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Abstract

Multi-label text classification is one of the fun-
damental tasks in natural language process-
ing. Recently, the graph convolution network
(GCN) is leveraged to boost the performance
of such a task. However, the best way for
label correlation modeling and feature learn-
ing with label system awareness is still un-
clear. This paper proposes Mix-GCN, a graph
network with two mixing operations, to im-
prove the conventional GCN framework for
multi-label text classification in the following
two steps. Firstly, we model the label correla-
tions by mixing the graph built from statistical
co-occurrence information and the graph con-
structed from prior knowledge. Secondly, we
propose a mixing operation to continuously in-
ject GCN embedding into LSTM representa-
tion learning for better label-aware representa-
tion. Experimental results on four benchmarks
demonstrate that Mix-GCN significantly out-
performs the state-of-the-art models and per-
forms better in long-tail label cases.

1 Introduction

Multi-label is a universal property of data; it is
common for a text, image, or video to have a multi-
label whose contents are connected to multiple do-
mains. Multi-label text classification (MLTC) is a
fundamental and practical issue in natural language
processing, which is gaining more academic inter-
est as the amount of data rises. MLTC has been the
subject of numerous recent research, with signifi-
cant advancements in web mining (Agrawal et al.,
2013; Jain et al., 2016), sentiment analysis (Huang
et al., 2013; Yu et al., 2018), and information re-
trieval (Zhao et al., 2015; Ranjan et al., 2015). It is,
nevertheless, an unsolved and challenging process
due to the vast categories of classification and their
intricate interactions between labels.

There are two paradigms for MLTC research:
learning enhanced document representation (Liu
etal., 2017; Yang et al., 2018) and modeling label

correlation (Chen et al., 2017; Zhang et al., 2018;
Adhikari et al., 2019). Both of them looked at in-
formative terms in text content, label structure, and
semantics to capture label correlations and category
information to discover label-specific components.
Despite their success, they face two challenges.

The first problem lies in label correlation mod-
eling, a common way to explore the label corre-
lations in the document is to utilize the statistical
correlations between categories to build a label co-
occurrence graph for guiding interactions. Most of
the previous methods (Du et al., 2019; Xiao et al.,
2019; You et al., 2019) learn the same document
representations for different labels; they do not ex-
plicitly consider the corresponding semantic parts
of each label in the document. Recent study (Ma
et al., 2021) has employed attention mechanisms
and GCN to investigate the above semantic connec-
tions and learn a label-specific text representation
for MLTC. In MLTC, such a strategy outperformed
non-GCN methods, demonstrating the importance
of using a graph neural network to model label
correlation.

However, such a graph is insufficient because it
is based solely on statistical co-occurrence informa-
tion. There are two main reasons for this: Firstly,
the co-occurrence information collected from the
training set is insufficient. Label co-occurrences
in the test set but not in the training set, for ex-
ample, may be missed. Furthermore, statistical
co-occurrence may result in the formation of a long-
tail distribution. As a result of this phenomenon,
models may be unable to predict long-tail labels.

The second problem exists in the document rep-
resentation learning. Formally, given text X, the
traditional method in MLTC for predicting its la-
bels can be generally formulated as a two-stage pro-
cedure: (1) feature extraction process that encodes
the document. (2) a label statistical co-occurrence
graph to guide the representation learning. There-
fore, the GCN embeddings are only explicitly in-



volved once as supervision in the training phase.
All the works mentioned above follow the conven-
tional practice of two-stage procedure, and the full
structure of the label system is neglected in repre-
sentation learning.

To address the issues above, in this paper, we
propose Mix-GCN for MLTC. Specifically, ‘Mix’
refers to two designs in our model:

* Instead of only wusing a statistics co-
occurrence graph to build label relations, we
add an extra knowledge-based graph to mix
both graphs into the final one by a convex
combination. Such a knowledge-based graph
can assist the model to realize the real-world
relations of the labels; even such relations do
not occur in the training set.

