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Abstract— Robotic manipulation in cluttered environments
requires synergistic planning among prehensile and non-
prehensile actions. Previous work on sampling-based Task
and Motion Planning (TAMP) algorithms, e.g. PDDLStream,
provide a fast and generalizable solution for multi-modal
manipulation. However, they are likely to fail in cluttered
scenarios where no collision-free grasping approaches can be
sampled without preliminary manipulations. To extend the
ability of sampling-based algorithms, we integrate a vision-
based Reinforcement Learning (RL) non-prehensile procedure,
pusher. The pushing actions generated by pusher can eliminate
interlocked situations and make the grasping problem solvable.
Also, the sampling-based algorithm evaluates the pushing ac-
tions by providing rewards in the training process, thus the
pusher can learn to avoid situations leading to irreversible
failures. The proposed hybrid planning method is validated
on a cluttered bin picking problem and implemented in both
simulation and real world. Results show that the pusher can
effectively improve the success ratio of the previous sampling-
based algorithm, while the sampling-based algorithm can help
the pusher to learn pushing skills.

I. INTRODUCTION

Task and Motion Planning (TAMP) problems combine
discrete task planning and continuous motion planning.
The interplay between the two planning levels gives more
comprehensive solutions which consider both logical and
geometric constraints. Sampling-based algorithms have ex-
cellent generalization abilities when applied to new problem
instances and it is proven probabilistically complete on
robotic manipulation problems [1].

Consider a cluttered bin picking problem shown in Fig.1,
the robot has to pick objects from a narrow space in a
bin, while the objects can be jammed together. Sampling-
based TAMP algorithm, i.e. PDDLStream, can give task
sequences and motion plans based on the logical relations
among tasks and the geometric constraints such as physical
collisions. Previous PDDLStream method with deterministic
action primitives can only provide solutions when there
exists at least one collision free task sequence and motion
plan. However, cluttered bin picking problems are likely to
remain unsolvable because of the object proximity to the bin
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Fig. 1. For a cluttered bin pick-and-place task, the robot needs to push
the objects into a situation where they can be grasped with certain task
sequence and grasp position, and the TAMP solution can solve the problem
by planning a rational task sequence and grasping pose. As for the pushing
actions, the dead-end situations such as pushing objects to the corner of the
bin or colliding with the bin should be avoided.

walls or to other objects [2]. Such situations require non-
prehensile actions such as pushing to change the position or
orientation of objects. However, planning a pushing action
remains challenging for sampling-based solutions because it
is difficult to predict outcomes of the pushing actions due
to substantial uncertainty in contact mechanics. Moreover,
sampling pushing actions needs continuous-time forward-
simulation which tends to be time-consuming without a well-
designed heuristic guidance [3]. Especially, pushing objects
in a bin with bad samplings can cause irreversible failures
during manipulation. For instance, the objects can be pushed
to corners of the bin and make no further manipulations
possible, or the objects can be pushed against the bin wall
and be damaged.

Previous work leverages the adaptability of RL to learn
such non-prehensile actions. Synergy learning algorithms,
i.e. learning combination of picking, placing and pushing
actions, can effectively solve the problem by learning both
pushing and picking actions and separating the cluttered
objects by pushing them until the goal object is feasible



[4], [5]. On one hand, for deterministic actions such as
picking, sampling-based methods are generally considered to
be more efficient and reliable than RL-based methods since
even grasping with small errors can cause damages on both
robot and object, and it’s difficult for RL algorithms to fine-
tune such an action. On the other hand, pushing actions are
more tolerant for the small deviation when the purpose of
pushing actions is just to make grasping feasible.

Considering different merits from both sampling-based
and RL-based strategies, we combine the previous work
on both sampling-based TAMP and vision-based RL and
introduce a hybrid planning method which is comprised
of a RL pusher and a sampling-based pick solver. The
sampling-based pick solver can efficiently solve determin-
istic problems such as pick-and-place when the situation is
solvable, while the vision-based RL pusher can plan the non-
prehensile actions with stochastic effects. The two modules
work interactively: the pusher helps to unlock the current
interlock situation that prevents the pick solver from making
further moves, while the pick solver evaluates the pusher’s
actions during training by giving rewards. We train the RL
agent in simulation and validate the hybrid planner in both
simulation and real world. With our hybrid planner, the pick
solver plans task sequences and motion trajectories for pick-
and-place, requests pushing actions from the pusher when
the objects are jammed together and no further pick-and-
place actions can be planned. The main contributions of this
work are as follows: (1) We coordinate the abilities of RL
and PDDLStream and provide a synergistic solution for the
cluttered bin picking problem; (2) We provide a novel reward
shaping strategy for robotic RL; (3) We improved the ability
of the PDDLStream method in a cluttered environment.

