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Abstract

While recent Multimodal Large Language001
Models (MLLMs) have made exciting strides in002
various tasks and scenarios, they suffer from a003
significant issue of hallucinations, where gener-004
ated outputs contradict or misrepresent input se-005
mantics. Existing research often focuses on ei-006
ther comprehension or generation tasks within007
specific modalities, which restricts the gener-008
alizability of hallucination studies in MLLMs.009
To bridge this gap, we introduce OmniHallu,010
a unified hallucination detection and evalua-011
tion framework for cross-modal comprehen-012
sion and generation in MLLMs. We present013
a unified benchmark, OmniHallu-Bench, for014
evaluating both comprehension and generation015
tasks across modalities, covering text-to-image016
(T2I), text-to-video (T2V), text-to-audio (T2A),017
as well as image-to-text (I2T), video-to-text018
(V2T), and audio-to-text (A2T) processes. Ad-019
ditionally, we propose a novel multi-agent hal-020
lucination detection architecture that automat-021
ically decomposes and verifies claims, facili-022
tating structured hallucination assessment. Ex-023
tensive evaluations and analysis demonstrate024
the effectiveness of our methods, establishing a025
robust foundation for hallucination detection in026
MLLMs. This work contributes toward build-027
ing more reliable and interpretable multimodal028
AI systems. We will release our source code029
and data in the camera-ready version.030

1 Introduction031

In recent years, MLLMs (Huang et al., 2023b;032

Weng et al., 2024; Li et al., 2024b; Chen et al.,033

2025) have made remarkable progress across var-034

ious tasks, spanning natural language process-035

ing, computer vision, audio processing, and mul-036

timodal learning. These advancements have en-037

abled MLLMs to surpass traditional models in mul-038

tiple domains, bringing them closer to achieving039

human-level intelligence (Wang et al., 2024a; Fei040

et al., 2024; Luo et al., 2024). However, a critical041

A player in a red Thunder
jersey dribbles the ball past
two Lakers defenders as the
crowd watches in a silent
stadium.

Three Dalmatian puppies walk
side by side on a green carpet,
their white fur covered in
black or brown spots

A skateboarder in a red
jacket performs an aerial
trick over a dry concrete
skate park, with a cheering
crowd in the background.

(a) Image-to-Text 

(b) Text-to-Image 

(e) Audio-to-Text 

(f) Text-to-Audio 

(c) Video-to-Text 

This is a sound of music in
the language English and
the genre hip-hop. The
associated tags are glitch,
idm, and dustep.

A vocalist sings at the
beginning; applause follows at
the end, with a drum beat in
the background.

(d) Text-to-Video 

Two baby girls sit on a red
wooden bench, focused on
playing an electric piano,
while a crowd in the
background applauds.

Figure 1: MLLMs can produce hallucinations in both
comprehension and generation processes across modal-
ities, encompassing different types such as object, at-
tribute, relation, and event hallucinations.

challenge that remains is hallucination (Bai et al., 042

2024b; Huang et al., 2024), where generated out- 043

puts deviate from or contradict factual information 044

or user instructions. Existing works (Manakul et al., 045

2023; Li et al., 2023b; Wang et al., 2024c) often 046

focus on hallucination detection within a single 047

modality or specific tasks, limiting their applica- 048

bility to general multimodal settings. A unified 049

hallucination detection framework that generalizes 050

across cross-modal comprehension and generation 051
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Benchmark Function Granularity #Instances Task #Modalities Rationale

QAGS (Wang et al., 2020a) Check Summary 474 T2T 1 ✘

HaluEval (Li et al., 2023a) Detection Response 30,000 T2T 1 ✘

POPE (Li et al., 2023b) Evaluation Response 500 I2T 2 ✘

AMBER (Wang et al., 2024b) Evaluation Response 1,004 I2T 2 ✘

FactVC (Liu and Wan, 2023) Evaluation Response 1,800 V2T 2 ✘

AHLALM (Nishimura et al., 2024) Evaluation Response 1,000 A2T 2 ✘

SoraDetector (Chu et al., 2024) Evaluation Response 50 T2V 2 ✘

MHaluBench (Chen et al., 2024a) Detection Res.,Seg.,Cla. 420 T2I, I2T 2 ✔

OmniHallu-Bench Detection Res.,Seg.,Cla. 5,000 T2I, T2V, T2A, I2T, V2T, A2T 4 ✔

Table 1: Comparison of existing benchmarks for fact-checking, hallucination evaluation, and detection.

