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Abstract
Dynamic data selection aims to accelerate train-
ing with lossless performance. However, reduc-
ing training data inherently limits data diversity,
potentially hindering generalization. While data
augmentation is widely used to enhance diversity,
it is typically not optimized in conjunction with
selection. As a result, directly combining these
techniques fails to fully exploit their synergies. To
tackle the challenge, we propose a novel online
data training framework that, for the first time,
unifies dynamic data selection and augmentation,
achieving both training efficiency and enhanced
performance. Our method estimates each sam-
ple’s joint distribution of local density and mul-
timodal semantic consistency, allowing for the
targeted selection of augmentation-suitable sam-
ples while suppressing the inclusion of noisy or
ambiguous data. This enables a more significant
reduction in dataset size without sacrificing model
generalization. Experimental results demonstrate
that our method outperforms existing state-of-the-
art approaches on various benchmark datasets and
architectures, e.g., reducing 50% training costs
on ImageNet-1k with lossless performance. Fur-
thermore, our approach enhances noise resistance
and improves model robustness, reinforcing its
practical utility in real-world scenarios.

1. Introduction
Deep learning has thrived with the growing availability of
large-scale datasets. As models become more complex and
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parameter-extensive, it is necessary to utilize even larger
datasets, introducing challenges like reduced training effi-
ciency. Moreover, large-scale datasets often include redun-
dant or noisy samples (Xia et al., 2023b; Northcutt et al.,
2021; Wang et al., 2018), which can compromise training
effectiveness. To address these challenges, various data se-
lection strategies have been proposed to reduce dataset size
and enhance data efficiency while maintaining model per-
formance. These methods can be broadly categorized into
static data selection (Tan et al., 2024; Zhang et al., 2024; Xia
et al., 2023b) and dynamic data selection (or pruning) (Qin
et al., 2024; Raju et al., 2021; He et al., 2024). Static selec-
tion identifies a fixed subset of data before training begins,
whereas dynamic pruning continuously selects the most
influential samples during training. While these methods
can effectively reduce training costs without degrading per-
formance, the reduced training data volume often leads to
reduced data diversity. Consequently, the generalization of
deep models is limited, and lossless performance is typically
achieved with relatively high selection ratios.

In fact, to address the issue of data diversity, data augmen-
tation is commonly used in model training, which can also
improve generalization (Xu et al., 2023; Yang et al., 2022b).
However, effectively combining data selection and augmen-
tation remains a challenge. Existing data selection methods
typically prioritize representative and challenging samples,
which are not specifically designed with augmentation in
mind. Although augmentation can increase the diversity of
selected data and further improve model robustness, apply-
ing it to complex samples may introduce ambiguity or noise,
potentially increasing training difficulty (Gong et al., 2021;
Yang et al., 2024b). Therefore, integrating data selection
and augmentation in a unified framework presents a promis-
ing yet underexplored direction to balance efficiency and
generalization.

In this study, we propose a novel framework that integrates
dynamic data selection with augmentation, enabling a uni-
fied approach to enhance training efficiency and model gen-
eralization. During model training, low-density samples of-
ten correspond to underlearned or insufficiently represented
data points, such as classification boundaries. Applying
augmentation transformations to these samples reinforces
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Figure 1. Illustration of the distribution of our selected data points using the T-SNE algorithm (left) and the density histograms without
(mid) and with (right) augmenting the selected data on CIFAR-10. The selection ratio is 10%.

model learning and improves robustness. However, noisy
or outlier samples typically exhibit relatively low density,
increasing the risk of introducing noise. To address this, we
introduce a semantic consistency distribution derived from
the pre-trained multimodal model CLIP (Radford et al.,
2021). By prioritizing samples with high sparsity and strong
semantic alignment, our approach leverages the joint distri-
bution of density and semantic consistency for effective and
robust sample selection.

As illustrated in the left sub-figure of Fig. 1, the selected
data points predominantly cluster around boundary regions
among clusters. Meanwhile, the density histogram in Fig. 1
reveals a more balanced distribution after augmentation,
with fewer low- and high-density samples and more data
points converging toward the moderate-density regions.
Compared to the distribution without DA, this redistribu-
tion highlights our framework’s ability to enhance sparse
regions, improving model generalization across the entire
data distribution.

Experimental results across benchmark datasets and deep ar-
chitectures demonstrate the effectiveness of our method. On
large-scale datasets such as Tiny-ImageNet (Chrabaszcz
et al., 2017) and ImageNet-1k (Deng et al., 2009), our
method significantly accelerates training while maintain-
ing or even improving generalization. For instance, on
ImageNet-1k, our approach doubles the training efficiency
while achieving comparable performance with the entire
dataset. Moreover, our framework exhibits strong cross-
architecture and cross-scenario generalization, effectively
mitigating the impact of noisy data and enhancing versatility
in real-world applications. On Tiny-ImageNet, our approach
outperforms leading baselines by at least 3% in accuracy
under noisy conditions, further demonstrating its reliability.

