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Figure 1. Synthesizing unified co-speech 3D face and pose expressions. Our method uses the speech audio, the corresponding text
transcripts, the speaker’s unique IDs, and their sparse 3D face landmarks and pose sequences computed from RGB video data. It learns a
combined embedding space that captures the correlations between all these inputs, and leverages them to generate synchronous affective
expressions for faces and poses in a continuous motion space.

Abstract

We present a multimodal learning-based method to si-001
multaneously synthesize co-speech facial expressions and002
upper-body gestures for digital characters using RGB video003
data captured using commodity cameras. Our approach004
learns from sparse face landmarks and upper-body joints,005
estimated directly from video data, to generate plausible006
emotive character motions. Given a speech audio waveform007
and a token sequence of the speaker’s face landmark motion008
and body-joint motion computed from a video, our method009
synthesizes the full sequence of motions for the speaker’s010
face landmarks and body joints that match the content and011
the affect of the speech. To this end, we design a generator012
consisting of a set of encoders to transform all the inputs013
into a multimodal embedding space capturing their corre-014
lations, followed by a pair of decoders to synthesize the de-015
sired face and pose motions. To enhance the plausibility of016
our synthesized motions, we use an adversarial discrimina-017
tor that learns to differentiate between the face and pose018
motions computed from the original videos and our synthe-019
sized motions based on their affective expressions. To eval-020
uate our approach, we extend the TED Gesture Dataset to021

include view-normalized, co-speech face landmarks in ad- 022
dition to body gestures. We demonstrate the performance of 023
our method through thorough quantitative and qualitative 024
experiments on multiple evaluation metrics and via a user 025
study, and observe that our method results in low recon- 026
struction error and produces synthesized samples with di- 027
verse facial expressions and body gestures for digital char- 028
acters. We will release the extended dataset as the TED 029
Gesture+Face Dataset consisting of 250K samples and the 030
relevant source code. 031

1. Introduction 032

Spoken communications are a significant component of 033
everyday human-human interactions. Human communi- 034
cations through digital platforms and virtual spaces are 035
prevalent in many applications, including online learn- 036
ing [27, 29, 44], virtual interviewing [6], counseling [14], 037
social robotics [50], automated character designing [33], 038
storyboard visualizing for consumer media [24, 48], and 039
creating large-scale metaverse worlds [38]. Simulating im- 040
mersive experiences in such digital applications necessitates 041
the development of plausible human avatars with expres- 042
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sive face and body motions. This is a challenging prob-043
lem to approach at scale, given the diversity in human ex-044
pressions and their importance in human-human interac-045
tions [35, 39]. The problem becomes even harder given046
that humans express simultaneously through multiple cues047
or modalities, such as their speech, facial expressions, and048
body gestures [36]. The emotional expressions from these049
different modalities are also synchronous, i.e., they follow050
the same rhythm of communication and complement each051
other to convey a sense of presence [25].052

In this paper, we consider the problem of synthesizing053
3D digital human motions with synchronous facial expres-054
sions and upper-body gestures aligned with given speech055
audio inputs. Given the speech audio, existing approaches056
in computer vision and graphics tackle the sub-problems of057
“talking heads” [23] – synthesizing lip movements and fa-058
cial expressions given the speech audio, and co-speech ges-059
ture synthesis [51] – synthesizing poses for upper-body ges-060
tures, including head motions. However, these approaches061
synthesize only one modality, either facial expressions or062
body gestures. More recent approaches consider head and063
body motions simultaneously [20, 49], but are confined to064
a limted set of speakers and their expressions. The in-065
herent difficulty in synthesizing expressions synchronized066
across diverse speakers is to under the correlations between067
the modalities for both the expressions and the individual068
styles [2]. In other words, not only is the combined space069
of the multimodal expressions very high-dimensional, but070
only a small fraction of that space corresponds to valid071
expressions for different speakers. Moreover, existing ap-072
proaches generally require specialized data such dense 3D073
face scans [13] and motion-captured gestures [10, 11] to074
provide meaningful results. By contrast, our goal is to lever-075
age large-scale video datasets [50] to develop synchronous076
co-speech face and pose expressions, with the aim of syn-077
thesizing fully expressive 3D digital humans for democra-078
tized use in various social environments.079

Main Contributions. We present a multimodal learning080
method to synthesize animated 3D digital characters with081
synchronous face and upper-body pose sequences for dif-082
ferent affective expressions given speech audio. We also083
consider both intra- and inter-speaker variability by intro-084
ducing random sampling on a latent space for speakers. Our085
main contributions include:086