tasks remains an open challenge.052

From a modality perspective, hallucinations in053

MLLMs extend beyond text-based tasks to image,054

video, and audio modalities. The cross-modal na-055

ture of MLLMs often exacerbates hallucinations056

due to increased reasoning complexity. For exam-057

ple, an MLLM may miscount objects in an image,058

fail to capture causal relationships in a video, or059

misidentify sound sources in an audio clip. These060

issues arise from multiple factors, including inad-061

equate multimodal feature extraction, contextual062

ambiguity, and misalignment between multimodal063

representations and language understanding. From064

a task perspective, hallucinations manifest in both065

comprehension and generation settings. I2T, V2T,066

and A2T tasks evaluate a model’s ability to inter-067

pret and extract meaningful information from multi-068

modal inputs, while T2I, T2V, and T2A tasks assess069

its capacity to generate coherent and semantically070

accurate outputs conditioned on textual prompts.071

Despite these distinctions, hallucinations in differ-072

ent tasks and modalities share common underlying073

causes, including insufficient perception and rea-074

soning capabilities, which lead to errors such as075

object, attribute, relation, and event hallucinations.076

Given these shared characteristics, establishing a077

unified hallucination detection framework is both078

practical and necessary.079

To address these challenges, we introduce Omni-080

Hallu, a unified hallucination detection framework081

for cross-modal comprehension and generation in082

MLLMs. Our approach enables a standardized083

detection of hallucinations across common multi-084

modal tasks, covering T2I, T2V, T2A, as well as085

I2T, V2T, and A2T processes. Additionally, we086

propose a novel multi-agent hallucination detec-087

tion architecture that systematically decomposes088

and verifies claims, ensuring a structured and in-089

terpretable rationale for hallucination assessment.090

Beyond merely detecting hallucinations, our frame-091

work provides fine-grained analysis and insights 092

into their causes. 093

To benchmark our framework, we introduce 094

OmniHallu-Bench, a large dataset covering both 095

comprehension and generation tasks across all four 096

modalities. We develop a hybrid dataset construc- 097

tion pipeline that integrates high-quality samples 098

from existing datasets with state-of-the-art model- 099

generated outputs, all collected and generated data 100

undergo rigorous human verification to ensure qual- 101

ity and reliability. Our approach builds upon a 102

multi-agent architecture, which has demonstrated 103

flexibility, modularity, and robustness in complex 104

reasoning tasks. We integrate Large Language 105

Models (LLMs) such as GPT-4o (Hurst et al., 2024) 106

with domain-specific expert models to systemati- 107

cally detect hallucinations in MLLM outputs. The 108

LLM serves as a central controller, orchestrating ex- 109

pert models for specific verification tasks. The out- 110

puts from these expert models are further processed 111

by a reasoning model (e.g., OpenAI-o1 (Jaech et al., 112

2024), DeepSeek-R1 (Guo et al., 2025)), which 113

consolidates verification results and generates ex- 114

plainable rationales for hallucination assessment. 115

We conduct extensive evaluations of our multi- 116

agent hallucination detection architecture on 117

OmniHallu-Bench. The results demonstrate strong 118

performance in hallucination detection and verifi- 119

cation, validating the effectiveness of our approach 120

and establishing a reliable baseline for future re- 121

search on hallucinations in MLLMs. In summary, 122

our work makes the following key contributions: 123

• We introduce OmniHallu, a unified halluci- 124

nation detection framework for cross-modal 125

comprehension and generation in MLLMs. 126

• We present OmniHallu-Bench, a high-quality 127

benchmark for detecting hallucinations in 128

both comprehension and generation tasks 129

across modalities. 130

• We propose a multi-agent hallucination de- 131
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tection architecture that leverages LLMs for132