* To learn better feature representations for an
MLTC task anchored on its label structures,
we design a mixing procedure for LSTM
and GCN networks to inject GCN embed-
dings to LSTM for the label-aware represen-
tation learning procedure. Specifically, We
constantly create mixing operations between
LSTM and GCN at every layer to inject label
information into LSTM, unlike previous ap-
proaches that only include label information
once.

The contributions of this paper are summarized as
follows:

* We propose a graph mixing framework (Mix-
GCN) for multi-label text classification that
takes advantage of the entire label system’s
embedding for representation learning by es-
tablishing layers between GCN and LSTM for
label-aware representation learning.

* We construct the graph in Mix-GCN based on
statistical co-occurrence information and label
knowledge priors to model the correlations be-
tween labels accurately and comprehensively.

* We launch experiments on four benchmarks,
and the results show that our model Mix-
GCN outperforms state-of-the-art models and
achieves better performance with respect to
tail labels. Besides, ablation studies validate
the effectiveness of two mixing operations in
our Mix-GCN.

2 Related Work
2.1 Multi-label Text Classification

The extant MLTC approaches mainly concentrate
on learning more comprehensive document repre-
sentations (Liu et al., 2017) and label-correlation
modeling (Nam et al., 2017; Yang et al., 2018; You
et al., 2019) to enhance performance.

With the extensive employment of neural net-
work methods in text representation, various inno-
vative models have been proposed, including tradi-
tional deep learning and Seq2Seq-based methods.
Liu et al (Liu et al., 2017) used CNN and dynamic
pooling to learn text representation. However, they
treat all words equally, thus failed to capture in-
formative words in documents. As for seq2Seq
methods, such as MLC2Seq (Nam et al., 2017) and
SGM (Yang et al., 2018), they used RNNs to en-
code the input text and an attention-based RNN
decoder to generate predictive labels sequentially.
Although they use an attention mechanism to cap-
ture information words in the text content, these
models cannot distinguish similar labels well since
they ignored the semantic connection between la-
bels and documents and learn the same document
representations for different tags.

Recently, some studies (You et al., 2019; Xiao
et al., 2019; Chalkidis et al., 2019) used attention
mechanisms to explore the interactions between
words and labels and learned a document repre-
sentation for a specific label. These methods have
achieved promising performance, which confirms
the importance of exploring semantic connections.

Our work mostly relates to the proposed LDGN
(Ma et al., 2021), which used a dual-GCN to prop-
agate information among labels and merges label
information with document representation in the
final stage. Differently, our Mix-GCN builds the
adjacency matrix of GCN by mixing the statisti-
cal co-occurrence graph and the knowledge-based
graph. Moreover, the label information from GCN
is continuously absorbed into the document repre-
sentation in LSTM for better feature learning.

3 Methodology

3.1 Overview

In this paper, we propose a mixing framework for
multi-label text classification called Mix-GCN. We
provide a novel label correlation modeling tech-
nique by combining the statistical label graph and
the prior-oriented label graph. Then a better fea-
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Figure 1: Overview of Mix-GCN.

ture learning operation is developed by absorbing
label structure information provided by GCN at the
layers of LSTM, and Figure 1 shows the overview
of Mix-GCN.

3.2 Problem Formulation

Denote D = {(z;, yl)},fil as the training set,
which consists of N samples with correspond-
ing labels Y = {y; € {0,1}'}; here, [ is the
total number of label categories. Every sample
document is composed of several words. Each
word can be represented as a k -dimension vector
through Glove (Pennington et al., 2014). Denote
x; = {wi, -+ ,wj, -+ ,wy} as the contents in the
i -th document, w; € R represents the embedding
of j -th word in the document, k is the embedding
size, and n indicates the number of words. Specif-
ically, in text classification, a label is also a word
that contains textual information. Therefore, one
label can also be encoded as an embedding vector,
and the label set will be represented by a matrix
C € RY**, Multi-label text classification targets to
learn the mapping from the input text sequence to
the most relevant labels.

