment step uses the KL metric, as opposed
to the euclidean norm for k-means. Directly applying results from Balakrishnan et al. (2017) we can
see that under some initialization conditions the rate of mis-clustering (incorrect cluster assignments)
goes down exponentially with each iteration of Algorithm 2. As the cluster assignments improve, so
does each individual estimate P̂k which is given by the average of Q̂us assigned to cluster k.

Algorithm 2 Non-private Histogram Clustering
Require: S ordered dataset ∈ Rn×d, k number of cluster centers, T maximum iterations
Ensure: Assignment vectors Ĉ ∈ Rn×k where Ci,: ∈ {e1, e2, . . . , ek}, cluster centers P̂1, . . . , P̂K

1: Initialize cluster centers P̂ (0)
1 , . . . , P̂

(0)
k using Algorithm 1.

2: Initialize t← 0.
3: Initialize Ĉ

(0)
u,: = ej if j ∈ argmink∈[K] KL(Q̂u || P̂ (0)

k ).
4: while t < T do

5: P̂ t+1
k ←

S⊤Ĉ
(t)
:,k

∥Ĉ(t)
:,k

∥1
if ∥Ĉ(t)

:,k∥1 > 0, else [1/d, . . . , 1/d]⊤.

6: t← t+ 1
7: Ĉ

(t+1)
u,: ← ej if j ∈ argmink∈[K] KL(Q̂u || P̂ (t+1)

k ).
8: end while
9: Ĉ← Ĉ(t), P̂k ← P̂

(T )
k ∀k ∈ [K].

10: Return Ĉ, P̂1, P̂2, . . . , P̂K .

In order to make each iteration (step 5-step 7) of Algorithm 2 private, we only need to make
the re-centering (step 5) differentially private, since the cluster assignments are computed locally
for each user from private estimates P̂

(t)
1 , . . . , P̂

(t)
K . Note, that the re-centering step for a cluster

simply computes the mean of user distributions that were assigned to it in the previous step. We
use adaptive clipping techniques (Andrew et al., 2021; Cummings et al., 2022) to make the mean
estimation user-level private. We outline this in Algorithm 3. Essentially, this involves four parts:
(1) privately estimate the mean of all datapoints up to some confidence interval determined by the
privacy parameters, and statistical hardness (b1); and (2) clip each vector in S after subtracting
the estimated mean b1, and scaling appropriately with

√
b1; (3) average the clipped quantities (by

multiplying with Ĉ
(t)
:,k ) and add much smaller level of privacy noise to get b2; and finally (4) rescale

b2 using b1. The key idea behind this procedure is that first step already gives us a reasonable
range for the mean. Then, we refine the confidence interval around this mean if users in cluster k
have well concentrated distributions, i.e., element wise Qu ∈

[
b1 − c

√
b1/d, b1 + c

√
b1/d
]

with high
probability. In Theorem 3.1 we provide formal privacy guarantees for the full algorithm.

Algorithm 3 Private Centering

Require: S ordered dataset ∈ Rn×d, Ĉ(t) old cluster assignments, (ε, δ) privacy parameters, smoothing factor
s, clipping threshold c for Clipc(x) 7→ max(−c,min(x, c)).

Ensure: New cluster centers P̂ (t+1)
1 , . . . , P̂

(t+1)
K .

1: σ ←
√

2 log(1.25/δ)/ε
2: for k = 1 to K do
3: a← max

(
∥C:,k∥1 + Lap

(
1
ε

)
, 1
)

4: b1 ← max

(
S⊤Ĉ

(t)
:,k

a1
+N (0, σ2), s

)
5: b2 ←

(
Clipc/

√
d

(
Diag(b1)

−1/2(S⊤ − b1)
)
Ĉ

(t)
:,k

)
+N (0, c2σ2))

6: P̂
(t+1)
k ← b1 +Diag(b1)

1/2(b2/a)
7: end for
8: Return P̂

(t+1)
1 , . . . , P̂

(t+1)
K .
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Theorem 3.1 (privacy guarantee). For 1 > ε, δ > 0 Algorithm 3 is (3ε, 2δ) user-level DP. Conse-
quently, when Algorithm 2 uses Algorithm 3 for the re-centering (step 5), it is (ε′, δ′) user-level DP

where ε′ =
(√

2T log(1/δ) + T e3ε−1/e3ε+1

)
3ε, δ′ = (2T + 1)δ.