• Synchronous co-speech face and pose expression087
synthesis. Our method simultaneously synthesizes088
face and upper-body pose expressions given speech au-089
dio through a generative multimodal embedding space090
and an affective discriminator. Our method reduces the091
mean absolute errors on the face landmarks by 30%,092
and the body poses by 21%, compared to the baseline093
talking head and co-speech gesture syntheses meth-094
ods, thereby indicating measurable benefits over asyn-095

chronously combining the synthesized outputs of the 096
two modalities. 097

• Using data from affordable commodity cameras. 098
In contrast to facial expression synthesis using dense 099
3D face scans or gesture synthesis from expensive 100
motion-captured data, our method only relies on face 101
landmarks and pose joints obtainable from commod- 102
ity hardware such as video cameras. As a result, our 103
method scales affordably to large datasets and is appli- 104
cable in large-scale social applications. 105

• Plausible motions and proposed evaluation metric 106
for facial expressions. Through quantitative evalua- 107
tions and user studies, we verify that our synthesized 108
synchronous expressions have low reconstruction er- 109
rors and are satisfactory to human observers. We also 110
propose the Fréchet Landmark Distance to evaluate the 111
quality of the synthesized face landmarks. 112

• TED Gesture+Face Dataset. We extend the TED 113
Gesture Dataset to include 3D face landmarks ex- 114
tracted from the raw videos that we denoise and align 115
with the poses. We release this multimodal dataset of 116
speech audio, 3D face landmarks, and 3D body pose 117
joints with our paper and the associated source code. 118

2. Related Work 119

We briefly review the body of work on perceiving mul- 120
timodal affective expressions, particularly from faces, 121
speech, and gestures, and also the synthesis of digital char- 122
acters with co-speech face and pose expressions. 123

Perceiving Multimodal Affective Expressions. Studies 124
in psychology and affective computing indicate that humans 125
express emotions simultaneously through multiple modali- 126
ties, including facial expressions, prosody and intonations 127
of the voice, and body gestures [36, 46]. Methods for 128
detecting facial expressions [17] generally depend on fa- 129
cial action units [52]. Methods for detecting various affec- 130
tive vocal patterns commonly use Mel-Frequency Cepstral 131
Coefficients (MFCCs) [37]. Methods to detect emotions 132
from body gestures use physiological features, such as arm 133
swings, spine posture, and head motions that are either pre- 134
defined [5, 7] or learned automatically from the gestures [8]. 135
The emotions themselves can be represented either as dis- 136
crete categories such as the Ekman emotions [15] or as com- 137
binations of continuous dimensions, such as the Valence- 138
Arousal-Dominance (VAD) model [34]. In our work, we 139
leverage the current approaches for detecting facial, vocal, 140
and pose expressions to design our co-speech face and ges- 141
ture synthesis method. While we do not explicitly consider 142
specific emotions, our representation implicitly considers 143
emotions in the continuous VAD space, leading to appro- 144
priately expressive face and pose synthesis. 145
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Figure 2. Network architecture for synchronous synthesis of co-speech face and pose expressions. Our generator encodes all the
inputs: the speech audio, the corresponding test transcript, the speaker ID, and the seed 3D face landmarks and the seed 3D poses into a
multimodal embedding space. It decodes variables from this space to produce the synchronized sequences of co-speech 3D face landmarks
and poses. Our discriminator classifies these synthesized sequences and the corresponding ground-truths (3D motions of the original
speakers), computed directly from the videos, into two different classes based both on their plausibility and their synchronous expressions.
To obtain our rendered 3D character motions, we combine the outputs of our generator with our phoneme predictor network and map them
to 3D meshes.

Synthesizing Co-Speech Expressions. We consider dig-146
ital characters with faces and body gestures.147
Co-Speech Facial Expressions. Wang and Soong [47] com-148
pute controllable parameters for synthesizing talking heads149
with desired facial expressions using a Hidden Markov150
Model and MFCCs of the speech audio. Recent techniques151
automate the facial motions for large-scale synthesis, using152
generative paradigms such as VAEs [19] and GANs [42].153
Karras et al. [23] train a DNN to map speech audio to 3D154
face vertices conditioned on learned latent features corre-155
sponding to different facial expressions. Zhou et al. [53],156
learn sequences of predefined visemes using LSTM net-157
works from audio. Cudeiro et al. [13] propose a dataset158
of 4D face scans and learn per-vertex offsets to synthesize159
the face motions from audio. Richard et al. [41] learn co-160
speech facial motions using dense face meshes by disentan-161
gling speech-correlated and speech-uncorrelated facial fea-162
tures. Sinha et al. [45] focus on adding emotional expres-163
sions to the faces. Lahiri et al. [26] focus on the accuracy164
of the lip movements and use an autoregressive approach to165
synthesize 3D vertex sequences for the lips that are synced166
with the speech audio. In contrast to these approaches, our167
facial expression synthesis method uses much sparser 3D168
face landmarks detected from real-world videos with arbi-169
trary orientations and lighting conditions of the faces w.r.t.170
the cameras, and synthesizes facial and pose expressions171
that are mutually coherent.172
Co-Speech Gestures. We can consider co-speech gesture173
synthesis to be a special case of gesture stylization, where174
the style refers to the pose expressions that are inferred from175
and aligned with the speech. This line of work has been176
richly explored [3, 12, 21, 28, 30–32, 40]. Ginosar et al. [18]177
propose a method to synthesize speaker-specific co-speech178
gestures by training a neural network given their identities179
and individual gesticulation patterns. Ferstl et al. [16] ad-180
ditionally propose using adversarial losses in the training181