The remainder of the paper is organized as follows.
Section II presents an overview of the related work. Section
III provides a brief background on PDDLStream. Section
IV details the methods and concepts in our framework.
In Section V, we analyze the learning performance of the
presented framework and demonstrate the obtained results.
Section VI concludes the paper.

II. RELATED WORK

Sampling-based planning algorithms give a generalizable
solution for the robotic planning problems in different do-
mains. The constrained sampling-based TAMP algorithm is
introduced to solve multi-modal problems [6]. Such algo-
rithms are proven to be probabilistically complete [1]. The
TAMP problem is described and solved with the Planning
Domain Definition Language (PDDL) [7] with a sampling
preprocess, i.e. stream [6]. By doing so, off-the-shelf artifi-
cial intelligence planning algorithms, such as FastDownward
[8], can be deployed seamlessly. Migimatsu and Bohg [9]
extend the ability of the TAMP algorithm to the dynamic
environment by sampling in the object-centered frames. By
minimizing the task cost function, the strategies of TAMP
can also be optimized [10].

Previous work improves the efficiency of PDDLStream
with learning strategies. To speed up the searching process,

a neural network is trained to predict object importance for
a planning task [11]. More rigidly, learned constraints are
imposed in the planning process to reduce the searching
space [12]. To improve the efficiency of the sampling process
and leveraging past experience, Kim et al. design score-
space representation for TAMP problem instances, therefore
sampling constraints can be learned from past experience to
boost the sampling process in similar problems [13]. Chitnis
et al. formulate the local search as a Markov decision process
(MDP), and use RL to guide sampling in the motion level
[14]. Similarly, a neural network trained on prior planning
experience is integrated to score the relevance of streams
[15]. Domain uncertainty such as congested area for a
mobile robot can lead to a sub-optimal planning solution.
With RL, TAMP can deal with the domain uncertainties by
optimizing the cost value [16]. Curtis et al. extend the ability
of PDDLStream to unknown environments which does not
require knowledge about the objects [17]. Another way to
speed up TAMP process is to train a neural network with
data set which contains pre-planned policies, the trained
neural network therefore can make decisions quickly without
planning from scratch [18]. Moreover, a feasibility checking
neural network is trained to avoid unfeasible motion planning
process [19]. However, most of the tasks in previous work
can be solved by prehensile actions, i.e., pick and place.
Wang et al. [20] consider pushing as one of the action
primitives, but only single object pushing is considered
and the consequence uncertainty of the pushing action is
neglected. Another learning approach focuses on integrating
search-based task planning with learned skill effect model
(SEM) [21]. An SEM predicts the terminal state and costs
of a skill execution given a start state and skill parameters.
However, they do not consider a skill that leads to non-
deterministic outcomes.

Recently, vision-based RL has been utilized on different
manipulation tasks [22] [23]. End-to-end RL algorithms
require an enormous amount of data to show effects. Zeng
et al. narrow down the problem to learning the synergies
between pushing and grasping [4]. With RGB-D signal as
input, the value function which scores different pushing and
grasping motions can be predicted. The motion with the best
value will be chosen to be executed. Following work focus on
goal-oriented domains, where manipulating a specific object
is set as the goal to be reached [5]. In order to avoid the time-
consuming searching process, a pushing prediction network
is trained to imitate the Monte-Carlo search process [24].
This module evaluates pushing actions by predicting grasping
feasibility with a separate network, instead, PDDLStream
can evaluate grasping feasibility by sampling all the possible
grasping poses. Moreover, previous work assumes that the
cluttered objects are on a flat holding surface, thus no
collision or dead-end situations are considered.

