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ABSTRACT

In this paper we tackle the problem of generating conformers of a molecule in 3D
space given its molecular graph. We parameterize these conformers as continuous
functions that map elements from the molecular graph to points in 3D space. We
then formulate the problem of learning to generate conformers as learning a distri-
bution over these functions using a diffusion generative model, called Molecular
Conformer Fields (MCF). Our approach is simple and scalable, and achieves
state-of-the-art performance on challenging molecular conformer generation bench-
marks while making no assumptions about the explicit structure of molecules (e.g.
modeling torsional angles). MCF represents an advance in extending diffusion
models to handle complex scientific problems in a conceptually simple, scalable
and effective manner.

1 INTRODUCTION

In this paper we tackle the problem of Molecular Conformer Generation, i.e. predicting the diverse
low-energy three-dimensional conformers of molecules, relying solely on their molecular graphs as
illustrated in Fig. 1. Molecular Conformer Generation is a fundamental problem in computational
drug discovery and chemo-informatics, where understanding the intricate interactions between
molecular and protein structures in 3D space is critical, affecting aspects such as charge distribution,
potential energy, etc. (Batzner et al., 2022). The core challenge associated with conformer generation
springs from the vast complexity of the 3D structure space, encompassing factors such as bond
lengths and torsional angles. Despite the molecular graph dictating potential 3D conformers through
specific constraints, such as bond types and spatial arrangements determined by chiral centers, the
conformational space experiences exponential growth with the expansion of the graph size and the
number of rotatable bonds (Axelrod & Gomez-Bombarelli, 2022). This complicates brute force
approaches, making them virtually unfeasible for even moderately small molecules.

Figure 1: We formulate the molecular conformer generation problem as learning a distribution of
functions over graphs. Each conformer is a field (e.g. a function) f that can map elements from a
particular molecular graph G to points in 3D space, f : G → R3. We call these conformer fields as
they can be continuously evaluated for any point in G. We visualize an example of example of this
conformer field where points are colored based on the distance to their closest atom (see Sect. 5.3 for
details).

Systematic methods, like OMEGA (Hawkins et al., 2010), offer rapid processing through rule-based
generators and curated torsion templates. Despite their efficiency, these models typically fail on
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complex molecules, as they often overlook global interactions and are tricky to extend to inputs like
transition states or open-shell molecules. Classic stochastic methods, like molecular dynamics (MD)
and Markov chain Monte Carlo (MCMC), rely on extensively exploring the energy landscape to
find low-energy conformers. Such techniques suffer from sampling inefficiency for large molecules
and struggle to generate diverse representative conformers (Hawkins, 2017; Wilson et al., 1991;
Grebner et al., 2011). In the domain of learning-based approaches, several works have looked at
conformer generation problems through the lens of probabilistic modeling, using either normalizing
flows (Xu et al., 2021a) or diffusion models (Xu et al., 2022; Jing et al., 2022). These approaches
tend to use equivariant network architectures to deal with molecular graphs (Xu et al., 2022) or
model domain-specific factors like torsional angles (Ganea et al., 2021; Jing et al., 2022). However,
explicitly enforcing these domain-specific inductive biases can sometimes come at a cost. For
example, Torsional Diffusion relies on rule-based methods to find rotatable bonds which may fail
especially for complex molecules. Also, the quality of generated conformers are adhered to the
non-differentiable cheminformatic methods used to predict local substructures. On the other hand,
recent works have proposed domain-agnostic approaches for generative modeling of data in function
space (Du et al., 2021; Dupont et al., 2022b;a; Zhuang et al., 2023) obtaining great performance.
As an example, in Zhuang et al. (2023) the authors use a diffusion model to learn a distribution
over fields f , showing great results on different data domains like images (i.e. f : R2 → R3) or
3D geometry (i.e. f : R3 → R1), where the domain of the function Rn is fixed across functions.
However, dealing with fields defined on different domains (e.g. different molecular graphs, as in
molecular conformer generation) still remains an open problem.

To address these issues, we present Molecular Conformer Fields (MCF), an approach to learn
generative models of molecular conformers. We interpret conformers as fields/functions (we use both
terms exchangeably) on graphs that map elements in the graph Gi to points in R3, fi : Gi → R3,
which we define as conformer fields. MCF present a generalization over previous work on generative
models in function space (Du et al., 2021; Dupont et al., 2022b;a; Zhuang et al., 2023) to deal with
functions fi defined on different graphs Gi while also generalizing those approaches to dealing with
intrinsic coordinate systems. MCF outperforms recent conformer generation benchmarks while
being conceptually simpler to understand and efficient to scale. In addition, successfully tackling the
problem of conformer generation with a general approach like MCF shows that it is a strong method
that can generalize to other scientific disciplines with little effort. In addition, MCF can be a stepping
stone towards all-purpose diffusion generative models.

Our contributions can be summarized as follows:

• We provide a simple yet effective approach for molecule conformer generation that achieves
state-of-the-art performance on standard benchmarks.

• Our approach directly predicts the 3D position of atoms as opposed to torsional angles or
other domain-specific variables, providing a simple and scalable training recipe.

• We provide an extensive ablation study to understand what are the critical factors that affect
the performance of our proposed MCF in molecular conformer generation.