process to improve the fidelity of the synthesized gestures. 182
Yoon et al. [51] extend the concept of individualized ges- 183
tures to a continuous space of speakers to incorporate natu- 184
ral variability in the synthesized gestures even for the same 185
speaker. Bhattacharya et al. [9] build on top of [51] to im- 186
prove the affective expressions in the co-speech gestures. 187
More recent methods have also explored diffusion-based 188
approaches for editability [4]. Our method conditions the 189
gesture synthesis on both the input speech and the synthe- 190
sized facial expressions. 191

Co-Speech Multimodal Expressions. Co-speech face and 192
upper-body generation has gained particular interest re- 193
cently, primarily due to the availability of rich 3D datasets 194
of famous speakers [20]. Current approaches train adversar- 195
ial encoder-decoder architecture on datasets of one speaker 196
at a time [20] and use vector quantization for tokenized gen- 197
eration using a transformer [49]. These approaches are lim- 198
ited to a fixed set of speakers and lose fine-grained expres- 199
sions when using quantization. In our work, we consider 200
the full continuous space of affective face and body expres- 201
sions and develop a network that is generalizable to multiple 202
speakers. 203

3. Synchronous Face and Pose Synthesis 204

Given a speech audio waveform a, the corresponding text 205
transcript w, the speaker’s unique ID k in a set of speakers 206
K, and the associated seed face landmark deltas f1:Ts

and 207
seed pose unit vectors u1:Ts

, Ts being the number of seed 208
time steps, we synthesize the synchronous sequences of face 209
landmark deltas f1:T and pose unit vectors u1:T for the 210
speaker for the T prediction time steps (T ≫ Ts), match- 211
ing the content and the affect in their speech. We describe 212
our end-to-end pipeline, including a detailed description of 213
our inputs and outputs and their usage. We provide the de- 214
tails of obtaining these facial and landmarks and poses from 215
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input videos in the appendix (Sec. A).216

3.1. Computing Face and Pose Expressions217

We consider a reference neutral expression F ∈ RL×3 for218
each user, L being the number of face landmarks. To syn-219
thesize facial expressions, we compute the relative motion220
of each landmark w.r.t. the reference expression. Specifi-221
cally, we obtain the configuration Ft at time step t as222

Ft = F + ft, (1)223

where ft ∈ RL denotes the set of relative motions of the224
landmarks w.r.t. F at time step t.225

On the other hand, we assume the body joints are rigidly226
connected by the bones. We represent each user’s body227
joints as 3D point vectors P ∈ RJ×3 in a global coordi-228
nate space, where J is the number of joints. We consider229
directed line vectors connecting adjacent joints. The direc-230
tion is along the path from the root (pelvis) joint to the end231
effectors (such as wrists). These 3D point vectors and line232
vectors collectively form a directed tree with J nodes and233
J − 1 edges. We assume that the magnitudes of these line234
vectors correspond to the bone lengths and that these mag-235
nitudes are known and fixed. To synthesize the users’ body236
gestures, we compute the orientations of these line vectors237
at each time step t in the reference frame of the global coor-238
dinate space. Specifically, for each bone b with bone length239
(magnitude) ∥b∥ and connecting the source joint sb (t) to240
the destination joint db (t) at time step t, we compute a unit241
vector ut such that242

db = sb +
∥b∥
∥ut∥

ut. (2)243

We do not assume any locomotion, i.e., we consider the root244
joint is fixed at the global origin at all the time steps.245