A one finger sliding motion is added to isolate objects even
when the object is in the corner [25], the cornered objects can
be released by a sliding action, thus no dead-end situation is
considered in their work. A user-rewarded pushing proposal
network is used to singulate all objects [26]. However, with



rational picking sequences and grasping poses, the problem
can be solved before complete singulation. Danielczuk et al.
use pushing motions to increase the bin-picking success ratio
[2]. Similarly, suction grasps are used to reach the cornered
objects. In our work, we try to solve the similar problem
without requiring alternative end-effectors, and also consider
collision issues.

III. BACKGROUND

In this section we provide a brief background on
the PDDLStream, an existing open-source sampling-based
TAMP framework, which will be employed throughout this
paper.

TAMP is defined as the problem of planning for a robot
that operates in environments containing a large number of
objects, changing the state of the objects while taking actions
to move itself through the world [27]. The solution of a
TAMP problem needs to integrate task planning and motion
planning as well as their interconnections and constraints.
The robotic task planning can be abstracted as a logical
planning problem. That is, given the logical relations among
the states and the actions, an initial state and a goal state,
the planner attempts to find a scheme of actions following
which the robot can steer the world from the initial state to
the goal state. PDDL provides a standard encoding language
for planning tasks [7]. In PDDL, a problem (A, I,G) is
described by a set of actions A, an initial state I, and a goal
set of literals G. The action set A only contains actions with
deterministic effect, which is different than the RL action
space A. A plan π is a finite sequence of action instances.

The states in PDDL formulation are discrete, which is not
directly applicable for a robotic planning problem, where
the configuration space is continuous. To find an applicable
solution for a task planning problem, the continuous values
needs to be sampled as an instance for the discrete PDDL
planner. The stream therefore is integrated in the process. A
stream s(x̄) is a conditional generator endowed with a declar-
ative specification of any facts its inputs and outputs always
satisfy. On top of the classical PDDL problem (A, I,G), a
PDDLStream problem (A,S, I,G) adds a set of streams S.
The set of streams S can be seen as augments of the initial
state I, recursively sampling an instance from the potentially
infinite set of facts I∗ that hold initially and cannot be
changed. A more detailed introduction of PDDLStream can
be found in [6].

IV. METHODOLOGY

The learned policy provides a promising alternative to
a handcrafted policy when multiple constraints need to be
considered. In our case, actions with deterministic effects,
such as picking with known object positions, can be solved
by the sampling-based pick solver, which avoids the lengthy
training process. For actions with stochastic effects such
as pushing, sampling-based algorithm requires continuous
forward simulation to sample a valid action. Without a
rational guidance, the sampling process with forward sim-
ulation can be time-consuming. Instead, the RL-based data-
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Fig. 2. The hybrid TAMP planning method structure. The scenario is the
cluttered bin-picking environment in simulation or in real world. During
training, the pick solver sends requests when there is no solvable objects, and
evaluates the pusher’s behaviour by giving rewards. Therefore, the pusher
can effectively learn to create a solvable situation for the pick solver.

driven algorithm leverages previous experience and provides
valid actions as split-second reactions from observation. The
structure of our hybrid planner is shown in Fig. 2, it is
composed of a RL pusher and a PDDLStream pick solver,
the two parts function interactively.

A. Markov Decision Process

We formulate the problem of pushing augmented TAMP
as a Markov Decision Process (MDP), which is defined by
a tuple (S, A,R, T , γ,O), where S is the state space, A
is the RL action space, R is the reward function, T is an
unknown transition function, O is the observation space and
γ is a discount factor. Below we describe the details of the
observation space, the action space, and the reward function.

B. Reinforcement Learning Pusher

The pusher is defined as a RL agent which observes
the current state of objects and provides a pushing action
to separate the jammed objects while avoiding irreversible
failures. We explain the action space, observation space,
reward function and how we generate the training data and
launch the training process in the following sections.

1) Action Space: The pushing action is defined by a
line segment [p1,p2] ∈ R2 parallel to the support surface.
Since the pushing actions only need to solve the interlock
rather than transfer objects to precise positions, we relax
the accuracy requirement for pushing actions by dividing the
workspace to a 2D grid world, where p1 and p2 can be the
center point of any grid. Therefore, the action space is a 4D
discrete array [sx, sy, ex, ey] where p1 = [sx, sy] represent
the grid position whose center point is the start point and
p2 = [ex, ey] represent the grid position whose center point
is the end point. After getting the start and end points, we
use the constrained sampling-based motion planner [28] to
plan a straight line, which is the trajectory followed by the
end-effector.



