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LOG-NORMAL STATE-SPACE MODEL

ABSTRACT

State space model (SSM) has emerged as a strong alternative to transformer owing
to its linear-time complexity and state retention mechanism where the computa-
tion efficiency and memory capability are enhanced especially in long-sequence
tasks. However, the features derived from state updates in SSM still exhibit
weaker representation than those generated by self-attention in transformer. This
paper presents a new architecture that preserves the linear-time efficiency of SSMs
while enabling state-update features to attain the expressiveness of self-attention,
thereby achieving both computation efficiency and memory enhancement. In
the experiments, the state-update mechanism of our SSM demonstrates superior
performance compared to the other methods. On long-sequence tasks, our ap-
proach not only exhibits stronger long-range dependency modeling but also re-
quires fewer computational resources than self-attention in transformers . Our
code is available at https://anonymous.4open.science/r/Log-Normal-State-Space-
Model-8301/.gitignore

1 INTRODUCTION

Modern large language models, such as GPT (Rad-
ford et al.,2019) and LLaMA (Touvron et al., 2023)),

250 —o— RWKV-4_MLP

are primarily built upon the transformer (Vaswani RWKV-4_original
et al, 2017) architecture. A standard transformer — o R oniel
block consists of two components including the self- 200 = Mamba-2_MLP

—#~— Mamba-2_original

attention (Vaswani et al., 2017), which captures the
correlation among individual tokens within a se-
quence, and the multilayer perceptron (MLP), which
aggregates the information across feature dimen- s
sions. Self-attention plays an important role be-
hind the strong contextual modeling in transformer.
However, transformer suffers from scaling problem »
where a quadratic time complexity is required in Number of Samples o0
self-attention as the correlations between individual  Figure 1: Training curves of the perplexity of
pairs of tokens in a sequence must be computed. validation data by using original SSM and SSM
Furthermore, due to the lack of an inherent mem- with channel-mixing layer replaced by a simple
ory mechanism, transformer requires a full temporal MLP (Radford et al, [2019). Models are trained
context to be reprocessed at every time step during ~on SlimPajama-1B |Shen et al.| (2023) under iden-
generation, and results in increasing computational tical settings. These curves compare the learning
cost as the sequence length scales up. To relax this Process by SSMs based on RWKV and Mamba.
limitation, linear transformer (Katharopoulos et al.,

2020; Peng et al.| 2021} |Choromanski et al.l 2021} [Wang et al., |2020) was proposed to implement a
transformer with linear time complexity. Another line of researches explore the state-space model
(SSM) (Gu et al., [2022), which resembles recurrent neural network (RNN) (Schmidt, [2019) as a
state retention machine, carrying past information forward through a hidden state. In addition, SSM
is feasible to resemble the calculation of self-attention in transformer, and results in the emerging
machines such as Mamba (Gu & Daol 2023; Dao & Gu, [2024) and the receptance-weighted key
value (RWKYV) (Peng et al.,[2023;2024)). SSM has demonstrated superior performance compared to
transformer in long-context modeling. However, the model effectiveness relies not only on the core
time-mixing layers but also on the specialized channel-mixing layers.

Perplexity

As shown in Figure[I] when the time-mixing layer of an SSM (either RWKYV or Mamba) is retained
but its original channel-mixing layer is replaced by a GPT-2’s MLP (Radford et al.,[2019)), the result-
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ing performance degrades significantly. This observation indicates that the desirable performance of
SSM originates not solely from time-mixing mechanism. Channel-mixing layers also play a critical
role. Such a reliance on the intricate design of the channel-mixing reduces the interpretability of
a model while the added complexity increases both parameter size and computational cost. This
study presents the log-normal state-space model (LNSSM) aiming at a new model that achieves the
performance of time-mixing comparable to that of self-attention without relying on the specially-
designed channel-mixing scheme while at the same time retaining the computation efficiency as a
benefit from the variant of state-space model.

2 STATE-SPACE MODEL AND LINEAR TRANSFORMER

The recent emerging
state-space model has
increasingly empha-
sized its structural
similarity or equiva-
lence to transformer,

GPT-2 Mamba RWKV

often showcasing

even  stronger ex-

pressive  capability.
For example, Mamba

Gu_& Dao| (2023)

introduces a selective
mechanism to classi- Figure 2: Channel-mixings (with colors) in GPT-2 (via MLP), Mamba and RWKV.

cal SSM, making the
transition dynamics of hidden state h to be input dependent, as given in
hy = Athy 1 + Bz, y: = Cihy (1)

where A;, B; and C; denote the state, input and output matrices, respectively. In the empirical
evaluations, Mamba (Gu & Daol [2023)) has demonstrated substantial potential to replace transformer
in various tasks. Its enhanced variant, Mamba-2 (Dao & Gul|2024)), moves a step further by revealing
a duality between SSM and attention mechanism, suggesting that two calculations can be considered
functionally equivalent under certain conditions.

RWKV-4 (Peng et al.||2023) works as a type of SSM, but closely resembles its computation pattern
as that of transformer where the output y, at time step ¢ in a sequence length NV is expressed by
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where {r:, {w,u}, k;,v:} is the receptance, weight decay, key and value (RWKV), o(-) is the
sigmoid and ©® is the element-wise product. Its subsequent versions, RWKV-5 and 6 (Peng et al.,
2024]), continue to adopt key-value formulation that acts as a style of self-attention architecture via

-1
Y =7 O <Z(ew)f’_1_l ® k:lT'ul +u® k:vt> ) (3)
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Despite the success of using SSMs, the performance of these methods heavily rely on the crafted
network architecture. As shown in Figure 2] Mamba incorporates the customized skip connections
with linear projection. RWKYV treats the channel-mixing layer as an attention-like mechanism with
token-shift operations. Accordingly, the merit of using Mamba and RWKYV is not solely caused by
the time-mixing layer, which handles the temporal dependencies, but also by the specially designed
channel-mixing (or MLP) components that significantly improve the overall performance.