Dimensionality reduction. While the Gaussian and Laplace noise addition mechanisms ensure
DP, it may introduce a lot more noise than the tolerance of the clustering algorithm (which scales
with the amount of cluster separation). One way of reducing this noise, is to project data onto some
low dimensional (≪ d) subspace using projection Π, such that the cluster separation in KL metric is
rougly preserved, i.e., for any i ̸= j, KL(Π(Pi) || Π(Pj)) ≈ KL(Pi || Pj). One such subspace is the
one spanned by the K cluster centers under our generative assumptions. We identify this subspace by
recovering the top k singular vectors for: 1

n

∑
u∈S V̂uV̂

⊤
u where V̂u =: Diag(Qfa)

−1/2(Q̂u −Qfa).
These vectors capture directions along which clusters are separated. Given the singular vectors
{vj}kj=1 we eliminate all tokens x such that |vx| is smaller than a threshold for any v, because these
tokens would not be useful in identifying any cluster. For more discussion see Appendix C.

4 Experimental results on Reddit data

In this section, we compare the non-private and private versions of our algorithm with other PFL
baselines on Reddit data that has a vocabulary of 103 tokens. We only consider a subset of the Reddit
user data with roughly n = 105 users. We partition the data from each user into train and test sets
where the train set uses m = 5× 102 data points (for Q̂u) and the test set uses 2× 103 data points
(for true Qu). Additionally, for a fraction of users (5× 103 from the original set), we also have 103

data points for validation. This is used for tuning the hyperparameters like number of clusters k,
clipping threshold c, temperature τ , etc.

Method Avg. KL for non-private version Avg. KL for private version
Local 5.093 5.093

FedAvg 1.054 1.115
IFCA Ghosh et al. (2020) 1.036 1.110

Algorithm 2 + DimRed 0.971 0.990
Algorithm 2 0.930 1.053

FedAvg + FT 0.912 0.958
IFCA + FT 0.875 0.948

Algorithm 2 + DimRed + FT 0.883 0.904
Algorithm 2 + FT 0.868 0.951

Table 1: Average test KL divergence for non-private and private methods on Reddit data:
Each number is averaged over 20 random runs, and the 95% confidence interval for each value is
±0.01. For the private versions of the corresponding methods we set ϵ = 15, δ = 10−10. Following
hyperparameters were tuned on the validation set: k = 10, T = 50, λ = 0.3, τ = 0.5.

From Table 4 we see that non-privately there is a benefit from assuming diverse subpopulations in
the data distribution D. This is validated by the error reduction in KL divergence when comparing
Algorithm 2 with FedAvg/Local models (both with and without finetuning (FT)). Note that while
IFCA (Ghosh et al., 2020) also makes a similar assumption, our algorithms differ in the per-iteration
update. While IFCA only takes a gradient step towards the optimal cluster center, we optimize for
the optimal cluster center completely by taking the average (which is the minimizer by virtue of
KL). Consequently, in as little as 50 iterations Algorithm 2 converges, but IFCA fails to recover
cluster centers with very few iterations. For the performance of private algorithms, we first notice
that each private algorithm performs worse than its non-private counterpart. This is expected because
of noise injection by privacy mechanisms. Particularly, we note that the gains from Algorithm 2 are
still retained when reducing the dimensionality of the empirical user distributions (DimRed). While
DimRed slightly hurts performance over using the full set of tokens non-privately, the dimensionality
reduction proves to be important in making the clustering procedure somewhat resilient to the noise
added by privacy mechanisms.
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Appendix

A Missing proofs from Section 2.1

Lemma A.1 (FedAvg estimate). The FedAvg model is given by Qfa = 1
n

∑
Q̂u∈S Q̂u.