3.3 Document Representation

We first embed each word in the text into a word
vector w; € RE, where k is the dimension of word
embedding, given a document = with n words. We
employ a bi-LSTM to capture word-level semantics
for improved document representation to collect
contextual information from both directions of the
text sequence. To acquire the final document rep-
resentation h, we concatenate the backward and

forward hidden states.

Then, to acquire the document representation for
a certain label, we utilize a basic attention tech-
nique to obtain the relevant semantic components
associated with each label. First, we use the word-
corresponding vectors in Glove to establish the
label representation C' € R"**_ and then we com-
pute the attention values anchored on the document
representation h. The semantic components of a
given label can be generated depending on the at-
tention directed by the label, which can be formally
described as follows:

e(hjci)

Zj e(hjci)
U; = Z attijhj
J

Among the variables, att;; indicates how informa-
tive the j -th text feature vector is for the i-th label
in the label set C, and v; € RP represents the
label-specific representation anchored on label c;
for this document.

)]

attij =

2

3.4 Mixing in Graph Construction

In Mix-GCN, our graph is constructed by mixing
the statistical labeled graph and the knowledge-
oriented graph through convex combinations. The
statistical graph in this paper is defined as the graph
constructed with statistical information such as the
label co-occurrence of such labels. The statistical
information is determined by the distribution of



samples in the training set, so it is highly depen-
dent on the completeness of the training set. As
mentioned in the introduction, statistical graphs are
significantly affected by noise and neglect in the
training set. Meanwhile, knowledge graphs, such
as ConceptNet (Speer et al., 2017), are established
with human knowledge in several ways, such as re-
sources created by experts, thus may complement
the statistical graph.

The knowledge graph contains real-world knowl-
edge for representing the relationship of labels,
thus may help model learn the relation between
labels, especially when the relations do not appear
in the training set. However, it has three drawbacks:
(2)The graph is very dense and it contains too
many unnecessary node relationships. When used
for deeper GCNs, it has a more negative impact
on over-smoothed label embeddings than sparse
graphs. (2) It is independent of the dataset and the
task and therefore neglects task-specific or dataset-
specific features. (3) It does not include all the
labels in the dataset, so the edges of such labels
are missed, leading to poor performance on these
labels.

Our Mix-GCN combines both statistical infor-
mation and prior knowledge to overcome their dis-
advantages and utilize their advantages. We will
formally illustrate the details as follows.

Let G = (V, E, A) as a standard graph, where
V', E, A denote nodes, edges and adjacency matrix
of G. Aisan N x N matrix with (i,7j) entry
representing the weight of edges between nodes V;
and V}, where N = |V| is the number of vertices.
E € RN** denotes the label embedding matrix for
all N nodes.

Then, let Go = (V, Ec, Ac) denote the statis-
tical graph, and Gp = (V, Ep, Ap) as knowledge
graph, where A and Ap are adjacency matrices
obtained from statistical information and human
knowledge, respectively. Ac is obtained by the
method in (Chen et al. 2019), and Ap is con-
structed by the expert-created ConceptNet (Speer,
Chin, and Havasi 2017). Specifically, the nodes V'
in G p represent the labels (e.g. science) in label
set C. The construction of Ap can be defined as
follows:

Apij = {max {score, | r € R;;}, if |Rij| >0
0, if |Rij| =0

3)

where R;; is a set of relations (e.g., ‘similar’)
between nodes extracted from ConceptNet. score,

is the weight of relation r. |R;;| is the number of
elements in R;;.