3.2. Synthesizing Faces and Poses246

Our network architecture (Fig. 2) consists of a phoneme247
predictor to predict the lip shapes corresponding to the au-248
dio and a generator-discriminator pair to synthesize plau-249
sible co-speech face and pose expressions. We design our250
phoneme predictor following prior approaches [26] and pro-251
vide its details in the appendix (Sec. B). Our generator fol-252
lows a multimodal learning strategy. It consists of separate253
encoders to transform the speech audio, the text transcript,254
the speaker ID, the seed face landmark deltas, and the seed255
pose unit vectors into a latent embedding space representing256
their correlations. It subsequently synthesizes the appropri-257
ate face and pose motions from this multimodal embedding258
space. Our discriminator enforces our generator to synthe-259
size plausible face and pose motions in terms of their af-260
fective expressions. To this end, we use the same encoder261
architecture for the faces and the poses as in our generator,262
but learned separately. We describe each of the components263
of our generator and discriminator.264

3.2.1 Encoding Speech, Text, and Speaker IDs 265

We use the Mel-Frequency Cepstral Coefficients (MFCCs) 266
for the speech audio to accurately capture the affective into- 267
nations in the speech, and use an MFCC encoder to obtain 268
speech-based latent embeddings â ∈ RT×Da of dimension 269
Da as 270

â = MFCCEncoder (a; θMFCC) , (3) 271

where θMFCC represents the trainable parameters. 272
Similarly, we use the sentiment-aware FastText [43] em- 273

beddings of the words in the transcript and a convolution- 274
based text encoder to obtain the text-based latent embed- 275
dings ŵ ∈ RT×Dw of dimensions Dw as 276

ŵ = TextEncoder (w; θtext) , (4) 277

where θtext represents the trainable parameters. 278
We also represent the speaker IDs k ∈ {0, 1}K as one- 279

hot vectors for a total of K speakers and use a speaker 280
encoder to obtain the parameters µk ∈ RDk and Σk ∈ 281
RDk×Dk

+ of a latent distribution space of dimension Dk as 282

µk,Σk = SpeakerEncoder (k; θspeaker) , (5) 283

where θspeaker represents the trainable parameters. The latent 284

distribution space enables us to sample a random vector k̂ 285
representing a speaker who is an arbitrary combination of 286
the K speakers in the dataset. This allows for variations in 287
the synthesized motions even for the same original speaker 288
by slightly perturbing their speaker IDs in the latent distri- 289
bution space, leading to more plausible results on multiple 290
runs of our network. To learn faces and poses with appro- 291
priate expressions, we represent them as multi-scale graphs 292
and encode them using graph convolutional networks. 293

3.2.2 Encoding Affective Expressions 294

The face landmarks we use are based on action units [52]. 295
We represent the sequence of 3D landmarks f1:Ts ∈ 296
RTs×L×3 as a spatial-temporal anatomical component (AC) 297
graph. Spatially, we consider landmarks belonging to the 298
same anatomical component (Sec. 3.1) and nearest land- 299
marks across different anatomical components to be adja- 300
cent. Temporally, all landmarks are adjacent to their tempo- 301
ral counterparts (same nodes at different time steps) within 302
a predetermined time window. We consider the eyes, the 303
nose, the lips, and the lower jaw as the anatomical com- 304
ponents. We show the face landmarks graph in Fig. 3a 305
with all the intra- and inter-anatomical-component adjacen- 306
cies marked with lines. We apply a sequence of spatial- 307
temporal graph convolutions on this graph to learn from the 308
localized motions of the landmarks and obtain embeddings 309
f̃ ∈ RTs×L×Df of feature dimension Df as 310

f̃ = STGCNf

(
f1:Ts

; θSTGCNf

)
, (6) 311
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(a) Face encoder (b) Pose Encoder (c) Face Decoder (d) Pose Decoder

Figure 3. Face and pose encoders and decoders. We show their architectures with the layer sizes denoted (details in Sec. 3.2.2).
Our architectures depend on the hierarchical anatomical component (AC) graphs for both faces and poses that efficiently learn their
corresponding affect representations using spatial-temporal graph convolutions (green nodes and edges), 2D convolutions (teal blocks), 2D
batch normalizations (pink blocks), and fully-connected layers (orange planes).

where θSTGCNf
represents the trainable parameters. From312

the landmarks graph, we obtain a face anatomy graph,313
where we consider the nodes to represent entire anatomi-314
cal components and the graph to be fully connected. To315
compute such a graph, we append the features of intra-316
anatomical-component nodes in the graph into collated fea-317
tures l ∈ RTs×Ll×nlDf , where Ll denotes the number of318
anatomical components and nl denotes the number of land-319
mark nodes within each anatomical component. We take nl320
to be the number of nodes in the anatomical component with321
the most landmarks and perform zero padding as appropri-322
ate to obtain the full collated features for the other compo-323
nents. This hierarchically pooled representation provides a324
“higher-level” view of the face and helps our network learn325
from the correlations between the motions of the different326
anatomical components. Specifically, we use another set of327
spatial-temporal graph convolutions to obtain the embed-328
dings l̃ ∈ RTs×Ll×Dl of feature dimension Dl as329