Proof. From Proposition 1 in Banerjee et al. (2005), we know that minQ(1 − λ)KL(P0 ||Q) +

λKL(Q̂u ||Q) = λP0 + (1 − λ)Q̂u. We now apply this for the sets Su = {Q̂u} and set S−u =

{Q̂i : i ̸= q}. Doing this recursively for every u gives us the final result.

Lemma A.2 (Bayes optimal estimator). Given Pcu , α the Bayes optimal estimator is: ( α
α+m )Pu +

( m
α+m )Q̂u, i.e., EQu|Pcu

EQ̂u|Qu

[
KL(Qu || (( α

α+m )Pu + ( m
α+m )Q̂u))

]
, matches the loss of the

optimal algorithm for Pcu .

Proof. We note that the distribution of Q̂u given the center Pcu is a Dirichlet-Multinomial distribution.
Further, the Dirichlet distribution is a conjugate prior for the Multinomial. Hence, the posterior
distribution for Qu | Q̂u, Pcu is a Dirichlet Multinomial with mean: ( α

α+m )Pu + ( m
α+m )Q̂u. To see

why, mean is the Bayes optimal estimator, we once again invoke Proposition 1 from Banerjee et al.
(2005).

B Proof of Theorem 3.1

This proof simply applies known results for the privacy loss of Gaussian and Laplace mechanisms,
and then composes the losses with advanced composition.

Privacy for a1: Since, the noise for the count is sampled from Lap(1/ϵ), and the counting query has
global sensitivity 1, a1 is (ε)-DP.

Privacy for b1: The global sensitivity of the summation S⊤Ĉ
(t)
:,k is bounded in ℓ2 norm by 1, since

all probability vectors in S have ℓ2 norm of exactly 1. By adding zero mean Gaussian noise with
σ =

√
2 log(1.25/δ) we ensure b1 satisfies (2ε, δ)-DP via the privacy loss of Gaussian mechanism

(Theorem 1 from Balle and Wang (2018)), followed by basic composition.

Privacy for b2: Finally for b2 since we clip at ±c/
√
d, the global ℓ2 sensitivity is bounded by c. Thus,

adding zero mean Gaussian noise with σ =
√
2c log(1.25/δ) suffices for (ε, δ)−DP (Theorem 1

from Balle and Wang (2018)). Once, again we can apply basic composition to conclude Algorithm 3
is (3ε, 2δ) user-level differentially private.

For privacy analysis of Algorithm 2 with step 5 replaced by Algorithm 3, we can do privacy analysis
using the following composition theorem.

Advanced composition (Dwork et al., 2010; Kairouz et al., 2015; Dwork et al., 2014) states that, for
any δ′ > 0, the composed sequence of algorithms is (ε, δ)-differentially private, where

ε =

√√√√2 log

(
1

δ′

) ∑
m≤n

ε2m +
∑
m≤n

εm

(
eεm − 1

eεm + 1

)
, δ = δ′ +

∑
m≤n

δm. (4)

When all privacy parameters are the same and small, we roughly have ϵ = O(
√
nεm). This means

analysts can make extended use of sensitive datasets with a slow degradation of privacy.

Direct application of the above result on the privacy guarantee for Algorithm 3 gives us the final
result.
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C Dimensionality Reduction

Recall that Qu is sampled from a mixture of Dirichlets. For simplicity assume w1 = w2 = . . . =
wK = 1/K Let:

Vm = Diag(Q̄)−1/2(Qm − Q̄)

Here, Q̄ = 1
K

∑
k∈K Pk is the average of cluster centers. Using the second moment of Dirichlet

distributions we can do the following derivation:

E[VmV ⊤
m ] =

1

K
Diag(Q̄)−1/2

∑
k∈K

(
−PkP

⊤
k

α+ 1
+ PkP

⊤
k +

1

α+ 1
Diag(Pk)

)
=

1

K(α+ 1)

∑
k∈[K]

αDiag(Q̄)−1/2PkP
⊤
k Diag(Q̄)−1/2

Thus, the expected second raw moment of the transformed vectors Vm are given by a sum of K rank
one matrices, precisely the matrices defined by outerproducts for the scaled versions of cluster centers.
Hence, the top k singular vectors of E[VmV ⊤

m ] would extract a subspace that contains fully the scaled
cluster centers, and would retain the cluster separation in ℓ22 distance. Since, we do not have access to
Q̄, we use the empirical estimate Qfa, and replace the expectation with the plug in estimate as well.