Denoting Ay, and A, as the normalized ver-
sions of Ac and Ap, respectively. Ay =
D51/2A0D51/2, where D¢ is diagonal and
[Dcly; =52, [Acl;;» and Ap is normalized simi-
larly. Then a convex combination of Aj, and A,
is used to mix the knowledge graph and statistical
graph and the new adjacency matrix A* is defined
as follows:

A* =ML+ (1 - N Ay )

where A € [0,1] is a weight hyper-parameter.
Meanwhile, because the elements of Aj, and A,
are non-negative, A* has more non-negative ele-
ments compared with A and Ap. In other words,
the graph constructed with A* has more unneces-
sary edges than G'g or G, as shown in Figure 3.
To decrease such edges, we use a threshold « to
filter the elements.

[Aalij = {2{*

75

if A;-*j <«

5
ifA;?‘jza )

As claimed in previous works, when the num-
ber of GCN layers increases, the performance of
models decreases in some tasks. The phenomenon
is possibly due to the over-smoothing of deeper
GCN layers (Chen et al., 2019). Spurred by such
findings, we further modify the entries in the adja-
cency matrix of the mixed graph and get the final
adjacency matrix Ap :

where [ is an identity matrix. [ is also a hyper-
parameter that determines the weights. Based on
the adjacency matrix A, we construct the edges
as:

Ep = {(Vi,vj) | [AF],; #0, and 0 < i, j < N}

(0)
(Vi,V;) denotes the edge of nodes V; and V.
The graph we proposed is defined as Gp =
(V, Er, Ar), which is called final graph.

3.5 Mixing between GCN and LSTM

Then, based on the final graph G, we use GCN
(Kipf and Welling, 2016) to understand the deep
connections between label-specific semantic com-
ponents. GCNs are graph-based neural networks
that can improve node representations by propagat-
ing messages between nearby nodes.



Dataset N M D L 14 Lo W wH*
RCV1 23,149 781,265 47,236 103 3.18 729.67 259.47 269.23
AAPD 54,840 1,000 69,399 54 241 244404 163.42 171.65

EUR-Lex 11,585 3,865 171,120 3,956 5.32 15.59 1,225.20 1,248.07
Kanshan-Cup | 2,799,967 200,000 411,721 1,999 2.34 3513.13 38.06 35.48

Table 1: N is the amount of training samples; M is the amount of test samples; D is the total amount of words, L
is the total amount of classes; L, is the average amount of labels per sample; L5 is the average amount of samples
per label; W is the average amount of words per sample in the training set; W* is the average amount of words

per sample in the testing set.

In the GCN, the label embeddings of each node
is a weighted sum of the embeddings of its neigh-
bors from the previous layer. We follow a common
practice as was done in (Gao et al., 2018; Wu et al.,
2019) to apply graph convolution:

H+) — & ( Al Ha)W(l))

where A’ is the normalized adjacency matrix. H @)
denotes the label embedding at the [ -th layer in
a GCN. Note that H©) is the initial word embed-
dings of labels. W) is a learnable matrix in the
training phase. o(-) denotes the LeakyRelu activa-
tion function.

Rather than providing label relationship infor-
mation to representation all at once, we suggest
injecting label information into LSTM at multiple
phases via mixing procedures. In our Mix-GCN, a
mixing operation is defined as follows:

hipr = (c(HY @ hy)- W+ (D)

where h;, 1 is output of the mixing mechanism
which will be fed to next LSTM, H' is the hidden
label embeddings of GCN, h; is the document rep-
resentation of the current LSTM, and W is the
learnable matrix that ensures the mixing mech-
anism keeps the shape of h;y; the same as h;.
Specifically, hg is the initial document embedding
U defined in Eq.(2).

The mixing procedure is designed to encourage
the LSTM to learn label-system anchored feature
representations to improve representation learning.
It calculates the dot product between features and
label embeddings, which shows how each feature
point is related to a label embedding. The mixing
procedure links the label system and the LSTM
representation, and the learned representation is
label-aware.

The mixing procedure has two principle advan-
tages. (1) GCN embeddings can help LSTM fea-

ture learning by making the LSTM representation
aware of label relationships. (2) The extra gradients
from the mixing operation may be regarded as a
particular regularization in the hidden embeddings
learning process, forcing hidden embeddings to
adapt to representation more properly. To a certain
extent, it can deal with the over-smoothing problem
of deep GCNs.