Our main contributions are summarized as follows: 1) We
propose a novel training framework that dynamically inte-
grates data selection and augmentation, significantly acceler-
ating training while maintaining model performance. 2) We
introduce a joint distribution based on density and semantic

consistency, ensuring effective sample selection and reduc-
ing noise and ambiguity. 3) Extensive experiments across
diverse datasets and architectures demonstrate superior ac-
curacy and generalization ability, particularly in noisy and
challenging scenarios, validating its practical applicability.

2. Related Work
2.1. Data Selection

The primary goal of data selection is to enhance data-
efficient learning, which can be broadly categorized into
dataset distillation (Lei & Tao, 2023; Du et al., 2023; Sun
et al., 2024; Liu & Wang, 2024), and static or dynamic data
selection (or pruning) (Tan et al., 2024; Xia et al., 2023b;
Sorscher et al., 2022; Qin et al., 2024). Dataset distillation
focuses on synthesizing a small representative dataset that
preserves the performance of training on the full dataset. In
contrast, following dynamic data selection without synthe-
sizing new data in this work, we propose a new data training
framework that unifies dynamic data selection and augmen-
tation to achieve enhanced model training acceleration.

Static data selection identifies a fixed subset of the training
dataset before training begins. Existing methods can be
categorized into selection with importance criteria, dataset
distribution-based methods, and optimization-based meth-
ods. Selection with importance criteria computes per-
sample importance scores and selects the most informative
samples. This includes: 1) the expectation of ℓ2-norm er-
ror vector and the gradient norm (EL2N and GraNd) (Paul
et al., 2021), 2) the change in the optimal empirical risk
when a sample is removed (Tan et al., 2024), 3) the num-
ber of forgetting events in the whole training process (For-
getting) (Toneva et al., 2018), 4) the impact of including
or excluding a sample on the model’s classification abil-
ity (Feldman & Zhang, 2020). Dataset distribution-based
methods select samples based on the geometric distribu-
tion of the dataset. Herding (Welling, 2009) chooses sam-
ples based on their distance from the corresponding class
centers. D2 (Maharana et al., 2023) defines sample diffi-
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culty by incorporating the difficulty of its neighboring ex-
amples. The work (Ramalingam et al., 2023) applies greedy
k-center to select the coreset with good data coverage, and
CCS (Zheng et al., 2023) balances the sample distribution
and importance in selection. Similarly, Moderate-DS (Xia
et al., 2023b) selects samples that are closer to the median
score, aiming to balance diversity and representativeness.
Optimization-based methods formulate selection as an op-
timization problem using techniques such as scalable self-
supervised pruning metrics (Sorscher et al., 2022), influence
function (Yang et al., 2023a), bi-level optimization (Killam-
setty et al., 2021), gradient matching (Mirzasoleiman et al.,
2020b), convex optimization (Mirzasoleiman et al., 2020a),
facility location function (Yang et al., 2023b), temporal dual-
depth scoring (Zhang et al., 2024), and submodularity (Iyer
et al., 2021; Nohyun et al., 2023).

Dynamic data selection identifies informative samples
throughout training, allowing the dataset to adapt as the
model learns. The work (Raju et al., 2021) proposes UCB
and ϵ-greedy algorithms to estimate the uncertainty value as-
sociated with each training sample, selecting a subset of the
data that exhibits the highest levels of uncertainty. Similarly,
the work (He et al., 2024) also employs both prediction
uncertainty and training dynamics to guide the selection
process, ensuring that the most informative samples are re-
tained throughout training. The work (Liu & Mirzasoleiman,
2022) proposes a data-efficient framework for training neu-
ral networks and achieves promising results. SAS (Joshi
& Mirzasoleiman, 2023) improves data efficiency in SSL
by proving and selecting the most beneficial data for con-
trastive training. Moreover, InfoBatch (Qin et al., 2024)
proposes a method for unbiased dynamic data selection that
accelerates training by pruning less informative samples
to retain their relevance in model optimization, which al-
lows for more efficient training without compromising the
model’s performance.