(a) (b) (c)

Fig. 3. The observation of the RL agent. (a) The cluttered objects we
observe. (b) The gray scale depth image received from the RGB-D camera.
(c) The binary image we generate by depth detection, which is used as the
final observation for the RL agent. The white pixels indicate 1 and the black
pixels indicate 0.

2) Observation Space: We use the camera image as
observation space, the motivation of such a choice includes:
(1) Image observation space provides a unified solution
for scenarios with different numbers of objects. Moreover,
it can keep the size of the observation space consistent
during training, even though the observed objects number
is changing during each episode. (2) Image observation can
provide both pose and 2D geometric information of objects.
(3) Recent research on PDDLStream leverages computer
vision methods to relax the requirements for geometric model
of objects [17], an image observation space will help the
pusher to integrate with vision-aided PDDLStream in the
future.

We assume one level of objects in the cluttered space
(no stacking allowed). The RGB-D images produced by the
RGB-D camera pass through a lightweight image processing
pipeline before being fed as observations to the agent: the
color information is discarded, and the depth information is
thresholded to obtain a simple binary mask that, for each
pixel, indicates whether there is an object there or not. An
example of observation is shown in Fig. 3. During training,
the simulator produces a depth map that we process in ex-
actly the same way, to produce the same binary observations.

3) Reward: The reward generated for pushing actions are
given by the sampling-based pick solver. It follows a simple
rule: if the pushing action increases the solvability of the
current state, then a positive reward will be given, otherwise
a negative reward will be given. In our case, PDDLStream
tries to find a plan for picking as many objects as possible
after every pushing action, and the solvability is defined by
how many objects can be picked with the plan. The details of
the sampling-based pick solver is explained in Section IV-C.

4) Data Generation: Data for training contains different
situations of cluttered objects. In RL, the training data set
decides the quality of the experience the agent will gather.
Randomizing uniformly the block positions in the workspace
will not necessarily generate an unsolvable (jammed) initial
situation. The agent can not learn useful pushing skills
when no pushing action is needed. To solve this issue, we
add a data generating process before training. In the data
generating process, we first randomly choose object positions
in the workspace, then pass the situation to the pick solver to

(a) (b)

Fig. 4. Training data generation. When we randomly distribute the objects
on the workspace, it can generate a solvable or an unsolvable situation. (a) a
solvable situation, in which all the objects are accessible with rational task
sequence and grasping approach. Such situation will not be added in the
training data set since no pushing is required; (b) an unsolvable situation.
The objects in the red circle form an interlock, which requires pushing
actions to solve the situation. During the data generation process, we discard
situations in (a) and save situations in (b).
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Fig. 5. The CNN policy structure. Our policy takes the image of the
current situation as input and contains three convolutional layers and one
flatten layer. The output is four numbers which represent a 2D pushing
motion.

evaluate whether the situation is solvable. Only unsolvable
situations will be added in the training data set. The instances
of different situations are shown in Fig.4

5) Training: Proximal Policy Optimization (PPO) [29] is
a state-of-the-art policy gradient RL algorithm. By clipping
the objective function, PPO avoids the severe performance
drop caused by a noisy reward. We leverage this property for
the solving-time uncertainty of the pick solver. For the policy,
we use the same Convolutional Neural Network (CNN)
structure as in [30], the CNN contains three convolutional
layers and one flatten layer. The policy neural network is
shown in Fig.5.

C. Sampling-Based Pick Solver

The pick solver is a PDDLStream implementation of ma-
nipulation problem (domain) in a bin picking environment.
The goal in this domain is to pick and place all the objects
in a bin to a plate. To formulate the PDDLStream problem,
we use the following parameters: ?b is the name of a block;
?r is the region where the plate is; ?p is 6 DOF block
pose; ?g is a 6 DOF grasp transform relative to the robot’s
end-effector; q is a 7 DOF joint-space configuration; and ?t
is a trajectory composed of a finite sequence of joint-space
configurations. The static predicates include Block, Conf,
Pose, Grasp, Kin, Motion, Contain, CFree which are



the constant facts. The static predicates declare the types of
parameters, for example, Block declares that ?b is a block.
The grounded predicates have to satisfy the constraints, for
example, Motion declares that ?q1and ?q2 are the start
and end configurations for a trajectory ?t, it also indicates
that ?t respects joint limits and collisions constraints. The
fluent predicates include: AtConf, AtPose, Holding,
Empty which are the facts that can be changed by the
actions. Two actions are defined: pick and place.