Although SSM and self-attention methods are theoretically related in the sense that both methods
characterize the token dependencies in a text string, their computational behaviors and distributional
characteristics differ substantially. In particular, the additive accumulation process in SSM does
not exhibit the benefits of dynamic weighting behavior or output distribution similar to what self-
attention does. As a result, despite the theoretical connection between SSM and self-attention, SSM
cannot be directly compared with self-attention in terms of practical performance.
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On the other hand, linear transformer aims to reduce the quadratic time complexity of self-attention
mechanism by reformulating the attention as a kernel-based operation. The core idea is to approx-
imate the softmax attention function using kernel methods, where the attention kernel x(q, k) is
defined as the inner product of transformed query and key vectors through a feature map ®(-).
Therefore, the attended feature embedding using linear transformer is calculated by

SN ®lg) T ®(kj)v]
S ®(g)TR(k)

Here, the inner product (®(q;), ®(k;)) is used to approximate the softmax kernel e?' ki Equation
highlights an important computation property, namely, for a fixed query token g;, the summation
over keys and values is independent of ¢ and can thus be pre-aggregated. This leads to the calculation
of the reformulated linear-time feature embedding as

N
v = P(q,) " Zj:l (I)(kj)”jT )
t — .

@(q)T LY, (ki)
This formulation enables changing the order of matrix multiplications among query, key, and value
components, allowing for linear time complexity in sequence length. This is achieved without addi-
tional memory cost, unlike the cache-based method such as KV cache (Pope et al., 2023)).

“4)
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However, this efficiency comes at the expense of decreasing the expressiveness. Since the attention
is no longer computed through direct pairwise interactions between individual tokens, as provided in
the softmax attention, this model may suffer from the degraded performance in practice. The change
of attention computation may alter the core dynamics of query-key-value (QKV) interactions, which
will lead to a loss in the model’s ability to capture the fine-grained token relationships.

3 IMPROVING THE PERFORMANCE OF LINEAR ATTENTION

3.1 LINEAR LOG-NORMAL ATTENTION

A recent study introduced a variant of linear attention called linear log-normal attention (LLN)
(Nahshan et al., 2023)), aiming to bridge the performance gap between linear attention and softmax
attention. LLN was begun by analyzing the statistical property of attention weights in traditional
transformer and theoretically demonstrated that self-attention exhibited a log-normal distribution
under certain conditions. The output of the softmax attention could be approximated by a log-normal
distribution under mild assumptions. In particular, if the d-dimensional queries g; and keys k; are
assumed to be zero-mean isotropic-variance Gaussian, i.e. g; ~ N (0, 03[ ) and k; ~ N(0,0%1),

then the dot-product attention score a;; = (q; k i)/ /d becomes approximately Gaussian due to the
central limit theorem (Lee et al.,2018). The softmax attention weights are defined as

_explag;/T)
- N

> 1= exp(aq/7)
where 7 is a temperature controlled by the variance of a;;. Since both the numerator and denom-
inator in the softmax function involve exponential of a Gaussian, the softmax attention w;; can be
approximated as a log-normal random variable. By applying the theorem in (Fentonl |1960), which

states that the sum of log-normal variables can itself be approximated as a log-normal, the resulting
ratio in w;; also approximately follows a log-normal distribution with parameters y,,, and o2, as

(6)
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w;; ~ LogNormal(ft,,, 03}), ey =—InN —
where agk captures the cross-covariance between query and key entries. This result highlights the
inherent skewness in the self-attention distribution, which is crucial for its ability to concentrate
the attention and balance between exploration versus exploitation. Understanding this distributional
property provides an information evidence to design the linearized attention mechanism that pre-
serves the statistical behavior of softmax attention.

Based on this insight, the kernel-based formulation of linear attention in Equation (5) is adopted to
design the feature map ®(-) to be an exponential function. In particular, this property ensures that
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the resulting attention weights also follow a log-normal distribution, thereby aligning the behavior
of linear attention more closely with that of softmax attention. The LLN attention was therefore
derived to carry out the attended embedding as (Nahshan et al., 2023)

(LLN) _ D(gr)" Z;v:1 ¢(kj)v;r _ ()" Z;V:1 eijJT ®)
t ®(q)T YL, (k) (e0)T 3%, ekt

Furthermore, the tunable hyperparameters were incorporated into the exponential feature map
(Nahshan et al., 2023), allowing the distributional shape of LLN attention to precisely match that of
softmax attention. In addition to this connection, LLN empirically implemented a block-diagonal
attention scheme to reinforce the locality representation. These combined strategies enabled LLN
attention to outperform softmax attention on multiple benchmarks, showing that linear attention is
feasible to match or even exceed the performance of softmax attention when properly designed.

3.2 LOG-NORMAL DISTRIBUTION FOR SPARSE AND RELEVANT ATTENTION

The effectiveness of the
log-normal distribution is

originated from its similar-  __________________ N N

ity to the expected attention @ 5 BT
pattern observed in self- ! K .

attention mechanism. In Vvxd g dxN —— l.

the self-attention as shown u

in Figure the model -~ ) o T

tends to assign higher at-

tention weights to a small

number of relevant tokens, Figure 3: Illustration of the distribution for the values of self-attention. In the
while distributing negligi- attention map, typically, each token strongly attends a small number of tokens
ble weights to the irrelevant (darker color) and weakly attends the other tokens (lighter color), indicating
that attention primarily focuses on relatively important tokens. This pattern
reflects the long-tailed shape of the attention values to be a log-normal distri-
bution, where few values are high but most of values remain small.