After the above procedures, we concatenate the
two representation H* = [h?’, h5] and feed it into
a FFN for prediction with the multi-label cross
entropy loss:

C
£="ylog (7 + (1 - ) log (1 - §°)
c=1

where 3¢ and y represent the prediction and ground-
truth label, respectively.

4 Experiment

4.1 Benchmarks

In this paper, four benchmarks are used to construct
the experiments.

* RCV1: it contains more than 80K manually
categorized news belonging to 103 classes
(Lewis et al., 2004).

* AAPD: it collects the abstract and the corre-
sponding subjects of 55840 papers from arXiv
in the filed of computer science (Yang et al.,
2018).

* EUR-Lex: it is a collection of documents
about European Union law belonging to 3956
subjects. The public version3 contains 11585
training instances and 3865 testing instances
(Mencia and Fiirnkranz, 2008).

« KanShan-Cup': it is released by the largest
Chinese community question answering plat-

"https://www.biendata.xyz/competition/zhihu/data/



form, Zhihu. It contains near 3 million ques-
tions about 1999 topics.

4.2 Evaluation Metrics

Following the settings of previous work (You et al.,
2019; Xiao et al., 2019), we use precision at top
K (P@k) and Normalized Discounted Cumulated
Gains at top K (N@k) for performance evaluation.
The definition of two metrics can be referred to
You et al. (2019)

4.3 Baselines

* XML-CNN (Liu et al., 2017): it adopts CNN
and a dynamic pooling technique to extract
high-level feature for multi-label text classifi-
cation.

* SGM (Yang et al., 2018): it applies a se-
quence generation model from input docu-
ment to output label to construct the multi-
label text classifier

* DXML (Zhang et al., 2018): it tries to explore
the label correlation by considering the label
structure from the label co-occurrence graph.

¢ AttentionXML (You et al., 2019): it builds
the label-aware document representation only
based on the document contents with a proba-
bilistic label tree and multi-label attention.

e EXAM (Du et al., 2019): a novel framework
that leverages the label information to com-
pute the word-level interactions.

* LSAN (Xiao et al., 2019): a label-specific at-
tention network model based on self-attention
and label-attention mechanism.

* LDGN (Ma et al., 2021): it adopts a Dual-
GCN to incorporate category information to
learn label-specific components from docu-
ments.

4.4 Implementation

We adopt 300-d GloVe (Pennington et al., 2014)
to generate the initial embeddings of words and
labels. As for the labels whose names are out-of-
vocabulary (OOV) in GloVe, we use the average
embeddings of all labels as the representation. We
set A in (4) to be 0.1, « in (5) to be 0.03 and S in
(6) to be 0.3. Adam is used as the optimizer with a
momentum of 0.9, weight decay of 104 and batch
size of 16. The initial learning rate of Adam is
0.001 and the model trained for 80 epochs in total.

4.5 General Results

Tables 2 and 3 show the results of all of the com-
parative approaches in the four benchmarks. The
experimental results of baseline models are explic-
itly quoted from prior works for a fair comparison.

Tables 2 and 3 show the results on four different
datasets; the proposed Mix-GCN outperforms all
other baselines. The excellent results validate the
effectiveness of mixing procedure learning with
dual graph neural networks, including two compo-
nents: (1) graph construction based on statistical
graph and knowledge graph, and (2) representation
mixing between GCN and LSTM. The performance
of XML-CNN is found to be inferior to that of other
methods of comparison. This is because it only
uses the text content of documents to classify them,
ignoring the label correlations, which are crucial in
multi-label classification. AttentionXML, a label
tree-based model, outperforms the seq2seq method
(SGM) and the deep embedding method (DXML).
Although DXML and SGM use a label graph or an
ordered sequence to model label relationships, they
ignore interactions between labels and document
content. LSAN also employs multi-label attention,
which focuses on the most important parts of the
content while extracting different semantic infor-
mation for each label.

