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ABSTRACT

Artificial neural networks for simulated motor control and robotics often adopt
generic architectures like fully connected MLPs. While general, these tabula rasa
architectures rely on large amounts of experience to learn, are not easily trans-
ferable to new bodies, and have internal dynamics that are difficult to interpret.
In nature, animals are born with highly structured connectivity in their nervous
systems shaped by evolution; this innate circuitry acts synergistically with learn-
ing mechanisms to provide inductive biases that enable most animals to function
well soon after birth and improve abilities efficiently. Convolutional networks
inspired by visual circuitry have successfully encoded biases useful for vision
tasks. However, it is unknown the extent to which ANN architectures inspired by
neural circuitry can yield useful inductive biases for other domains. In this work,
we ask what advantages biologically inspired network architecture can provide
in the context of motor control. Specifically, we translate C. elegans circuits for
locomotion into an ANN model applied to a simulated Swimmer agent. On a
locomotion task, our architecture achieves good initial performance and asymptotic
performance comparable with MLPs, while dramatically improving data efficiency
and requiring orders of magnitude fewer parameters. Our architecture is also more
interpretable and transfers to new body designs. An ablation analysis shows that
principled excitation/inhibition is crucial for learning, while weight initialization
contributes to good initial performance. Our work demonstrates several advantages
of ANN architectures inspired by systems neuroscience and suggests a path towards
modeling more complex animals.

1 INTRODUCTION

Artificial neural networks for simulated motor control and robotics often adopt generic architectures
like fully connected multi-layered perceptrons (MLPs) (Pierson & Gashler, 2017 |[Levine et al.|
20165 |Bin Peng et al., [2020; [Heess et al., [ 2016). While general, these tabula rasa architectures rely
on large amounts of experience to learn. Data efficiency is especially important in motor control
because, unlike computer vision and natural language processing which have greatly benefited from
the availability of large datasets (Bommasani et al., [2021)), gathering large-scale data for robotics is
challenging. Experience must be gathered through interaction with the environment, which is difficult
for reasons including time, human labor, safety, maintenance, and reproducibility (Kroemer et al.|
2020). Transfer is also a significant problem, as experience is often specific to the robot body it was
gathered on, and ANN:Ss trained to control one body are not easily adapted a different one. In addition,
tabula rasa architectures like MLPs are in general difficult to interpret, as they have internal dynamics
that are distributed across units and non-trivial to relate to agent behavior (Merel et al.,[2019a).

In nature, animals are born with highly structured connectivity in their brains and nervous systems
that has been shaped over millennia by evolution (Zador, |2019)). In some cases, this innate circuitry
confers abilities with little or no learning; in others, it guides the learning process by providing
strong inductive biases (Lake et al.| 2017). These innate and learned mechanisms act synergistically,
enabling most animals to function well soon after birth, while continuing to improve and acquire
skills in a data-efficient manner, e.g. a horse learning to walk with only a couple hours of experience.
Moreover, despite species-specific variations, there is a significant amount of shared architecture (e.g.
cerebellum, basal ganglia) and design principles (e.g. hierarchical modularity, partial autonomy) even
between distantly related species (Merel et al., 2019b). Biological circuit architecture is often highly
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structured and sparse (Luo} 2021), in sharp contrast to the all-to-all connectivity of MLPs. Moreover,
evolution has progressively built more advanced abilities on lower-level circuits, leveraging modular
structure to transfer existing working designs to new animal bodies (Cisek, 2019; Merel et al.|[2019b).
Taken together, these findings from neuroscience suggest that structured neural circuits in animals
instantiate efficient, transferable, and modular solutions for high-dimensional embodied control.