Softmax Attention Map Log-Normal Distribution

tokens, resulting in a sparse
and concentrated attention
distribution. This charac-
teristic enables the model
to better focus on salient information within the input string, thereby improving both semantic un-
derstanding and generation accuracy. The log-normal distribution naturally exhibits this property,
and it produces a long-tailed distribution in which most values lie in the low-attention region, with
only a few high values corresponding to relevant tokens. This closely aligns with the desirable be-
havior of attention mechanism. Therefore, it is challenging to build an SSM with linear attention
where the attention weights are shaped to follow a log-normal distribution. The resulting model can
better reflect the behavior of self-attention and ultimately obtain improved performance.

4 LOG-NORMAL STATE-SPACE MODEL

4.1 CAUSAL MASKING

Modern generative language models (Radford et al., [2019; Touvron et al, |2023) typically adopt a
decoder-only architecture, which is auto-regressive in nature. An underlying motivation of using
this architecture is that, during the computation of attention map, each query at time ¢ attends only
to key-value pairs from time 1 through time ¢. This causal constraint aligns with the essence of
sequence generation and reduces the computational complexity compared to full self-attention.

In practice, this essence can be implemented by adding a causal mask to the attention logits. Cor-
respondingly, after computing the dot product between query and key matrices, a lower triangular
mask is applied such that the positions corresponding to future tokens are set to —oo, excluding
them from the softmax computation. Therefore, the masked attention (MA) is calculated by

i a kj, T
(MA) Zj:le N

t 3 T
q; ki
Do e
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4.2 LINEAR LOG-NORMAL ATTENTION WITH CAUSAL MASKING

Although LLN (Nahshan et al.,|2023)), like the other linear attention mechanisms, does not explicitly
compute a full attention map via query-key dot products, it can still be reformulated to incorporate
causal masking. The LLN formulation with a causal summation constraint becomes:

D(q) " S0, B(ky)v)
ylgLLN): (q) 2251 (kj)v; (10)

P(g) " 25:1 P (ky)

where ®(-) is an exponential function. Furthermore, we can isolate the contribution at time step ¢
from the summation to reveal the incremental structure in the calculation

o 207 (S50 00k )0] + ek
t (a7 (Sl @) + (k)

This form highlights that causal LLN attention can be naturally interpreted as a state update mech-
anism. The key and value contributions are accumulated over time, which mirrors the hidden state
update process in recurrent models such as RNNs. Prior work (Katharopoulos et al.,[2020) has also
emphasized this connection between linear attention and recurrent structure.

(1)

4.3  STATE-SPACE MODEL WITH LOG-NORMAL DISTRIBUTION

Motivated by such a recurrent interpretation, this paper proposes the log-normal state-space model
(LNSSM), which reformulates the causal LLN attention into an explicit state update form as

y(LNSSM) _ (qy)" (Si-1+ P(ke)v/ )
! P(q) " (ze-1 + P(ky))

12)

Sp=Si1+®(k)v), 2z =z1+ (k) (13)

where S; € R¥? and z; € R? denote the accumulated key-value and key-only states, respectively.
At each time step ¢, the new input (k;,v;) is processed, and the feature embedding yt(LNSSM) is
computed by using the updated states. This formulation enables the token-by-token processing with
the constant-time updates and linear memory footprint, while retaining the ability to approximate

the log-normal distributional behavior of softmax attention through exponential feature maps.

4.4 CONNECTION BETWEEN SELF-ATTENTION AND STATE UPDATE

In general, the feature embedding of LNSSM in Equation with state update in Equation
lacks an explicit mechanism for encoding the position information. Although causal accumulation
is feasible to activate an efficient token-by-token computation, it does not contain the position infor-
mation of tokens in a sequence. A naive attempt to position embedding based on the rotary position
embedding (RoPE) (Su et al.,|2024)) may carry out the state accumulation, potentially leading to the
information smearing or numerical instability due to the unbounded numerical growth of states.

In the broader literature on SSMs, such a challenge is typically addressed through the design of
a state transition matrix A, which governs how past the states evolve and decay over time. Recent
high-performance variants of SSM, such as S4 (Gu et al.}[2022), DSS (Gupta et al.,[2022)), S5 (Smith
et al.l [2022), and the advanced Mamba (Gu & Dao, 2023 IDao & Gul, [2024), all aforementioned
methods emphasize the critical role of finding a carefully designed matrix A.

An alternative to the state decay is to utilize the forget gates (Beck et al.,|2024). Gating mechanism
is conceptually similar to the effect of a decay matrix. Recent studies (Hochreiter, |1997; [Lin et al.,
2025)) have shown that forget gates were able to effectively reflect the explicit position encodings
in a transformer. The underlying principle is that forget gates enable the model to learn relative
position by modulating the decay dynamics of the internal state.

A well-designed matrix A in SSMs is feasible to encode the temporal position through the con-
trolled state decay. Recent work (Li et al., 2025) has further established a component-wise
equivalence between SSM and transformer, showing how the attention and position encoding
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in two paradigms are related.
As shown in Table ' the Time Mixing D \ Wneleﬂ
query q and key k in self- e 3 Mixing
attention for transformer cor- I T / tinear "\
respond naturally to the out- | @ e umptcrson 3 oLy
put and input matrices C' and | @ sementwise product | v
B in state projection and up- e — : é
date for Mamba (Gu & Dao, |
2023)), respectively. LNSSM L. State Update J
does not require the matri- ) S B N S ————
ces C'and B for state update s I g N : S:e:f:;::w(k)vT
since these matrices have Sigmoid A [ rwsnorm | [ RwsNorm | e A1+ 000
been sufficiently reflected as | —F ) ol ol | T
the query g and key k in self- | I I I output .
attention. \ @ | / vi= Z({;; S:

|

The state transition matrix A,
however, plays a central role Figure 4: Time mixture and channel mixing in the architecture of LNSSM.
for expressiveness of a model

and must be carefully de-

signed. In various SSM variants, A must be co-designed with B and C' to properly capture the
state dynamics. Given the structural similarity between LNSSM in Equations (I2)-(13) and RWKV-
4 (Peng et al.,|2023)) in Equation @), we adopt the decay vector w from RWKV-4 as our state matrix
A, which governs the exponential decay behavior at each dimension. A full implementation of the
proposed LNSSM is accordingly formulated as