D Analyzing covergence rate for Algorithm 2

The following section outlines some preliminary analysis of Algorithm 2, extending results from
Balakrishnan et al. (2017) to our setting. We defer from outlining the results from this analysis in the
main paper as it is still an active direction that we are probing for a future version of this draft.

Let us begin by introducing some notaion. For any S ⊆ [n], define WS =
∑

i∈S wi. Recall that

T ∗
g = {i ∈ [n], zi = g} and T

(s)
g =

{
i ∈ [n], ẑ

(s)
i = g

}
, let us define

S
(s)
gh =

{
i ∈ [n], zi = g, ẑ

(s)
i = h

}
= T ∗

g ∩ T
(s)
h .

Then we have n(s)
h =

∑
g∈[k] n

(s)
gh and n∗

h =
∑

g∈[k] n
(s)
hg . In the rest of the proof, we will sometimes

drop the upper index (s) of n(s)
gh , n(s)

h and S
(s)
gh when there is no ambiguity. Also, we suppress the

dependence of k by writing rk as r. We closely follow the analysis from Balakrishnan et al. (2017),
and apply it to the LLoyd’s algorithm.

We also assume the following initialization condition:

G0 <

(
1

2
− 6

√
rk

)
1

λ
or Λ0 ≤ 1

2
− 4

√
rk

, (5)

Lemma D.1.
∥WS∥ ≤ σ

√
3(n+ d)|S| for all S ⊆ [n]. (6)

with probability greater than 1− exp(−0.3n).

Lemma D.2.

λmax

(
n∑

i=1

wiw
′
i

)
≤ 6σ2(n+ d). (7)

with probability greater than 1− exp(−0.5n).

Lemma D.3. For any fixed i ∈ [n], S ⊆ [n], t > 0 and δ > 0,

P


〈
wi,

1

|S|
∑
j∈S

wj

〉
≥

3σ2(t
√

|S|+ d+ log(1/δ))

|S|

 ≤ exp

(
−min

{
t2

4d
,
t

4

})
+ δ.
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Lemma D.4.
∥WT∗

h
∥ ≤ 3σ

√
(d+ log n)|T ∗

h | for all h ∈ [k] (8)

with probability greater than 1− n−3.

Lemma D.5. For any fixed θ1, · · · , θk ∈ Rd and a > 0, we have∑
i∈T∗

g

I
{
a∥θh − θg∥2 ≤ ⟨wi, ∥θh − θg∥⟩

}
≤ n∗

g exp

(
−a2∆2

2σ2

)
+
√

5n∗
g log n (9)

for all g ̸= h ∈ [k]2 with probability greater than 1− n−3.

The following two lemmas give the iterative relationship between the error of estimating centers
and the error of estimating labels. Let E be the intersection of high probability events in Lemma
D.1, Lemma D.2 Lemma D.4, Lemma D.5 and the initialization condition (5). Then we have
P{Ec} ≤ 3n−3 + ν. In the rest part of the proof, if not otherwise stated, we all condition on the event
E and the following analysis are deterministic.

Lemma D.6. On event E , if Gs ≤ 1
2 , then we have

Λs ≤
3

r
+min

{
3

r

√
kGs + 2GsΛs−1, λGs

}
. (10)

Lemma D.7. On event E , if Λs ≤ 1−ϵ
2 and r ≥ 36ϵ−2, then

Gs+1 ≤ 2

ϵ4r2
+

(
28

ϵ2r
Λs

)2

+

√
5k log n

α2n
. (11)

Proof of Lemma D.6. For any B ⊆ [n], define ȲB = 1
|B|
∑

i∈B yi. The error of estimated centers at
step s can be written as

θ̂
(s)
h − θh =

1

nh

∑
i∈Shh

(yi − θh) +
1

nh

∑
a ̸=h

∑
i∈Sah

(yi − θh)