Capturing some of this structure in model architecture may enable ANNs to narrow the gap between
artificial and natural systems. For example, convolutional networks inspired by visual circuitry
have successfully encoded the inductive biases of spatial locality and weight sharing to improve
performance, data efficiency, and parameter efficiency for vision tasks (Lindsay, |2021). Since
their neuroscience-inspired origins, convolutional networks have benefited from novel layer types,
activation functions, and modules (Gu et al., 2017)), as well as novel architectures, e.g. LeNet (LeCun
et al., [1989), AlexNet (Krizhevsky et al., [2012), VGG (Simonyan & Zisserman) 2015}, ResNet
(He et al.,|2015). The advantages of (non-biologically inspired) architectural priors has also been
established across other machine learning domains. In natural language processing, architectural
priors have specialized to handle sequences with designs including recurrent networks, e.g. LSTM
(Hochreiter & Schmidhuber, |1997), and attention networks, e.g. Transformer (Vaswani et al.| 2017).
However, it is unknown the extent to which ANN architectures inspired by neural circuitry can yield
useful inductive biases for other domains.

In this work, we ask what advantages biologically inspired network architecture can provide in
the context of motor control. Specifically, we translate C. elegans circuits for locomotion into an
ANN model applied to a simulated Swimmer agent. Our architecture is an instance of what we call
a “Neural Circuit Architectural Prior” (NCAP), to denote an ANN architecture that encodes prior
structure / inductive biases inspired by biological neural circuits. In contrast to previous work on
neuromechanical models of movement and central pattern generators (Sarma et al., 2018} [zquierdo
& Beerl, 2015} Jiao et al., [2021)), our model is designed within the discrete-time ANN framework
that is standard in machine learning and is fully differentiable, enabling us to train parameters with
reinforcement learning (RL) and evolution strategies (ES), and directly investigate the role of network
architecture by comparing to MLPs. Further, our model controls an agent body from a standard
benchmark (i.e. not custom-designed to work with our architecture); this body is significantly
different from C. elegans in terms of mechanics, degrees of freedom, and actuators.

On a locomotion task, our architecture achieves good initial performance and asymptotic perfor-
mance comparable with MLPs, while dramatically improving data efficiency and requiring orders of
magnitude fewer parameters. Our architecture is more interpretable and transferable to new body
designs. An ablation analysis shows that principled excitation/inhibition significantly contributes
to learning. Our work demonstrates several advantages of ANN architectures inspired by systems
neuroscience and suggests a path towards modeling more complex animals.

The primary contributions of this work are:

1. A network architecture inspired by C. elegans circuits for locomotion, which combines the
discrete-time ANN framework that is standard in machine learning with features from computa-
tional neuroscience like constraints on synapse sign (i.e. excitation vs. inhibition) and special
cell types (i.e. intrinsic oscillators);

2. An evaluation of our model’s initial performance, asymptotic performance, data efficiency,
parameter efficiency, interpretability, and transfer compared to standard MLP architectures; and

3. An ablation analysis of the effects of sign constraints, weight initialization, weight sharing, and
sparse connectivity on performance and learning.

Code and videos are available in the Supplementary Materials.

2 RELATED WORK

A robotic controller ultimately outputs generalized torques T to apply at each actuator. A neural
network controller can directly output torques (Levine et al., [2016), or it can output task-space
positions x or accelerations & that are converted into torques through an analytic controller like
operational space control (Khatib| [1987). However, some further level of abstraction and prior
knowledge is often used to improve performance and simplify learning (Kroemer et al., 2020).
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Trajectory Priors Desired movement is encoded through equations of motion. Dynamic Movement
Primitives (DMP) (Schaal, 2006; Pastor et al., | 2009) use a set of differential equations to implement
a stable nonlinear attractor system capable of generating rhythmic and discrete trajectories, which
are controlled via low-dimensional parameters specifying the motion’s shape and goal. Policies
Modulating Trajectory Generators (PMTG) (Iscen et al.,|2019)) learn a policy to control a predefined
trajectory generator via low-dimensional parameters and also generate a residual term to be added to
the trajectory generator’s output. For example, to produce legged locomotion, PMTG uses equations
of motion composed from a combination of sinusoidal functions and hand-engineered gait patterns,
which are parameterized by stride length, walking height, and frequency. Generally, trajectory-
centric methods can work well when the equations of motion capture good solutions for the desired
movement; however, such equations can be difficult to design and make robust.