—1 11— .
sy _ (T (S AT TR T Rol) ()T (45, + (ko)) )
t (ea)T (Tt Arttek k) @) Azt Ok

St = ASt_l + (I)(kt)'l);r, zZt = Azt_l + (I)(kt) (15)

4.5 OVERALL MODEL DESIGN

To stabilize the training and mit-

igate the risk of exploding val- Transformer | Mamba | LNSSM

ues due to the exponential oper- q =W C=W.x q =W,z
ations, we apply the QK normal- k=Wyx B =W,z k=Wyx
ization (Dehghani et al. 2023) v=W,x rT= v=W,x

with RMSNorm to the feature y=(posoq kv’ | y=(AoCB)x | y=(Aoq k)v'
maps ®(q;) and ®(k;). To en- Taple 1: Comparison of the transformation in transformer (Vaswani
hance the local context model- [eral][2017), Mamba (Gu & Dao[2023) and LNSSM where pos denotes
ing, we adopt the KV-shift (Peng| the position encoding and {W,, Wi, W.,, Wi, W, } are the parameters.
et al., 2023} |2024) mechanism,

which introduces a slight tempo-

ral shift to the key and value representations, helping the model capture local dependencies between
adjacent tokens. We also introduce the output gate (Hochreiter, |[1997; Beck et al., [2024)) that mod-
ulates the final output based on the current state, improving the flexibility in shaping the dynamic
information flow. For the MLP block, we adopt the same architecture as in GPT-2 (Radford et al.,
2019), which includes a two-layer feedforward network with a GELU activation and residual con-
nections. The complete architecture of the full LNSSM is illustrated in Figure 4]

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS
To evaluate the effectiveness of the proposed method, this study conducted a series of experi-

ments by augmenting the designed LNSSM block in a model architecture with alternative atten-
tion mechanisms as baselines. All baseline models shared the same setting: a 6-layer stack with

6
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512-dimensional embeddings, resulting about
72 million parameters. Each model is trained 240
from scratch on the SlimPajama-1B (Shen
et al., |2023) dataset according to the objec-
tive for next-token prediction. During train-
ing, each epoch was run with 10K sequences of
tokens with length 1024, and all models were
trained for 500 epochs. The training condi- 140
tions, training/test data collection, and hyper-
parameter settings were consistent across dif-
ferent models for fair comparison.

,_.
Y
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Perplexity
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5.1.1 BASELINE MODELS Number of Samples les

Figure 5: Training curves of the perplexity of valida-

b h tential and inoful tion data by using various time-mixing methods where
cen showh potential and meaningiul as a new g, channel-mixing is consistently based on MLP. The

type of time-mixing maChm? relative to the pre- . rves are shown over the number of samples in the
vious SSM baselines. This study compared giochastic learning process.

LNSSM with the following SSM variants with
different metrics.

In the experiments, the proposed LNSSM has

RWKV-4 We implemented the RWKV-
4 (Peng et al.,[2023) as a baseline model by using Equation (2). This SSM-based baseline was used
in the evaluation of short-form question answering (QA) in terms of perplexity.

RWKYV-5 To evaluate the effectiveness of the log-normal distribution in attention mechanisms,
we construct a baseline based on an existing SSM that does not exhibit log-normal behavior, while
ensuring the architecture remains transformer-like for a fair comparison. RWKV-5 (Peng et al.,
2024)) satisfies these criteria, as its formulation in Equation resembles that of a transformer
and can serve as a suitable benchmark. We use RWKV-5 as the SSM baseline without log-normal
distribution.

Mamba-2 Mamba-2 |Dao & Gu|(2024) is a recently proposed state-space model that builds upon
its predecessor, Mamba |Gu & Dao| (2023)), for further improvements. Specifically, Mamba-2 sim-
plifies the time-varying state matrix A in Mamba by replacing it with a time-invariant style in

hy = Ahy_1 + Bizy, vy = Cihy (16)
while still maintaining the competitive performance.

Transformer We also implemented a standard transformer driven by RoPE (Su et al., 2024)) posi-
tion encoding and full self-attention. This baseline was evaluated on long-form QA, as well as for
computational cost and memory usage analysis.

5.2 PERPLEXITY EVALUATION

This study conducted the evaluation of language modeling for next token prediction based on dif-
ferent methods by using the validation set of SlimPajama-1B. As shown in Figure [5] LNSSM out-
perform RWKV-4 across the training epochs. Moreover, compared to the non-log-normal SSM
baseline, e.g. RWKV-5, LNSSM achieves significantly lower perplexity, indicating the benefit of
incorporating a log-normal distribution in attention modeling.

5.3 CONTEXT TRACKING EVALUATION

Model qal qa2 qa3 qa4 qga5 qa6 qa7 qa8 qa9 qal0 qall qal2 qal3 qald4 qal5 qal6 qal7 qal8 gqal9 qa20

Mamba-2 4831 36.17 259 5441 56.52 57.84 55.79 42.63 57.25 51.12 68.51 58.73 86.26 29.58 48.74 40.03 51.47 65.56 0.00 54.17
RWKV-4 4595 32.10 2431 49.54 50.97 5241 55.38 43.18 5836 50.77 67.28 5631 76.72 26.05 49.03 41.44 52.62 72.31 0.00 53.23
RWKV-5 48.62 3538 29.85 54.67 56.10 53.03 57.44 45.03 55.79 45.03 70.46 5621 82.97 37.44 49.13 38.97 53.54 60.10 0.00 38.36

LNSSM 50.15 32.00 21.54 5190 49.64 63.18 57.74 44.72 64.72 4892 71.38 64.31 88.00 24.41 53.13 41.95 54.87 71.18 0.00 47.90

Table 2: Accuracy (%) of different models on BABILong Ok QA1-20. The best accuracy per QA is in bold.
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To further evaluate the reasoning and contextual tracking
abilities of each model, we adopt the BABILong (Kura-
tov et al., 2024) benchmark, which consists of question-
answering tasks across different input sequence lengths
including Ok, 1k, 2k, 4k and 8k tokens. The Ok setting
corresponds to short-form QA, while the other configura-
tions are used for long-form QA evaluation.