2 RELATED WORK

Recent works have tackled the problem of conformer generation using learning-based generative
models. Simm & Hernández-Lobato (2019) and Xu et al. (2021b) develop two-stage methods which
first generate interatomic distances following VAE framework and then predict conformers based
on the distances. Guan et al. (2021) propose neural energy minimization to optimize low-quality
conformers. In Xu et al. (2021a), a normalizing flow approach is proposed as an alternative to VAEs.
To avoid the accumulative errors from two-stage generation, Shi et al. (2021) implement score-based
generative model to directly model the gradient of logarithm density of atomic coordinates. In
GeoDiff (Xu et al., 2022), a diffusion model is used which focuses on crafting equivariant forward
and backward processes with equivariant graph neural networks. In GeoMol (Ganea et al., 2021),
the authors first predict 1-hop local structures and then propose a regression objective coupled with
an Optimal Transport loss to predict the torsional angles that assemble substructures of a molecule.
Following this, Torsional Diffusion (Jing et al., 2022) proposed a diffusion model on the torsional
angles of the bonds rather than a regression model used in Ganea et al. (2021).
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Our approach extends recent efforts in generative models for continuous functions in Euclidean
space (Zhuang et al., 2023; Dupont et al., 2022b;a; Du et al., 2021), to functions defined over graphs
(e.g. chemical structure of molecules). The term Implicit Neural Representation (INR) is used in
these works to denote a parameterization of a single function (e.g. a single image in 2D) using a
neural network that maps the function’s inputs (i.e. pixel coordinates) to its outputs (i.e. RGB
values). Different approaches have been proposed to learn distributions over fields in Euclidean space;
GASP (Dupont et al., 2022b) leverages a GAN whose generator produces field data whereas a point
cloud discriminator operates on discretized data and aims to differentiate real and generated functions.
Two-stage approaches (Dupont et al., 2022a; Du et al., 2021) adopt a latent field parameterization
(Park et al., 2019) where functions are parameterized via a hyper-network (Ha et al., 2017) and
a generative model is learnt on the latent or INR representations. In addition, our approach also
relates to recent work focusing on fitting a function (e.g. learning an INR) on a manifold using an
intrinsic coordinate system (Koestler et al., 2022; Grattarola & Vandergheynst, 2022), and generalizes
it to the problem of learning a probabilistic model over multiple functions defined on different
manifolds/graphs. Intrinsic coordinate systems have also been used in Graph Transformers to tackle
supervised learning tasks (Maskey et al., 2022; Sharp et al., 2022; He et al., 2022; Dwivedi et al.,
2020).

Recent strides in the domain of protein folding dynamics have witnessed revolutionary progress,
with modern methodologies capable of predicting crystallized 3D structures solely from amino-acid
sequences using auto-regressive models like AlphaFold (Jumper et al., 2021). However, transferring
these approaches seamlessly to general molecular data is fraught with challenges. Molecules present
a unique set of complexities, manifested in their highly branched graphs, varying bond types, and
chiral information, aspects that make the direct application of protein folding strategies to molecular
data a challenging endeavor.

3 PRELIMINARIES

3.1 DIFFUSION PROBABILISTIC FIELDS

Diffusion Probabilistic Fields (DPF) (Zhuang et al., 2023) belong to the broad family of latent variable
models (Everett, 2013) and can be consider a generalization of DDPMs (Ho et al., 2020) to deal
with continuous functions f : M → Y which are infinite dimensional. Conceptually speaking, DPF
(Zhuang et al., 2023) parametrizes functions f with a set of context pairs containing input-outputs to
the function. Using these context pairs as input to DPF, the model is trained to denoise any continous
query coordinate (e.g. query pairs) in the domain of the function at timestep t. In order to learn a
parametric distribution over functions pθ(f0) from an empirical distribution of functions s q(f0), DPF
reverses a diffusion Markov Chain that generates function latents f1:T by gradually adding Gaussian
noise to (context) input-output pairs randomly drawn from f ∼ q(f0) for T time-steps as follows:
q(ft|ft−1) := N (ft−1;

√
ᾱtf0, (1− ᾱt)I). Here, ᾱt is the cumulative product of fixed variances

with a handcrafted scheduling up to time-step t. q(ft|ft−1) denotes the conditional distribution on
the output space (which follows a Gaussian) since the domain of the function M never changes,
only the values assigned to it. DPF (Zhuang et al., 2023) follows the training recipe in Ho et al.
(2020) in which: i) The forward process adopts sampling in closed form. ii) reversing the diffusion
process is equivalent to learning a sequence of denoising (or score) networks ϵθ, with tied weights.
Reparameterizing the forward process as ft =

√
ᾱtf0 +

√
1− ᾱtϵ results in the “simple” DDPM

loss: Et∼[0,T ],f0∼q(f0),ϵ∼N (0,I)

[
∥ϵ− ϵθ(

√
ᾱtf0 +

√
1− ᾱtϵ, t)∥2

]
, which makes learning of the

data distribution pθ(f0) both efficient and scalable. At inference time, DPF computes f0 ∼ pθ(f0)
via ancestral sampling (Zhuang et al., 2023). Concretely, DPF starts by sampling dense query
coordinates and assigning a Gaussian value to them fT ∼ N (0, I). Then, it iteratively applies the
score network ϵθ to denoise fT , thus reversing the diffusion Markov Chain to obtain f0. In practice,
DPFs have obtained amazing results for signals living in an Euclidean geometry. However, the
extension to functions defined on graphs remains an open problem.

3.2 CONFORMERS AS FUNCTIONS ON GRAPHS

Following the setting in previous work (Xu et al., 2022; Ganea et al., 2021; Jing et al., 2022) a
molecule with n atoms is represented as an undirected graph G = ⟨V, E⟩, where V = {vi}ni=1 is the
set of vertices representing atoms and E = {eij |(i, j) ⊆ |V| × |V|} is the set of edges representing
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inter-atomic bonds. In this paper, we parameterize a molecule’s conformer as a function f : G → R3

that takes atoms in the molecular graph G and maps them to 3D space, we call this function a
conformer field. The training set is composed of conformer fields fi : Gi → R3, that each maps
atoms of a different molecule Gi to a 3D point. We then formulate the task of conformer generation
as learning a prior over a training set of conformer fields. We drop the subscript i in the remainder of
the text for notation simplicity.

