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Abstract

Multi-label text classification is one of the fun-001
damental tasks in natural language process-002
ing. Recently, the graph convolution network003
(GCN) is leveraged to boost the performance004
of such a task. However, the best way for005
label correlation modeling and feature learn-006
ing with label system awareness is still un-007
clear. This paper proposes Mix-GCN, a graph008
network with two mixing operations, to im-009
prove the conventional GCN framework for010
multi-label text classification in the following011
two steps. Firstly, we model the label correla-012
tions by mixing the graph built from statistical013
co-occurrence information and the graph con-014
structed from prior knowledge. Secondly, we015
propose a mixing operation to continuously in-016
ject GCN embedding into LSTM representa-017
tion learning for better label-aware representa-018
tion. Experimental results on four benchmarks019
demonstrate that Mix-GCN significantly out-020
performs the state-of-the-art models and per-021
forms better in long-tail label cases.022

1 Introduction023

Multi-label is a universal property of data; it is024

common for a text, image, or video to have a multi-025

label whose contents are connected to multiple do-026

mains. Multi-label text classification (MLTC) is a027

fundamental and practical issue in natural language028

processing, which is gaining more academic inter-029

est as the amount of data rises. MLTC has been the030

subject of numerous recent research, with signifi-031

cant advancements in web mining (Agrawal et al.,032

2013; Jain et al., 2016), sentiment analysis (Huang033

et al., 2013; Yu et al., 2018), and information re-034

trieval (Zhao et al., 2015; Ranjan et al., 2015). It is,035

nevertheless, an unsolved and challenging process036

due to the vast categories of classification and their037

intricate interactions between labels.038

There are two paradigms for MLTC research:039

learning enhanced document representation (Liu040

et al., 2017; Yang et al., 2018) and modeling label041

correlation (Chen et al., 2017; Zhang et al., 2018; 042

Adhikari et al., 2019). Both of them looked at in- 043

formative terms in text content, label structure, and 044

semantics to capture label correlations and category 045

information to discover label-specific components. 046

Despite their success, they face two challenges. 047

The first problem lies in label correlation mod- 048

eling, a common way to explore the label corre- 049

lations in the document is to utilize the statistical 050

correlations between categories to build a label co- 051

occurrence graph for guiding interactions. Most of 052

the previous methods (Du et al., 2019; Xiao et al., 053

2019; You et al., 2019) learn the same document 054

representations for different labels; they do not ex- 055

plicitly consider the corresponding semantic parts 056

of each label in the document. Recent study (Ma 057

et al., 2021) has employed attention mechanisms 058

and GCN to investigate the above semantic connec- 059

tions and learn a label-specific text representation 060

for MLTC. In MLTC, such a strategy outperformed 061

non-GCN methods, demonstrating the importance 062

of using a graph neural network to model label 063

correlation. 064

However, such a graph is insufficient because it 065

is based solely on statistical co-occurrence informa- 066

tion. There are two main reasons for this: Firstly, 067

the co-occurrence information collected from the 068

training set is insufficient. Label co-occurrences 069

in the test set but not in the training set, for ex- 070

ample, may be missed. Furthermore, statistical 071

co-occurrence may result in the formation of a long- 072

tail distribution. As a result of this phenomenon, 073

models may be unable to predict long-tail labels. 074

The second problem exists in the document rep- 075

resentation learning. Formally, given text X , the 076

traditional method in MLTC for predicting its la- 077

bels can be generally formulated as a two-stage pro- 078

cedure: (1) feature extraction process that encodes 079

the document. (2) a label statistical co-occurrence 080

graph to guide the representation learning. There- 081

fore, the GCN embeddings are only explicitly in- 082
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volved once as supervision in the training phase.083