Due to the relatively small model size, all models exhibit
limited expressiveness in zero-shot settings. Therefore,
we employ few-shot fine-tuning to adapt the models be-
fore evaluation. For short-form QA (0k), we fine-tune
each model by using 5% of the Ok training data over 100
epochs, reusing the same samples in each epoch. For
long-form QA, we fine-tune by using 10% of the 1k train-
ing set, and evaluate on mixed data from the 2k, 4k and

40 LNSSM
—e— Transformer

Length of samples

Figure 6: Accuracy (%) of transformer with
self-attention and LNSSM with state update
where the BABILong 1k to 8k is evaluated.

8k tasks. Table 2] summarizes the results on short-form QA. LNSSM achieves the highest accuracy

on most tasks. In contrast, RWKV-5, the non-log-normal

SSM only performs competitively on a

few tasks and fails to generalize well. Figure [6]illustrates the performance on long-form QA tasks.
As expected, the transformer with self-attention and RoPE encoding suffers from significant per-
formance degradation as sequence length increases. This highlights the limitations of self-attention
in transformer in capturing long-range dependencies. In contrast, LNSSM maintains robust perfor-
mance across the increasing sequence lengths, with only mild degradation due to the increased task

complexity rather than the memory limitation.

5.4 LONG-FORM GENERATION EVALUATION

We evaluated LNSSM against the other SSM
variants on a set of long-form generation tasks.
Specifically, the ASQA (Stelmakh et al,[2022) Model

Zero-shot Fine-tuned
ASQA ELIS WikiLarge ASQA WikiLarge

dataset was used to assess the model’s ability = Mamba-2

to locate and comprehensively express answers ~ RWKV-4
within a given long textual description. The RWKV-5

1325 1143  9.03 2049 21.97
13.36 11.07 17.16 1424  17.57
12.41 12.01 8.6 2129  21.26

ELI5 (Fan et al.,2019) dataset was employed to ~ LNSSM

13.69 1196 951 2145 2213

evaluate the model’s knowledge retention and Table 3:

ROUGE-L score of different models on

generation capabilities in the absence of refer- ASQA, ELI5 and WikiLarge. The highest score per

ence material. Finally, the WikiLarge (Zhang &
Lapatal 2017) dataset was utilized to examine
the model’s ability to read an entire long-form

dataset is in bold.

document and subsequently summarize or paraphrase it. For all evaluations, ROUGE-L was adopted

as the primary evaluation metric. The mod-
els were first assessed in a zero-shot setting s

using the test sets of ASQA, ELI5 and Wiki-
Large. The results, presented in Table (3] indi-
cate that although the relatively small param-
eter size of the evaluated models limits abso-
lute performance, LNSSM consistently outper-
forms different SSM variants in terms of gen-
eration quality. Subsequently, we fine-tuned

~ w IS “

Normalized Frequency

°

—

—— INSSM
RWKV-5

the models on the training sets of ASQA and oo
WikiLarge. Detailed fine-tuning configurations
are provided in Appendix [B.2] As shown in
Table all models exhibit substantial per-
formance improvements after fine-tuning, with

Figure 7:

~0.005 0.000 0.005 0.010 0.015
Attention Score

Distributions of the attention scores calcu-

lated by SSM via RWKV-5 and LNSSM.

LNSSM achieving superior generation results compared to Mamba-2, RWKV-4 and RWKV-5.

5.5 DISTRIBUTION ANALYSIS
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Although LNSSM does not - 125 - 1
. . " RWKV-5 Attention Map - LNSSM Attention Map

explicitly compute a query- e, 100 !
key attention map during | s FRET N
the forward pass, we per- rﬁ"'-'.""F- o |IEIEE w0 _
form an auxiliary analy- i""_""""l, i 2 f g ML H 110 si’
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tention scores. Specifically, M A i » il d il AL ;: .
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SSM variant via RWKV-5 V‘ . . vm‘
and the LNSSM. As shown Flgure 8: Comparison of attention maps without and without log-normal

R distribution. For a fair comparison, we use the unnormalized attention maps.
in Figures m (overall) and EI the attention map of RWK\E)-S (which does not exhibit a log-normal distrilfu-
(per sequence), the results i : .

. . . ion) shows smaller differences across tokens. In contrast, the attention map
align with our expectations. ¢ LNSSM, which follows a log-normal distribution, better distinguishes be-
The attention scores of the  (yeen relevant and irrelevant tokens. In terms of distribution, RWKV-5 shows
standard SSM via RWKV- 3 normal distribution while LNSSM shows a log-normal distribution.

5 are approximately normal

distributed while the atten-

tion scores of LNSSM follow a log-normal distribution. In attention mechanisms, it is typically
desirable for the model to focus selectively on a small subset of important or relevant tokens. That
is, the attention weights should be highly skewed, with a few large values corresponding to salient
tokens and the rest being small.

The log-normal distribution naturally exhibits this behavior, it is positively skewed, with the majority
of values concentrated near zero and a long tail of high values. This property helps explain why the
causal state update based on LNSSM even achieves the performance comparable to the noncausal
self-attention. A desirable performance basically relies on sparse and relevant attention distributions.
In contrast, a normal distribution, as observed in the non-log-normal SSM (RWKYV-5), implies that
most attention scores are centered around the mean, with fewer extreme values. This results in a
less focused attention pattern, where many tokens receive similar weights, deviating from the ideal
behavior expected of effective attention. These findings highlight that distributional alignment based
on softmax attention with log-normality is a key factor in achieving strong performance, and support
the design choice of using exponential mappings in LNSSM to emulate this property.