We learn a denoising diffusion generative model (Ho et al., 2020) over conformer fields f . In particular,
given conformer field samples f0 ∼ q(f0) the forward process takes the form of a Markov Chain
with progressively increasing Gaussian noise: q(f1:T |f0) =

∏T
t=1 q(ft|ft−1), q(ft|ft−1) :=

N (ft−1;
√
ᾱtf0, (1− ᾱt)I). It should be noted that q(ft|ft−1) represents the conditional Gaussian

distribution on the output space of the field instead of the field itself, as the domain of the function M
never changes, only the values assigned to it. We train MCF using the denoising objective function in
(Ho et al., 2020): Et∼[0,T ],f0∼q(f0),ϵ∼N (0,I)

[
∥ϵ− ϵθ(

√
ᾱtf0 +

√
1− ᾱtϵ, t)∥2

]
.

3.3 EQUIVARIANCE IN CONFORMER GENERATION

Equivariance has become an important topic of study in generative models (Abbott et al., 2023; 2022;
Kanwar et al., 2020). In particular, enforcing equivariance as an explicit inductive bias in neural
networks can often lead to improved generalization (Köhler et al., 2020) by constraining the space of
functions that can be represented by a model. On the other hand, recent literature shows that models
that can learn these symmetries from data rather than explicitly enforcing them (e.g. transformers vs
CNNs) tend to perform better as they are more amenable to optimization (Bai et al., 2021).

Equivariance also plays an interesting role in conformer generation. On one hand, it is important
when training likelihood models of conformers, as the likelihood of a conformer is invariant to roto-
translations (Köhler et al., 2020). On the other hand, when training models to generate conformers
given a molecular graph, explicitly baking roto-translation equivariance might not be as necessary.
This is because the intrinsic structure of the conformer encodes far more information about its
properties than the extrinsic coordinate system (eg. rotation and translation) in which the conformer
is generated (Ruddigkeit et al., 2012). In addition, recent approaches for learning simulations on
graphs (Sanchez-Gonzalez et al., 2020) or pre-training models for molecular prediction tasks (Zaidi
et al., 2022) have relied on non-equivariant architectures.

We follow this trend and empirically show that explicitly enforcing roto-translation equivariance is
not a strong requirement for generalization. Furthermore, we also show that approaches that do not
explicitly enforce roto-translation equivariance (like ours) can match or outperform approaches that
do.

4 METHOD

MCF is a diffusion generative model that captures distributions over conformer fields. We are given
observations in the form of an empirical distribution f0 ∼ q(f0) over fields where a field f0 : G → R3

maps vertices v ∈ G on a molecular graph G to 3D space R3. As a result, latent variables f1:T are
also functions on graphs that can be continuously evaluated.

To tackle the problem of learning a diffusion generative model over conformer fields we extend the
recipe in DPF (Zhuang et al., 2023), generalizing from fields defined in ambient Euclidean space to
functions on graphs (e.g. conformer fields). In order to do this, we compute the k leading eigenvectors
of the normalized graph Laplacian ∆G (Maskey et al., 2022; Sharp et al., 2022) as positional encoding
for points in the graph. The eigen-decomposition of the normalized graph Laplacian can be computed
efficiently using sparse eigen-problem solvers (Hernandez et al., 2009) and only needs to be computed
once before training. We use the term φ(v) =

√
n[φ1(v), φ2(v), . . . , φk(v)] ∈ Rk to denote the

normalized Laplacian eigenvector representation of a vertex v ∈ G.

We adopt an explicit field parametrization where a field is characterized by uniformly sampling a
set of vertex-signal pairs {(φ(vc),y(c,0))}, vc ∈ G,y(c,0) ∈ R3, which is denoted as context set. We
row-wise stack the context set and refer to the resulting matrix via C0 = [φ(Vc), Y(c,0)]. Here,
φ(Vc) denotes the Laplacian eigenvector representation context vertices and Y(c,0) denotes the 3D
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Algorithm 1 Training
1: ∆Gφi = φiλi // Compute Laplacian eigenvectors
2: repeat
3: (C0,Q0) ∼ Uniform(q(f0))
4: t ∼ Uniform({1, . . . , T})
5: ϵc ∼ N (0, I), ϵq ∼ N (0, I)
6: Ct = [φ(Vc),

√
ᾱtY(c,0) +

√
1− ᾱtϵc]

7: Qt = [φ(Vq),
√
ᾱtY(q,0) +

√
1− ᾱtϵq]

8: Take gradient descent step on
∇θ ∥ϵq − ϵθ(Ct, t,Qt)∥2

9: until converged
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f0 ⇠ q(f0), f0 : G ! R3

Figure 2: Left: MCF training algorithm. Right: Visual depiction of a training iteration for a
conformer field. See Sect. 4 for definitions (.

position of context vertices at time t = 0. We define the forward process for the context set by
diffusing the 3D positions and keeping Laplacian eigenvectors fixed:

Ct = [φ(Vc),Y(c,t) =
√
ᾱtY(c,0) +

√
1− ᾱtϵc], (1)

where ϵc ∼ N (0, I) is a noise vector of the appropriate size. We now turn to the task of formulating
a score network for fields. The score network needs to take as input the context set (i.e. the field
parametrization), and needs to accept being evaluated continuously in G. We do this by sampling a
query set of vertex-signal pairs {φ(vq),y(q,0)}. Equivalently to the context set, we row-wise stack
query pairs and denote the resulting matrix as Q0 = [φ(Vq), Y(q,0)]. Note that the forward diffusion
process is equivalently defined for both context and query sets:

Qt = [φ(Vq),Y(q,t) =
√
ᾱtY(q,0) +

√
1− ᾱtϵq], (2)

where ϵq ∼ N (0, I) is a noise vector of the appropriate size. The underlying field is solely defined
by the context set, and the query set are the function evaluations to be de-noised. The resulting score
field model is formulated as follows, ϵ̂q = ϵθ(Ct, t,Qt).