2.2. Data Augmentation

Data augmentation (DA) improves the generalization of
deep neural networks by increasing the diversity of training
samples (Yang et al., 2024a). Existing DA methods can
be divided into image erasing/mixing-based and automatic
augmentation methods (Xu et al., 2023). Image erasing and
mixing-based augmentation erase some sub-regions in im-
ages or mix random information from two or more images
for augmentation to create new samples, respectively. These
methods include Cutout (DeVries & Taylor, 2017), Ran-
domErasing (Zhong et al., 2020), HaS (Singh & Lee, 2017),
AdvMask (Yang et al., 2022a), Mixup (Zhang et al., 2018),
GuidedMixup (Kang & Kim, 2023), and GradSalMix (Hong
et al., 2023), etc. In addition, based on pre-defined or opti-
mized image transformation policies, automatic DA meth-
ods randomly apply one or multiple transformations to each

image at each epoch, including AutoAugment (Cubuk et al.,
2019), Fast-AutoAugment (Lim et al., 2019), RandAug-
ment (Cubuk et al., 2020), TrivialAugment (Müller & Hutter,
2021), SelectAugment (Lin et al., 2023), EntAugment (Yang
et al., 2024b), and MADAug (Hou et al., 2023), etc. Beyond
these, generative data augmentation further enriches data by
synthesizing new samples using generative models (Moreno-
Barea et al., 2020). Recent studies also emphasize represen-
tation consistency (Atienza, 2022) and address distribution
gaps between clean and augmented data (He et al., 2019),
pointing to new challenges in effective DA design.

3. The Proposed Method
3.1. Overview of the Proposed Method

As shown in Fig. 2, we propose a novel data training frame-
work that integrates dynamic data selection with augmenta-
tion to enhance both training efficiency and generalization.
Our framework employs two complementary distributions:
1). a density distribution, dynamically estimated by a task-
specific model (e.g., ResNet), which identifies underrep-
resented samples for augmentation and training, and (2) a
semantic consistency distribution, computed using a frozen
pre-trained multimodal model (CLIP), which quantifies the
alignment between an image and its corresponding textual
label. Low-density regions highlight underrepresented sam-
ples but may also include noisy or ambiguous instances.
To address this issue, the semantic consistency distribution
acts as a strong complement, filtering samples with weak
semantic alignment. By combining both distributions, we
construct a joint distribution that captures the relationship
between sample informativeness and semantic correctness.
Consequently, samples with higher joint distribution scores
are prioritized to be selected and augmented for training.

3.2. How to Identify Samples for Augmentation

Given a dataset D that follows an underlying distribution
P (D), the optimization objective of our dynamic data selec-
tion module at time t is to select a subset D̂t, containing at
most k samples. The goal is to minimize the expected loss
over the distribution P (D), with the following optimiza-
tion: D̂t = argmin

D̂t⊆D,|D̂t|≤k

Ez∼P (D)

[
L
(
z, θ̂A(D̂t)

)]
, where

z represents a test sample, L is the loss function, θ̂D̂t
is

the empirical risk minimizer on D̂t, and A represents the
augmentation operations applied to the selected subset.

Our method prioritizes low-density samples because such re-
gions in the feature space often correspond to underlearned
or insufficiently represented data points. Focusing on these
samples and applying augmentation operations helps the
model capture distinctive features. By augmenting these
sparse samples, we compensate for their underrepresenta-
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Figure 2. The framework of our proposed data training method: The core idea of our framework is to construct a joint distribution that
integrates both the density and semantic consistency distributions, enabling the prioritization of low-density, semantically consistent
samples. After augmentation, augmented sparse samples in intra-cluster regions help to fill the underrepresented spaces, while samples
located around the decision boundaries between clusters differentiate the classification decision more clearly, thus improving generalization.

tion, improving the model’s ability to generalize across
diverse data regions. To efficiently determine the den-
sity of data points during online training, we exploit an
online approximate nearest neighbor search architecture
(HNSW) (Malkov & Yashunin, 2018) to query the nearest
k neighbors of each sample x, denoted as NN(x). The
density of a sample is then estimated as the mean of the ℓ2
distance between x and its neighbors:

ρxi =
1

k

∑
j∈NN(xi)

||xi − xj ||, (1)

where higher values indicate low-density samples. The
density scores are then normalized using a Min-Max scal-
ing to obtain pρ(x). For augmentation, we employ slight
augmentation, which generates neighboring samples within
low-density areas while preserving local structure.

Nevertheless, low-density regions may also contain chal-
lenging, outlier, or noisy samples. Continuously selecting
these samples for training can substantially complicate train-
ing, especially on real-world datasets that inevitably include
noise. To address this issue and improve the practical effec-
tiveness of our method, we introduce a multimodal semantic
consistency constraint that simultaneously refines the selec-
tion of low-density samples. This ensures that augmentation
is applied to meaningful data, improving both robustness
and efficiency in the training process.