planning, task-specific models for verification,133

and reasoning models for inference, enabling134

an automated and systematic hallucination de-135

tection framework.136

2 Related Work137

Hallucinations in Comprehension Tasks. Text,138

as a structured and explicit modality, provides139

well-defined semantics that enable efficient encod-140

ing into a learned representation space, facilitat-141

ing comprehension and reasoning. However, the142

complexities of encoding and learning multimodal143

information pose significant challenges for non-144

text modalities. Large Vision-Language Models145

(LVLMs) often misinterpreting or fabricating ob-146

jects, attributes, and spatial relationships in images.147

Studies such as (Zhang et al., 2023; Tjio et al.,148

2021) reveal that LVLMs still exhibit consider-149

able hallucinations in fundamental tasks like object150

recognition and attribute alignment, limiting their151

reliability in real-world applications. Understand-152

ing video content presents an even greater chal-153

lenge. Large Video Models (LVMs) often misinter-154

pret temporal and spatial relationships in video se-155

quences, leading to incorrect scene comprehension.156

These models may also struggle with distinguishing157

visually similar but semantically distinct frames,158

resulting in misattributed actions and events (Iashin159

and Rahtu, 2020; Suin and Rajagopalan, 2020). Ad-160

ditionally, hallucinations in causal reasoning, such161

as incorrect cause-effect predictions in video nar-162

ratives, remain a persistent challenge. Similarly,163

Large Audio Models (LAMs) have gained promi-164

nence in speech recognition, music analysis, and165

audio synthesis. However, they remain prone to166

hallucinations, including misinterpretation of back-167

ground sounds, inaccuracies in audio summaries,168

and difficulty capturing fine-grained audio features169

like pitch and timbre (Shen et al., 2023), leading to170

errors in comprehension and transcription tasks.171

Hallucinations in Generation Tasks. Hallucina-172

tions are not limited to comprehension tasks but are173

equally pervasive in generation tasks across modal-174

ities. In text-to-image generation, research such as175

(Liu et al., 2024b; Dai et al., 2023) indicates that176

LVLMs frequently fail to align with user prompts,177

leading to errors in object positioning, attribute178

consistency, and logical coherence. Fine-grained179

inconsistencies, such as incorrect depictions of180

textures or unrealistic object interactions, remain181

persistent issues. In text-to-video generation, the 182

complexity increases as models must generate tem- 183

porally coherent frames that maintain consistency 184

over time. Studies like (Chu et al., 2024; Rawte 185

et al., 2024) show that hallucinations in video gener- 186

ation are particularly pronounced, as models often 187

struggle with motion continuity, scene composition, 188

and maintaining contextual relevance across mul- 189

tiple frames. Similarly, text-to-audio generation 190

suffers from hallucination-related issues. Recent 191

studies (Han et al., 2021; Shen et al., 2023; Ye et al., 192

2021) have demonstrated that LAMs can introduce 193

non-existent sound effects, distort speech patterns, 194

or fail to maintain consistent tonal qualities. These 195

hallucinations are particularly problematic in appli- 196

cations like automatic music composition or speech 197

synthesis, where accuracy in timing and acoustic 198

properties is crucial. 199

Detection of Hallucinations. Given the 200

widespread hallucination issues in MLLMs, 201

extensive research has been conducted on their 202

detection. However, most existing methods focus 203

on specific modalities or hallucination types, 204

limiting their generalizability across multimodal 205

tasks. For image-based hallucinations, early 206

studies primarily addressed object hallucination, 207

where models generate descriptions containing 208

non-existent or incorrect objects. Beyond object- 209

level hallucinations, (Liu et al., 2024b) introduced 210

IVL-Hallu, which categorizes hallucinations into 211

attribute, object, multimodal conflicting, and 212

counter-common-sense types. For video-based 213

hallucination detection, research has focused on 214

ensuring factual consistency in comprehension 215

and generation. (Liu and Wan, 2023) introduced 216

FactVC, a factuality metric improving hallucina- 217

tion assessment in video captions. For audio-based 218

hallucination detection, models often over-rely 219

on visual modality during pre-training, leading 220

to errors in generated descriptions. (Nishimura 221

et al., 2024) categorized audio hallucinations 222

into three types, emphasizing the challenge of 223

visually-induced hallucinations in audio models. 224

3 Preliminaries 225

Unified Formulation of Multimodal Hallucina- 226

tions. Let T , I, V , and A denote the sets of tex- 227

tual, image, video, and audio data, respectively. We 228

consider a MLLM as a function 229

fθ : X → Y, 230
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where X ∈ {T , I,V,A} is the input, Y ∈231