=
1

nh

∑
i∈Shh

wi +
∑
a̸=h

nah

nh

(
ȲSah

− θh
)

According to our label update step, we have ∥yi − θ̂
(s−1)
h ∥ ≤ ∥yi − θ̂

(s−1)
a ∥ for any i ∈ Sah. This

means for any i ∈ Sah, yi is closer to θ̂
(s−1)
h than θ̂

(s−1)
a , so is the average of {yi, i ∈ Sah}. Thus,

we have
∥ȲSah

− θ̂
(s−1)
h ∥ ≤ ∥ȲSah

− θ̂(s−1)
a ∥.

Consequently, triangle inequality gives us∥∥ȲSah
− θh

∥∥ ≤
∥∥ȲSah

− θa
∥∥+ ∥θ̂(s−1)

a − θa∥+ ∥θ̂(s−1)
h − θh∥,

which, combined with Lemma D.1 and the definition of Λs−1, yields∥∥ȲSah
− θh

∥∥ ≤ σ
√
3(n+ d)/nah + 2Λs−1∆.

Taking a weighted sum over a ̸= h ∈ [k], we get∑
a ̸=h

nah

nh

∥∥ȲSah
− θh

∥∥ ≤
σ
√

3(n+ d)

nh

∑
a̸=h

√
nah + 2Λs−1∆

∑
a̸=h

nah

nh

≤
σ
√
3(n+ d)
√
nh

√
(k − 1)Gs + 2GsΛs−1∆,

where the Last inequality is due to Cauchy-Schwartz and the fact that
∑

a̸=h nah ≤ Gsnh. Note that
WShh

= WT∗
h
−
∑

a ̸=h WSha
. Triangle inequality and Lemma D.5 imply

∥WShh
∥ ≤ 3σ

√
d+ log n

√
n∗
h + σ

√
3(n+ d)

√
n∗
h − nhh.
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Since Gs ≤ 1
2 , we have

nh ≥ nhh ≥ n∗
h(1−Gs) ≥

1

2
n∗
h ≥ 1

2
αn. (12)

Combining the pieces, we obtain∥∥∥θ̂(s)h − θh

∥∥∥ ≤ 3σ

√
d+ log n

αn
+ 3σ

√
k(n+ d)

αn
Gs + 2GsΛs−1∆

≤
(
3

r
(1 +

√
kGs) + 2GsΛs−1

)
∆. (13)

Therefore, we get the first term in (10). To prove the second term, we decompose θ̂
(s)
h differently.

θ̂
(s)
h =

1

nh

n∑
i=1

(θzi + wi) I
{
ẑ
(s)
i = h

}
=

1

nh

k∑
a=1

n∑
i=1

θaI
{
zi = a, ẑ

(s)
i = h

}
+

1

nh

∑
i∈Th

wi

=

k∑
a=1

nah

nh
θa +

1

nh
WTh

. (14)

Then, the error of θ̂(s)h can be upper bounded as∥∥∥θ̂(s)h − θh

∥∥∥ =

∥∥∥∥∥
k∑

a=1

nah

nh
(θa − θh) +

1

nh
WTh

∥∥∥∥∥ ≤

∥∥∥∥∥∥
∑
a ̸=h

nah

nh
(θa − θh)

∥∥∥∥∥∥+
∥∥∥∥ 1

nh
WTh

∥∥∥∥ .
By triangle inequality,∥∥∥∥∥∥

∑
a̸=h

nah

nh
(θa − θh)

∥∥∥∥∥∥ ≤
∑
a ̸=h

nah

nh
∥θa − θh∥ ≤ λ∆

∑
a̸=h

nah

nh
≤ λ∆Gs. (15)

This, together with Lemma D.1 and (12), implies∥∥∥θ̂(s)h − θh

∥∥∥ ≤ λ∆Gs + σ

√
3(n+ d)

nh
≤
(
λGs +

3

r

)
∆ (16)

for all h ∈ [k]. The proof is complete.