Behavioral Imitation Priors Desired movement is encoded through learnable functions, e.g.
ANN:Ss, trained to imitate reference motions, e.g. from motion capture or manual keyframing. Neural
Probabilistic Motor Primitives (NPMP) (Merel et al.,|2019c) train expert policies to imitate human
motion capture trajectories, then compress these experts into a single generalist policy featuring a
latent-variable bottleneck, thereby creating a common embedding space that a higher-level controller
can use to interpolate and combine various motor primitives. Bin Peng et al.| (2020) train expert
policies to imitate animal motion capture trajectories using reinforcement learning and further deploy
the learned policies on a physical legged robot. Generally, imitation methods bypass the time and
manual effort involved in designing equations of motion and have achieved diverse behaviors. This
comes at the cost of compiling of reference motions from humans and animals. Further, learning
individual expert policies does not make use of the shared structure between movements to learn
more efficiently. In animal legged locomotion, for instance, neural circuit studies have suggested that
different gait patterns (e.g. walk, trot, bound, gallop) could actually be different emergent dynamic
modes of the same pattern generator network (Grillner & El Manira, [2020). In this case, a single
policy with the right structure should be able to capture these diverse reference motions.

Architectural Priors Desired movement is encoded indirectly through the structure of ANNS,
establishing inductive biases to guide learning. Heess et al.| (2016) decompose a policy into a
low-level “spinal” network with access to only proprioceptive signals (e.g. joint positions) and a
high-level “cortical” network with access to exteroceptive signals (e.g. distance to target, vision);
this hierarchical architecture was loosely inspired by animal nervous systems. After pre-training the
spinal network with a shaped reward, the cortical network was able to learn complex locomotion
tasks from sparse rewards by controlling the spinal network, while flat baseline architectures failed.
This architecture was later shown to generalize to locomotion with challenging terrains and obstacles,
providing greatly improved learning efficiency (Heess et al.,|2017). Generally, architectural priors
can provide improved efficiency and abstraction while maintaining flexibility. However, the level
of flexibility needs to be chosen appropriately. Too much flexibility can lead to learned behaviors
that are not naturalistic and infeasible/dangerous to deploy in the real world without regularization
(Bin Peng et al.,|2020), while too much constraint can impede the learning of diverse movements.

In this work, we design an architectural prior inspired by neural circuitry. In principle, this kind of
prior should scale to diverse movements, since the architecture models the exact mechanisms that
animals use to achieve robust, flexible behavior. Moreover, since working “blueprints” already exist
in nature, translating architectures from biology could prove more desirable and more scalable than
hand-designing trajectory priors from scratch. Further, while we use reward-based algorithms to learn
parameters (i.e. RL and ES), our architecture is largely agnostic to the learning algorithm, so it is
possible that our architecture could also be trained within a behavioral imitation setting.

3 MODEL

We translate nematode (C. elegans) circuits for locomotion into an ANN model applied to a simulated
Swimmer agent. In Section [3.1} we provide an overview of the nematode body structure and the
modular neural circuits underlying locomotion. In Section[3.2] we describe our abstract integrator
and oscillator units that serve as building blocks for our architecture. In Section[3.3] we formalize
the observation and action space of the Swimmer agent, and we propose our network architecture
modeled on nematode circuits.
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Figure 1: Nematode. (A) The nematode C. elegans achieves forward locomotion through alternating
dorsal-ventral muscle contraction waves propagating down the body. (B) Muscle wave propagation,
oscillation, steering, and speed control are coordinated by a highly stereotyped, modular, and repeated
microcircuit. B neurons sense bending in the previous module via proprioception and excite ipsilateral
muscles, while inhibiting contralateral muscles via D neurons. Intrinsic oscillations in B neurons
initiate waves. SMB neurons bias head and neck muscles for steering. AVB attenuates all B neurons
via gap junctions for speed control.