All the works mentioned above follow the conven-084

tional practice of two-stage procedure, and the full085

structure of the label system is neglected in repre-086

sentation learning.087

To address the issues above, in this paper, we088

propose Mix-GCN for MLTC. Specifically, ‘Mix’089

refers to two designs in our model:090

• Instead of only using a statistics co-091

occurrence graph to build label relations, we092

add an extra knowledge-based graph to mix093

both graphs into the final one by a convex094

combination. Such a knowledge-based graph095

can assist the model to realize the real-world096

relations of the labels; even such relations do097

not occur in the training set.098

• To learn better feature representations for an099

MLTC task anchored on its label structures,100

we design a mixing procedure for LSTM101

and GCN networks to inject GCN embed-102

dings to LSTM for the label-aware represen-103

tation learning procedure. Specifically, We104

constantly create mixing operations between105

LSTM and GCN at every layer to inject label106

information into LSTM, unlike previous ap-107

proaches that only include label information108

once.109

The contributions of this paper are summarized as110

follows:111

• We propose a graph mixing framework (Mix-112

GCN) for multi-label text classification that113

takes advantage of the entire label system’s114

embedding for representation learning by es-115

tablishing layers between GCN and LSTM for116

label-aware representation learning.117

• We construct the graph in Mix-GCN based on118

statistical co-occurrence information and label119

knowledge priors to model the correlations be-120

tween labels accurately and comprehensively.121

• We launch experiments on four benchmarks,122

and the results show that our model Mix-123

GCN outperforms state-of-the-art models and124

achieves better performance with respect to125

tail labels. Besides, ablation studies validate126

the effectiveness of two mixing operations in127

our Mix-GCN.128

2 Related Work 129

2.1 Multi-label Text Classification 130

The extant MLTC approaches mainly concentrate 131

on learning more comprehensive document repre- 132

sentations (Liu et al., 2017) and label-correlation 133

modeling (Nam et al., 2017; Yang et al., 2018; You 134

et al., 2019) to enhance performance. 135

With the extensive employment of neural net- 136

work methods in text representation, various inno- 137

vative models have been proposed, including tradi- 138

tional deep learning and Seq2Seq-based methods. 139

Liu et al (Liu et al., 2017) used CNN and dynamic 140

pooling to learn text representation. However, they 141

treat all words equally, thus failed to capture in- 142

formative words in documents. As for seq2Seq 143

methods, such as MLC2Seq (Nam et al., 2017) and 144

SGM (Yang et al., 2018), they used RNNs to en- 145

code the input text and an attention-based RNN 146

decoder to generate predictive labels sequentially. 147

Although they use an attention mechanism to cap- 148

ture information words in the text content, these 149

models cannot distinguish similar labels well since 150

they ignored the semantic connection between la- 151

bels and documents and learn the same document 152

representations for different tags. 153

Recently, some studies (You et al., 2019; Xiao 154

et al., 2019; Chalkidis et al., 2019) used attention 155

mechanisms to explore the interactions between 156

words and labels and learned a document repre- 157

sentation for a specific label. These methods have 158

achieved promising performance, which confirms 159

the importance of exploring semantic connections. 160

Our work mostly relates to the proposed LDGN 161

(Ma et al., 2021), which used a dual-GCN to prop- 162

agate information among labels and merges label 163

information with document representation in the 164

final stage. Differently, our Mix-GCN builds the 165

adjacency matrix of GCN by mixing the statisti- 166

cal co-occurrence graph and the knowledge-based 167

graph. Moreover, the label information from GCN 168

is continuously absorbed into the document repre- 169

sentation in LSTM for better feature learning. 170

3 Methodology 171

3.1 Overview 172

In this paper, we propose a mixing framework for 173

multi-label text classification called Mix-GCN. We 174

provide a novel label correlation modeling tech- 175

nique by combining the statistical label graph and 176

the prior-oriented label graph. Then a better fea- 177
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Figure 1: Overview of Mix-GCN.