Proof of Lemma D.7. For any g ̸= h ∈ [k]× [k],

I
{
zi = g, ẑ

(s+1)
i = h

}
≤ I

{
∥θg + wi − θ̂

(s)
h ∥2 ≤ ∥θg + wi − θ̂(s)g ∥2

}
= I

{
∥θg − θ̂

(s)
h ∥2 − ∥θg − θ̂(s)g ∥2 ≤ 2

〈
wi, θ̂

(s)
h − θ̂(s)g

〉}
. (17)

Triangle inequality implies

∥θg − θ̂
(s)
h ∥2 ≥

(
∥θg − θh∥ − ∥θh − θ̂

(s)
h ∥
)2

≥ (1− Λs)
2 ∥θg − θh∥2.

Using the fact that (1− x)2 − y2 ≥ (1− x− y)2 when y(1− x− y) ≥ 0, we obtain

∥θg − θ̂
(s)
h ∥2 − ∥θg − θ̂(s)g ∥2 = (1− 2Λs)

2 ∥θg − θh∥2 ≥ ϵ2∥θg − θh∥2. (18)

Denote by ∆h = θ̂
(s)
h − θh for h ∈ [k]. Then,

I
{
zi = g, ẑ

(s+1)
i = h

}
≤ I

{
ϵ2∥θg − θh∥2 ≤ 2 ⟨wi, θh − θg +∆h −∆g⟩

}
≤ I

{
ϵ2

2
∥θg − θh∥2 ≤ 2 ⟨wi, θh − θg⟩

}
+ I
{
ϵ2

2
∆2 ≤ 2 ⟨wi,∆h −∆g⟩

}
.
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Taking a sum over i ∈ T ∗
g and using Markov’s inequality on the second term, we obtain

n
(s+1)
gh ≤

∑
i∈T∗

g

I
{
ϵ2

4
∥θg − θh∥2 ≤ ⟨wi, θh − θg⟩

}
+
∑
i∈T∗

g

16

ϵ4∆4
(w′

i(∆h −∆g))
2 (19)

Note that I
{

ϵ2

4 ∥θg − θh∥2 ≤ ⟨wi, θh − θg⟩
}

are independent Bernoulli random variables. By
Lemma D.5, the first term in RHS of (19) can be upper bounded by

n∗
g exp

(
−ϵ4∆2

32σ2

)
+
√
5n∗

g log n. (20)

By Lemma D.2, the second term in RHS of (19) can be upper bounded by∑
i∈T∗

g

16

ϵ4∆4
(w′

i(∆h −∆g))
2 ≤

96(n∗
g + d)σ2

ϵ4∆4
∥∆g −∆h∥2. (21)

Combining (19), (20) and (21) and using the fact that ∥∆g −∆h∥2 ≤ 4Λ2
s∆

2, we get

n
(s+1)
gh ≤ n∗

g exp

(
−ϵ4∆2

32σ2

)
+
√
5n∗

g log n+
384(n∗

g + d)σ2

ϵ4∆2
Λ2
s.

Consequently,

max
g∈[k]

∑
h ̸=g

n
(s+1)
gh

n∗
g

≤ k exp

(
−ϵ4∆2

32σ2

)
+ k

√
5 log n

αn
+

384

ϵ4r2
Λ2
s. (22)

Since Λs ≤ 1/2 and r ≥ 20ϵ−2, the RHS of (22) is smaller that 1/2 when αn ≥ 32k2 log n. Thus,

n
(s+1)
h ≥ n

(s+1)
hh ≥ 1

2
n∗
h ≥ 1

2
αn

for all h ∈ [k] and we have

max
h∈[k]

∑
g ̸=h

n
(s+1)
gh

n
(s+1)
h

≤ 2

α
exp

(
−ϵ4∆2

32σ2

)
+

√
5k log n

α2n
+

768

ϵ4r2
Λ2
s, (23)

which, together with (22), implies

Gs+1 ≤ exp

(
−ϵ4∆2

32σ2
+ log(2/α)

)
+

√
5k log n

α2n
+

768

ϵ4r2
Λ2
s

Under the assumptions that ϵ4α∆2/σ2 ≥ r2ϵ4 ≥ 36, we have the desired result (11).