Specifically, LDGN outperforms other label
attention-based methods because it uses a dual
graph network with adaptive fusion to integrate
attention and label co-occurrence to learn the label-
specific document representation, which takes into
account the semantic correlations between docu-
ment content and labels text.

Generally, our Mix-GCN outperforms sequence-
to-sequence, deep embedding, and label attention-
based models, and the MLTC metrics P@k and
nDCG @k improve significantly. On AAPD dataset,
Mix-GCN improves P@1 of LDGN method from
86.24% to 86.98% and enhances nDCG@3 and
nDCG@5 from 83.33% to 84.02%, 86.85% to
87.43%, respectively. As for EUR-Lex dataset, the
metric P@1 is increased from 81.03% to 82.11%,
and nDCG@3 and nDCG@5 are improved from
71.81% to 72.68%, 66.09% to 68.01%, respectively.
On RCVI1 dataset, P@1 increases by 0.8%, and
Mix-GCN achieves 0.62% and 1.1% improvements
on nDCG@3, 5 compared with LDGN. The pro-
posed Mix-GCN model’s improvements show that
both carefully designed mixing mechanisms are
generally helpful and effective, and Mix-GCN can



Model | AAPD | EUR-Lex
P@l P@3 P@5 N@3 N@5 | Pel P@3 P@5 N@3 N@s
XML-CNN | 7438 53.84 37.79 71.12 7593 | 7040 5498 44.86 5862 53.10
SGM 7567 5675 3565 7236 7535 | 7045 6037 4388 60.72 5524
DXML 80.54 5630 39.16 77.23 80.99 | 75.63 60.13 4865 63.96 53.60
AttentionXML | 83.02 5872 4056 78.01 8231 | 67.34 5252 47.72 5621 50.78
EXAM 83.26 59.77 40.66 79.10 8279 | 7440 6193 5098 65.12 59.43
LSAN 8528 61.12 41.84 80.84 8478 | 79.17 6499 5367 6832 6247
LDGN 86.24 6195 4229 8332 86.85 | 81.03 6779 5636 7181 66.09
Mix-GCN | 86.98 62.56 4297 84.02 87.43 | 8211 69.02 57.22 72.68 68.01

Table 2: Comparisons between state-of-the-art methods on AAPD and EUR-Lex datasets.

indicate the best performance.

The bold numbers

Model | RCV1 | Kanshan-Cup

P@l P@3 P@5 N@3 N@5 | P@l P@3 P@5 N@3 N@5
XML-CNN 95.75 78.63 5494 89.89 90.77 | 49.68 3227 24.17 46.65 49.60
SGM 94.04 78.65 5438 89.83 90.21 | 50.84 32.69 24.07 49.54 52.16
DXML 9537 8136 53.06 91.76 90.69 | 5032 31.83 2395 4690 5047
AttentionXML | 9641 8091 5638 91.88 92.70 | 53.69 34.10 25.16 51.03 53.96
EXAM 93.67 7580 5273 86.85 87.71 | 51.41 3281 2429 49.32 49.74
LSAN 96.81 81.89 5692 92.83 9343 | 5446 3456 2554 5143 5436

LDGN 97.12 8226 57.29 93.80 95.03 - - - - -
Mix-GCN 97.98 82.56 5897 9442 96.13 | 57.61 36.02 27.02 52.68 55.01

Table 3: Comparisons between state-of-the-art methods on RCV1 and Kanshan-Cup datasets. The bold numbers

indicate the best performance.

capture more comprehensive correlations between
categories than LDGN.

(a) RCV1 (b) AAPD

(c) EUR-Lex

(d) Kanshan

Figure 2: Comparsion on tail labels.