{T , I,V,A} is the output, and θ denotes the pa-232

rameters of the MLLM. We focus on two broad cat-233

egories of tasks: comprehension tasks, where the234

model processes non-textual input x ∈ {I,V,A}235

and produces a textual output ŷ ∈ T , and genera-236

tion tasks, where the model takes a textual input237

x ∈ T , such as a prompt or instructions, and gener-238

ates an output in another modality ŷ ∈ {I,V,A}.239

Definition of Multimodal Hallucination. We say240

that an MLLM’s output ŷ is hallucinated if it intro-241

duces or claims content that contradicts the input x.242

Formally, let G be the set of ground-truth elements243

derived from the input x. A generated output ŷ is244

considered hallucinated if245

Hallucinate(ŷ | x) =

{
1 if ∃ ϕ(ŷ) /∈ G
0 otherwise,

246

where ϕ(ŷ) denotes any semantic claim extractable247

from ŷ, and Hallucinate(·) is an indicator function.248

Unified Hallucination Types across Modalities.249

Although hallucinations manifest differently across250

text, image, video, and audio modalities, they can251

be categorized into four key types. Object hal-252

lucinations occur when non-existent entities are253

introduced, such as describing a “car” in an image254

where none exists. Attribute hallucinations involve255

misrepresentations of properties like color, size, or256

timbre, such as calling a blue hat “red” or misiden-257

tifying a female voice as “male.” Relation halluci-258

nations arise when the relationships between enti-259

ties are incorrectly stated, for example, describing260

“a dog chasing a cat” when the roles are reversed261

or the interaction never occurred. Event halluci-262

nations misrepresent event-level details, such as263

describing a person as “falling” in a video when264

they are actually sitting down, or claiming a ball265

was thrown before it was even picked up. These266

hallucination types are prevalent across different267

modalities and pose distinct challenges for MLLMs268

in ensuring factual consistency.269

Unified Detection of Hallucinations. To system-270

atically detect hallucinations in MLLMs, we adopt271

a multi-agent framework that integrates claim de-272

composition, expert verification, and reasoning-273

based assessment. Given a model-generated output,274

our method first decomposes it into atomic claims,275

ensuring that each claim is a discrete, verifiable276

statement. These claims are then processed by a set277

of expert agents specialized in different modalities,278

leveraging state-of-the-art models for cross-modal 279

consistency checking. For comprehension tasks, 280

these agents assess whether each claim aligns with 281

the given input, while for generation tasks, verifi- 282

cation is performed by comparing claims against 283

the fundamental concepts inferred from the textual 284

prompt. Finally, a reasoning agent consolidates the 285

individual verifications to derive a robust halluci- 286

nation classification. 287

4 OmniHallu-Bench: A Comprehensive 288

Hallucination Detection Benchmark 289

To systematically evaluate multimodal hallucina- 290

tions, we construct a benchmark dataset covering 291

image, video, and audio captioning, as well as text- 292

to-image, text-to-video, and text-to-audio genera- 293

tion tasks. Our dataset consists of 5,000 samples, 294

ensuring a balanced distribution across different 295

modalities and hallucination types. Specifically, 296

captioning tasks account for 60% of the dataset, 297

while generation tasks constitute the remaining 298

40%. The proportion of image, video, and audio 299

samples is maintained at 5:3:2, ensuring compre- 300

hensive coverage of all modalities. We categorize 301

hallucinations into four distinct types: object, at- 302

tribute, relation, and event hallucinations, with re- 303

spective proportions of 35%, 25%, 15%, and 25%. 304

This distribution reflects the common hallucination 305

patterns observed in MLLMs and enables a fine- 306

grained evaluation of their capabilities. Our dataset 307

integrates high-quality samples from established 308

datasets alongside current leading model-generated 309

outputs. 310

Image-to-Text Comprehension. For image cap- 311

tioning, we draw samples from COCO Caption 312

(Chen et al., 2024b), Nocaps (Agrawal et al., 2019), 313

and Flickr30k (Plummer et al., 2016). These 314

datasets contain human-annotated captions, of- 315

fering high-quality references for evaluating hal- 316

lucinations. We also leverage InternVL2.5-78B 317

(Chen et al., 2024b), Qwen2.5-VL-72B (Yang et al., 318

2024a), GPT-4o, and Gemini-1.5-Pro (Team et al., 319

2024) to generate outputs, all of which exhibit 320

strong captioning abilities yet remain susceptible 321

to hallucinations. 322

Video-to-Text Comprehension. For video cap- 323

tioning, we sample data from MSVD (Chen et al., 324

2022), MSRVTT (Xu et al., 2016), and VA- 325

TEX (Wang et al., 2020b), which provide ground- 326

truth textual descriptions of diverse video content. 327
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Figure 2: Main statistics of our OmniHallu-Bench dataset.

We also use InternVL2.5-78B, Qwen2.5-VL-72B,328

VideoLLaMA3 (Zhang et al., 2025), and LLaVA-329

OneVision (Li et al., 2024a) to generate outputs,330

which are representative of current leading LVMs331

but still exhibit a notable presence of hallucina-332

tions.333

Audio-to-Text Comprehension. For audio cap-334

tioning, we collect samples from AudioCaps (Kim335

et al., 2019), ClothoV2 (Drossos et al., 2019), and336

AudioSetCaps (Bai et al., 2024a), which provide337

high-quality human-written descriptions of diverse338

soundscapes. We further include generative outputs339

from Qwen2-Audio-7B-Instruct, GAMA (Ghosh340

et al., 2024), Pengi (Deshmukh et al., 2024), and341

SALMONN (Sun et al., 2024), capturing hallu-342

cinations related to semantic misinterpretation in343

LAMs.344

Text-to-Image Generation. For text-to-image345

tasks, we source initial prompts from T2I-346

CompBench++ (Huang et al., 2025) and HRS-347

Bench (Bakr et al., 2023), two prominent bench-348

marks designed for evaluating text-to-image syn-349

thesis quality. These prompts are augmented us-350

ing ChatGPT to introduce various hallucination351

types, enhancing the complexity of generated con-352

tent. The refined prompts are then used to generate353

images via DALL-E 3, Stable Diffusion 3.5 Large,354

and Midjourney v6.355

Text-to-Video Generation. For text-to-video356

tasks, we utilize prompts from T2V-CompBench357

(Sun et al., 2025) and FETV (Liu et al., 2023),358

which contain structured test cases for evaluat-359

ing video synthesis models. We employ Mod-360

elScope, Open-Sora 1.2 (Zheng et al., 2024), and361

CogVideoX-5B (Yang et al., 2024b) to generate362

corresponding videos.363

Text-to-Audio Generation. For text-to-audio364

generation, we leverage prompts from WavText5Ks365

(Deshmukh et al., 2022), FSD50K (Fonseca et al.,366

2022), and SoundDescs (Koepke et al., 2023),367

which provide rich textual descriptions of vari- 368

ous sound events. We generate corresponding au- 369

dio samples using Make-an-Audio (Huang et al., 370

2023a), AudioGPT (Huang et al., 2023b), and Au- 371

dioLCM (Liu et al., 2024a). 372

To ensure data integrity and high quality, all 373

collected and generated samples undergo rigorous 374

human verification. We employ a structured atomic 375

claim decomposition process to break down gen- 376

erated outputs into verifiable atomic claims, en- 377

abling precise hallucination assessment. To en- 378

hance the accuracy and consistency of claim ex- 379

traction, we adopt a two-stage method combining 380

Chain-of-thought (CoT) (Wei et al., 2022) prompt- 381

ing and self-reflection verification. CoT prompt- 382

ing sequencely decomposes responses into atomic 383

claims, while self-reflection ensures the extracted 384

claims preserve the original semantics without alter- 385

ation or omission. For comprehension tasks, claims 386

are extracted from generated captions and cross- 387

checked against the original multimodal input. For 388

generation tasks, fundamental intent concepts are 389

derived from user prompts and used as reference 390

claims for evaluation. Each sample is manually re- 391

viewed by three annotators, who classify extracted 392

claims as hallucinatory or non-hallucinatory. A re- 393

sponse is labeled hallucinatory if any of its claims 394

contain hallucinations. To ensure annotation con- 395

sistency, we conduct strict human inspection and 396

cross-validation. 397

5 Multi-Agent Framework for 398

Hallucination Detection 399

To systematically detect and verify hallucinations 400

in MLLMs, we propose a multi-agent frame- 401

work that integrates atomic claim decomposi- 402

tion, modality-aware multi-agent execution, and 403

reasoning-based verification. This framework en- 404

ables structured and explainable hallucination as- 405

sessment across diverse multimodal tasks, ensuring 406

both robustness and interpretability. 407
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Figure 3: Main statistics of our OmniHallu-Bench dataset.