To reduce the time lag caused by stream sampling,
we only use necessary streams in the pick solver during
training: (1) sample-grasp samples the collision-free
poses for each grasp; (2) test-cfree-approach-pose
checks if the approach of each grasping is collision-free; (3)
inverse-kinematics samples the robot configurations
and trajectories, which makes sure the task plan is inverse-
kinematic accessible.

D. Action Validity Check

In each training step, the pushing action provided by
the agent can be invalid. Invalid pushing actions should
not be evaluated by the pick solver. For example, after a
pushing action that did not touch any objects, the solvability
for the current state stays the same as in the last step.
Also, we assume the bin is fixed on the table, therefore,
a pushing action that causes the collision between object
and bin walls should be considered as failure and not be
evaluated by the pick solver even if the state becomes
solvable. Evaluating invalid actions will cause training time
wasting and undesirable colliding behaviours.

A valid action in our case should satisfy three require-
ments: (1) The pushing action should be executable in the
sense of inverse-kinematics; (2) the pushing action should
change object positions; (3) the pushing action should not
cause collisions between objects and obstacles, i.e. the bin.
Therefore, we evaluate the validity of actions from three
perspectives: inverse-kinematics, effect and collision. For
the inverse-kinematics criterion, if the motion planner can
calculate a collision-free trajectory for the pushing motion,
then the criterion is satisfied. Here, the collision-free criterion
considers the robot itself. For example, the robot’s start
position of a pushing action should not be colliding with
objects. A colliding start position will make the motion
planning fail.

V alidi(s, a) =

{
False MotionP lan = None

True otherwise
(1)

The effect criterion requires that the pushing motion
changes object positions. Changes on object positions are
evaluated as the difference in object positions before and
after the pushing action. To evaluate the difference, we
compare the agent’s observations on objects before and after
the pushing action. In our work, the observation space is a
2D image, therefore, we calculate the ℓ2− norm of the error

before
pushing

after
pushing

(a)

before
pushing

after
pushing

(b)

Fig. 6. The example of pushing validation. (a) The green block is
an example of valid pushing, where the objects observation images (the
second row) before and after the pushing action are different while the
bin observation images (the third row) stay the same. (b) The red block is
an example of invalid pushing, the changes of the bin observation images
indicate the collision between objects and the bin.

between two images:

V alide(s, a) =

{
False ||o(s)− o′(s)||2 <= ϵ

True otherwise
(2)

Where o is the observed image after the pushing action,
o′ is the observed image before the pushing action, ϵ is
the threshold which evaluate whether the pushing motion
makes difference on the object clutter. An example of the
observation is shown in Fig. 6.

The collision criterion requires the pushing motion will
not cause collisions between objects and the bin. To detect
collisions between object and bin, we regard the surrounding
walls of the bin as four movable objects, and detect the
difference of the observation images before and after the
pushing action. Image changes indicate collisions between
an object and the bin. The image-based collision checking
provides a unified solution that can be easily extended to
more obstacles without extra calculation.

V alidc(s, a) =

{
True ||obin(s)− o′bin(s)||2 <= ϵ

False otherwise
(3)

Therefore, the total validation function can be given as:

V alid(s, a) = V alidi(s, a) ∧ V alide(s, a) ∧ V alidc(s, a)
(4)

E. Reward Shaping

After the validity check, we use solvability of the current
state to evaluate the pushing action. Here, we define the
solvability as a integer number which describes how many
objects can be solved in the current state. In other words, the
RL pusher attempts to increase the picking solvability of the
state, while the pick solver helps shape the reward for the
training procedure. Intuitively, in the cluttered manipulation
domain, the more separate the objects are, the easier the pick
solver will find a plan, since the stream can easily sample
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Fig. 7. Learning curves. We choose two indices to illustrate the learning
process: (a) Average return of episodes and (b) invalid action per episode.
We compare three different reward shaping methods including pick solver
with action validity checking (PS+AVC) (our method), pick solver without
action validity checking (PS Only), and total singulation (TS) reward.