3.1 NEMATODE

The nematode C. elegans has served as a useful model organism within neuroscience because it is
one of the simplest organisms with a nervous system. Moreover, it is unique in that its connectome,
i.e. wiring diagram, has been completely mapped (Hall & Altun, 2008).

Nematode Body The nematode body is a I mm long, 50 um diameter tapered cylinder (Figure[TA).
It is made up of 959 somatic cells, of which 302 are neurons comprising the nervous system, of
which 75 are motor neurons that innervate the 95 body wall muscles distributed along the body.
Forward and backward thrust is produced via alternating dorsal-ventral muscle contraction waves
propagating down the body in the direction opposite to the direction of motion. Steering is produced
by differential activation of the 20 anterior muscles in the head and neck (Gjorgjieva et al., 2014)).

Nematode Neural Circuits The nematode forward locomotion circuit is summarized below (Fig-
ure E]B). For a more in-depth treatment, consider (Gjorgjieva et al.| (2014) and |Wen et al.| (2018).

Muscle wave propagation is coordinated by 2 classes of neurons that innervate dorsal (D-) and ventral
(V-) muscles. B neurons (DB and VB) act as both sensory and motor neurons, expressing stretch
receptors in their dendrites to sense bending 200 pum anterior to their somas, and sending excitatory
output (via ACh) to the muscles and to D neurons. D neurons (DD and VD) send inhibitory output
(via GABA) to the muscles. This microcircuit is highly stereotyped, modular, and repeated down
the length of the body, and its logic is interpretable. For a particular module, body bending in the
previous module is sensed by B neurons, which then initiate bending on the same side (ipsilateral)
while simultaneously inhibiting bending on the opposite side (contralateral) through D neurons.

Muscle wave initiation is generated by intrinsic oscillators. While proprioception-only circuits (with
oscillators ablated) are capable of producing small waves on its own, oscillators are used initiate and
entrain larger waves (Gjorgjieva et al., |2014). These oscillators were long believed to only reside in
the head and neck, but recently work has shown them to in fact also be present in the body, as it is the
B neurons themselves that produce intrinsic oscillations (Wen et al., |[2018]).

Steering is generated by the differential activation of SMB neurons biasing the head and neck muscles
to bend dorsally or ventrally (Izquierdo & Beer;, [2015).

Speed control is coordinated by the AVB command neuron, which is connected through gap junctions
with all B neurons. When AVB is in a low state, the resting membrane potentials of B neurons are
hyperpolarized to prevent activation; when AVB is in a high state, B neurons are free to activate based
on proprioceptive and oscillatory inputs.
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Figure 2: Architectural Components. (A) An integrator unit models a simple neuron. The graded
input signals are multiplied by weights that represent synaptic efficacy and which are constrained to
be either excitatory (positive, green boxes) or inhibitory (negative, red boxes). The graded output
signal is produced from an activation function. (B) An oscillator unit produces driving signals much
like intrinsic pacemaker cells and network-based oscillators. The graded output signal is generated
through periodic functions, e.g. square waves and sine waves.

3.2 ARCHITECTURAL COMPONENTS

Our architecture is built from components that combine the discrete-time ANN framework that is
standard in machine learning with features from computational neuroscience like constraints on
synapse sign (i.e. excitation vs. inhibition) and special cell types (i.e. intrinsic oscillator). The
components are fully differentiable and therefore compatible with backpropagation-based learning
algorithms, though not restricted to them.

Integrator Units Signals in biological neural circuits are processed and integrated by neurons.
The integrator unilﬂ in Figure is similar to the standard ANN model. The graded inputs z;
are multiplied by synaptic weights w; to produce the membrane potential z, given the resting
membrane potential b. A nonlinear activation function f(z) produces the graded output y based on
the membrane potential. Unlike the standard ANN model, however, we constrain synaptic weights
by a sign constraint function c¢(w). This is done to reflect that in biological circuits a primary
characteristic of a synapse is whether it is excitatory or inhibitory. In the standard model, synapses
are initialized with random signs and are free to change during learning. We argue that principled
excitation/inhibition is fundamental for interpreting and modeling the logic of neural circuits, and we
show in the ablation analysis that they are critical for learning in our architecture (Section |.5).