6 CONCLUSIONS

This paper has presented the tog-normal state-space model (LNSSM), which inherits the statistical
property of self-attention while enjoying the efficiency of state space models. Experiments show that
LNSSM matches the expressiveness of self-attention in transformer on the benchmarks with differ-
ent training-length sequences, while outperforming standard SSM baselines that lack log-normality.

For long-range dependencies, LNSSM benefits from its state matrix memory, maintaining stable
performance on the sequence data with extended lengths where transformer considerably degrades,
likely due to overfitting to fixed training lengths. On efficiency, LNSSM achieves true linear com-
plexity in floating point operations and memory, requiring only constant memory as it processes
tokens sequentially. In contrast, self-attention in transformer scales quadratically or worse in com-
putation, and KV caching, while reducing the computation, still incurs memory overhead. Overall,
LNSSM offers a strong balance between expressiveness and efficiency, making it a promising alter-
native to attention-based architectures under the memory and computation constraints.
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APPENDIX

A HARDWARE-EFFICIENT IMPLEMENTATION

Transformer-based models rely on the self-attention mechanism during inference, which requires
computing attention scores between every pair of tokens in a sequence of length N. Consequently,
the time complexity per token is O(IN?). Moreover, since generating the N-th token depends on
the full context of tokens 1 through N — 1, the overall inference complexity sums to 1% 4 22 4
-+ (N —1)? = O(N3). However, during training, the entire sequence of length N is known in
advance, enabling the simultaneous input of all tokens and parallel prediction of the next tokens at
each position. This design allows efficient parallelization by processing all tokens concurrently.

SSMs can also adopt a training scheme that feeds in IV tokens at once. Nonetheless, they do not
support full parallelization in the same manner. This is because the generation of each token depends
not only on the current input but also on the previous state. In particular, producing the N-th token
requires the state from the (N — 1)-th step. Therefore, token generation in SSMs must proceed
sequentially, preventing simultaneous processing of all [V tokens in a true parallel fashion.

This characteristic significantly impacts training efficiency. In practice, transformer-based models
process sequences of length N by batching all IV token embeddings together and feeding them into
the GPU for parallel computation, minimizing CPU-GPU data transfers and maximizing hardware
utilization. In contrast, SSMs rely on sequential recurrence to process inputs token by token. When
implemented in standard deep learning frameworks such as PyTorch, each token’s processing may
involve frequent synchronization between CPU and GPU. For sequences of length N, this synchro-
nization occurs N times, causing the GPU to frequently wait for data from the CPU. This overhead
results in underutilized GPU resources and reduced training throughput.

Although existing research on state-space models (SSMs) has proposed optimization strategies
such as “space-for-time” trade-offs (e.g., storing partial intermediate states to support paral-
lelization), these methods primarily focus on improving theoretical computational complexity
without fundamentally addressing the practical issue of low GPU utilization. Therefore, en-
hancing GPU resource usage efficiency remains a critical challenge for accelerating training.

Method GPU usage | Training time

One promising approach to overcome this bot-
tleneck is the implementation of custom CUDA CUI;)yziolr(fel;nel SSZJ 4320
kernels. The core idea is to batch the entire in- 0

put sequence and transfer it once to the GPU, Table 4: GPU usage in percentage and training time
where the sequential recurrence logic is exe- 1inseconds per epoch when using LNSSM.

cuted entirely within the CUDA kernel. This

design enables all token processing to be per-

formed internally on the GPU, and only the final results are transferred back to the CPU after
processing the whole sequence. This approach significantly reduces host-device synchronization
overhead and markedly improves GPU utilization. Table []illustrates the difference in GPU usage
and training time between implementations using custom CUDA kernels and those relying solely on
PyTorch under identical conditions.

CUDA kernels parallelize the calculations for each dimension of a vector. In other words, if we need
to calculate a vector of d dimensions, the CUDA kernel can simultaneously compute the results for
all d dimensions, achieving a high degree of parallelism. However, extreme caution is required when
using the shared variables, as improper handling can lead to race conditions. Furthermore, imple-
menting custom CUDA kernels poses significant challenges, as PyTorch’s automatic differentiation
cannot be directly utilized within CUDA kernels. Therefore, all computations inside the kernel must
be manually coded along with their gradient calculations. This is a substantial engineering effort,
especially because the SSM state accumulates over time. The state computed at timestep ¢ is used
not only to generate the output at time ¢, but also retained and accumulated to produce the state and
output at timestep ¢ + 1. In other words, the loss at timestep ¢ requires gradient calculations not only
for the parameters at ¢, but also for all parameters from timestep 1 through ¢ — 1. Below, we present
the gradient formulas of each parameter in LNSSM along with the corresponding gradient compu-
tation algorithms. To better leverage PyTorch’s native automatic differentiation, we only practically
compute the denominator .S and the numerator z of the LNSSM equations within the CUDA kernel,
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thereby simplifying the gradient calculations inside the CUDA kernel. The following algorithms
describe how to compute the gradients of the denominator S with respect to each parameter.