ture learning operation is developed by absorbing178

label structure information provided by GCN at the179

layers of LSTM, and Figure 1 shows the overview180

of Mix-GCN.181

3.2 Problem Formulation182

Denote D = {(xi, yi)}Ni=1 as the training set,183

which consists of N samples with correspond-184

ing labels Y = {yi ∈ {0, 1}l
}

; here, l is the185

total number of label categories. Every sample186

document is composed of several words. Each187

word can be represented as a k -dimension vector188

through Glove (Pennington et al., 2014). Denote189

xi = {w1, · · · , wj , · · · , wn} as the contents in the190

i -th document, wj ∈ Rk represents the embedding191

of j -th word in the document, k is the embedding192

size, and n indicates the number of words. Specif-193

ically, in text classification, a label is also a word194

that contains textual information. Therefore, one195

label can also be encoded as an embedding vector,196

and the label set will be represented by a matrix197

C ∈ Rl×k. Multi-label text classification targets to198

learn the mapping from the input text sequence to199

the most relevant labels.200

3.3 Document Representation201

We first embed each word in the text into a word202

vector wj ∈ Rk, where k is the dimension of word203

embedding, given a document x with n words. We204

employ a bi-LSTM to capture word-level semantics205

for improved document representation to collect206

contextual information from both directions of the207

text sequence. To acquire the final document rep-208

resentation h, we concatenate the backward and209

forward hidden states. 210

Then, to acquire the document representation for 211

a certain label, we utilize a basic attention tech- 212

nique to obtain the relevant semantic components 213

associated with each label. First, we use the word- 214

corresponding vectors in Glove to establish the 215

label representation C ∈ Rl×k, and then we com- 216

pute the attention values anchored on the document 217

representation h. The semantic components of a 218

given label can be generated depending on the at- 219

tention directed by the label, which can be formally 220

described as follows: 221

attij =
e(hjci)∑
j e

(hjci)
(1) 222

ui =
∑
j

attijhj (2) 223

Among the variables, attij indicates how informa- 224

tive the j -th text feature vector is for the i-th label 225

in the label set C, and ui ∈ RD represents the 226

label-specific representation anchored on label ci 227

for this document. 228

3.4 Mixing in Graph Construction 229

In Mix-GCN, our graph is constructed by mixing 230

the statistical labeled graph and the knowledge- 231

oriented graph through convex combinations. The 232

statistical graph in this paper is defined as the graph 233

constructed with statistical information such as the 234

label co-occurrence of such labels. The statistical 235

information is determined by the distribution of 236
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samples in the training set, so it is highly depen-237