Oscillator Units Neural circuits often feature components with specialized dynamics, with oscil-
lators being a prominent example (Grillner & EI Manira, 2020). An oscillator can be implemented
through coupled activity between neurons or within a single neuron, similar to pacemaker cells in the
heart (Bucher et al.||2015)). Oscillators serve as internal drivers of activity, a good example of the fact
that neural circuits do not exclusively react to external inputs from the environment. The oscillator
unit in Figure uses a periodic function f(¢) to produce the graded output y. Example periodic
functions include square wave and sine wave generators.

3.3 SWIMMER

The Swimmer is a common body design in widely adopted continuous control benchmarks, e.g.
DeepMind Control Suite (Tassa et al.,[2020) and OpenAl Gym (Brockman et al.,[2016). We target
this standard design rather than a custom body like previous work (Sarma et al., 2018} {Izquierdo &
Beer, [2015)) in order to demonstrate the potential of using biologically inspired network architecture
on tasks that have been tackled by the Al community.

Swimmer Body The Swimmer agent has an articulated body with IV joints connecting N + 1 links
(Figure[3]A). Its movement is entirely within the xy-plane. Thrust is generated by the links pushing

!'Simple neurons are often approximated as a single integrator units (Torres & Varona, 2012). However,
sometimes neurons have multiple sites of integration, i.e. dendritic integration across multiple compartments.
We prefer “integrator unit” to“neural unit” as a complex neuron may require multiple integrator units to model.
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Figure 3: Swimmer. (A) The Swimmer has an articulated body with N joints connecting N + 1
links. Its observation space is normalized joint positions g, and its action space is normalized joint
accelerations ¢. (B) Our network architecture closely conforms to the modular microcircuit of the
nematode. Each module ¢ senses bending in the previous module ¢; 1 and drives B neurons b; and
muscles m;, which are combined to create joint accelerations ¢;.

against the surrounding fluid, e.g. simulated via a high-Reynolds fluid drag model (Todorov et al.,
2012). The observation space consists of normalized joint positions g € [—1,1]"V between joint

limits. The action space consists of normalized joint accelerations ¢ € [—1,1]" between maximum
acceleration counterclockwise and clockwise, respectively.

Swimmer Network Architecture Our network architecture is best explained visually (Figure [3B).

For muscle wave propagation, signals are integrated in B neurons and muscles; D neurons mainly
serve to convert opposite-side B neuron signals from excitatory to inhibitory, and their role can be
replicated directly in the muscle integrator units. We model N modules to control each of the N
joints. For a particular module 1 < ¢ < N, the previous module joint position g;_ is split into dorsal
¢}, €1[0,1] and ventral ¢{_, € [0, 1] components, in order to mirror signals from proprioceptive
stretch receptors that are sensitive to bending on one side. B neurons are modeled as integrator
units with outputs b¢ and b, which receive same-side excitatory proprioceptive inputs. Muscles are
modeled as integrator units with outputs m¢ and m}, which receive same-side (ipsilateral) excitatory
B neuron input as well as opposite-side (contralateral) inhibitory B neuron input. Finally, the joint
acceleration ¢; is calculated from dorsal and ventral muscle outputs, which act antagonistically.

For muscle wave initiation, the first module B neurons b$ and b} receive inputs from oscillators o¢
and oY, respectively, instead of proprioception. We use square wave generators acting in anti-phase.

For steering, SMB outputs are modeled as a right turn signal » € [0, 1] and a left turn signal [ € [0, 1],
which serve as additional excitatory inputs to first module B neurons b and bY, respectively.