The gradient of the loss with respect to g is given as follows

oyt oC oL oL
i Rdadi<? 1
aqn Zayl dat ~ oyl gttt gy S un

n

where y denotes the output produced by the CUDA kernel, which is then received by the external
Python program. During backpropagation, the CUDA kernel obtains the gradient of the loss with
respect to y from the external Python program and uses it to compute the parameter gradients based
on chain rule, as described in Algorithmm

Require:

1: T : number of time steps (indexed ¢ =0,1,...,7 — 1)

2: N : feature dimension (indexed ¢,n» = 0,1,..., N — 1)

3: k[0...T—1][0...N — 1] : keys

4: v[0... T —1][0...N — 1] : values

5: g-S[0...T —1][0... N — 1] : upstream gradient w.r.t. S (from outer backprop)
6: a[O. .. N — 1] : time-invariant coefficients (per-dimension)

7 : the target dimension for this kernel instance (thread-local)

8: Imt state[0...N —1]«+0 (private to thread n)
Ensure:

9: g_q[0...T — 1] for this n : gradient w.r.t. g/, across all ¢

10: (Collecting over all threads n yields g_¢[0...7 —1]{0... N —1])

11: fort =0to 7 — 1 do

12: gq[t] + 0;

13: fori=0to N —1do

14: s « stateli];

15: x + k[t][n] - v[t][i];

16: s+ s-aln]+ x;

17: state[i] < s;

18: g-qlt] < g-qlt] + s - g-S[t][i];
19:  end for

20: end for

21: return g_g[0...T — 1]

The gradient of the loss with respect to a is formulated as follows

oLc iai_ayg (oL 0S4 +a,c asn2+'_ L oL oL 9sy, 18)
N oyt Oa, 8y1 da, ' Oyt da, oyt da, )’

Since a is time-invariant, it is necessary to additionally account for the derivative of the state .S with
respect to a, which is expressed as

T
%S‘;ﬂn — (T — D(an) " 2klol + (T —2)(an)' k202, + - + KT~ 10I-1  (19)

The corresponding computation procedure is presented in Algorithm 2}
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Algorithm 2 Per-dimension kernel for % (thread computes a fixed n)

Require:

1: T : number of time steps (indexed t = 0,1,...,7 — 1)

2: N : feature dimension (indexed ¢,n = 0,1,..., N — 1)

3: k[0... T —1][0...N —1] : keys

4: v[0... T —1][0...N — 1] : values

5: g[0...T —1][0... N — 1] : query parameters (time-varying)
6: g_S[0...T —1][0... N — 1] : upstream gradient from outer backprop
7: a[O, .. N — 1] : time-invariant coefficients

8: n : target dimension (thread—local index)

9: Inlt state_1[0...N —1] +- 0, state2[0...N — 1]+ 0
Ensure:

10: g-a[n] : scalar gradient w.r.t. @,, (per dimension)

11: g_a < 0;

12: fort =0toT — 1do

13: tmp-1 + 0;

14: fori=0to N —1do

15: s.1+ state_1[i];

16: §.2 < state_2[i];

17: x < k[t][n] - v[t][i];

18: tmp-2 < a[n] - (x + s_1);
19: s_ 1+ tmp_2;

20: 82+ tmp2+aln]-s2;
21: tmp_1 < tmp_1 + s2 - g_S[t][i];
22: state_1[i] + s_1;

23: state_2[i] + 8.2;

24:  end for

25:  g-a <+ g-a+q[t][n] - tmp_1;
26: end for

27: return g_a (store into g_a[n])

The gradient of the loss with respect to k is given as follows

Z oL 8.% KT — gt (81: ty 87/3”], 4ot 87/;” ) + KT (20)

akt ol okt T oyt L oyl oy,

where K is the future impact of k. The gradient of the loss with respect to v is given as follows

oL oL oyt LT oL
8vt 8yt ovt, " oyt

(qikt + bkl + -+ qLkL) + VT @21

where V is the future impact of v. Since the state is derived from the multiplication of k and v, the
current values of k and v also influence future outputs. Therefore, when computing the gradients of
k and v, their future impacts must be considered. The future impact of k is computed as follows

Kt+1~T qf{"la ( oL ot + oL U5+._.+&Cvt>

ayiﬁLl 1 8y§+1 ayg%l n
oL oL oL
T q'*2(a,)? oy by ot
2, " (an) aytT? 1 ayL? U2 8 yit? Un, 22)
N
oL oL oL
T T—
+ qn (a’") ¢ <ay%"v§ + ayg ’l); + -+ 78 T’Ufl>
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Algorithm 3 Per-dimension kernel for 8‘9,5,, (thread computes a fixed n)
Require:

1: T : number of time steps (indexed t = 0,1,...,7 — 1)

2: N : feature dimension (indexed ¢,n = 0,1,..., N — 1)

3: g[0...T —1][0... N — 1] : query parameters (time-varying)

4: v[0... T —1][0...N — 1] : values

5: g-S[0...T —1][0... N — 1] : upstream gradient from outer backprop

6: al0...N — 1] : time-invariant coefficients

7: n : target dimension (thread-local index)

8: Imit: state 3[0...N —1]«+ 0

Ensure:
9: g_k[0...T — 1] for this n : gradient w.r.t. k%, across all
10: (Collecting over all threads n yields g_k[0...7 —1][0... N —1])
11: fort =T — 1 to O step —1 do
12:  g_k[t] < 0;
13: fori=0to N — 1do

14: s < state_3[i];

15: @ qt][n] - g-S[t][i];

16: s+ x+s-an);

17: state_3[i] + s;

18: g-k[t] < g-k[t] + s - v[t][1];
19:  end for

20: end for

21: return g k[0...T — 1]

The future impact of v is computed as follows

.o
VT = Ayl (qiﬂalkfi + a5 askh + -+ qulankfl)
200 (a7 @)K+ a0 K e+ )R,
oyt v 2 mo (23)

oL ~ B )
g (o @)K )T+ )R
n

The detailed procedures are described in Algorithms [3]and ] respectively.

B EXPERIMENTAL DETAILS

B.1 TRAINING

For a smaller dataset, each sample was concatenated to

form a continuous long text, which served as the training

corpus. We employed the same byte pair encoding (BPE) | ™2 *2 i
tokenizer as GPT-2, which tokenizes frequent words in I
the corpus as single tokens, adding a special leading sym- [, "1
bol to indicate preceding whitespace. Rare words were Cross-entropy
decomposed into subword units. The total vocabulary T

size was 50,277. ‘

Model
To reduce the training time and hardware requirement,
a larger dataset was preprocessed into contiguous binary T

files (.bin) containing token ID sequences, accompanied
by index files (.idx) storing the byte offsets of each se-
quence. This preprocessing allows for efficient sequen- ~ Figure 9: Training tasks for all models.
tial reading and random access during training, eliminat-

ing the need for on-the-fly text parsing and tokenization.