dent on the completeness of the training set. As238

mentioned in the introduction, statistical graphs are239

significantly affected by noise and neglect in the240

training set. Meanwhile, knowledge graphs, such241

as ConceptNet (Speer et al., 2017), are established242

with human knowledge in several ways, such as re-243

sources created by experts, thus may complement244

the statistical graph.245

The knowledge graph contains real-world knowl-246

edge for representing the relationship of labels,247

thus may help model learn the relation between248

labels, especially when the relations do not appear249

in the training set. However, it has three drawbacks:250

(2)The graph is very dense and it contains too251

many unnecessary node relationships. When used252

for deeper GCNs, it has a more negative impact253

on over-smoothed label embeddings than sparse254

graphs. (2) It is independent of the dataset and the255

task and therefore neglects task-specific or dataset-256

specific features. (3) It does not include all the257

labels in the dataset, so the edges of such labels258

are missed, leading to poor performance on these259

labels.260

Our Mix-GCN combines both statistical infor-261

mation and prior knowledge to overcome their dis-262

advantages and utilize their advantages. We will263

formally illustrate the details as follows.264

Let G = (V,E,A) as a standard graph, where265

V , E, A denote nodes, edges and adjacency matrix266

of G. A is an N × N matrix with (i, j) entry267

representing the weight of edges between nodes Vi268

and Vj , where N = |V | is the number of vertices.269

E ∈ RN×k denotes the label embedding matrix for270

all N nodes.271

Then, let GC = (V,EC , AC) denote the statis-272

tical graph, and GP = (V,EP , AP ) as knowledge273

graph, where AC and AP are adjacency matrices274

obtained from statistical information and human275

knowledge, respectively. AC is obtained by the276

method in (Chen et al. 2019), and AP is con-277

structed by the expert-created ConceptNet (Speer,278

Chin, and Havasi 2017). Specifically, the nodes V279

in GP represent the labels (e.g. science) in label280

set C. The construction of AP can be defined as281

follows:282

AP ij =

{
max {scorer | r ∈ Rij} , if |Rij | > 0

0, if |Rij | = 0
(3)283

where Rij is a set of relations (e.g., ‘similar’)284

between nodes extracted from ConceptNet. scorer285

is the weight of relation r. |Rij | is the number of 286

elements in Rij . 287

Denoting A′C and A′P as the normalized ver- 288

sions of AC and AP , respectively. A′C = 289

D
−1/2
C ACD

−1/2
C , where DC is diagonal and 290

[DC ]ii =
∑

j [AC ]ij , and AP is normalized simi- 291

larly. Then a convex combination of A′C and A′P 292

is used to mix the knowledge graph and statistical 293

graph and the new adjacency matrix A∗ is defined 294

as follows: 295

A∗ = λA′C + (1− λ)A′P (4) 296

where λ ∈ [0, 1] is a weight hyper-parameter. 297

Meanwhile, because the elements of A′C and A′P 298

are non-negative, A∗ has more non-negative ele- 299

ments compared with AC and AP . In other words, 300

the graph constructed with A∗ has more unneces- 301

sary edges than GS or GK , as shown in Figure 3. 302

To decrease such edges, we use a threshold α to 303

filter the elements. 304

[Aα]ij =

{
0, if A∗ij < α

A∗ij , if A∗ij ≥ α
(5) 305

As claimed in previous works, when the num-
ber of GCN layers increases, the performance of
models decreases in some tasks. The phenomenon
is possibly due to the over-smoothing of deeper
GCN layers (Chen et al., 2019). Spurred by such
findings, we further modify the entries in the adja-
cency matrix of the mixed graph and get the final
adjacency matrix AF :

AF = βAα + (1− β)I

where I is an identity matrix. β is also a hyper- 306

parameter that determines the weights. Based on 307

the adjacency matrix AF , we construct the edges 308

as: 309

EF =
{
(Vi, Vj) | [AF ]ij 6= 0, and 0 ≤ i, j ≤ N

}
(6) 310

(Vi, Vj) denotes the edge of nodes Vi and Vj . 311

The graph we proposed is defined as GF = 312

(V,EF , AF ), which is called final graph. 313

3.5 Mixing between GCN and LSTM 314

Then, based on the final graph GF , we use GCN 315

(Kipf and Welling, 2016) to understand the deep 316

connections between label-specific semantic com- 317

ponents. GCNs are graph-based neural networks 318

that can improve node representations by propagat- 319

ing messages between nearby nodes. 320
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Dataset N M D L L1 L2 W W ∗

RCV1 23,149 781,265 47,236 103 3.18 729.67 259.47 269.23
AAPD 54,840 1,000 69,399 54 2.41 2444.04 163.42 171.65

EUR-Lex 11,585 3,865 171,120 3,956 5.32 15.59 1,225.20 1,248.07
Kanshan-Cup 2,799,967 200,000 411,721 1,999 2.34 3513.13 38.06 35.48

Table 1: N is the amount of training samples; M is the amount of test samples; D is the total amount of words, L
is the total amount of classes; L1 is the average amount of labels per sample; L2 is the average amount of samples
per label; W is the average amount of words per sample in the training set; W ∗ is the average amount of words
per sample in the testing set.

In the GCN, the label embeddings of each node
is a weighted sum of the embeddings of its neigh-
bors from the previous layer. We follow a common
practice as was done in (Gao et al., 2018; Wu et al.,
2019) to apply graph convolution:

H(l+1) = σ
(
A′FH

(l)W (l)
)

whereA′F is the normalized adjacency matrix. H(l)321

denotes the label embedding at the l -th layer in322

a GCN. Note that H(0) is the initial word embed-323

dings of labels. W (l) is a learnable matrix in the324

training phase. σ(·) denotes the LeakyRelu activa-325

tion function.326

Rather than providing label relationship infor-327

mation to representation all at once, we suggest328

injecting label information into LSTM at multiple329

phases via mixing procedures. In our Mix-GCN, a330

mixing operation is defined as follows:331

hl+1 = (σ(H l)⊗ hl) ·W + hl (7)332

where hl+1 is output of the mixing mechanism333

which will be fed to next LSTM, H l is the hidden334

label embeddings of GCN, hl is the document rep-335

resentation of the current LSTM, and W is the336

learnable matrix that ensures the mixing mech-337

anism keeps the shape of hl+1 the same as hl.338

Specifically, h0 is the initial document embedding339

U defined in Eq.(2).340

The mixing procedure is designed to encourage341

the LSTM to learn label-system anchored feature342

representations to improve representation learning.343

It calculates the dot product between features and344

label embeddings, which shows how each feature345

point is related to a label embedding. The mixing346

procedure links the label system and the LSTM347

representation, and the learned representation is348

label-aware.349

The mixing procedure has two principle advan-350

tages. (1) GCN embeddings can help LSTM fea-351

ture learning by making the LSTM representation 352

aware of label relationships. (2) The extra gradients 353

from the mixing operation may be regarded as a 354

particular regularization in the hidden embeddings 355

learning process, forcing hidden embeddings to 356

adapt to representation more properly. To a certain 357

extent, it can deal with the over-smoothing problem 358

of deep GCNs. 359

After the above procedures, we concatenate the
two representation H∗ =

[
h3,h5

]
and feed it into

a FFN for prediction with the multi-label cross
entropy loss:

L =
C∑
c=1

yc log (ŷc) + (1− yc) log (1− ŷc)

where yc and y represent the prediction and ground- 360

truth label, respectively. 361

4 Experiment 362

4.1 Benchmarks 363

In this paper, four benchmarks are used to construct 364

the experiments. 365

• RCV1: it contains more than 80K manually 366

categorized news belonging to 103 classes 367

(Lewis et al., 2004). 368

• AAPD: it collects the abstract and the corre- 369

sponding subjects of 55840 papers from arXiv 370

in the filed of computer science (Yang et al., 371

2018). 372

• EUR-Lex: it is a collection of documents 373

about European Union law belonging to 3956 374

subjects. The public version3 contains 11585 375

training instances and 3865 testing instances 376

(Mencia and Fürnkranz, 2008). 377

• KanShan-Cup1: it is released by the largest 378

Chinese community question answering plat- 379

1https://www.biendata.xyz/competition/zhihu/data/
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form, Zhihu. It contains near 3 million ques-380

tions about 1999 topics.381

4.2 Evaluation Metrics382

Following the settings of previous work (You et al.,383

2019; Xiao et al., 2019), we use precision at top384

K (P@k) and Normalized Discounted Cumulated385

Gains at top K (N@k) for performance evaluation.386

The definition of two metrics can be referred to387

You et al. (2019)388

4.3 Baselines389

• XML-CNN (Liu et al., 2017): it adopts CNN390

and a dynamic pooling technique to extract391

high-level feature for multi-label text classifi-392

cation.393

• SGM (Yang et al., 2018): it applies a se-394

quence generation model from input docu-395

ment to output label to construct the multi-396

label text classifier397

• DXML (Zhang et al., 2018): it tries to explore398

the label correlation by considering the label399

structure from the label co-occurrence graph.400

• AttentionXML (You et al., 2019): it builds401

the label-aware document representation only402

based on the document contents with a proba-403

bilistic label tree and multi-label attention.404

• EXAM (Du et al., 2019): a novel framework405

that leverages the label information to com-406

pute the word-level interactions.407

• LSAN (Xiao et al., 2019): a label-specific at-408

tention network model based on self-attention409

and label-attention mechanism.410

• LDGN (Ma et al., 2021): it adopts a Dual-411

GCN to incorporate category information to412

learn label-specific components from docu-413

ments.414

4.4 Implementation415

We adopt 300-d GloVe (Pennington et al., 2014)416

to generate the initial embeddings of words and417

labels. As for the labels whose names are out-of-418

vocabulary (OOV) in GloVe, we use the average419

embeddings of all labels as the representation. We420

set λ in (4) to be 0.1, α in (5) to be 0.03 and β in421

(6) to be 0.3. Adam is used as the optimizer with a422

momentum of 0.9, weight decay of 104 and batch423

size of 16. The initial learning rate of Adam is424

0.001 and the model trained for 80 epochs in total.425

4.5 General Results 426

Tables 2 and 3 show the results of all of the com- 427

parative approaches in the four benchmarks. The 428

experimental results of baseline models are explic- 429

itly quoted from prior works for a fair comparison. 430

Tables 2 and 3 show the results on four different 431

datasets; the proposed Mix-GCN outperforms all 432

other baselines. The excellent results validate the 433

effectiveness of mixing procedure learning with 434

dual graph neural networks, including two compo- 435

nents: (1) graph construction based on statistical 436