l̃ = STGCNl (l; θSTGCNl
) , (7)330

where θSTGCNl
represents the trainable parameters. Col-331

lectively, the landmarks graph and the face anatomy graph332
provide complementary information to our network to en-333
code and synthesize the required facial expressions at both334
the macro (anatomy) and the micro (landmark) levels. To335
complete our encoding, we flatten out the features of all336
the anatomical components in l̃, i.e., reshaping such that337
l̃ ∈ RTs×LlDl , and transform them using standard convo-338
lutional layers on the flattened feature channel and the tem-339
poral channel separately. This gives us our latent space em-340
beddings l̂ ∈ RT×Dl̃ as341

l̂ = ConvTl̃

(
ConvSl̃

(
l̃; θConvSl̃

)
; θConvTl̃

)
, (8)342

where θConvSl̃
and θConvTl̃

represent the trainable parameters.343
For the pose representation, we consider a pose graph of344

the upper body with J − 1 bones represented with line vec-345
tors u1:Ts (Fig. 3b). We consider bones connected to each346
other or connected through a third bone to be adjacent. We347
use a set of spatial-temporal graph convolutions to leverage348
the localized motions of these bones and obtain embeddings349

ũ ∈ RTs×Du of feature dimension Du as 350

ũ = STGCNu (u1:Ts
; θSTGCNu

) , (9) 351

where θSTGCNu represents the trainable parameters. Sim- 352
ilar to the face landmarks, we also consider a hierarchi- 353
cally pooled representation of the bones v ∈ RTs×Lj×njDu , 354
where Lj = 3 are the three anatomical components, the 355
torso and the two arms, represented as single nodes each 356
consisting of nj nodes from the pose graph. In the pose 357
anatomy graph, we consider the two arms to be adjacent 358
to the torso but not to each other, as they can move inde- 359
pendently. We apply a second set of spatial-temporal graph 360
convolutions on the collated features v to obtain the embed- 361
dings ṽ ∈ RTs×Lj×Dv as 362

ṽ = STGCNv (v; θSTGCNv
) (10) 363

where θSTGCNv
represents the trainable parameters. To sub- 364

sequently obtain the latent space embeddings v̂ ∈ RT×Dṽ , 365
we apply separate spatial and temporal convolutions on the 366
flattened graph-convolved features ṽ ∈ RTs×LjDv , as 367

v̂ = ConvTṽ (ConvSṽ (ṽ; θConvSṽ
) ; θConvTṽ

) , (11) 368

where θConvSṽ
and θConvTṽ

represent the trainable params. 369

3.2.3 Synthesizing Synchronous Motions 370

Our synchronous synthesis relies on learning the multi- 371
modal distributions of the individual modalities of audio, 372
text, speaker ID, face expressions, and pose expressions 373
given their individual distributions. To this end, we ap- 374
pend all the latent space embeddings — â for the audio, 375
ŵ for the text, k̂ for the random speaker representation, re- 376
peated over all the T time steps, l̂ for the seed landmarks 377
and v̂ for the seed poses — into a vector ê ∈ RT×H rep- 378
resenting a multimodal embedding space of all the inputs. 379
Here, H = Da + Dw + Dk + Dl̃ + Dṽ denotes the la- 380
tent space dimension. On training, our network learns the 381
correlations between the different inputs in this multimodal 382
embedding space. To synthesize our face landmark motions 383
f1:T ∈ RT×L×3, we apply separate spatial and temporal 384
convolutions on the multimodal embeddings ê to capture 385
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Figure 4. Qualitative results. Snapshots from two of our syn-
thesized samples showing the text transcript of the speech and the
corresponding face and pose expressions (row 1). We also zoom
in on the eyebrow (row 2) and lip (row 3) expressions for better
visualization. We observe a smile, raised eyebrows, and stretched
arms (left) for the word ‘excited’, and frowns on the eyebrows and
lips (right) for the words ‘very sorry’.

localized dependencies between the feature values followed386
by fully-connected layers capturing all the dependencies be-387
tween the feature values (Fig. 3c), as388

f1:T = FCfê

(
ConvSfê

(
ConvTfê

(
ê; θConvTfê

)
; θConvSfê

)
; θFCfê

)
, (12)389

where θConvTfê
, θConvSfê

, and θFCfê
represent the trainable390

parameters. The output f1:T from the fully-connected lay-391
ers has shape T × 3L, which we reshape into T × L× 3 to392
get our desired 3D face landmark sequences.393