3.3. Multimodal Consistency Estimation for Robust
Data Selection

Noisy data - arising from incorrect labels, corrupted images,
or outlier samples - reflects a fundamental mismatch be-
tween the semantic content of x and its corresponding label
y. To detect and filter such inconsistencies, the data cleaner
evaluates the joint distribution p(x, y), which captures the
plausibility of an image-label pair. Given the inherent cor-
relation and multimodal nature of x and y, we introduce

multimodal consistency supervision as an additional crite-
rion for assessing sample reliability. This complements the
density-based selector by filtering out samples that exhibit
low cross-modal consistency.

To implement this, we leverage a pre-trained CLIP model
to embed images and text into a shared multimodal
space, enabling semantic alignment assessment. How-
ever, CLIP’s zero-shot generalization is limited to domain-
specific datasets, making it necessary to adapt the embed-
dings to the target domain. Instead of performing computa-
tionally expensive fine-tuning, we incorporate lightweight
adapters of MLP for both the image and text encoders (Poth
et al., 2023; Yang et al., 2024c). The lightweight architec-
ture of adapters ensures efficient adaptation while preserving
CLIP’s pretrained knowledge.

To measure the cross-modal consistency, we compute the
cosine similarity of the encoded image and text features:

con(xi) = ℓcos(EI(xi), ET (yi)), (2)

where EI and ET are visual and textual encoders, respec-
tively. The consistency scores are normalized via Min-Max
scaling to approximate the consistency distribution pcon(x),
where higher values indicate stronger semantic alignment.
Since the image-label alignment is derived from a pretrained
vision-language model and remains independent of the train-
ing process, we precompute the consistency distribution
beforehand. This enables direct use during sample selection,
eliminating additional computational overhead in online
training.

3.4. Augmenter

To integrate structural sparsity and semantic consistency, we
define a joint distribution that combines both density and
consistency distributions:

psel(xi) = pρ(xi) ∗ pcon(xi). (3)
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Table 1. The accuracy (%) comparison to state-of-the-art baselines. All methods are trained with ResNet-18 on CIFAR-10/100 and
ResNet-50 on Tiny-ImageNet. Note that some results could not be computed due to the unavailability of open-source code and parameter
settings, making it impossible to reproduce. Random* means randomly selecting samples in each epoch.

Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet
Whole Dataset 95.6 78.2 45.0

Selection Ratio (%) 30 50 70 30 50 70 30 50 70
Random 90.2 92.3 93.9 69.7 72.1 73.8 29.8 37.2 42.2

Herding (Welling, 2009) 80.1 88.0 92.2 69.6 71.8 73.1 29.4 31.6 39.8
EL2N (Paul et al., 2021) 91.6 95.0 95.2 69.5 72.1 77.2 26.6 37.1 44.0
GraNd (Paul et al., 2021) 91.2 94.6 95.3 68.8 71.4 74.6 29.7 36.3 43.2

Glister (Killamsetty et al., 2021) 90.9 94.0 95.2 70.4 73.2 76.6 30.1 39.5 43.9
Forgetting (Toneva et al., 2018) 91.7 94.1 94.7 69.9 73.1 75.3 28.7 33.0 41.2
Moderate-DS (Xia et al., 2023b) 91.5 94.1 95.2 70.2 73.4 77.3 30.6 38.2 42.8

Self-sup. prototypes (Sorscher et al., 2022) 91.0 94.0 95.2 70.0 71.7 76.8 27.7 37.9 43.4
MoSo (Tan et al., 2024) 91.1 94.2 95.3 70.9 73.6 77.5 31.2 38.5 43.4
DP (Yang et al., 2023a) 90.8 93.8 94.9 - 73.1 77.2 - - -

Random* 93.0 94.5 94.8 74.4 75.3 77.3 41.5 42.8 43.1
UCB (Raju et al., 2021) 93.9 94.7 95.3 - 75.3 77.3 - - -

ϵ-Greedy (Raju et al., 2021) 94.1 94.9 95.2 - 74.8 76.4 - - -
InfoBatch (Qin et al., 2024) 94.7 95.1 95.6 76.5 78.1 78.2 42.2 43.2 43.8

Ours 94.9 95.5 96.0 77.6 78.9 79.5 44.9 47.0 49.4

Here, pρ evolves dynamically with model training, allowing
sample selection to adapt to the current model training state.
During online training, samples with higher joint distribu-
tion scores are prioritized for augmentation and training,
ensuring that both underrepresented and semantically mean-
ingful samples are utilized effectively.

We employ TrivialAugment as our augmenter, which is
widely used and offers a computationally efficient aug-
mentation strategy. During augmentation, only a single
lightweight transformation per image is applied. This brings
two key advantages: i). It introduces negligible computation
overhead to the online training process, making it highly
efficient. ii). Since each image undergoes only one trans-
formation with a slight magnitude, the augmented samples
remain within their original local feature space. This is
well-suited for the objective of our dynamic data selection
framework: filling intra-cluster gaps and enhancing deci-
sion boundaries within clusters. Thus, the consistency of
selected samples is preserved while the data diversity in
sparse regions is enhanced. Consequently, training using
these augmented samples improves model performance. In
addition, we provide the augmentation operation list used
in Table 9 in the Appendix, which includes image transfor-
mations such as translation, rotation, equalization, etc.