graph and knowledge graph, and (2) representation 437

mixing between GCN and LSTM. The performance 438

of XML-CNN is found to be inferior to that of other 439

methods of comparison. This is because it only 440

uses the text content of documents to classify them, 441

ignoring the label correlations, which are crucial in 442

multi-label classification. AttentionXML, a label 443

tree-based model, outperforms the seq2seq method 444

(SGM) and the deep embedding method (DXML). 445

Although DXML and SGM use a label graph or an 446

ordered sequence to model label relationships, they 447

ignore interactions between labels and document 448

content. LSAN also employs multi-label attention, 449

which focuses on the most important parts of the 450

content while extracting different semantic infor- 451

mation for each label. 452

Specifically, LDGN outperforms other label 453

attention-based methods because it uses a dual 454

graph network with adaptive fusion to integrate 455

attention and label co-occurrence to learn the label- 456

specific document representation, which takes into 457

account the semantic correlations between docu- 458

ment content and labels text. 459

Generally, our Mix-GCN outperforms sequence- 460

to-sequence, deep embedding, and label attention- 461

based models, and the MLTC metrics P@k and 462

nDCG@k improve significantly. On AAPD dataset, 463

Mix-GCN improves P@1 of LDGN method from 464

86.24% to 86.98% and enhances nDCG@3 and 465

nDCG@5 from 83.33% to 84.02%, 86.85% to 466

87.43%, respectively. As for EUR-Lex dataset, the 467

metric P@1 is increased from 81.03% to 82.11%, 468

and nDCG@3 and nDCG@5 are improved from 469

71.81% to 72.68%, 66.09% to 68.01%, respectively. 470

On RCV1 dataset, P@1 increases by 0.8%, and 471

Mix-GCN achieves 0.62% and 1.1% improvements 472

on nDCG@3, 5 compared with LDGN. The pro- 473

posed Mix-GCN model’s improvements show that 474

both carefully designed mixing mechanisms are 475

generally helpful and effective, and Mix-GCN can 476
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Model AAPD EUR-Lex

P@1 P@3 P@5 N@3 N@5 P@1 P@3 P@5 N@3 N@5
XML-CNN 74.38 53.84 37.79 71.12 75.93 70.40 54.98 44.86 58.62 53.10

SGM 75.67 56.75 35.65 72.36 75.35 70.45 60.37 43.88 60.72 55.24
DXML 80.54 56.30 39.16 77.23 80.99 75.63 60.13 48.65 63.96 53.60

AttentionXML 83.02 58.72 40.56 78.01 82.31 67.34 52.52 47.72 56.21 50.78
EXAM 83.26 59.77 40.66 79.10 82.79 74.40 61.93 50.98 65.12 59.43
LSAN 85.28 61.12 41.84 80.84 84.78 79.17 64.99 53.67 68.32 62.47
LDGN 86.24 61.95 42.29 83.32 86.85 81.03 67.79 56.36 71.81 66.09

Mix-GCN 86.98 62.56 42.97 84.02 87.43 82.11 69.02 57.22 72.68 68.01

Table 2: Comparisons between state-of-the-art methods on AAPD and EUR-Lex datasets. The bold numbers
indicate the best performance.

Model RCV1 Kanshan-Cup

P@1 P@3 P@5 N@3 N@5 P@1 P@3 P@5 N@3 N@5
XML-CNN 95.75 78.63 54.94 89.89 90.77 49.68 32.27 24.17 46.65 49.60

SGM 94.04 78.65 54.38 89.83 90.21 50.84 32.69 24.07 49.54 52.16
DXML 95.37 81.36 53.06 91.76 90.69 50.32 31.83 23.95 46.90 50.47

AttentionXML 96.41 80.91 56.38 91.88 92.70 53.69 34.10 25.16 51.03 53.96
EXAM 93.67 75.80 52.73 86.85 87.71 51.41 32.81 24.29 49.32 49.74
LSAN 96.81 81.89 56.92 92.83 93.43 54.46 34.56 25.54 51.43 54.36
LDGN 97.12 82.26 57.29 93.80 95.03 - - - - -

Mix-GCN 97.98 82.56 58.97 94.42 96.13 57.61 36.02 27.02 52.68 55.01

Table 3: Comparisons between state-of-the-art methods on RCV1 and Kanshan-Cup datasets. The bold numbers
indicate the best performance.

capture more comprehensive correlations between477

categories than LDGN.