collision free grasping poses. Given the maximum solving
time, the reward for the last pushing action is given by:

rs(s, a) =

{
5n V alid(s, a) = True

0 otherwise
(5)

Where n = Solvability(τs, s, a) is evaluated by the pick
solver, that is, how many objects can be picked after the
pushing action a. The tolerant solving time τs can be
introduced as a hyperparameter in the reward function. With
this constraint we encourage the RL pusher to create a
situation which is not only solvable in arbitrary horizon, but
also able to be solved in the fixed time limit.

V. EXPERIMENT AND RESULTS

A. Domain Setting

We apply the proposed method to a cluttered bin picking
problem in which objects are jammed together in a narrow
bin. The robot has to deliver all of them on a plate by
pushing and pick-and-place actions. Pushing actions always
follow straight line segments, and pick-and-place actions
only consider top-down overhead grasps. All objects are
simplified as cubes, since the right angles of cubes can easily
generate the interlock situation where we can better verify
our method. All objects are regarded homogeneous, their
geometric information can be approximated by a bonding
box.

Based on the conclusions in PDDLStream planning algo-
rithms comparison [6], we use the adaptive algorithm in
the sampling based pick solver.

B. Experiment Setting

We train the RL agent in simulation and validate the
trained agent on a real robot. We use a Franka Emika Panda
robot. A Realsense depth camera (D455) is used to observe
the objects. A NVIDIA Quadro RTX 3000 GPU is used to
train the RL model. The simulation and training environment
is built in PyBullet [31], while the communication and
control of the robot is achieved using ROS (Robot Operating
System). MoveIt [32] is used as the motion planner for the
pushing actions.

TABLE I
HYPERPARAMETERS

Name Value
policy CnnPolicy

learning_rate 0.0001
n_steps 100

batch_size 10
tolerant_solving_time τs 40s
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Fig. 8. Success ratio improvement. In different scenarios, the hybrid
method (PDDL+Pusher) achieves higher success ratios, which indicates the
RL pusher can effectively improve the capability of PDDLStream.

C. Training Results

To illustrate the training process, we draw the learning
curves of two important indices: average return and number
of invalid actions per episode. We compare the learning pro-
cess with different reward shaping methods which include (1)
pick solver reward with action validity checking (PS+AVC);
(2) pick solver reward without the action validity checking
(PS Only); (3) total singulation (ST) reward designed in [25],
where a positive reward is given when a pushing action
increases the average distance among objects. As shown
in Fig.7, by obtaining higher return (accumulated reward),
our reward shaping method learns to reduce the number
of invalid actions efficiently, while the others struggle to
reduce invalid actions or require more training episodes.
The learning process converges after around 200 episode (4
hours) while we set 300 episodes (6 hours) in total. It is
worth noticing that without the effect criterion in the action
validity checking, the same training process spends 11 hours,
since actions with no effect were also evaluated by the pick
solver. The training hyperparameters are given in Table.I.

D. Comparison Experiment

1) Ablation Comparison: To validate the trained model,
we did an ablation comparison between the previous PDDL-
Stream without pusher and our pusher-integrated hybrid
method. In this experiment, objects are randomly distributed
in the bin, and both methods have to solve the cluttered bin
picking problem in 60 seconds. Each scenario has a different
number of objects. We generate 100 object distributions in
each scenario. The solving ratios of each method related to
the object numbers are shown in Fig. 8. The result shows
that both methods suffer capability decline in scenarios with
more objects since the objects are more likely to jam together
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Fig. 9. Pushing strategies. (a) Sampling-based pusher randomly chooses
start and end points of the pushing action in the workspace, simulates the
consequence and checks validity of each sample, the first valid pushing
action will be chosen. (b) Heuristic-guided pusher works similarly as the
sampling-based pusher except pushing actions always end at the geometric
center of objects. (c) RL pushers choose a pushing action by the RL agent.
The grey arrows indicate invalid pushing action samples, and the pink arrows
indicate valid pushing actions.