Atomic Claim Decomposition. Hallucination408

detection requires an explicit breakdown of gener-409

ated content into verifiable components. To achieve410

this, we leverage GPT-4o’s advanced natural lan-411

guage processing and instruction-following capa-412

bilities to decompose both comprehension tasks’413

captions and generation tasks’ prompts into a set414

of atomic claims. Each sample (y, {c1, · · · , cny})415

consists of a piece of text y and a corresponding set416

of atomic claims {c1, · · · , cny}, where each claim417

provides a semantically discrete, verifiable state-418

ment extracted from the original output. These419

claims are designed to comprehensively represent420

all information contained in y while ensuring that421

no additional, unverifiable content is introduced.422

Furthermore, each claim must be grammatically423

independent and comprehensible in isolation, such424

that any reference to entities or pronouns is fully425

resolved, preventing ambiguity in subsequent ver-426

ification steps. This decomposition process estab-427

lishes a structured foundation for hallucination de-428

tection, enabling precise comparisons between gen-429

erated content and reference ground truth.430

Modality-Aware Multi-Agent Execution. Dif-431

ferent hallucination types and modalities require432

specialized verification methodologies. Our frame-433

work dynamically selects expert models and tools434

based on the specific task and hallucination cate-435

gory, ensuring accurate and adaptable hallucination436

detection. For I2T and T2I generation tasks, object437

hallucinations are verified using Grounding DINO438

1.5 Pro (Ren et al., 2024), an advanced open-set439

object detection model that extracts accurate visual440

entity information as the ground truth reference.441

Attribute, relation, and event hallucinations require442

whole semantic understanding beyond direct ob-443

ject detection. To address these hallucination types, 444

we utilize multiple LVLMs, including Qwen2.5- 445

VL-72B, InternVL2.5-78B, and GPT-4o. These 446

models serve as expert agents, contributing to a 447

more robust verification process. 448

For V2T and T2V generation tasks, the complex- 449

ity of video data, coupled with the limitations of 450

current LVLMs, necessitates a hybrid approach. 451

We integrate methodologies inspired by Dorae- 452

monGPT (Yang et al., 2024c), each atomic claim 453

requiring verification is reformulated into a targeted 454

question-answering query using GPT-4o, enabling 455

the extraction of specific, modality-aligned insights. 456

These extracted insights provide the foundation for 457

assessing hallucinations in video-based tasks. 458

For A2T and T2A generation tasks, hallucina- 459

tion detection is particularly challenging due to 460

the lack of robust expert tools for fine-grained au- 461

ditory understanding. Since external knowledge 462

sources cannot directly verify complex auditory 463

information, we employ multiple LAMs, includ- 464

ing Qwen2-Audio-7B-Instruct, GAMA, Pengi, and 465

SALMONN, to analyze and interpret audio content. 466

This ensemble approach strengthens the reliability 467

of hallucination verification in the audio domain. 468

Reasoning-Based Verification. Once the verifi- 469

cation results are obtained, they are consolidated 470

through reasoning models that synthesize the avail- 471

able evidence into a final hallucination determi- 472

nation. The atomic claim decomposition results 473

and multi-agent verifications are processed using 474

OpenAI-o1 and DeepSeek-R1, which integrate 475

multiple verification sources into a structured rea- 476

soning pipeline. This process aggregates and an- 477

alyzes verification outputs, identifies inconsisten- 478

cies, and derives a balanced final decision. To 479
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Method Hallucinatory Non-Hallucinatory Average

P R F1 P R F1 Acc. P R Mac.F1

Image-to-Text

Gemini-1.5-Pro
Self-Check 82.75 64.12 72.20 66.12 82.31 73.22 72.48 73.95 73.12 72.58
UNIHD 83.94 68.21 75.41 69.92 84.45 76.20 75.92 76.48 75.88 75.42

GPT-4o
Self-Check 79.32 73.92 76.52 74.31 80.54 77.30 76.21 76.92 76.54 76.18
UNIHD 81.02 77.45 79.20 77.23 79.92 78.42 78.12 78.24 78.04 77.94

Ours 84.65 81.34 82.96 83.15 82.72 82.93 82.58 82.46 82.38 82.12

Text-to-Image

Gemini-1.5-Pro
Self-Check 81.12 59.82 68.90 63.41 80.74 71.00 70.98 71.54 70.68 70.24
UNIHD 82.64 64.52 72.48 65.92 82.32 73.01 73.84 73.12 72.95 72.70

GPT-4o
Self-Check 78.22 71.94 74.94 72.63 78.32 75.24 74.52 74.94 74.68 74.32
UNIHD 79.88 76.54 78.18 78.65 78.80 78.72 78.64 78.72 78.54 78.42

Ours 83.21 80.92 82.04 81.74 81.42 81.60 81.40 81.18 81.10 80.92

Video-to-Text

InternVL2.5-78B Self-Check 74.12 60.82 66.92 65.34 80.24 72.34 69.48 69.72 69.24 69.18
Qwen2.5-VL-72B Self-Check 76.58 65.12 70.28 68.42 81.32 74.92 72.40 72.58 72.18 71.92
Ours 78.92 75.42 77.12 77.38 76.92 77.10 77.02 76.88 76.74 76.58

Text-to-Video

InternVL2.5-78B Self-Check 72.94 58.12 64.78 62.72 78.34 70.32 67.42 67.68 67.24 67.02
Qwen2.5-VL-72B Self-Check 74.75 63.42 68.42 67.10 79.42 72.24 70.12 70.38 70.04 69.92
Ours 77.62 74.12 75.82 75.92 74.92 75.41 75.22 75.10 74.94 74.78

Audio-to-Text

GAMA Self-Check 71.34 56.72 63.40 62.94 78.02 69.34 67.58 67.84 67.42 67.12
Qwen2-Audio-7B-Instruct Self-Check 73.48 59.24 66.00 64.82 79.28 71.32 69.74 69.92 69.58 69.40
Ours 76.38 72.12 74.18 74.64 73.42 74.02 73.82 73.64 73.42 73.18