We similarly synthesize the line vectors u1:T ∈394
RT×(J−1)×3 using separate spatial and temporal convolu-395
tions on the multimodal embeddings ê, followed by fully-396
connected layers (Fig. 3d), as397

u1:T = FCuê (ConvSuê (ConvTuê (ê; θConvTuê
) ; θConvSuê

) ; θFCuê
), (13)398

where θConvTuê
, θConvSuê

, and θFCuê
represent the trainable399

parameters. Given the synthesized face and pose motions,400
we use our discriminator to determine how well their affec-401
tive expressions match that of the corresponding ground-402
truths in the training data. We obtain our ground-truths as403
the 3D face landmarks and the 3D pose sequences computed404
from the full training video data.405

3.2.4 Determining Plausibility Using Discriminator406

Our discriminator takes in the synchronously synthesized407
face motions f1:T and pose motions u1:T , and encodes them408
using encoders with the same architecture as our generator409
(Sec. 3.2.2), with only the number of input time steps be-410
ing T instead of Ts. This gives us the corresponding la-411
tent space embeddings l̂ and v̂. Similar to our generator,412
we concatenate these embeddings into a multimodal em-413

bedding vector ê ∈ RT×(Dl̃+Dṽ). But different from our414
generator, we pass these multimodal embeddings through415
a fully-connected classifier network FCdisc to obtain class416
probabilities cdisc ∈ [0, 1] per sample, as417

cdisc = FCdisc (ê; θFCdisc) , (14)418

Figure 5. Qualitative comparisons. For the same input speech,
represented by the text transcript at the top, we compare the vi-
sual quality of our synthesized character motions with the original
speaker motions and three of our ablated versions: one without
synchronous face and pose synthesis, one without our anatomical
component (AC) graphs for faces and poses, and one without our
discriminator. We observe that our synthesized motions are visu-
ally the closest to the original speaker motions compared to the
ablated versions. We elaborate on their visual qualities in Sec. 5.4.

where θFCdisc represents the trainable parameters. Our dis- 419
criminator learns to perform unweighted binary classifica- 420
tion between the synthesized face and pose motions and the 421
ground-truths in terms of their synchronous affective ex- 422
pressions. Our generator, on the other hand, learns to syn- 423
thesize samples that our discriminator cannot distinguish 424
from the ground-truth based on those affective expressions. 425
We provide all our training, testing, and rendering details in 426
the appendix (Secs. C and D). 427

4. TED Gesture+Face Dataset 428

We present our TED Gesture+Face Dataset that we use to 429
train and test our network. We elaborate on collecting and 430
processing our dataset for training and testing. 431

Dataset Collection. The TED Gesture Dataset [50] con- 432
sists of videos of TED talk speakers together with text tran- 433
scripts of their speeches, and their 3D body poses extracted 434
in a global frame of reference. The topics range from per- 435
sonal and professional experiences to discourses on educa- 436
tional topics and instructional and motivational storytelling. 437
The speakers themselves come from a wide variety of so- 438
cial, cultural, and economic backgrounds, and are diverse 439
in age, gender, and physical abilities. 440

Dataset Processing. The 3D poses in the original TED 441
Gesture Dataset [50] are view-normalized to face front 442
and center at all time steps. We compute similarly view- 443
normalized 3D face landmarks of the speakers (Sec. A.1) . 444
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Table 1. Quantitative evaluations. Comparison with existing
co-speech gesture synthesis methods and our ablated versions
(Sec. 5.1) on the metrics MALE (in mm), MAJE (in mm), MAcE
for landmarks (MAcE-LM) (in mm/s2), MAcE for poses (MAcE-
P) (in mm/s2), FLD, and FGD (Sec. 5.2). Lower values are better,
bold indicates best, and underline indicates second-best.

Method MALE MAJE MAcE-LM MAcE-P FLD FGD

Seq2Seq [50] – 45.62 – 6.33 – 6.62
S2G-IS [18] – 45.11 – 7.22 – 6.73
JEM [1] – 48.56 – 4.31 – 5.88
GTC [51] – 27.30 – 3.20 – 4.49
Speech2AffectiveGestures [9] – 24.49 – 2.93 – 3.54
SpeechGestureMatching [21] – 21.10 – 2.75 – 2.64

Ours w/o Face Synthesis – 28.32 – 3.89 – 4.01
Ours w/o Pose Synthesis 11.76 – 9.38 – 22.65 –
Ours w/o Vel.+Acc. Losses 26.33 24.41 21.69 7.58 27.54 7.72
Ours w/o Discriminator 14.62 27.40 13.44 11.60 31.93 8.79
Ours w/o Face AC Graph 13.05 25.97 14.24 2.74 25.61 2.25
Ours w/o Pose AC Graph 11.84 25.46 8.12 13.88 19.23 6.94
Ours w/o Synchronous Synthesis 10.72 25.03 7.83 3.22 18.03 3.92
Ours 9.00 18.36 6.34 2.52 15.02 1.79