For speed control, AVB outputs are modeled as a speed signal s € [0, 1]. To approximate the effect
of gap junctions, such that s = 0 represents stopping and s = 1 represents maximum speed, 1 — s
serves as an additional inhibitory input to all B neurons.

The complete architecture for module ¢ is therefore:

q?_l = max(g;—1,0) q;_; = max(—gq;—1,0)
B = f (Whaptloy + 01 = 5)) b = f (Whapi + W1 = 9))
d d — — d
m; = f (wl—gmbz + wcontrab;]> TTLZ = f (wi—li)_sib; + wcomrabi)

.4 v
qi = m; —m;
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with special B neuron integrator units for ¢ = 1:

b’i =f (w(—gcod + wt—ltrnr + w;)eed(l - S)) b\ll =f (w(—;cov + wttrnl + ws;eed(l - S))

We use weight sharing such that weights with the same name are shared across modules as well as
within each module across sides. We initialize all weights with the correct signs and magnitudes of 1.

4 EXPERIMENTS

Learning Formalization We consider an agent formalized as a policy function 7g¢(a¢|s;) that
maps states s; to actions a., and which is represented by an ANN parameterized by weights 8 with
our architecture described in Section[3.3] We consider the standard agent-environment interaction
model formalized as a Markov Decision Process (MDP). At every timestep ¢, the agent in state s;
takes an action according to its policy a; ~ mg(a.|s;), receives a reward 7, and transitions to a new

state s¢41. Policy parameters 6 are optimized to maximize the discounted return Zf:o ~try, where
T is the horizon of the episode, and 0 < v < 1 is the discount factor.

Learning Algorithms We compare backpropagation-based RL algorithms and a derivative-free
ES algorithm for learning parameters in the architecture.

* Proximal Policy Optimization (PPO): (Schulman et al.,[2017) A model-free, on-policy, policy
gradient RL method. It uses a clipped surrogate objective to limit the size of policy change
at each step, thereby improving stability. Since it assumes stochastic policies, we perturb the
deterministic actions with Gaussian noise ¢; ~ N(0, 02).

* Deep Deterministic Policy Gradient (DDPG): (Lillicrap et al.,|2019) A model-free, off-policy,
policy gradient RL method. It uses off-policy data and the Bellman equation to learn the
Q-function, which is iteratively used to improve the policy.

¢ Evolution Strategies (ES): (Salimans et al., 2017) An evolutionary black-box optimization
method. It creates a population of policy parameter variants through perturbations with Gaussian
noise, then combines them through averaging, weighted by the return collected across episodes.

Learning Setup We implement the Swimmer using the standard N = 5 body in the DeepMind

Control Suite (Tassa et al.l 2020) built upon the MuJoCo physics simulator (Todorov et al.,2012).
We train the agent to swim using shaped rewards proportional to swimming speed (Appendix [A.I)).

4.1 PERFORMANCE AND DATA EFFICIENCY

How well and data efficiently does learning occur in NCAP vs. MLP architectures?

A algorithms per architecture B architectures per algorithms
MLP(256,256) NCAP PPO DDPG ES

1000 - 1000
T 800 — T 800 7 Nene
© ©
2 600 - 2 600 128
1 g
o 400 - o 400
= 200 . PPO = 200

ES
0 L BLRLLLL BRRLLL mea 0 TTrm T 1T Trrmmp T 17T
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timesteps timesteps timesteps timesteps timesteps