4.6 Results on tail labels

To investigate the performance of Mix-GCN in tail-
label cases, we? evaluate Mix-GCN by propensity
scored precision at k (PSP@k), which is defined as

2We compare Mix-GCN to LSAN on Kanshan-Cup bench-
mark instead of LDGN because LDGN is not evaluated on
Kanshan-Cup.

follows:

rank

k
1
PSPQk = —
k EZ: rank )

Details of PSP@K can be found in (Jain et al.,
2016; Ma et al., 2021). As shown in Figure 2,
the proposed Mix-GCN performs better in pre-
dicting tail labels than the LDGN model (the best
baseline) on three datasets. Specifically, on the
RCV1 dataset, LDGN achieves 0.96% and 1.40%
absolute improvement in terms of P SP@3 and
P SP@5 compared with LDGN. On the AAPD
dataset, the P SP@k increased by at least 0.53%
up to 0.70%. Moreover, on the EUR-Lex dataset,
LDGN achieves 1.74%, 3.55%, and 3.03% abso-
lute improvement on P SP@1, 3, 5 compared with
LDGN. The improvement in the EUR-Lex dataset
is more obvious because label-aware representa-
tion learning is more useful for capturing related
information in a benchmark with numerous labels.
The results prove that Mix-GCN can effectively
alleviate the problem of predicting tail labels.

5 Ablation

5.1 Influence of Hyper-parameters

This experiment is conducted on AAPD. When
A varies from 0 to 0.5 by step of 0.1 and



keep other parameters as described above, P@1
is 86.65,86.98,86.44,86.23,86.03 and 85.59.
When we fix A as 0.1, « varies from 0.01 to 0.04
by step of 0.01, P@1 is 85.60, 86.22, 86.98 and
86.33. When [ varies from 0 to 0.5, P@1 is
85.12,85.82,86.44, 86.98, 85.84 and 85.29.

5.2 Influence of Graph Construction

In order to evaluate the influence of mixing two
graphs, we implement three versions of Mix-GCN
with statistical graph, knowledge graph, and our
proposed mixing graph. They are all built on the
same framework, which consists of three GCN lay-
ers. The results of applying the statistical graph
G, knowledge graph G p, and mixing graph G
are summarized in Table 4 3. Experiments demon-
strate that knowledge graph Gp performs worse
than statistical graph G¢ and mixing graph G,
which is due to the missing relationships of uncov-
ered labels in the knowledge graph and the over-
smoothing impact introduced by many trivial edges.
In AAPD, knowledge graph G'p performs much
worse than the other two paradigms. The labels in
AAPD are more specific (e.g., cs.ce) thus most of
them do not appear in the knowledge graph. There-
fore, the graph constructed from knowledge is not
reliable, and G p results in poor performance. Fur-
thermore, the statistical graph G ¢ performs worse
than the mixing graph G because of the lack of
prior knowledge on the four benchmarks. Overall,
experiments show that our mixing graph outper-
forms the two methods, validating the effectiveness
of mixing statistical and knowledge graphs.
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Figure 3: Comparison between ‘Mix’ and ‘No-Mix’
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5.3 Influence of Layers in Mix-GCN

In this experiment, we modify the number of lay-
ers in Mix-GCN. Specifically, the layer here refers
to LSTM+GCN+Mixing (e.g., three layers are in
the architecture shown in Figure 1). Experimental

3The table is deferred to the appendix due to limited space

results are shown in Table 5%. Mix-GCN (3 layers)
achieves better performance than Mix-GCN (2 lay-
ers) and Mix-GCN (4 layers) by P@1, P@3, and
P@5 average improvements over 1.3%, 1.15%, and
1.35% in all benchmarks. Similarly, Mix-GCN (3
layers) obtains the best performance on N@3 and
N@5. Specifically, when GCN has no less than two
layers, as reported in ML-GCN (Chen et al., 2019),
the performance of conventional GCN degrades
as the number of GCN layers increases. To some
extent, our model alleviates this problem. This is
because (1) more GCN layers mean more Mixing
operations, which help LSTM learn better label-
aware features. (2) the mixing operation contains a
skip connection, which can be regarded as a regu-
larization when GCN learns representation.