Proof. From Lemma D.6, a necessary condition for Λ0 ≤ 1
2 − 4√

r
is G0 ≤ ( 12 − 6√

r
) 1λ . Setting

ϵ = 7√
r

in Lemma D.7, we have G1 ≤ 0.35. Plugging it into Lemma D.6 gives us Λ1 ≤ 0.4, under

the assumption that r ≥ 16
√
k. Then it can be easily proved by induction that Gs ≤ 0.35 and

Λs ≤ 0.4 for all s ≥ 1. Consequently, Lemma D.6 yields

Λs ≤
3

r
+

3

r

√
kGs +Gs ≤

1

2
+Gs

which, combined with (11), implies

Gs+1 ≤ C

r2
+

C

r2

(
1

4
+ 2Gs +G2

s

)
+

√
5k log n

α2n
≤ 2C

r2
+

3C

r2
Gs +

√
5k log n

α2n

for some constant C. Here we have chosen ϵ = 1/5 in Lemma 11 to get the first inequality.
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Proof. From the proof of Lemma D.6, the error of estimating θh at iteration s can be written as
θ̂
(s)
h − θh = 1

nh
WT∗

h
+ uh, with

∥uh∥ ≤
(
3

r

√
kGs +Gs

)
∆ ≤

√
Gs∆ (24)

In addition, by Lemma D.6 and Lemma D.7, there is a constant C1 such that

Λs ≤
3

r
+
√
Gs + 2GsΛs−1 ≤ C1

r
+

C1

r
Λs−1 + 0.7Λs−1 +

(
C1k log n

α2n

)1/4

for all s ≥ 1. Therefore, when r is large enough, we have

Λ ≤ C2r
−1 + C2

(
k log n

α2n

)1/4

for all s ≥ log n. Then by (18), we have

I
{
zi = g, ẑ

(s+1)
i = h

}
≤ I

{
β1∥θg − θh∥2 ≤ 2 ⟨wi, θh − θg +∆h −∆g⟩

}
where (1− 2Λs)

2 ≥ β1 := 1− 4C2r
−1 − 4C2

(
k logn
α2n

)1/4
.

In order to prove that As attains convergence rates, we first upper bound the expectation of As and
then derive the high probability bound using Markov’s inequality. Similar to the two-mixture case, we
need to upper bound the inner product ⟨wi,∆h −∆g⟩ more carefully. Note that {T ∗

h , h ∈ [k]} are
deterministic sets, we could use concentration equalities to upper bound WT∗

h
and uh parts separately.

Let vh = 1
nh

WT∗
h

for h ∈ [k] and we decompose I
{
zi = g, ẑ

(s+1)
i = h

}
into three terms.

I
{
zi = g, ẑ

(s+1)
i = h

}
≤ I

{
β∥θg − θh∥2 ≤ 2 ⟨wi, θh − θg⟩

}
+I
{
β2∆

2 ≤ 2 ⟨wi, uh − ug⟩
}

+I
{
β4∆

2 ≤ 2 ⟨wi, vh − vg⟩
}
,

where β2 and β4 will be specified later and β = β1−β2−β4. Taking a sum over h ∈ [k] and i ∈ [n],
we obtain

EAs+1 ≤ EJ1 + EJ2 + EJ3
with

J1 =
∑
h∈[k]

1

n

n∑
i=1

I
{
β∥θzi − θh∥2 ≤ 2 ⟨wi, θh − θzi⟩

}
(25)

J2 =
∑
h∈[k]

1

n

n∑
i=1

I
{
β2∆

2 ≤ 2 ⟨wi, uh − uzi⟩
}
. (26)

J3 =
∑
h∈[k]

1

n

n∑
i=1

I
{
β4∆

2 ≤ 2 ⟨wi, vzi − vh⟩
}
. (27)

Let us first consider the expectation of J1. Using Chernoff’s bound, we have

P
{
β∥θg − θh∥2 ≤ 2 ⟨wi, θh − θg⟩

}
≤ exp

(
−β2∥θh − θg∥2

8σ2

)
≤ exp

(
−β2∆2

8σ2

)
.