Text-to-Audio

GAMA Self-Check 70.15 55.48 62.18 61.72 77.42 68.72 66.98 67.12 66.82 66.58
Qwen2-Audio-7B-Instruct Self-Check 72.48 58.34 65.00 63.92 78.36 70.24 68.94 69.12 68.92 68.74
Ours 75.48 71.52 73.38 73.74 72.92 73.31 73.12 72.98 72.82 72.58

Table 2: Multimodal hallucination detection results across six tasks.

enhance verification reliability, we extract the com-480

mon intersection of information validated by mul-481

tiple expert models. By identifying consistent482

verification details across models, we ensure that483

only the most reliable and agreed-upon informa-484

tion serves as the basis for hallucination detection.485

This approach mitigates individual model biases486

and enhances verification robustness. The final487

hallucination determination is based on these con-488

sistently validated outputs, ensuring a robust and489

explainable verification process. Additionally, the490

reasoning model generates a detailed rationale for491

each verification outcome, leveraging its interme-492

diate reasoning capabilities to ensure transparency493

and interpretability.494

6 Experiments495

6.1 Settings496

Baselines. We follow the baseline settings estab-497

lished in UNIHD (Chen et al., 2024a) and adopt498

Self-Check (Miao et al., 2023) based on CoT 499

prompting as our baseline. This method evaluates 500

the intrinsic capability of the underlying MLLM to 501

detect hallucinations without external tools. How- 502

ever, since UNIHD is only applicable to image- 503

based tasks, it cannot be directly extended to other 504

modalities. To enable a comprehensive compari- 505

son, we select two leading MLLMs for each modal- 506

ity beyond image-based tasks. For video-related 507

tasks, we compare against InternVL2.5-78B and 508

Qwen2.5-VL-72B. For audio-related tasks, we use 509

Qwen2-Audio-7B-Instruct and GAMA. This ex- 510

panded baseline selection ensures that our eval- 511

uation remains consistent and modality-adaptive, 512

allowing a meaningful performance comparison of 513

our multi-agent framework across different tasks. 514

Evaluations. We follow the evaluation settings of 515

UNIHD, computing precision, recall, and Micro-F1 516

scores separately for both hallucinatory and non- 517

7



hallucinatory categories at the claim level to ensure518

fine-grained hallucination detection analysis. Addi-519

tionally, we report accuracy and macro-averaged F1520

scores, maintaining consistency with prior work.521

6.2 Results and Analysis.522

Overall Performance. Our method consistently523

outperforms all baselines across six multimodal524

hallucination detection tasks, demonstrating its ef-525

fectiveness in both comprehension and generation526

settings. As shown in Table 2, our multi-agent527

framework achieves the highest scores in all tasks,528

consistently surpassing self-check baselines and529

existing approaches. These results highlight the ad-530

vantage of integrating structured claim verification531

with multi-agent collaboration, enabling precise532

hallucination detection across diverse modalities.533

Performance Comparison Across Modalities.534

The performance comparison across modalities, as535

shown in Table 2, reveals a trend: image-based536

tasks achieve the highest scores, followed by video-537

based tasks, while audio-based tasks perform the538

worst. This pattern aligns with the current capabili-539

ties of MLLMs, where static image understanding540

is the most mature. In contrast, video comprehen-541

sion introduces additional challenges due to the542

need for temporal reasoning, leading to slightly543

lower performance. The most pronounced limi-544

tations are observed in audio-based tasks, where545

hallucination detection remains challenging due to546

the inherent ambiguities in sound interpretation and547

the weaker alignment.548

Performance on Fine-grained Hallucination549

Types. Our fine-grained analysis reveals a clear550

difficulty hierarchy among hallucination types, as551

shown in Figure 4. Object hallucinations are the552

easiest to detect. Attribute hallucinations are more553

challenging, requiring fine-grained semantic under-554

standing. Event hallucinations introduce additional555

complexity, as they involve temporal information.556

Relation hallucinations are the most difficult, rely-557

ing on complex spatial, temporal, and causal rea-558

soning. Despite these challenges, our method con-559

sistently outperforms the strongest baseline across560

all categories, with the largest improvements in561

relation hallucinations.562

Ablation Study. To assess the contributions of563

key components in our multi-agent framework, we564

conduct an ablation study. As shown in Table 3,565

removing Atomic Claim Decomposition (ACD)566

Task Full Multi-Agent w/o ACD w/o MV

Image-to-Text 82.12 75.02 77.64
Text-to-Image 80.92 74.31 76.55
Video-to-Text 76.58 70.10 72.34
Text-to-Video 74.78 68.42 70.71
Audio-to-Text 73.18 67.05 69.24
Text-to-Audio 72.58 66.81 68.92

Table 3: Ablation study on our multi-agent framework.
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Figure 4: Comparison of detection performance across
hallucination types. ‘Obj.’, ‘Att.’, ‘Rel.’, ‘Eve.’ denote
object, attribute, relation and event respectively.