5.4 Influence of Mixing between LSTM and
GCN

In this experiment, we evaluate the effectiveness
of continuous mixing operation between GCN and
LSTM. Specifically, we only add the mixing in the
final layer (third layer) and denote the setting as
‘No-Mix.” As shown in Figure 3, ‘Mix’ performs
better than ‘No-Mix’ on all benchmarks. The re-
sults demonstrate the effectiveness of establishing
a mixing operation between GCN and LSTM at
each layer.

6 Conclusion

In this paper, we propose Mix-GCN, which con-
sists of two mixing operations. Firstly, it mixes the
knowledge graph and the statistical graph for label
relation modeling. Then another mixing operation
is designed for injecting GCN embeddings into
LSTM representation, resulting in a label-aware
representation learning for Mix-GCN, which acts
as label-feature correlation modeling and helps the
model learn label-anchored feature representations.
Our Mix-GCN is shown to be capable of learning
better feature representations for a specific multi-
label text classification anchored on its label rela-
tionship. Experiments on four benchmarks vali-
date that Mix-GCN achieves state-of-the-art perfor-
mance in multi-label text classification.
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Model | AAPD EUR-Lex

P@l] P@3 P@5 N@3 N@5| P@l] P@3 P@5 N@3 N@5
Mix-GCN (G¢) | 86.46 62.39 42.88 8322 87.19 | 81.83 68.82 5694 7223 67.79
Mix-GCN (G'p) | 81.56 57.06 37.20 76.66 80.73 | 79.78 66.12 54.60 70.12 64.34
Mix-GCN (Gr) | 86.98 62.56 42.97 84.02 87.43 | 82.11 69.02 57.22 72.68 68.01

Model ‘ RCV1 Kanshan-Cup

P@l P@3 P@5 N@3 N@5| P@l P@3 P@5 N@3 N@5
Mix-GCN (G¢) | 97.72 82.39 5821 94.10 95.85 | 57.22 3524 26.69 5249 54.78
Mix-GCN (G'p) | 95.63 80.04 56.26 93.00 94.21 | 55.01 34.78 2546 52.68 53.62
Mix-GCN (Gr) | 97.98 82.56 58.97 94.42 96.13 | 57.61 36.02 27.02 52.68 55.01

Table 4: Comparisons between state-of-the-art methods on RCV1 and Kanshan-Cup datasets. The bold numbers
indicate the best performance. ‘G¢’, ‘Gp’, and ‘G’ represent statistical graph, knowledge graph and mixing
graph, respectively.

Model | AAPD EUR-Lex

P@l P@3 P@5 N@3 N@5| P@l P@3 P@5 N@3 N@5
Mix-GCN (2 - L) | 8554 6122 41.16 8270 85.69 | 80.51 67.78 5548 71.33 66.64
Mix-GCN (4 — L) | 86.77 62.39 4245 8355 86.88 | 81.88 68.92 56.89 7246 67.89
Mix-GCN (3 — L) | 86.98 62.56 42.97 84.02 87.43 | 82.11 69.02 57.22 72.68 68.01

Model | RCVI Kanshan-Cup

P@l P@3 P@5 N@3 N@5| P@l P@3 P@5 N@3 N@5
Mix-GCN (2 — L) | 9636 81.20 57.29 93.01 94.73 | 56.22 34.62 25.67 5136 53.61
Mix-GCN (4 — L) | 97.59 8239 58.54 9429 96.03 | 57.43 3588 26.81 5249 5492
Mix-GCN (3 — L) | 97.98 82.56 58.97 9442 96.13 | 57.61 36.02 27.02 52.68 55.01

Table 5: Comparisons between state-of-the-art methods on RCV1 and Kanshan-Cup datasets. The bold numbers
indicate the best performance. ‘x — L’ indicates the number of layers in Mix-GCN.
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