Complexity analysis. The computational costs of our
framework, when integrated into online training, are pri-
marily associated with density estimation. Specifically, both
querying and updating within the HNSW graph operates
with a complexity of O(log(n)), where n is the total num-
ber of data points. Let T denote the total number of training
epochs; then, the total cost is O(T ∗ log(n)). Since T ≪ n,
the overall computational complexity remains O(log(n)),

making our method scalable for large datasets. Furthermore,
the data augmentation, as a standard pipeline in model train-
ing, introduces negligible overhead.

4. Experiment
4.1. Experiment Setup

Datasets and network architectures. In line with pre-
vious works (Tan et al., 2024; Xia et al., 2023b; Qin
et al., 2024), we evaluate the effectiveness of our pro-
posed method using widely adopted benchmark datasets,
including CIFAR-10/100 (Krizhevsky et al., 2009), Tiny-
ImageNet (Chrabaszcz et al., 2017), and ImageNet-
1k (Deng et al., 2009). In addition, we evaluate the ro-
bustness of our method in noisy datasets. To further assess
the generalization ability of our method, we extend the
evaluation to more challenging datasets, such as ImageNet-
A/O (Hendrycks et al., 2021b), ImageNet-Hard (Taesiri
et al., 2024), and ImageNet-R (Hendrycks et al., 2021a).
Additionally, we evaluate the generalization of our method
across different deep architectures. Specifically, we con-
duct experiments using both ResNet-based, such as ResNet-
18/50, and ViT-based models, such as ViT-B/L and Swin-
Transformer, to demonstrate the robustness and scalability
of our approach across diverse models.

Comparison with state-of-the-arts. We compare with
our method both static and dynamic data selection meth-
ods, including 1) Random, 2) EL2N (Paul et al., 2021), 3)
GraNd (Paul et al., 2021), 4) Herding (Welling, 2009), 5)
Forgetting (Toneva et al., 2018), 6) Moderate-DS (Xia et al.,
2023b), 7) Self-sup. prototypes (Sorscher et al., 2022), 8)
MoSo (Tan et al., 2024), 9) DP (Yang et al., 2023a), 10)
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Table 2. Results on ImageNet-1k with a 60% selection ratio using ResNet-50 on an 8-A100 server. Note that due to the high computational
costs and device memory costs (Xia et al., 2023b), Glister and CG-Score are not reported. Some results are from (Qin et al., 2024). Time
is the wall clock time; Overall (n*h) is the total GPU hour, where n is the node number.

Method Herding EL2N GraNd Forgetting SSP Moderate MoSo UCB Infobatch Glister CG-Score Ours Whole Dataset
Acc. (%) 71.1 72.3 71.0 72.5 70.0 73.1 74.0 75.8 76.5 - - 76.9 76.4
Time (h) 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 17.5

Overhead (h) >17.5 >17.5 >17.5 >17.5 >24.0 >17.5 >17.5 0.03 0.0028 - - 0.53 0.0
Overall (n*h) >224.0 >224.0 >224.0 >224.0 >276.0 >224.0 >224.0 84.0 84.0 - - 88.2 140.0

Table 3. Experimental results on Tiny-
ImageNet with noisy and corrupted data
using ResNet-50. The noisy ratio is 20%.

Method /
Selection Ratio (%)

Noisy Corrupted
20 30 20 30

Random 17.8 23.9 20.0 25.9
Herding 19.0 24.2 35.0 30.6

Moderate-DS 19.6 25.0 23.3 29.1
EL2N 13.9 18.6 18.6 24.4
GraNd 18.3 23.7 20.0 26.7

Forgetting 13.2 21.8 18.5 25.5
Self-sup. prototypes 15.1 21.0 20.2 26.9

CG-Score 8.4 15.3 16.4 24.4
Glister 21.6 25.5 21.2 22.0
MoSo 7.4 11.3 23.1 28.8

Random* 33.8 36.5 35.1 36.9
InfoBatch 34.9 37.1 35.1 38.1

Ours 35.9 39.6 39.1 42.0

Table 4. Experimental results on Tiny-
ImageNet with data augmentation. The
selection ratios are 30%, 50%, and 70%.