(a) RCV1 (b) AAPD

(c) EUR-Lex (d) Kanshan

Figure 2: Comparsion on tail labels.

478

4.6 Results on tail labels479

To investigate the performance of Mix-GCN in tail-
label cases, we2 evaluate Mix-GCN by propensity
scored precision at k (PSP@k), which is defined as

2We compare Mix-GCN to LSAN on Kanshan-Cup bench-
mark instead of LDGN because LDGN is not evaluated on
Kanshan-Cup.

follows:

PSP@k =
1

k

k∑
l=1

yrank(l)

Prank(l)

Details of PSP@K can be found in (Jain et al., 480

2016; Ma et al., 2021). As shown in Figure 2, 481

the proposed Mix-GCN performs better in pre- 482

dicting tail labels than the LDGN model (the best 483

baseline) on three datasets. Specifically, on the 484

RCV1 dataset, LDGN achieves 0.96% and 1.40% 485

absolute improvement in terms of P SP@3 and 486

P SP@5 compared with LDGN. On the AAPD 487

dataset, the P SP@k increased by at least 0.53% 488

up to 0.70%. Moreover, on the EUR-Lex dataset, 489

LDGN achieves 1.74%, 3.55%, and 3.03% abso- 490

lute improvement on P SP@1, 3, 5 compared with 491

LDGN. The improvement in the EUR-Lex dataset 492

is more obvious because label-aware representa- 493

tion learning is more useful for capturing related 494

information in a benchmark with numerous labels. 495

The results prove that Mix-GCN can effectively 496

alleviate the problem of predicting tail labels. 497

5 Ablation 498

5.1 Influence of Hyper-parameters 499

This experiment is conducted on AAPD. When 500

λ varies from 0 to 0.5 by step of 0.1 and 501
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keep other parameters as described above, P@1502

is 86.65, 86.98, 86.44, 86.23, 86.03 and 85.59.503

When we fix λ as 0.1, α varies from 0.01 to 0.04504

by step of 0.01, P@1 is 85.60, 86.22, 86.98 and505

86.33. When β varies from 0 to 0.5, P@1 is506

85.12, 85.82, 86.44, 86.98, 85.84 and 85.29.507

5.2 Influence of Graph Construction508

In order to evaluate the influence of mixing two509

graphs, we implement three versions of Mix-GCN510

with statistical graph, knowledge graph, and our511

proposed mixing graph. They are all built on the512

same framework, which consists of three GCN lay-513

ers. The results of applying the statistical graph514

GC , knowledge graph GP , and mixing graph GF515

are summarized in Table 4 3. Experiments demon-516

strate that knowledge graph GP performs worse517

than statistical graph GC and mixing graph GF ,518

which is due to the missing relationships of uncov-519

ered labels in the knowledge graph and the over-520

smoothing impact introduced by many trivial edges.521

In AAPD, knowledge graph GP performs much522

worse than the other two paradigms. The labels in523

AAPD are more specific (e.g., cs.ce) thus most of524

them do not appear in the knowledge graph. There-525

fore, the graph constructed from knowledge is not526

reliable, and GP results in poor performance. Fur-527

thermore, the statistical graph GC performs worse528

than the mixing graph GF because of the lack of529

prior knowledge on the four benchmarks. Overall,530

experiments show that our mixing graph outper-531

forms the two methods, validating the effectiveness532

of mixing statistical and knowledge graphs.533

Figure 3: Comparison between ‘Mix’ and ‘No-Mix’