 Pick Solver PusherSolvability = 0 ?
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No

 
Start

Fig. 10. The method workflow. To compare our method with the baselines,
we keep the workflow between two modules as the same, only the pusher
is changed among the baseline pushers and our RL pusher.

or in a dead-end position. However, the pusher can improve
the success ratio of the PDDLStream in different scenarios.
It is worth noting that the pusher we use here is trained in a
5-object scenario, but it also shows effect in scenarios with
4-7 objects.

2) Baseline Comparison: We compared our method with
baseline methods: sampling-based pusher, heuristic-guided
pusher, and a RL pusher trained with TS reward. Sampling-
based method samples pushing actions by conducting for-
ward simulation runs. Heuristic-guided method works simi-
larly as sampling-based method, except the pusher is aware
of the position of objects and always pushes to their geo-
metric center. The different pushing strategies are illustrated
in Fig. 9.

In the experiment, the workflow between pick solver and
pusher is kept as in Fig. 10, only the pusher is changed
among sampling-based pusher, heuristic-guided pusher and
two kinds of RL-based pusher. In this experiment, we use
the validation data generated in Section IV-B.4 and run each
method 100 times. The total tolerant solving time is set as
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Fig. 11. Baseline pusher comparison. We compare (a) the planning success
ratio (in 60s) and (b) the solving time among planners with different pushing
strategies, including sampling-based (SB), heuristic-guided (HG), RL with
total-singulation reward (RL-TS) and our method.
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Fig. 12. Real-world experiment. By interactively activating pick solver
and RL pusher, the cluttered bin picking problem can be solved. The blue
segments indicate a pick action and the red arrow indicates a pushing action.
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Fig. 13. Extension experiment. In order to extend the ability of our
method. We extract the geometrical property of objects as bounding boxes.
(a) The real scenario; (b) Bonding box detected by the camera; (c) Scenario
reconstruction in simulation for pick solver collision checking.

τs = 60s. Fig. 11 shows that our RL pusher can achieve
higher success ratios than baseline methods, while the base-
line methods suffer long computational time. It is worth
noticing that (1) heuristic-guided method is not always better
than sampling-based method because pushing deviation from
the geometric center sometimes provides a better solution.
And, (2) scenarios with less objects are not necessarily
easier for the sampling-based and heuristic-guided method
because of the trade-off between effect criterion and collision
criterion.

E. Real-World Experiments

Finally, we implemented the proposed method on the
real robot. We performed 40 experiments with 4-7 objects.
Each time we randomly choose the number of objects and
rearrange the distribution of the objects with interlocks. The
results show that the planner with RL pusher achieves 85%
task success ratio. A planning example is shown in Fig. 12.
The success ratio decline in the real world can be caused by
physics difference and the noise of real camera observations.
The extension experiment with unknown objects requires
(1) training the RL pusher in scenarios with different types
of object and (2) more advanced computer vision aid for
the pick solver. As shown in Fig. 13, we provide one
solution in which we detect bonding boxes of objects and
reconstruct the scenario in the simulation. The code of the
proposed method and more experiment videos can be found
on GitHub: https://github.com/Gaoyuan-Liu/
Non-prehensile-Augmented-TAMP.

F. Discussion

The proposed method provides a solution for the cluttered
bin picking problem and shows improvement compared to
the baseline methods. However, from the experiments we

https://github.com/Gaoyuan-Liu/Non-prehensile-Augmented-TAMP
https://github.com/Gaoyuan-Liu/Non-prehensile-Augmented-TAMP


also found some limits of the current work: (1) Our method
currently only considers objects with primitive shapes. With
more sophisticated computer vision aid, the method can be
extended to objects with complex shapes; (2) we customize a
RL environment for the cluttered bin-picking domain, a more
general presentation for domains with different constraints
needs to be studied.

VI. CONCLUSIONS

In order to solve the TAMP problem in cluttered en-
vironments, we provide a hybrid planning method which
combines the strength of PDDLStream and RL algorithms.
The planning method is used to solve a cluttered bin picking
problem which contains multiple constraints such as jammed
cluttering, dead-end situation and collisions. By augmenting
PDDLStream with an RL pusher, the planner can separate the
jammed objects and make the situation solvable for PDDL-
Stream, while avoiding dead-end situations and collisions.
We implement the method in both simulation and real world.
The results show that the RL pusher can increase the success
ratio of the PDDLStream in cluttered bin picking problems.
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