Whole Dataset 52.0
Selection Ratio 30% 50% 70%

Random 29.8 37.2 42.2
Herding 31.6 39.2 45.6
EL2N 32.0 40.1 45.9
GraNd 32.2 40.5 46.2
Glister 33.1 42.2 46.5

Forgetting 27.2 36.2 44.2
Moderate-DS 33.8 41.5 46.6

Self-sup. proto. 33.4 41.1 46.6
MoSo 32.6 41.5 45.9

Random* 42.1 43.9 45.2
InfoBatch 43.2 45.9 48.3

Ours 44.9 47.0 49.4

50% less

Figure 3. The performance on ImageNet-
1k across various selection ratios with a
4-A100-GPU server.

UCB (Raju et al., 2021), 11) ϵ-Greedy (Raju et al., 2021),
12) Glister (Killamsetty et al., 2021), and 13) InfoBatch (Qin
et al., 2024).

Implementation details. To ensure consistency with prior
work (Qin et al., 2024; Xia et al., 2023b), we follow simi-
lar experimental settings. Specifically, we use the OneCy-
cle scheduler with the SGD/LARS optimizer for model
training, a momentum of 0.9, a weight decay of 5e-4, and
cosine annealing. We employ TrivialAugment (Müller &
Hutter, 2021) in our framework. For fairness, we adopt
the annealing and re-scaling techniques introduced in (Qin
et al., 2024), which standardize the dynamic dataset prun-
ing process across all methods compared. Moreover, we
use InfoNCE loss to fine-tune adapters for 15 epochs on all
datasets. Since InfoBatch uses soft pruning with a dynamic
number of selected samples, we report its performance using
the same number of forward passes as in our method.

4.2. Performance Comparison

As shown in Table 1, we evaluate the performance of our
method by training ResNet-18 on CIFAR10/100 and ResNet-
50 on Tiny-ImageNet across different selection ratios. Our
method achieves comparable performance to models trained
on the full dataset, even when only 50% of the data is used
on CIFAR-10/100 and 30% on Tiny-ImageNet. In con-
trast, existing methods typically achieve lossless data selec-

tion with relatively higher selection ratios on these datasets,
such as over 60% on CIFAR-10/100 and over 70% on Tiny-
ImageNet.

Notably, our approach outperforms the other methods at
the same selection ratios. On Tiny-ImageNet, a large-scale
dataset, our method yields an average performance improve-
ment of at least 2.7% while maintaining the same training
costs. As the training data volume increases, this perfor-
mance gap becomes even more pronounced, further high-
lighting the efficiency and effectiveness of our framework.

4.3. ImageNet-1k Results

Table 2 presents the evaluation results of our method on
the ImageNet-1k dataset with a 60% selection ratio. Our
approach outperforms the full dataset by achieving a nearly
40% training cost reduction, resulting in a reduction of up
to 56 hours in training overhead with a 0.5% accuracy im-
provement. Meanwhile, since most static data selection
methods require training surrogate models to determine the
sample’s influence throughout model training, the computa-
tion overheads are relatively much higher than ours. Thus,
the results highlight that our method outperforms static data
selection methods in both performance and computational
efficiency. It also surpasses dynamic pruning methods in
terms of final accuracy with comparable efficiency. These
findings underscore the generality and competitiveness of
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Table 5. Generalization of models trained with our method on ImageNet-Hard, ImageNet-A, ImageNet-R, and ImageNet-O. We report
AUPR (%) for ImageNet-O and accuracy (%) on others. All models are ResNet-50.

Selection Ratio(%) 20 30 50 60 70 80 90 Whole Dataset
ImageNet-A 1.9↓1.2 2.1↓1.0 2.9↓0.2 3.1↑0.0 3.4↑0.3 3.4↑0.3 3.5↑0.4 3.1
ImageNet-R 37.2↑1.0 38.5↑2.3 39.3↑3.1 39.8↑3.6 39.9↑3.7 40.6↑4.4 41.0↑4.8 36.2
ImageNet-O 15.4↑2.2 15.8↑2.6 16.1↑2.3 16.3↑2.5 16.3↑2.5 16.4↑2.6 16.5↑2.7 13.2

ImageNet-Hard 14.2↓0.5 15.3↑0.6 15.9↑1.2 16.5↑1.8 16.7↑2.0 17.2↑2.5 17.5↑2.8 14.7

our approach to large-scale datasets.

Further analysis of the performance across different selec-
tion ratios on ImageNet-1k is shown in Fig. 3. The results
show that our method achieves lossless performance with
only 50% of the training data. When using 20% of the
data, performance drops by about 2% while nearly 80%
of the training overhead is eliminated. Compared to ran-
dom selection, which suffers a significant accuracy drop as
the selection ratios decrease, our method maintains robust
performance even with reduced data. Similarly, most exist-
ing baseline methods typically require at least 60% of the
training data to achieve similar lossless performance. This
demonstrates that our framework further lowers the data
requirement for maintaining full performance.