Using the explicit field characterization and the score field network, we obtain the training and
inference procedures in Alg. 1 and Alg. 2, respectively, which are accompanied by illustrative
examples of sampling a field encoding a Gaussian mixture model over the manifold (i.e. the
bunny). For training, we uniformly sample context and query sets from f0 ∼ Uniform(q(f0))
and only corrupt their signal using the forward process in Eq. equation 1 and Eq. equation 2. We
train the score field network ϵθ to denoise the signal portion of the query set, given the context
set. During sampling, to generate a conformer fields f0 ∼ pθ(f0) we first define a query set
QT = [φ(Vq), Y(q,T ) ∼ N (0, I)] of random values to be de-noised. We set the context set to be
a random subset of the query set. We use the context set to denoise the query set and follow ancestral
sampling as in the vanilla DDPM (Ho et al., 2020). Note that during inference the eigen-function
representation φ(v) of the context and query sets does not change, only their corresponding signal
value (e.g. their 3D position).

4.1 SCORE FIELD NETWORK ϵθ

In MCF, the score field’s design space covers all architectures that can process irregularly sampled
data, such as Transformers (Vaswani et al., 2017) and their corresponding Graph counterparts (Maskey
et al., 2022; Sharp et al., 2022; He et al., 2022; Dwivedi et al., 2020) which have recently gained
popularity in the supervised learning setting. The score field network ϵθ is primarily implemented
using PerceiverIO (Jaegle et al., 2022), an effective transformer encoder-decoder architecture. The
PerceiverIO was chosen due to its efficiency in managing large numbers of elements in the context
and query sets, as well as its natural ability to encode interactions between these sets using attention.
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Algorithm 2 Sampling
1: ∆Gφi = φiλi // LBO eigen-decomposition
2: QT = [φ(Vq),Y(q,t) ∼ N (0q, Iq)]
3: CT ⊆ QT ▷ Random subset
4: for t = T, . . . , 1 do
5: z ∼ N (0, I) if t > 1, else z = 0

6: Y(q,t−1) = 1√
αt

(
Y(q,t) − 1−αt√

1−ᾱt
ϵθ(Ct, t,Qt)

)
+ σtz

7: Qt−1 = [φ(Vq),Y(q,t−1)]
8: Ct−1 ⊆ Qt−1 ▷ Same subset as in step 2
9: end for

10: return f0 evaluated at coordinates φ(Vq)
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Figure 3: Left: MCF sampling algorithm. Right: Visual depiction of the sampling process of a
conformer field.

Figure 4: Interaction between context and query pairs in the PerceiverIO architecture. Context pairs
Ct attend to a latent array of learnable parameters via cross attention. The latent array then goes
through several self attention blocks. Finally, the query pairs Qt cross-attend to the latent array to
produce the final noise prediction ϵ̂q .

Figure 4 demonstrates how these sets are used within the PerceiverIO architecture. To elaborate,
the encoder maps the context set into latent arrays (i.e. a group of learnable vectors) through a
cross-attention layer, while the decoder does the same for query set. For a more detailed analysis of
the PerceiverIO architecture refer to Jaegle et al. (2022).The time-step t is incorporated into the score
computation by concatenating a positional embedding representation of t to the context and query
sets.

5 EXPERIMENTS

We use two popular datasets: GEOM-QM9 (Ruddigkeit et al., 2012) and GEOM-DRUGS (Ruddigkeit
et al., 2012). Datasets are preprocessed as described in GeoMol (Ganea et al., 2021). We split
them randomly based on molecules into train/validation/test (80%/10%/10%). At the end, for
each dataset, we sample 1000 random test molecules as the final test set. Thus, the splits contain
106586/13323/1000 and 243473/30433/1000 molecules for GEOM-QM9 and GEOM-DRUGS, resp.
We follow the exact same training splits for all baselines. In the Appendix A.3 we provide additional
experiments that validate the design choices for the score network architecture, as well as empirically
validating the chemical properties of generated conformers.

5.1 GEOM-QM9

Following the standard setting for molecule conformer prediction we use the GEOM-QM9 dataset
(Ruddigkeit et al., 2012) which contains ∼ 130K molecules ranging from 3 to 29 atoms. We report
our results in Tab. 1 and compare with CGCF (Xu et al., 2021a), GeoDiff (Xu et al., 2022), GeoMol
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(Ganea et al., 2021) and Torsional Diffusion (Jing et al., 2022). Note that both GeoMol (Ganea
et al., 2021) and Torsional Diffusion (Jing et al., 2022) make strong assumptions about the geometric
structure of molecules and model domain-specific characteristics (i.e. torsional angles of rotatable
bonds). In contrast, MCF simply models the distribution of 3D coordinates of atoms without making
any assumptions about the underlying structure. Finally we report the same metrics as Torsional
Diff. (Jing et al., 2022) to compare the generated and ground truth conformer ensembles: Average
Minimum RMSD (AMR) and Coverage. These metrics are reported both for precision, measuring the
accuracy of the generated conformers, and recall, which measures how well the generated ensemble
covers the ground-truth ensemble (details about metrics can be found in Appendix A.2.4). We
generate 2K conformers for a molecule with K ground truth conformers.

We report results in Tab. 1, showing that MCF outperforms previous approaches by a substantial
margin. In addition, it is important to note that MCF is a general approach for learning functions
on graphs that does not make any assumptions about the intrinsic geometric factors important in
conformers like torsional angles. This makes MCF simpler to implement and applicable to other
settings in which intrinsic geometric factors are not known or expensive to compute.

Recall Precision

Coverage ↑ AMR ↓ Coverage ↑ AMR ↓
mean median mean median mean median mean median

CGCF 69.47 96.15 0.425 0.374 38.20 33.33 0.711 0.695
GeoDiff 76.50 100.00 0.297 0.229 50.00 33.50 0.524 0.510
GeoMol 91.50 100.00 0.225 0.193 87.60 100.00 0.270 0.241
Torsional Diff. 92.80 100.00 0.178 0.147 92.70 100.00 0.221 0.195
MCF (ours) 96.57 100.00 0.107 0.072 94.60 100.00 0.130 0.084

Table 1: Molecule conformer generation results on GEOM-QM9. MCF obtains better results than
the state-of-the-art Torsional Diffusion (Jing et al., 2022), without making any explicit assumptions
about the geometric structure of molecules (i.e. without modeling torsional angles).