Figure 4: Performance and Data Efficiency. (A) Comparison of different algorithms for each
architecture. Our architecture starts with high reward and improves with learning, achieving signifi-
cantly better data efficiency and comparable performance. (B) Comparison of different architectures
for each algorithm. Our architecture with 4 parameters overperforms small MLPs (MLP(2,2) has 70
parameters) and is comparable to large MLPs (MLP(256, 256) has 77,222 parameters). Plots show
averages over 10 random seeds (solid lines) and 95% bootstrap confidence intervals (shaded areas).
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First, we compare different learning algorithms for either MLP or NCAP architectures (Figure dA).
We use an MLP with 2 hidden layers of dimensions (256, 256) and ReLU nonlinearities. We find
that our NCAP architecture achieves substantially higher initial performance than MLPs as well as
comparable asymptotic performance with MLPs, demonstrating the effectiveness of prior knowledge
encoded in network architecture. Our NCAP architecture shows reduced variance during learning
between trials with different random seeds, as well as reduced differences in asymptotic performance
between algorithms. For both MLP and NCAP, ES requires roughly an order of magnitude more
data to achieve comparable performance with the RL algorithms, consistent with previous work
(Salimans et al.;|2017). Qualitatively, both MLP and NCAP architectures yield reasonable swimming
movement (Videos 1A-B), though NCAP produces waves with large amplitudes resembling C.
elegans movement, while MLP produces waves with small amplitudes more resembling tadpoles.
This different movement shape explains the slightly lower asymptotic performance for NCAP because
the body’s direction of travel is less correlated with the head orientation, which is relevant for how
rewards are calculated (Appendix Videos 1C). We note that we simplified our design from actual
C. elegans circuits for pedagogical reasons (Section{.3)), and our goal is not to solve this swimming
task per se but rather to investigate the advantages of biologically inspired network architecture more
generally. C. elegans circuits are not optimized for fast swimming with few segments (Section [4.4);
future work may propose architectures better for this specific task, e.g. using larval zebrafish circuits.

Second, we compare different architectures for each learning algorithm (Figure @B). We use MLPs
with 2 hidden layers of varying dimension sizes and ReLU nonlinearities. We find that performance
deteriorates across all algorithms for MLPs as hidden dimensions become smaller, with some
algorithms like DDPG deteriorating dramatically. However, our NCAP architecture with 4 parameters
overperforms small MLPs and is comparable to large MLPs. This is especially notable as the smallest
MLP(2,2) has 70 parameters (1 order of magnitude more than NCAP) and the largest MLP (256,256)
has 73,222 parameters (2 orders of magnitude more than NCAP). This suggests that the relatively
simple structure of our NCAP architecture provides highly effective inductive biases.

arameter efficienc
4.2 PARAMETER EFFICIENCY P 4

g 10
@©
How valuable are parameters in NCAP vs. MLP architectures? g 102
We compare the asymptotic performance divided by parameter T\E 1o*
count for each architecture (Figure[5). Across all algorithms, our T 10
. . . =
NCAP architecture achieves more than an order of magnitude 9 o1
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Figure 5: Parameter Efficiency.
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longer bodies, likely reflecting that C. elegans circuits are evolved ~transfer to new bodies after train-
for its more segmented body. This kind of zero-shot transfer is not ing on N = 5 by leveraging ar-
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Figure 7: Ablations. (A) Ablations of weight sharing, sign constraints, and weight initialization in
different combinations. Sign constraints (i.e. principled excitation/inhibition) are crucial for learning.
Weight initialization at large magnitudes is responsible for good initial performance. Weight sharing
yields a small gain in data efficiency. (B) Ablation of sparse connectivity yields an equivalently sized
MLP (Appendix [B)). Learning is restored without sparse connectivity.

4.5 ABLATIONS

What are the effects of various features of our NCAP architecture on performance and learning ?

First, we investigate the role of weight sharing, sign constraints, and weight initialization (Figure[7A).
Without weight sharing, weights across modules and across sides are separate parameters, increasing
the total number of parameters from 4 to 30. Without sign constraints, the identity function is applied
instead of excitatory/inhibitory constraint function. Without weight initialization, weight magnitudes
are initialized through a uniform random distribution within [0, 1], rather than at 1. If using sign
constraints, weights are always initialized with the appropriate sign; otherwise, signs are chosen
randomly with equal probability. We find that sign constraints are crucial for learning. Without
appropriate sign constraints, the NCAP architecture fails to learn during the allotted timesteps, for
both RL and ES algorithms. With appropriate sign constraints, even if the weights magnitudes are
not initialized ideally, the NCAP architecture will learn. Weight initialization is responsible for good
initial performance. Weight sharing has a smaller, but identifiable, contribution to data efficiency.