Similar to the original TED dataset, we divide the 3D pose445
and face landmark sequences into equally-sized chunks of446
size T = 34 time steps at a rate of 15 fps. Additionally,447
to reduce the jitter in the predicted 3D face landmarks and448
pose joints from each video, we sample a set of “anchor”449
frames at a rate of 5 fps and perform bicubic interpolation450
to compute the face landmark and pose joint values in the451
remaining frames. We use the first 4 time steps of pose and452
face landmarks as our seed values (Sec. 3.2), and predict453
the next 30 time steps. The processed dataset consists of454
200,038 training samples, 26,903 validation samples, and455
26,245 test samples, following a split of 80%-10%-10%.456

5. Experiments and Results457

We run quantitative experiments using ablated versions of458
our method as baselines. We note that Habibie et al. [20]459
retrain their network separately for individual speakers be-460
longing to the same profession (talk show hosts), making it461
unsuitable for our generalized paradigm consisting of less462
than 50 samples each of multiple, diverse speakers. Yi463
et al. [49] use VQ with transformers to synthesize faces and464
gestures, but are limited to the same set of fixed speakers.465
We also conducted a web-based user study to evaluate the466
qualitative performance of our method.467

5.1. Baselines468

We use seven ablated versions of our method as baselines.469
The first two ablations correspondingly remove the entire470
face (Figs. 3a, 3c) and pose components (Figs. 3b, 3d) from471
our network, making our network learn only talking head472
and only co-speech gesture syntheses. The third ablation473
removes the velocity and acceleration losses from our re-474
construction loss (Eqn. C.2) , leading to jittery motions.475
The fourth ablation removes the discriminator and its as-476
sociated losses (Eqn. C.4) from our training pipeline, lead-477

ing to unstable motions without appreciable expressions. 478
The fifth and the sixth ablations correspondingly remove 479
the “higher-level” anatomical component (AC) graphs of 480
the faces (Eqn. 7) and the poses (Eqn. 10), leading to re- 481
duced movements. The final ablation trains the face and 482
the pose expressions separately, learning marginal embed- 483
dings for the two modalities based on the speech but not 484
attending to their mutual synchronization. This ablation is a 485
direct evaluation of the co-speech motions when combining 486
separately synthesized face and pose expressions. For com- 487
pleteness, we also compare with co-speech gesture synthe- 488
sis methods that only synthesize body poses. We evaluate 489
all the methods on our TED Gesture+Face Dataset. 490

5.2. Evaluation Metrics 491

Inspired by prior work [51], we evaluate using four recon- 492
struction errors and two plausibility errors (PEs). Our re- 493
construction errors include the mean absolute landmark er- 494
ror (MALE) for the faces, the mean absolute joint error 495
(MAJE) for the poses, and their respective mean acceler- 496
ation errors (MAcEs). MALE and MAJE indicate the over- 497
all fidelity of the synthesized samples w.r.t. the correspond- 498
ing ground-truths, and the MAcEs indicate whether or not 499
the synthesized landmarks and poses have regressed to their 500
mean absolute positions. To report these metrics, we multi- 501
ply our ground-truth and synthesized samples by a constant 502
scaling factor such that they all lie inside a bounding box of 503
diagonal length 1 m. For our PE, we use the Fréchet Gesture 504
Distance (FGD) designed by [51] to indicate the perceived 505
plausibility of the synthesized poses. To similarly indicate 506
the perceived plausibility of the synthesized face landmarks, 507
we also design the Fréchet Landmark Distance (FLD). We 508
train an autoencoder network to reconstruct the full set of 509
face landmarks at all time steps for all the samples in the 510
training set of our TED Gesture+Face Dataset. To compute 511
FLD, we then obtain the Fréchet Inception Distance [22] 512
between the encoded features of the ground-truth and the 513
synthesized samples. 514