5.2 GEOM-DRUGS

To test the capacity of MCF to deal with larger molecules we also report experiments on GEOM-
DRUGS, the largest and most pharmaceutically relevant part of the GEOM dataset (Axelrod &
Gomez-Bombarelli, 2022) — consisting of 304k drug-like molecules (average 44 atoms). We report
our results in Tab. 2 and compare with GeoDiff (Xu et al., 2022), GeoMol (Ganea et al., 2021)
and Torsional Diffusion (Jing et al., 2022). Note again that both GeoMol (Ganea et al., 2021) and
Torsional Diffusion (Jing et al., 2022) make strong assumptions about the geometric structure of
molecules and model domain-specific characteristics like torsional angles of bonds. In contrast, MCF
simply models the distribution of 3D coordinates of atoms without making any assumptions about
the underlying structure.

Results on Tab. 2 are where we see how MCF outperforms strong baseline approaches by substantial
margins. MCF achieves better performance than previous state-of-the-art model Torsional Diffusion
by approximately 10% on both recall and precision. This indicates that our proposed MCF not only
generates high-quality conformers that are close with ground truth but also covers a wide variety of
conformers in the ground truth. In addition, it is important to note that MCF does not make any
assumptions about the intrinsic geometric factors important in conformers like torsional angles and
thus is simpler to train (e.g. it does not require a local substructure prediction model).

In addition, in Fig. 5 we show a breakdown of the performance on GEOM-DRUGS of MCF vs.
Torsional diffusion (Jing et al., 2022) as a function of the threshold distance, as well as a function of
the number of atoms in molecules. MCF outperforms Torsional Diffusion across the full spectrum of
threshols in both recall and precision. When looking at the break-down AMR on different number of
atoms in Fig. 5(c), MCF also demonstrates its superior performance in most cases. It is indicated that
MCF better captures the fine intrinsic geometric structure of conformers.
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Recall Precision

Coverage ↑ AMR ↓ Coverage ↑ AMR ↓
mean median mean median mean median mean median

GeoDiff 42.10 37.80 0.835 0.809 24.90 14.50 1.136 1.090
GeoMol 44.60 41.40 0.875 0.834 43.00 36.40 0.928 0.841
Torsional Diff. 72.70 80.00 0.582 0.565 55.20 56.90 0.778 0.729
MCF (ours) 81.62 89.22 0.468 0.438 61.63 62.50 0.705 0.650

Table 2: Molecule conformer generation results on GEOM-DRUGS. MCF obtains comparable or
better results than the state-of-the-art Torsional Diffusion Jing et al. (2022), without making any
explicit assumptions about the geometric structure of molecules (i.e. without modeling torsional
angles).

(a) (b) (c)

Figure 5: (a) Recall coverage metric as a function of the threshold distance. MCF outperforms
Torsional Diffusion across the full spectrum of thresholds. (b) Precision coverage as a function of the
threshold distance. Still MCF outperforms Torsional Diffusion across the full spectrum of thresholds.
(c) Minimum averaged RMSD (lower is better) of recall and precision as a function of the number of
atoms in molecules.

5.2.1 GENERALIZATION TO GEOM-XL

We now turn to the task of evaluating how well a model trained on GEOM-DRUGS transfers to
unseen molecules with large numbers of atoms. As proposed in Torsional Diff. (Jing et al., 2022)
we use the GEOM-XL dataset, which is a subset of GEOM-MoleculeNet that contains all species
with more than 100 atoms, which is a total of 102 molecules. Note that this evaluation not only tests
the capacity of models to generalize to molecules with large number of atoms but also serves as an
out-of-distribution generalization experiment.

In Tab. 3 we report AMR for both precision and recall and compare with GeoDiff (Xu et al., 2022),
GeoMol (Ganea et al., 2021) and Torsional Diffusion (Jing et al., 2022). In particular, when taking
the numbers directly from (Jing et al., 2022), MCF achieves better or comparable performance than
Torsional Diffusion. Further, in running the checkpoint provided by Torsional Diffusion and following
their validation process we found that 25 molecules failed to be generated, this is due to the fact that
Torsional Diffusion generates torsional angles conditioned on the molecular graph G and the local
structures obtained from RDKit. In some cases, RDKit can fail to find local structures and Torsional
Diffusion cannot generate conformers in this case. In our experiments with the same 77 molecules
in GEOM-XL from our replica, MCF surpasses Torsional Diffusion by a large margin. The results
highlight the generalizability of MCF to large and complex molecules, which may shed a light on
pre-training molecular conformer generation model.
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AMR-P ↓ AMR-R ↓ # mols

mean median mean median

GeoDiff 2.92 2.62 3.35 3.15 -
GeoMol 2.47 2.39 3.30 3.14 -
Torsional Diff. (Jing et al., 2022) 2.05 1.86 2.94 2.78 -
MCF 2.04 1.72 2.97 2.51 102

Torsional Diff. (our eval) 1.93 1.86 2.84 2.71 77
MCF 1.77 1.59 2.62 2.37 77

Table 3: Generalization results on GEOM-XL. MCF obtains comparable results to Torsional Diffusion
Jing et al. (2022), without making any explicit assumptions about the geometric structure of molecules.

Figure 6: Continuously evaluating generated conformer fields for different molecules in GEOM-QM9.

5.3 CONTINUOUS CONFORMERS

Molecules are ubiquitously represented as graphs G where vertices V of the graph represents atoms
and their properties and edges represents bonds that encode interactions between atoms. These bonds
encode electron interactions between atoms but also serve to describe the nature and characteristics of
such interactions (i.e. covalent bonds, ionic bonds, metallic bonds, etc, ). In particular, the molecule’s
conformer is generated only for discrete atoms (e.g. vertices in G). However, since MCF encodes
continuous conformer fields it can be continuously evaluated in G. For example, we can evaluate
the sampled conformer fields for points along bonds. In order to do this, for a point p in a bond
connecting atoms (vi, vj) we linearly interpolate the Laplacian eigenvector representation of it’s
endpoints φ(p) = αφ(vi) + (1− α)φ(vj), we then feed this interpolated Laplacian eigenvector into
the model to sample its 3D position in the conformer field. We visualize results in Fig. 1 and 6. We
generated this visualizations an MCF model trained on GEOM-QM9 without atom features. Note
that while MCF is never trained on points along molecular bonds, it manages to generate plausible
3D positions for such points.