4.4. Robustness to Noisy Scenarios

In real-world scenarios, training data is often polluted by
corrupted and mislabeled images (Xia et al., 2023a; Wang
et al., 2018), which can significantly degrade model perfor-
mance. Specifically, we simulate mislabeled data (noisy)
by flipping a portion of the labels to incorrect ones using
symmetric label noise. Meanwhile, we introduce five types
of realistic distortions to simulate corrupted data, namely
Gaussian noise, random occlusion, resolution variations,
fog, and motion blur. The examples of corrupted data are
shown in the Appendix. To evaluate the practical relevance
of our data training framework in such noisy environments,
we assess the robustness of our method compared to existing
state-of-the-art methods.

As shown in Table 3, our approach consistently outperforms
the compared methods, demonstrating superior robustness
against both mislabeled and corrupted data. Specifically,
our method achieves a 4% improvement over competing
methods on corrupted datasets, even with a 20% noise ratio
on Tiny-ImageNet. Our framework excels in these sce-
narios due to its ability to combine low-density sample
selection with multimodal semantic alignment. While noisy
data is typically sparse and low-density, our method’s ro-
bust integration of multimodal semantics offers a powerful
mechanism for mitigating noise and highlighting meaning-
ful patterns in the data. This approach allows us to maintain
high robustness without sacrificing data efficiency.

By prioritizing sparse, low-density samples and leveraging

the corrective power of multimodal alignment, our method
provides a reliable and efficient solution for robust deep
learning in practical, noisy data environments, demonstrat-
ing its practical significance.

4.5. Effect of Data Augmentation on Model
Performance

To further assess the effectiveness of our method, we com-
pare its performance against several baseline methods using
TrivialAugment for data augmentation, as shown in Table 4.
Our method consistently outperforms the other approaches
across various selection ratios.

While data augmentation enhances the performance of all
methods, our approach consistently achieves superior results
at different selection ratios. This indicates that our method
is not simply a straightforward combination of data augmen-
tation and data selection. Instead, it effectively identifies the
most beneficial samples for augmentation, leading to signifi-
cant performance improvements. By selectively amplifying
the impact of data augmentation, our method optimizes
model performance, demonstrating its ability to leverage
augmentation more effectively than other approaches.

4.6. Generalization on Hard Benchmarks

To evaluate the generalization capabilities of our pro-
posed framework, we conduct experiments on challeng-
ing benchmark datasets, including ImageNet-Hard (Taesiri
et al., 2024), ImageNet-R (Hendrycks et al., 2021a), and
ImageNet-A/O (Hendrycks et al., 2021b). Specifically, we
pre-train ResNet-50 models using data selected through
our method across various selection ratios and then test
their performance on these challenging benchmark datasets.
Following standard evaluation settings, we report the area
under the precision-recall curve (AUPR) for ImageNet-O
and classification accuracy for the other datasets.

As shown in Table 5, our method maintains or even enhances
generalization performance on these challenging datasets,
despite using fewer training samples. The results demon-
strate that reducing the dataset size with our framework
does not compromise generalization ability. Meanwhile, as
the selection ratios increase, our method achieves superior
generalization compared to training on the full dataset.
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Table 6. Experiment results on more advanced architectures, in-
cluding ViT-B, ViT-L, and Swin-T on ImageNet-1k with a 4-A100
GPU server. Overhead represents GPU hours (h), and Sr refers to
the selection ratio.

Sr(%) 50 60 70 80 90 Full Dataset
ViT-B 82.6 82.9 83.2 83.2 83.3 82.5
ViT-L 85.2 85.3 85.6 85.7 85.7 84.6

Swin-T 84.1 84.1 84.2 84.2 84.3 84.2

Savings: 
160h

Savings: 
65h Savings: 

60h

Figure 4. The overall cost savings achieved by our method on ViT-
based architectures with lossless performance. The experiment is
conducted on ImageNet-1k with a 4-A100-GPU server.

4.7. Generalization on Different Architectures

To evaluate the scalability of our proposed method, we
conduct experiments on advanced architectures, including
ViT-B, ViT-L (Dosovitskiy et al., 2020), and Swin-T (Liu
et al., 2021). Specifically, we train these architectures using
our framework across various selection ratios.

As shown in Table 6, our framework is architecture-agnostic,
achieving robust generalization across these different mod-
els, even with reduced selection ratios. Notably, the lossless
performance can be achieved with only 50% of the training
data. The results underscore that our method generalizes on
ResNet-based and Transformer-based architectures, all with
reduced training costs.

Additionally, in Fig. 4, we present the practical training
costs on these architectures and the lossless cost savings
achieved by our framework. It can be seen that our proposed
framework can significantly save hundreds of hours on large-
scale architecture training.