5.3. Quantitative Evaluations 515

We show our quantitative evaluations in Table 1. 516

Comparison with Co-Speech Gesture Synthesis. Since 517
co-speech gesture synthesis methods do not synthesize face 518
expressions, we leave those numbers blank. For these meth- 519
ods, we have taken the numbers reported by Bhattacharya 520
et al. [9]. For the method of SpeechGestureMatching [21], 521
we retrain their method on the TED Gesture Dataset to re- 522
port the numbers. However, we were unable to perform 523
similar comparative evaluations with co-speech face syn- 524
thesis methods as existing methods synthesize dense land- 525
marks [23] or blendshape-like features [13], which cannot 526
be mapped one-to-one with our sparser face landmarks. 527
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Comparison with Ablated Versions Removing either528
the face or the gesture components of our network leads529
to poorer values across the board compared to using both of530
them. Without the velocity and acceleration losses, the mo-531
tions are jittery, and the MAcE losses are higher, especially532
MAcE for the face landmarks. Without the discriminator,533
the synthesized samples suffer from mode collapse and of-534
ten produce implausible motions, leading to higher values535
across the board. Without the AC graphs, there are fewer536
movements in the synthesized and the reconstruction errors537
are higher. When synthesizing face and pose expressions538
separately and not synchronizing them, we observe some539
mismatches in when the expressions from either modality540
appear and how intense they are. This indicates that syn-541
chronous synthesis of facial expressions and body gestures542
leads to more accurate and plausible movements for both543
the modalities, including a 30% improvement on MALE544
and a 21% improvement on MAJE, compared to trivially545
combining synthesized outputs of the individual modalities.546

5.4. Qualitative Comparisons547

We visualize some of our synthesized samples in Fig. 4 and548
provide more results in our supplementary video. We ob-549
serve the synchronization between the face and the pose550
expressions for two contrasting emotions. We also visu-551
ally compare with the original speaker motions rendered552
using their face landmarks and the poses extracted from the553
videos, and three of our ablated versions in Fig. 5. The554
original speaker motions provide an “upper bound” of our555
performance. The three ablated versions we compare with556
are: one without the synchronous synthesis, one without our557
face and pose AC graphs, and one without our discrimina-558
tor. The ablated versions without either the face or the pose559
synthesis, without the velocity and acceleration losses, and560
without our discriminator are visually inferior in obvious561
ways, therefore we leave them out. Without either face or562
pose synthesis, that modality remains static while the other563
one moves. Without the velocity and the acceleration losses,564
the overall motions regress to the mean pose. Without our565
discriminator, our generator often fails to understand plausi-566
ble movement patterns, leading to unnatural limb and body567
shapes. Of these, we only keep the ablations without our568
discriminator as our “lower bound” baseline because, un-569
like the other two, this ablation has visible movements in570
both the face and the pose modalities.571

5.5. User Study572

We conducted a user study in two sets to evaluate the visual573
quality of our synthesized motions in terms of their plausi-574
bility and synchronization. We provide an overview of the575
results here and elaborate on all the details in the appendix576
(Sec. E). The first set compares between our method and577
its ablations without the AC graph and the discriminator.578

Figure 6. Cumulative lower-bound of participant responses.
We plot the cumulative lower-bound (LB) percentage of responses
across the Likert-scale scores for each type of character motion in
each set. A cumulative LB percentage X for a Likert-scale score
s denotes X% of responses had a score of s or higher. We observe
that the curve for our synchronously synthesized motions stays at
the top, indicating that the participants preferred it over the other
motions.

The second set compares between our method and its abla- 579
tion without synchronous face and pose synthesis. In each 580
set, we collect responses from 90 responses on 5-point Lik- 581
ert scales (1=worst, 5=best) to evaluate two aspects, plau- 582
sibility and synchronization. We plot the cumulative lower 583
bound of participant responses for each Likert-scale score 584
for each type of motion in each set in Fig. 6. We note that 585
the scores for our synchronously synthesized samples re- 586
main close to the original speaker scores and consistently 587
above the other ablated versions, indicating a clear prefer- 588
ence. 589

6. Conclusion, Limitations and Future Work 590

We have presented a method to synthesize synchronous co- 591
speech face and pose expressions for 3D digital characters. 592
Our method learns to synthesize these expressions from 3D 593
face landmarks and 3D upper-body pose joints computed 594
directly from videos. Our work also has some limitations. 595
We use sparse face landmarks and pose joints to synthesize 596
co-speech face and pose expressions. To synthesize more 597
fine-grained expressions, we plan to extract more detailed 598
face meshes and additional pose joints from videos. Fur- 599
ther, given the sparsity of our face and pose representations 600
and the noise associated with extracting them from videos, 601
the quality of our synthesized motions do not match those 602
synthesized from high-end facial scans and motion-capture 603
data. We aim to bridge this gap by building techniques 604
to develop more robust face and pose representations from 605
videos. We also plan to combine our work with lower-body 606
actions such as sitting, standing, and walking to synthesize 607
3D animated digital humans in a wider variety of scenar- 608
ios. In terms of its running-time cost, our method uses 609
high-end GPUs to obtain real-time performance. We plan 610
to explore knowledge distillation techniques to reduce our 611
running-time cost and implement our method in real-time 612
on commodity devices such as digital personal assistants. 613
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