This flexibility to evaluate conformers continuously in G opens a realm of possibilities. For example,
at this subatomic scales, the paths that electrons take are not well-defined tracks, but rather regions of
space where they are most likely to be found, represented by probability density functions. These
electron clouds form the bonds between atoms, and their shapes can vary quite a bit depending on the
bond type, being sometimes symmetrical and other times quite complex and diffuse. MCF enables
the possibility of using additional training data from Quantum Monte Carlo methods (Nightingale &
Umrigar, 1998) to capture the probability density of electron clouds.

6 CONCLUSIONS

In this paper we introduced MCF, where we formulate the problem of molecular conformer generation
as learning a distribution over continuous fields on molecular graphs. MCF is formulated specifically
as a diffusion generative model over fields, which achieves state-of-the-art performance compared
with baselines with strong inductive bias when evaluated on molecular generation across different
benchmarks. Notably, MCF achieves these results without explicitly modeling geometric properties
of molecules like torsional angles, which makes it simpler to understand and scale. MCF presents
an exciting avenue for future research on scaling conformer generation to proteins and other macro
molecular structures. We further discuss limitations and future works in Appendix A.1.
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A APPENDIX

A.1 LIMITATIONS AND FUTURE WORK

While MCF shows competitive performance in molecular conformer generation, it does encounter
limitations and potential improvements for future explorations. One limitation is that our proposed
method is computationally expensive. Extensive computations first stem from the Transformer-
based (Vaswani et al., 2017) score network. In MCF, we use a PerceiverIO (Jaegle et al., 2022)
as score network, an efficient transformer that allows for sub-quadratic compute. Other efficient
transformer architectures and tricks like (Dao et al., 2022) can be used to improve training efficiency.
The other factor is computational cost during inference. In MCF, we iterate 1000 timesteps to
sample a conformer following DDPM (Ho et al., 2020). Experiments in Appendix A.4 further show
that efficient sampling strategies, i.e. DDIM (Song et al., 2021), can help significantly increase
inference efficiency while maintain high-quality in sampled conformers. Other efficient variants
of diffusion models like consistency model (Song et al., 2023) as well as distillation approaches
(Berthelot et al., 2023) may be adapted to further decrease the sampling to single step. Also, recent
works have demonstrated that diffusion generative model can generate samples following Boltzmann
distributions when provided with Boltzmann-distributed training data Arts et al. (2023). Driven by
this, our proposed MCF can be adapted to generate molecular conformers that follow Boltzmann
distributions when trained with corresponding data. Besides, recent flow matching generative model
(Lipman et al., 2022) provides the flexibility of mapping between arbitrary distributions and access to
exact log-likelihood estimation. Integrating flow matching framework could help sample molecular
conformer from Boltzmann distribution instead of standard Gaussian.

Another limitation could be the fact that MCF does not explicitly model the equivariance of the
molecular system. Though experiments in the paper have demonstrated that equivariance may not
be necessary to achieve competitive performance on conformer generation. MCF may not perform
as well as conformer generation when applied to problems with limited data or related to sequential
problems like molecular dynamics (MD) simulations. In future work, we plan to extend MCF to
conditional inference. For example, molecular docking can be formulated as conformer generation
problem conditioned on proteins (Corso et al., 2022). Also, current framework can be expanded
to de novo drug designs where no molecule information is provided (Hoogeboom et al., 2022).
Besides, scaling up our model to large molecules, like proteins, can be of great interest. MCF by
nature provides the flexibility to generate from partially observed sample, which can be suitable for
designing proteins with known functional motifs (Watson et al., 2023).

A.2 IMPLEMENTATION DETAILS

In this section we describe implementation details for all our experiments. We also provide hyper-
parameters and settings for the implementation of the score field network ϵθ and compute used for
each experiment in the paper.

A.2.1 SCORE FIELD NETWORK IMPLEMENTATION DETAILS

The time-step t is incorporated into the score computation by concatenating a positional embedding
representation of t to the context and query sets. The specific PerceiverIO settings used in all
quantitatively evaluated experiments are presented in Tab. 4. Practically, the MCF network consists
of 6 transformer blocks, each containing 1 cross-attention layer and 2 self-attention layers. Each of
these layers has 4 attention heads. An Adam (Kingma & Ba, 2015) optimizer is employed during
training with a learning rate of 1e− 4. We use EMA with a decay of 0.9999. A modified version of
the publicly available repository is used for PerceiverIO 1. Since molecules have different number
of atoms, we set the number of context and query sets as the number of atoms during training and
inference.

A.2.2 ATOMIC FEATURES

We include atomic features alongside the graph Laplacians to model the key descriptions of molecules
following previous works Ganea et al. (2021); Jing et al. (2022). Detailed features are listed in Tab. 5.

1https://huggingface.co/docs/transformers/model_doc/perceiver
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Hyper-parameter GEOM-QM9 GEOM-DRUGS Ablation GEOM-QM9

#eigenfuncs (k) 28 32 28

#freq pos. embed t 64 64 64

#latents 512 512 512
#dim latents 512 512 256
#model dim 768 1024 768
#blocks 6 6 6
#dec blocks 2 2 2
#self attends per block 2 2 2
#self attention heads 4 4 4
#cross attention heads 4 4 4

batch size 64 128 64
lr 1e− 4 1e− 4 1e− 4
epochs 250 300 250

Table 4: Hyperparameters and settings for MCF on different datasets.