4.8. Visualization of the Selection Robustness

In Fig. 1, we illustrate our selection results on clean datasets,
showing that the selected data points mainly cluster around
boundary regions among clusters. To better understand our
selection effectiveness, in Fig. 5, we further illustrate our
selection results on the noisy Tiny-ImageNet dataset with
a 20% noise ratio. It can be seen that compared to the
baseline, our method can effectively filter out noisy samples:

Clean Data Noisy Data Selected Clean Data Selected Noisy Data

(a) Random (b) Ours

Figure 5. Visualization of the selection results on noisy Tiny-
ImageNet with a 20% noise ratio. The selection ratio is 20%.

the number of selected noisy points is minimized.

4.9. Further Analysis of the Overheads

Although our method introduces negligible overheads into
online training, our framework incorporates adapter fine-
tuning and feature embedding via CLIP models and corre-
sponding adapters before model training begins. As shown
in Table 7, we analyze these pre-computation overheads
of the adapter fine-tuning and feature embedding via CLIP
models. It can be observed that these one-time overheads
before model training are negligible compared to standard
target model training. Once computed, no further compu-
tation is required during online training across selection
ratios.

4.10. Ablation Study

Effect of different modules in our framework. In Ta-
ble 8, we systemically evaluate the effectiveness of differ-
ent components within our proposed framework on Tiny-
ImageNet using ResNet-50 across various selection ratios.

When only the density distribution pρ is used, performance
is lower, as low-density samples often include sparse and
outlier data, which can introduce ambiguity into the train-
ing process. However, when both the density distribution
pρ and consistency distribution pcon are combined, perfor-
mance improves, demonstrating that incorporating semantic
consistency helps mitigate the negative effects of density-
based selection. Further performance gains are achieved
by including the augmentation module, which boosts accu-
racy by a significant margin. This shows that augmentation
plays a crucial role in improving performance, especially
when the selected data points under pρ and pcon are more
suited for augmentation, enhancing the model’s generaliza-
tion. The results indicate that removing any module from
our framework leads to a substantial drop in performance.

5. Conclusion
This paper proposes a novel data training framework that
unifies dynamic data selection and data augmentation for

8
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Table 7. Overheads of fine-tuning and feature embedding before
model training on large-scale datasets with a 1-V100 GPU server.

Dataset Fine-tuning Embedding Overall training
Tiny-ImageNet 0.39h 0.03h 21.0h
ImageNet-1k 1.25h 0.17h 84.0h

Table 8. Effect of density distribution, consistency distribution,
and augmenter on Tiny-ImageNet using ResNet-50. We report test
accuracy (%). The selection ratios (%) are 30%, 50%, and 70%.

pρ pcon aug. 30% 50% 70%
✓ 39.0 40.7 42.5

✓ 42.0 45.6 45.8
✓ 41.6 45.9 48.3

✓ ✓ 42.5 46.3 49.3
✓ ✓ 41.5 43.1 44.3
✓ ✓ 41.1 45.1 48.5
✓ ✓ ✓ 43.5 47.5 50.2

more enhanced model training acceleration. Unlike existing
selection methods, our proposed approach identifies sam-
ples suitable for data augmentation. By combining this with
augmentation, our framework can improve model gener-
alization with reduced training costs. As a result, we can
achieve lossless training acceleration with fewer data and
enhanced generalization using the same volume of data.
Extensive experiments demonstrate the effectiveness and ef-
ficiency of our method, especially in terms of generalization
across large-scale datasets and more challenging scenarios.
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A. More Implementation Details
A.1. Augmentation Space

Table 9. Augmentation operations and their magnitudes.

Operation Value Range Magnitude-based

Identity - ×
ShearX [0.0, 0.99] ✓
ShearY [0.0, 0.99] ✓
TranslateX [0.0, 32.0] ✓
TranslateY [0.0, 32.0] ✓
Rotate [0.0, 135.0] ✓
Brightness [0.0, 0.99] ✓
Color [0.0, 0.99] ✓
Contrast [0.0, 0.99] ✓
Sharpness [0.0, 0.99] ✓
Posterize [2, 8] ✓
Solarize [255.0, 0.0] ✓
AutoContrast - ×
Equalize - ×

B. Discussion and Future Work
In this paper, we propose a novel online data training framework that unifies dynamic data selection and data augmentation
to achieve enhanced model training acceleration. In this section, we discuss some potential limitations and future work for
our method. 1). Our proposed method is based on the pretrained CLIP model to estimate the sample semantic consistency.
While this exhibits superior effectiveness in general datasets, further applying our method to special tasks, such as medical
imaging, where pretrained multimodal models are unavailable or mismatched, is worth exploring in future work. 2). We
employ our framework on image classification tasks and demonstrate its superior effectiveness. Future work should extend
the applications to more real-world tasks, such as object detection and segmentation.
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