leads to a large performance drop, with F1 scores 567

decreasing by 7.1%–8.5% across tasks. This un- 568

derscores the importance of structured decomposi- 569

tion for accurate hallucination detection. Without 570

ACD, the model struggles to isolate hallucinations 571

in long-form responses, increasing false negatives 572

and reducing precision. Removing Majority Voting 573

(MV) results in a notable F1 decline of 5.0%–5.5%, 574

showing the benefits of aggregating multiple expert 575

results instead of relying on a single model. 576

7 Conclusion 577

We introduce OmniHallu, a unified hallucination 578

detection framework designed to address hallucina- 579

tions across comprehension and generation tasks 580

in multiple modalities of MLLMs. To support com- 581

prehensive evaluation, we construct OmniHallu- 582

Bench, a large-scale, high-quality benchmark cov- 583

ering diverse multimodal scenarios. We design a 584

novel multi-agent hallucination detection architec- 585

ture, which systematically decomposes outputs into 586

atomic claims, verifies them using expert models, 587

and consolidates results through structured reason- 588

ing. Extensive evaluations demonstrate that our 589

method significantly improves hallucination detec- 590

tion across all settings. By providing a robust and 591

interpretable hallucination detection framework, 592

this work lays a solid foundation for advancing 593

the development of more reliable MLLMs. 594
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Potential Limitations595

Limited Hallucination Taxonomy. While our596

framework covers commonly observed hallucina-597

tion types, including object, attribute, relation, and598

event hallucinations, different modalities may ex-599

hibit additional hallucination patterns that remain600

unexplored. Expanding the taxonomy to incorpo-601

rate more modality-specific errors, such as tempo-602

ral inconsistencies in video or prosodic misinter-603

pretations in audio, is an important direction for604

future research.605

Coverage of Multimodal Tasks. OmniHallu pri-606

marily focuses on core multimodal tasks involving607

comprehension and generation. While this covers a608

broad range of applications, more specialized tasks609

such as video question answering (VQA) or long-610

form video understanding may require additional611

adaptations to our framework. Future work should612

explore extending OmniHallu to handle these com-613

plex scenarios while preserving its interpretability614

and robustness.615

Dependence on Existing MLLMs. Hallucina-616

tion detection in video and audio modalities re-617

quires global semantic understanding, yet the ab-618

sence of advanced expert models or tools lim-619

its fine-grained perception capabilities. As a re-620

sult, our multi-agent framework primarily relies621

on MLLMs, complemented by self-reflection and622

majority voting to enhance verification accuracy.623

However, these strategies remain inadequate, un-624

derscoring the gap between current MLLMs and625

human-level comprehension. Future advancements626

in domain-specific expert models and cross-modal627

verification techniques are crucial for addressing628

this limitation.629

Ethics Statement630

The datasets used in our study are sourced from631

publicly available or ethically curated materials, en-632

suring compliance with data usage policies. Addi-633

tionally, our dataset includes AI-generated content634

for evaluation purposes, which is transparently doc-635

umented and rigorously verified through detailed636

human review to ensure accuracy and reliability.637

We acknowledge the broader implications of hal-638

lucination detection in AI systems and advocate639

for responsible model development that prioritizes640

reliability, fairness, and interpretability.641
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A Dataset Specifications938