Second, we investigate the role of sparse connectivity that arises from the natural structure of neural
circuits (Figure[7B). Our Swimmer architecture has the special property that it can be completely
embedded within an MLP with 3 hidden layers of dimensions (12, 10, 10) and ReLU nonlinearities
(Appendix [B)). Specifically, after ablating sign constraints and weight sharing, our architecture is
identical to this MLP with highly pruned connectivity (mostly weights of 0). We remove this sparsity
and find that the MLP can learn the task with similar asymptotic performance as NCAP.

Taken together, our results suggest that principled excitation/inhibition is an important design consid-
eration in small, sparse architectures like our NCAP, but less important in MLPs. This may be related
to the “Lottery Ticket Hypothesis” (Frankle & Carbin, [2019), which suggests that, upon initialization,
the MLPs already contain subnetworks with initial weights and signs that do most of the work for
learning, i.e. they are “winning tickets”; imposing sparsity eliminates these overlapping subnetworks.

5 DISCUSSION

We asked what advantages biologically inspired network architecture can provide in the context
of motor control. Through our case study translating C. elegans locomotion circuits into an ANN
model, we found that biologically inspired network architecture can achieve comparable asymptotic
performance to MLPs with significantly improved initial performance, data efficiency, parameter
efficiency, interpretability, and transfer. Therefore, while the norm of using tabula rasa architectures
like MLPs may be general, architectural priors can provide useful inductive biases for motor control
and should be investigated further. Future work can translate neural circuits that underlie a wider
variety of animal bodies and movements, as well as incorporate inductive biases from neural circuits
that underlie visual, tactile, and auditory sensing. Overall, we believe that our work suggests a way
of advancing artificial intelligence and robotics research inspired by systems neuroscience.
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A EXPERIMENTAL DETAILS

A.1 TASKS
The swim task aims to test the agent’s ability to swim forwards at a desired speed. It returns a smooth

reward that is O when stopped or moving backwards, and rises linearly to and saturates at 1 when
swimming at the desired speed.

A.2  IMPLEMENTATION
Libraries Neural networks were implemented in PyTorch (Paszke et al.|[2019). The RL algorithms

were implemented using Tonic (Pardol [2021)). The ES algorithm was implemented using ES Torch
(Karakasli, [2020).

Computational Resources Training was performed on a high performance computing cluster
running the Linux Ubuntu operatin system. RL algorithm training runs were parallelized over § cores,
while ES algorithm runs were parallelized over 32 cores.

A.3 HYPERPARAMETERS

RL Algorithms Standard hyperparameters for PPO and DDPG in Tonic (Pardol 2021)) at commit
48a7b72; timesteps, 5e6.

ES Algorithm Population size, 256; noise standard deviation o, 0.02; L2 weight decay, 0.005;
optimized, Adam; learning rate, 0.01; timesteps, 5e7.

NCAP Swimmer Oscillator, square wave, period 60 timesteps, width 30 timesteps.
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B SWIMMER ARCHITECTURE DETAILS

Our NCAP architecture has the special property that in can be completely embedded within a fully
connected MLP of 3 hidden layers and ReLU nonlinearities. This enables us to “interpolate” between
our NCAP architecture and the MLP architecture, conducting a fine-grained analysis of how various
features of our architectural prior contribute to performance and learning.

By rearranging terms in the Swimmer network architecture diagram (Figure 3B), we arrive at the
following network (N = 5 shown):

weights: turn (t), speed (s)

task module
motor module

weights: osc (o), prop (p),
ipsi (i), contra (c)

(to all b)
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v v
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By removing weight sharing, sign constraints, and sparse connectivity, we arrive at a fully connected
MLP of 3 hidden layers (N = 2 shown):
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For N = 5, the resulting MLP has hidden layers of dimensions (12, 10, 10).
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