Name Description Range

atomic Atom type one-hot of 35 elements in dataset
degree Number of bonded neighbors {x : 0 ≤ x ≤ 6, x ∈ Z}
charge Formal charge of atom {x : −1 ≤ x ≤ 1, x ∈ Z}
valence Implicit valence of atom {x : 0 ≤ x ≤ 6, x ∈ Z}
hybrization Hybrization type {sp, sp2, sp3, sp3d, sp3d2, other}
aromatic Whether on a aromatic ring {True, False}
num_rings number of rings atom is in {x : 0 ≤ x ≤ 3, x ∈ Z}

Table 5: Atomic features included in MCF.

The atomic features are concatenated with graph Laplacian eigenvectors in both context and query
inputs.

A.2.3 COMPUTE

Each model was trained on an machine with 8 Nvidia A100 GPUs, we trained models for 500 epochs.

A.2.4 EVALUATION METRICS

Following previous works Xu et al. (2022); Ganea et al. (2021); Jing et al. (2022), we apply Average
Minimum RMSD (AMR) and Coverage (COV) to measure the performance of molecular conformer
generation. Let Cg denote the sets of generated conformations and Cr denote the one with reference
conformations. For AMR and COV, we report both the Recall (R) and Precision (P). Recall evaluates
how well the model locates ground-truth conformers within the generated samples, while precision
reflects how many generated conformers are of good quality. The expressions of the metrics are given
in the following equations:

AMR-R(Cg, Cr) =
1

|Cr|
∑

R∈Cr

min
R̂∈Cg

RMSD(R, R̂), (3)

COV-R(Cg, Cr) =
1

|Cr|
|{R ∈ Cr|RMSD(R, R̂) < δ, R̂ ∈ Cg}|, (4)

AMR-P(Cr, Cg) =
1

|Cg|
∑

R̂∈Cg

min
R∈Cr

RMSD(R̂,R), (5)

COV-P(Cr, Cg) =
1

|Cg|
|{R̂ ∈ Cg|RMSD(R̂,R) < δ,R ∈ Cr}|, (6)
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where δ is a threshold. In general, a lower AMR scores indicate better accuracy and a higher COV
score indicates a better diversity for the generative model. Following Jing et al. (2022), δ is set as 0.5
for GEOM-QM9 and 0.75 for GEOM-DRUGS.

A.3 ADDITIONAL EXPERIMENTS

In this section we include additional experiments ablating architecture choices, as well as prediction
the ensemble properties of generated conformers.

A.3.1 ABLATION EXPERIMENTS

In this section we provide an ablation study over the key design choices of MCF. We run all our
ablation experiments on the GEOM-QM9 dataset following the settings in GeoMol (Ganea et al.,
2021) and Torsional Diffusion (Jing et al., 2022) and described in Sect. 5.2. In particular we study:
(i) how does performance behave as a function of the number of Laplacian eigenvectors used in φ(v).
(ii) How does the model perform without atom features (e.g. how predictable conformers are given
only the graph topology, without using atom features). Results in Tab. 6 show that the graph topology
G encodes a surprising amount of information for sampling reasonable conformers in GEOM-QM9,
as shown in row 2. In addition, we show how performance of MCF changes as a function of the
number of eigen-functions k. Interestingly, with as few as k = 2 eigen-functions MCF is able to
generate consistent accurate conformer.

Recall Precision

Coverage ↑ AMR ↓ Coverage ↑ AMR ↓
k Atom Features mean median mean median mean median mean median

28 YES 94.86 100.00 0.125 0.081 91.49 100.00 0.175 0.122
28 NO 90.70 100.00 0.187 0.124 79.82 93.86 0.295 0.213

16 YES 94.87 100.00 0.139 0.093 87.54 100.00 0.220 0.151
8 YES 94.28 100.00 0.162 0.109 84.27 100.00 0.261 0.208
4 YES 94.57 100.00 0.145 0.093 86.83 100.00 0.225 0.151
2 YES 93.15 100.00 0.152 0.088 86.97 100.00 0.211 0.138

Table 6: Experiments on GEOM-QM9 with different numbers of eigenvectors. In these experiments,
we use a smaller model than what we have in Table 1

A.3.2 ARCHITECTURAL CHOICES

To further investigate the design choices of architecture in proposed MCF, we include additional
experiments on GEOM-QM9 as shown in Tab. 7. To investigate the effectiveness of using Laplacian
eigenvectors as positional embedding, we leverage SignNet (Lim et al., 2022) as the positional
embedding, which explicitly models symmetries in eigenvectors. Using SignNet does not benefit
the performance when compared with the standard MCF. Though adding edge attributes in SignNet
achieves better performance than SignNet alone, the performance is still not rival. Also, it’s worth
mentioning that SignNet includes graph neural networks (Xu et al., 2018) and Set Transformer (Lee
et al., 2019) which makes training less efficient.

In addition, we also report results using a vanilla Transformer encoder-decoder (Vaswani et al., 2017)
as the backbone instead of PerceiverIO (Jaegle et al., 2022). The Transformer contains 6 encoder
layers and 6 decoder layers with 4 attention heads. Other model hyperparameters follow the same
setting as listed in Tab. 4. It is indicated that Transformer is performing worse than PerceiverIO on
conformer generation, which validates the design choice of architecture in MCF.

A.3.3 ENSEMBLE PROPERTY PREDICTION

To fully assess the quality of generated conformers we also compute chemical property resemblance
between the synthesized and the authentic ground truth ensembles. We select a random group of
100 molecules from the GEOM-DRUGS and produce a minimum of 2K and a maximum of 32
conformers for each molecule following (Jing et al., 2022). Subsequently, we undertake a comparison
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Precision Recall

Coverage ↑ AMR ↓ Coverage ↑ AMR ↓
mean median mean median mean median mean median

MCF SignNet 94.1 100.0 0.153 0.098 87.5 100.0 0.222 0.152
MCF SignNet (edge attr.) 95.3 100.0 0.143 0.091 90.2 100.0 0.197 0.135
MCF Transformer 94.3 100.0 0.159 0.111 90.7 100.0 0.202 0.136
MCF PerceiverIO 96.57 100.00 0.107 0.072 94.60 100.00 0.130 0.084

Table 7: Molecule conformer generation results with different network architectures on GEOM-QM9.