5.3 Influence of Layers in Mix-GCN534

In this experiment, we modify the number of lay-535

ers in Mix-GCN. Specifically, the layer here refers536

to LSTM+GCN+Mixing (e.g., three layers are in537

the architecture shown in Figure 1). Experimental538

3The table is deferred to the appendix due to limited space

results are shown in Table 54. Mix-GCN (3 layers) 539

achieves better performance than Mix-GCN (2 lay- 540

ers) and Mix-GCN (4 layers) by P@1, P@3, and 541

P@5 average improvements over 1.3%, 1.15%, and 542

1.35% in all benchmarks. Similarly, Mix-GCN (3 543

layers) obtains the best performance on N@3 and 544

N@5. Specifically, when GCN has no less than two 545

layers, as reported in ML-GCN (Chen et al., 2019), 546

the performance of conventional GCN degrades 547

as the number of GCN layers increases. To some 548

extent, our model alleviates this problem. This is 549

because (1) more GCN layers mean more Mixing 550

operations, which help LSTM learn better label- 551

aware features. (2) the mixing operation contains a 552

skip connection, which can be regarded as a regu- 553

larization when GCN learns representation. 554

5.4 Influence of Mixing between LSTM and 555

GCN 556

In this experiment, we evaluate the effectiveness 557

of continuous mixing operation between GCN and 558

LSTM. Specifically, we only add the mixing in the 559

final layer (third layer) and denote the setting as 560

‘No-Mix.’ As shown in Figure 3, ‘Mix’ performs 561

better than ‘No-Mix’ on all benchmarks. The re- 562

sults demonstrate the effectiveness of establishing 563

a mixing operation between GCN and LSTM at 564

each layer. 565

6 Conclusion 566

In this paper, we propose Mix-GCN, which con- 567

sists of two mixing operations. Firstly, it mixes the 568

knowledge graph and the statistical graph for label 569

relation modeling. Then another mixing operation 570

is designed for injecting GCN embeddings into 571

LSTM representation, resulting in a label-aware 572

representation learning for Mix-GCN, which acts 573

as label-feature correlation modeling and helps the 574

model learn label-anchored feature representations. 575

Our Mix-GCN is shown to be capable of learning 576

better feature representations for a specific multi- 577

label text classification anchored on its label rela- 578

tionship. Experiments on four benchmarks vali- 579

date that Mix-GCN achieves state-of-the-art perfor- 580

mance in multi-label text classification. 581
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Model AAPD EUR-Lex

P@1 P@3 P@5 N@3 N@5 P@1 P@3 P@5 N@3 N@5
Mix-GCN (GC) 86.46 62.39 42.88 83.22 87.19 81.83 68.82 56.94 72.23 67.79
Mix-GCN (GP ) 81.56 57.06 37.20 76.66 80.73 79.78 66.12 54.60 70.12 64.34
Mix-GCN (GF ) 86.98 62.56 42.97 84.02 87.43 82.11 69.02 57.22 72.68 68.01

Model RCV1 Kanshan-Cup

P@1 P@3 P@5 N@3 N@5 P@1 P@3 P@5 N@3 N@5
Mix-GCN (GC) 97.72 82.39 58.21 94.10 95.85 57.22 35.24 26.69 52.49 54.78
Mix-GCN (GP ) 95.63 80.04 56.26 93.00 94.21 55.01 34.78 25.46 52.68 53.62
Mix-GCN (GF ) 97.98 82.56 58.97 94.42 96.13 57.61 36.02 27.02 52.68 55.01

Table 4: Comparisons between state-of-the-art methods on RCV1 and Kanshan-Cup datasets. The bold numbers
indicate the best performance. ‘GC’, ‘GP ’, and ‘GF ’ represent statistical graph, knowledge graph and mixing
graph, respectively.

Model AAPD EUR-Lex

P@1 P@3 P@5 N@3 N@5 P@1 P@3 P@5 N@3 N@5
Mix-GCN (2− L) 85.54 61.22 41.16 82.70 85.69 80.51 67.78 55.48 71.33 66.64
Mix-GCN (4− L) 86.77 62.39 42.45 83.55 86.88 81.88 68.92 56.89 72.46 67.89
Mix-GCN (3− L) 86.98 62.56 42.97 84.02 87.43 82.11 69.02 57.22 72.68 68.01

Model RCV1 Kanshan-Cup

P@1 P@3 P@5 N@3 N@5 P@1 P@3 P@5 N@3 N@5
Mix-GCN (2− L) 96.36 81.20 57.29 93.01 94.73 56.22 34.62 25.67 51.36 53.61
Mix-GCN (4− L) 97.59 82.39 58.54 94.29 96.03 57.43 35.88 26.81 52.49 54.92
Mix-GCN (3− L) 97.98 82.56 58.97 94.42 96.13 57.61 36.02 27.02 52.68 55.01

Table 5: Comparisons between state-of-the-art methods on RCV1 and Kanshan-Cup datasets. The bold numbers
indicate the best performance. ‘x− L’ indicates the number of layers in Mix-GCN.
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