Thus,

EJ1 ≤ k exp

(
−β2∆2

8σ2

)
= exp

(
−γ∆2

8σ2

)
,

with γ = β2 − 8σ2 log k
∆2 ≥ β2 − 8/r2.
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We use Markov Inequality to upper bound J2. Markov’s inequality and Lemma D.2 give us

1

n

n∑
i=1

I
{
β2∆

2 ≤ 2 ⟨wi, uh − uzi⟩
}

≤ 4

nβ2
2∆

4

∑
g∈[k]

∑
i∈T∗

g

(w′
i(uh − ug))

2

≤ 24σ2

nβ2
2∆

4

∑
g∈[k]

(n∗
g + d)∥uh − ug∥2.

(24) implies

J2 ≤ 96σ2Gs

nβ2
2∆

2

∑
h∈[k]

∑
g∈[k]

(n∗
g + d) ≤ 96σ2k(n+ kd)

αnβ2
2∆

2
As =

12
√
k

r
As.

Here the second inequality is due to the fact that Gs ≤ As/α. And we choose β2 =
√

8k/r in the
last equality.

Finally, we upper bound the expectation of J3. Given zi = g, we have

P
{
β4∆

2 ≤ 2 ⟨wi, vg − vh⟩
}

≤ P
{
β4

4
∆2 ≤ ⟨wi, vg⟩

}
+ P

{
−β4

4
∆2 ≥ ⟨wi, vh⟩

}
≤ P

{
β4

8
∆2 ≤

〈
wi,

1

n∗
g

WT∗
g

〉}
+ P

{
−β4

8
∆2 ≥

〈
wi,

1

n∗
h

WT∗
h

〉}
Choosing t = max{

√
d∆
σ , ∆2

σ2 }, δ = exp
(
− ∆2

4σ2

)
in Lemma D.3, and

β4 =
64

r
≥ 8

∆2

(
3max{

√
dσ∆,∆2}√
αn

+
3σ2d+∆2

αn

)
,

we obtain P
{
β4∆

2 ≤ 2 ⟨wi, vg − vh⟩
}
≤ 2 exp(−∆2/(4σ2)), where we have used the assumption

that n∗
g ≥ αn and αn ≥ 36r2. Thus,

EJ3 ≤ 2k exp

(
−∆2

σ2

)
,

Combining the pieces, we have

EAs+1 ≤ E [J1] + E [J2I{E}] + E [J3] + P{Ec}

≤ exp

(
−γ∆2

8σ2

)
+

12
√
k

r
EAs + 2k exp

(
−∆2

σ2

)
,

with γ = (β1 −
√
8k/r − 64/r)2 − 8/r2 = 1 − o(1). Here only prove the case that r → ∞. For

the finite case, all the o(1) in the following proof can be substituted by a small constant.

EAs ≤
1

2s−⌈log r⌉ + 2 exp

(
−(1− η)

∆2

8σ2

)
+

2

n3
≤ 2 exp

(
−(1− η)

∆2

8σ2

)
+

3

n3

when s ≥ 4 log n. By Markov’s inequality, for any t > 0,

P {As ≥ t} ≤ 1

t
EAs ≤

2

t
exp

(
−(1− η)

∆2

8σ2

)
+

3

n3t
. (28)

If (1− η) ∆2

8σ2 ≤ 2 log n, choose t = exp
(
−(1− η − 8σ

∆ ) ∆2

8σ2

)
and we have

P
{
As ≥ exp

(
−(1− η − 8σ

∆
)
∆2

8σ2

)}
≤ 4

n
+ 2 exp

(
−∆

σ

)
.

Otherwise, since As only takes discrete values of {0, 1
n , · · · , 1}, choosing t = 1

n in (28) leads to

P {As > 0} = P
{
As ≥

1

n

}
≤ 2n exp(−2 log n) +

3

n2
≤ 4

n
.

The proof is complete.
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