Such a format minimizes the disk input/output overhead, enables the memory-mapped loading, and

z1 | T3 e TN
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Algorithm 4 Per-dimension kernel for aaﬁ (thread computes a fixed n)
Require:

1: T : number of time steps (indexed t = 0,1,...,7 — 1)

2: N : feature dimension (indexed ¢,n» = 0,1,..., N — 1)

3: g[0...T —1][0... N — 1] : query parameters (time-varying)

4: k[0...T —1][0...N — 1] : keys

5: g-S[0...T —1][0... N — 1] : upstream gradient from outer backprop

6: al0...N — 1] : time-invariant coefficients

7: n : target dimension (thread-local index)

8: Imit: state 4[0...N —1] «+ 0

Ensure:
9: gw[0...T — 1] for this n : gradient w.r.t. v, across all ¢
10: (Collecting over all threads n yields g v[0...T —1][0... N — 1))
11: fort =T — 1 to O step —1 do
12:  g[t] « 0;
13:  fori=0to N —1do

14: s < state_4[i];

15: @ g-S[i][n] - q[t][i];

16: s« x+s-ali;

17: state_4[i] + s;

18: glt] «+ gv[t] + s - k[t][i];
19:  end for

20: end for

21: return gw[0... T — 1]

ensures that the training pipeline can directly sample the fixed-length segments without re-tokenizing
the dataset, thereby improving throughput and scalability.

B.2 FINE-TUNING

In each epoch, a fixed number of

sequences were randomly sam- .
‘ input

pled from the corpus, each with
a sequence length of 1024 to- m
kens. Samples were batched ac-
cording to the batch size and target
fed into the model for train-
ing. Validation was performed
every ten epochs, during which
the full validation set was pro-
cessed once. For the models Figure 10: Data pre-processing of the BABILong dataset.
with approximately 70M param-

eters, we sampled 10,000 fixed-length sequences per epoch with a batch size of 18.

input question "The answer is" target

The training task was known as the next-token prediction. To maximize the efficiency, the model
was trained to predict the entire sequence in parallel. For each sequence of length N + 1, the data
sample was split into an input segment (tokens 1 to V) and a target segment (tokens 2 to N + 1).
The model received a token ¢ as input and, using its updated hidden state, to predict token ¢+ 1. This
process is illustrated in Figure@} For a sequence of length N + 1, x; to  x+1, the model computes
the cross-entropy loss between the predictions y; to Yy and the target tokens 2 to Ty 4+1.

The BABILong dataset consists of three fields: input, question, and target. The input is a long-form
textual description containing the states of various objects. The question queries the final state of a
specific object, and the target is typically a single token. For training and evaluation convenience,
these three fields were concatenated sequentially, with the phrase “The answer is” inserted between
the question and the target. The target token was then appended to complete the sequence, as shown
in Figure [I0] This formulation allows the fine-tuning process to remain consistent with the next-
token prediction framework, i.e. the model is fed with the concatenated text (input + question +
prompt) and trained to predict the next token, which corresponds to the answer.
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C RESOURCE USAGE

We evaluate the computational

and memory efficiency of state Model LNSSM | SA | SA with KV-cache
update in LNSSM in compari-  ["Time Complexity | O(Nd2) | O(N°d) O(NZ%d)

son with self-attention in trans- 356 tokens 0.37 39195 141
former, both with and without 512 tokens 0.74 | 1312.16 3.22

KV caching.  Specifically, we 1024 tokens 148 | 6329.43 8.06

measure the floating point oper-
ations (FLOPs) and peak mem-
ory usage required to autore-
gressively generate 256, 512,
1024 tokens.

Table 5: GFLOPs of LNSSM with state update, self-attention (SA) and
SA with key-value (KV) cache to generate 256, 512, and 1024 tokens.

It is important to note that the vanilla self-attention in transformer requires the entire input se-
quence at each time step, resulting in a theoretical O(N?3) time complexity for generating N
tokens. In contrast, transformer with KV caching reduces this complexity to O(N?) by stor-
ing and reusing previously computed key-value pairs. LNSSM, by design, supports token-
by-token computation with constant state updates, yielding an expected linear O(N) scaling.
Table [5] presents the measured

FLOPs for each model across Model LNSSM | SA | SA with KV-cache
different generation lengths. As 256 tokens | 0.5GB | 1.0GB 1.7GB
expected, LNSSM exhibits lin- 512 tokens | 0.5GB | 1.8GB 3.8GB
ear growth in FLOPs with re- 1024 tokens | 0.5GB | 5.0GB 13.2GB

spect to output length. The
self-attention transformer and
its KV-cached variant deviate
slightly from their theoretical
scaling due to the presence of linear matrix operations (e.g., MLPs, projections) whose cost in-
creases with input length, particularly in practical implementations.

Table 6: Memory usage of LNSSM with state update, self-attention
(SA) and SA with KV cache to generate 256, 512, and 1024 tokens.

Table [6] reports the memory usage of each model. LNSSM maintains a constant memory footprint,
independent of sequence length, thanks to its state design. In contrast, vanilla transformer consumes
increasing memory as the sequence grows, due to the recomputation over the full context. KV-
cached transformer, while reducing computational cost, requires additional memory to store all past
key-value pairs, leading to higher peak memory usage than both LNSSM and standard transformers.
These results highlight the efficiency advantage of LNSSM in both FLOPs and memory, making it
particularly suitable for long-sequence generation under constrained hardware environments.
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