E µ ∆ϵ Emin

OMEGA 0.68 0.66 0.68 0.69
GeoDiff 0.31 0.35 0.89 0.39
GeoMol 0.42 0.34 0.59 0.40
Torsional Diff. 0.22 0.35 0.54 0.13
MCF 0.66±0.05 0.26±0.05 0.64±0.06 0.02±0.00

Torsional Diff. (our eval) 3.07±2.32 0.61±0.38 1.71±1.69 4.11±7.91
MCF (ours) 1.00±0.70 0.44±0.36 1.32±1.40 1.16±2.02

Table 8: Median averaged errors of ensemble properties between sampled and generated conformers
(E, ∆ϵ, Emin in kcal/mol, and µ in debye).

of the Boltzmann-weighted attributes of the created and the true ensembles. To elaborate, we calculate
the following characteristics using xTB (as documented by (Bannwarth et al., 2019)): energy (E),
dipole moment (µ), the gap between HOMO and LUMO (∆ϵ), and the lowest possible energy,
denoted as Emin. Since we don’t have the access to the exact subset of DRUGS used in Jing et al.
(2022), we randomly pick three subsets and report the averaged and standard deviation over three
individual runs with different random seeds. The results are listed in Tab. 8. Our model achieves the
lowest error on Emin when compared with other baselines, which demonstrates that MCF is succeeds
at generating stable conformers that are very close to the ground states. This could root from the
fact that MCF doesn’t rely on rule-based cheminfomatics methods and the model learns to better
model stable conformers from data. Besides, MCF achieves competitive performance on µ and ∆ϵ.
However, the error of E is high compared to the rest of approaches, meaning that though MCF
performs well in generating samples close to ground states, it may also generate conformers with
high energy that are not plausible in the dataset.

To further evaluate the performance on ensemble properties, we randomly pick 10 molecules from
test set of GEOM-DRUGS and compare MCF with our replica Torsional Diffusion on the subset as
shown in the last two rows of Tab. 8. We use the checkpoints from the public GitHub repository2 of
Torsional Diffusion to sample conformers. Unlike previous setting which only sample 32 conformers,
we sample 2K conformers for a molecule with K ground truth conformers. We report the average
and standard deviation of errors over the 10 molecules. It is indicated that MCF generates samples
with ensemble properties that are closer to the ground truth. Fig. 7 shows the conformers with
lowest and highest energy in ground truth, MCF samples, and Torsional Diffusion samples. MCF
generates samples conformers with ground states close to the ground truth. Sometimes it can even
find conformers with lower energy (e.g. Fig. 7(c)). However, both MCF and Torsional Diffusion can
generate conformers with higher energies than ground truth.

A.4 EFFICIENT SAMPLING

To reduce the computational cost of MCF in inference, we apply efficient sampling technique, i.e.
DDIM (Song et al., 2021), with significantly smaller number of sampling steps. Tab. 9 show the
comparison of MCF and Torsional Diffusion (Jing et al., 2022) with different sampling steps. With 20
or 50 sampling steps, MCF achieves comparable performance as the DDPM with 1000 sampling steps
and greatly surpasses Torsional Diffusion with same sampling steps. Indeed, with very small sampling

2https://github.com/gcorso/torsional-diffusion
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(a) (b)

(c) (d)

Figure 7: Examples of conformers with lowest and highest energies in ground truth, MCF samples,
and Torsional Diffusion samples for different molecules.

Precision Recall

Coverage ↑ AMR ↓ Coverage ↑ AMR ↓
steps mean median mean median mean median mean median

Torsional Diff. 3 42.9 33.8 0.820 0.821 24.1 11.1 1.116 1.100
Torsional Diff. 5 58.9 63.6 0.698 0.685 35.8 26.6 0.979 0.963
Torsional Diff. 10 70.6 78.8 0.600 0.580 50.2 48.3 0.827 0.791
Torsional Diff. 20 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729
Torsional Diff. 50 73.1 80.4 0.578 0.557 57.6 60.7 0.753 0.699

MCFDDIM 3 15.05 0.00 1.032 1.041 5.71 0.00 1.521 1.525
MCFDDIM 5 42.86 35.50 0.813 0.814 20.07 11.54 1.149 1.149
MCFDDIM 10 74.14 83.25 0.610 0.601 48.95 46.35 0.841 0.813
MCFDDIM 20 80.87 88.89 0.522 0.504 59.72 60.23 0.745 0.708
MCFDDIM 50 81.87 88.89 0.481 0.459 62.01 62.53 0.708 0.660
MCFDDIM 100 81.97 89.10 0.466 0.441 62.81 63.64 0.693 0.641
MCFDDPM 1000 81.62 89.22 0.468 0.438 61.63 62.50 0.705 0.650

Table 9: Molecule conformer generation results with different sampling strategies and timesteps on
GEOM-DRUGS.

steps (e.g. 3 or 5 steps), Torsional Diffusion demonstrate better performance than MCF. We attribute
this to the fact that Torsional Diffusion uses a pre-processing step in which a cheminformatics method
predicts local substructure in 3D spaces before applying their model. So even before inference the
cheimformatics prediction provides a strong prior. It should also be noted that with small sample
steps, Torsional Diffusion also suffer from low sample quality compared with the counterparts with
more steps. Fig. 8 show some examples of sampled conformers from MCF with different sampling
steps. Even with small sampling steps, MCF can still generate plausible 3D structures, especially for
the heavy atoms.
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Figure 8: Examples of conformers with different sampling steps.

B ADDITIONAL VISUALIZATION

In the supplementary material we provide videos showing the iterative inference process of MCF on
different molecules in GEOM-QM9, GEOM-DRUGS and GEOM-XL. Finally in Fig. 9 we show GT
and generated conformers from MCF for a molecule in GEOM-DRUGS.
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Figure 9: GT and generated conformers from MCF for a molecule in GEOM-DRUGS.
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