Microsoft COCO Captions is a large-scale dataset939

developed for image captioning research, contain-940

ing over 330,000 images with more than 1.5 mil-941

lion human-annotated descriptions. Each image is942

paired with at least five independent captions, en-943

suring diversity and reliability.The dataset is widely944

used for training and evaluation of automatic im-945

age captioning models . Its core goal is to foster946

the synergy between computer vision and natural947

language processing, enhancing models’ ability to948

understand visual scenes.949

Nocaps is developed to assess models’ proficiency950

in Novel Object Captioning. It consists of 15,100951

images from Open Images validation and test sets,952

with 166,100 human-annotated captions. Nocaps953

leverages COCO captions for training while provid-954

ing image-level labels and object bounding boxes955

from Open Images. As Open Images covers more956

object categories than COCO, nearly 400 cate-957

gories in the test set lack corresponding captions in958

the training set, hence the name "Nocaps".959

Flickr30K is a dataset widely used for image960

caption generation, containing 31,783 images col-961

lected from Flickr, each paired with five human-962

annotated captions. The dataset evaluates mod-963

els on their ability to generate captions accurately964

aligned with real-world image content, following a965

standard training, validation, and test set partition-966

ing.Flickr30K prioritizes linguistic diversity and967

naturalness, making it a key benchmark for visual-968

linguistic tasks.969

MVSD is a multimodal video dataset developed to970

support research on translation and paraphrase gen-971

eration. It contains 2,089 video clips with 85K En-972

glish descriptions, along with thousands of descrip-973

tions per video across multiple languages. Each974

video clip is under 10 seconds and depicts a single,975

unambiguous action or event.The dataset leverages976

short videos as stimuli to elicit natural linguistic977

responses, enabling same-language descriptions to978

function as paraphrases and cross-language descrip-979

tions as translations.980

MSR-VTT is a video description dataset devel-981

oped to connect video understanding with natu-982

ral language processing. It contains 10,000 web983

video clips totaling 41.2 hours, with 200,000984

clip-sentence pairs covering 20 categories of di-985

verse video content.Each clip has approximately986

20 human-annotated descriptions by 1,327 AMT987

workers, ensuring rich linguistic variation. The988

dataset enables research in video captioning, re- 989

trieval, and multimodal learning. 990

VATEX is a multilingual video captioning dataset 991

developed for video-language research. It contains 992

41,250 unique videos and 825,000 high-quality 993

captions in both English and Chinese, includ- 994

ing 206,000 English-Chinese parallel translation 995

pairs.Each video is annotated with 10 diverse cap- 996

tions in both English and Chinese by 20 human 997

annotators. VATEX supports multilingual video 998

captioning and video-guided machine translation 999

by leveraging spatiotemporal video context. 1000

AudioCaps is a large-scale dataset developed for 1001

audio captioning research, enabling models to gen- 1002

erate natural language descriptions for environmen- 1003

tal sounds. It consists of 46,000 audio clips, each 1004

paired with human-written captions, sourced from 1005

AudioSet.Each clip is approximately 10 seconds 1006

long, and the dataset includes five captions per clip 1007

to ensure linguistic diversity. AudioCaps facilitates 1008

audio-based scene understanding and sound event 1009

recognition. 1010

Clotho V2 is a dataset developed for audio caption- 1011

ing research, enabling models to generate natural 1012

language descriptions of general audio content. It 1013

consists of 4,981 audio samples, each lasting 15 to 1014

30 seconds, sourced from Freesound.Each audio 1015

sample is paired with five human-written captions, 1016

containing 8 to 20 words, ensuring linguistic di- 1017

versity. Clotho V2 facilitates general sound event 1018

recognition and audio scene understanding. 1019

AudioSetCaps is a large-scale dataset developed 1020

for automated audio captioning research, contain- 1021

ing 1.9 million audio-caption pairs sourced from 1022

AudioSet.Captions are generated using a sophisti- 1023

cated pipeline combining audio-language and large 1024

language models, ensuring fine-grained and high- 1025

quality descriptions. The dataset supports audio- 1026

text retrieval, zero-shot audio classification, and 1027

automated captioning. 1028

HRS-Bench employs 3,000 prompts per skill to 1029

evaluate T2I models across accuracy, robustness, 1030

generalization, fairness, and bias, using human an- 1031

notation and template-based generation. Prompts 1032

cover object counting (“Three cats on two chairs”), 1033

visual text (“A sign with ‘Speed Limit 60’”), para- 1034

phrasing (“A cat is on the sofa” vs. “On the sofa, 1035

a cat is resting”), typos (“A womn is hollding a 1036

cup”) and creativity (“A fish flying in the clouds”) . 1037

Fairness and bias prompts ensure gender neutrality 1038

and unbiased representations. 1039
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T2I-CompBench++ is a benchmark developed for1040

assessing compositional text-to-image generation.1041

It consists of 8,000 prompts, categorized into at-1042

tribute binding, object relationships, generative nu-1043

meracy, and complex compositions. The bench-1044

mark evaluates models’ capacity to bind attributes1045

correctly (e.g., "A red book and a yellow vase"),1046

generate spatially accurate relationships (e.g., "A1047

cat in front of a chair"), and handle numeracy (e.g.,1048

"Four swans and two suitcases").1049

T2V-Bench utilizes structured prompts to assess1050

T2V models across spatial relationships, motion1051

binding, action binding, object interactions, at-1052

tribute consistency, dynamic attributes, and numer-1053

acy understanding. Prompts are generated using1054

real-world user inputs, predefined templates, and1055

GPT-4-assisted augmentation.Examples include1056

spatial positioning (e.g., "A bird flies to the left1057

of a hot air balloon"), motion dynamics (e.g., "A1058

robot walks on the moon"), and temporal changes1059

(e.g., "A leaf turns from green to yellow"). This de-1060

sign ensures compositional complexity, providing1061

a rigorous evaluation of models’ scene comprehen-1062

sion and motion synthesis.1063

FETV is a benchmark developed for the fine-1064

grained assessment of open-domain T2V gener-1065

ation. It categorizes 619 prompts based on major1066

content, attribute control, and prompt complexity,1067

ensuring a structured assessment.Prompts cover1068

spatial and temporal attributes, including actions,1069

kinetic motions, light changes, fluid motions, speed,1070

motion direction, and event order. The prompts1071

are sourced from existing text-video datasets and1072

manually created scenarios, offering a diverse and1073

rigorous evaluation framework.1074

WavText5K is a dataset developed for audio-text1075

retrieval research, containing 4,525 audio clips1076

with 4,348 unique descriptions sourced from web-1077

crawled sound effects. Prompts describe isolated1078

audio events with rich contextual details. Unlike1079

generic labels, these prompts provide fine-grained1080

scene descriptions.The dataset supports contrastive1081

learning-based retrieval by aligning natural lan-1082

guage queries with sound events, improving the1083

accuracy of audio-text alignment.1084

FSD50K is an open dataset comprising 51,1971085

manually annotated audio clips spanning 2001086

classes, derived from the AudioSet ontology. This1087

dataset was developed for large-scale, multi-label1088

sound event classification.The audio clips, sourced1089

mainly from Freesound, range in duration from1090

0.3 to 30 seconds. FSD50K utilizes weak labels 1091

through clip-level annotations, with its evaluation 1092

set undergoing rigorous manual verification to en- 1093

sure high-quality labeling. The dataset supports 1094

various tasks, including audio classification, hierar- 1095

chical classification, cross-dataset evaluation, and 1096

sound separation. 1097

SoundDescs is a benchmark dataset designed for 1098

text-based audio retrieval, containing 32,979 au- 1099

dio clips paired with natural language descriptions. 1100

The data is sourced from the BBC Sound Effects 1101

archive, covering 23 categories, including nature, 1102

urban soundscapes, and human activities. Audio 1103

durations range from a few seconds to several 1104

hours, and descriptions vary in length and com- 1105

plexity, providing a rich resource for evaluating 1106

retrieval models. The dataset is split into 23,085 1107

training samples, 4,947 validation samples, and 1108

4,947 test samples. 1109

14


