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ABSTRACT

Recent advances in differentiable structure learning have framed the combinatorial
problem of learning directed acyclic graphs as a continuous optimization problem.
Various aspects, including data standardization, have been studied to identify fac-
tors that influence the empirical performance of these methods. In this work, we
investigate critical limitations in differentiable structure learning methods, focus-
ing on settings where the true structure can be identified up to Markov equivalence
classes, particularly in the linear Gaussian case. While Ng et al. (2024) high-
lighted potential non-convexity issues in this setting, we demonstrate and explain
why the use of ℓ1-penalized likelihood in such cases is fundamentally inconsistent,
even if the global optimum of the optimization problem can be found. To resolve
this limitation, we develop a hybrid differentiable structure learning method based
on ℓ0-penalized likelihood with hard acyclicity constraint, where the ℓ0 penalty
can be approximated by different techniques including Gumbel-Softmax. Specifi-
cally, we first estimate the underlying moral graph, and use it to restrict the search
space of the optimization problem, which helps alleviate the non-convexity issue.
Experimental results show that the proposed method enhances empirical perfor-
mance both before and after data standardization, providing a more reliable path
for future advancements in differentiable structure learning, especially for learn-
ing Markov equivalence classes.

1 INTRODUCTION

Probabilistic graphical models, such as Bayesian networks, are powerful tools for capturing com-
plex probabilistic relationships in a concise way (PEARL, 1988; Koller & Friedman, 2009). Their
graph structures, usually encoded as Directed Acyclic Graphs (DAGs), allow efficient representa-
tion of data dependencies and have become essential in fields like health (Tennant et al., 2021)
and economy (Awokuse & Bessler, 2003). Traditionally, learning these structures involves discrete
methodologies. Constraint-based methods, which leverage conditional independence tests, are one
common approach (Spirtes & Glymour, 1991; Spirtes et al., 2001). Another popular technique in-
volves score-based methods, where the search space of potential graphs is explored based on scoring
functions (Koivisto & Sood, 2004; Singh & Moore, 2005; Cussens, 2011; Yuan & Malone, 2013;
Chickering, 2002; Peters & Bühlmann, 2014). Given the combinatorial nature of the task, greedy
search strategies have been commonly used (Chickering, 1996; Chickering et al., 2004).

In recent years, Zheng et al. (2018) introduced a continuous formulation for characterizing the
acyclicity constraint, effectively converting the discrete nature of the structure learning problem into
one that can be approached using gradient-based optimization techniques. Although this formula-
tion still involves nonconvex optimization, it opened the door to applying efficient gradient-based
methods. This formulation has since inspired a wide range of extensions, being adapted to deal
with nonlinearity (Yu et al., 2019; Lachapelle et al., 2019; Zheng et al., 2020; Ng et al., 2022b;
Kalainathan et al., 2022), latent confounding (Bhattacharya et al., 2021; Bellot & van der Schaar,
2021), interventional data (Brouillard et al., 2020; Faria et al., 2022), time series data (Pamfil et al.,
2020; Sun et al., 2021), and missing data (Wang et al., 2020; Gao et al., 2022). Other applications
include multi-task learning (Chen et al., 2021), and working with federated learning systems (Ng &
Zhang, 2022; Gao et al., 2021), domain adaptation (Yang et al., 2021), and recommendation system
(Wang et al., 2022).
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This move toward continuous structure learning has prompted growing attention to both its theo-
retical underpinnings and practical performance. Researchers like Wei et al. (2020) and Ng et al.
(2022a) have investigated the optimality and convergence properties of continuous, constrained op-
timization techniques (Zheng et al., 2018). Meanwhile, Deng et al. (2023) provided insight into how
an appropriately designed optimization scheme can reach the global minimum for least squares ob-
jectives in simple cases. Further refinements have also been proposed, with Zhang et al. (2022) and
Bello et al. (2022) highlighting challenges such as gradient vanishing in existing DAG constraints
(Zheng et al., 2018; Yu et al., 2019) and suggesting potential improvements.

Recently, Ng et al. (2024) highlighted the non-convexity issues in differentiable structure learning
methods, particularly in the linear Gaussian setting where the true structure can be identified up
to Markov equivalence classes. While non-convexity poses major challenges in this context, we
further identify another critical issue: ℓ1-penalized likelihood is inconsistent, even if the global
optimum of the optimization problem can be found. To address these limitations, we propose a
method that resolves the ℓ1 inconsistency and enhances empirical performance, both before and
after data standardization, even under non-convex conditions.

Contributions In this work, we tackle fundamental challenges in differentiable structure learn-
ing, particularly in the linear Gaussian case, by focusing on the limitations of penalized likelihood
approaches. Our contributions include:

• We identify and demonstrate the inconsistency of using ℓ1-penalized likelihood in differen-
tiable structure learning methods, even if the global optimum of the optimization problem
can be found, particularly when learning Markov equivalence classes in the linear Gaussian
case.

• We develop a differentiable structure learning method that optimizes an ℓ0-penalized
likelihood with hard acyclicity constraints and incorporates a moral graph estimation
procedure, where the ℓ0 penalty is approximated by differentiable techniques, such as
Gumbel-Softmax. We call our method CALM (Continuous and Acyclicity-constrained
L0-penalized likelihood with estimated Moral graph). CALM not only addresses ℓ1 in-
consistency, but also results in a solution much closer to the true structure or its Markov
equivalent graphs. Our method provides a more reliable path for future advancements in
differentiable structure learning, especially for learning Markov equivalence classes.

• Our method performs consistently well both before and after data standardization, demon-
strating its robustness.

2 BACKGROUND

In this section, we introduce our problem setting and, while reviewing the hard and soft DAG con-
straints, we also revisit NOTEARS (Zheng et al., 2018) and GOLEM (Ng et al., 2020).

2.1 PROBLEM SETTING

Setup In this work, we focus on linear Gaussian Structural Equation Models (SEMs), where the
variables X = (X1, . . . , Xd) follow linear relationships represented by a DAG. The model is ex-
pressed as X = B⊤X + N . Here, B ∈ Rd×d is the weighted adjacency matrix encoding the
relationships between variables. Specifically, an entry Bij ̸= 0 indicates a directed edge from Xj to
Xi. The noise vector N = (N1, . . . , Nd) consists of independent noise terms, each corresponding to
a variable Xi. The noise terms are assumed to follow a normal distribution with diagonal covariance
matrix Ω = diag(σ2

1 , . . . , σ
2
d), where σ2

i represents the variance of Ni. Given a DAG, a moral graph
is an undirected graph obtained by removing the directions of the edges in the DAG and connecting
all pairs of parents of common children.

Unlike many existing methods that assume equal noise variances (Zheng et al., 2018; Yu et al., 2019;
Zhang et al., 2022; Bello et al., 2022), in this study, we focus on the general non-equal noise variance
(NV) case, where the variances σ2

1 , . . . , σ
2
d are not assumed to be equal. Our goal is to estimate the

DAG G or its Markov equivalence class (MEC) from the data matrix X ∈ Rn×d, consisting of n
i.i.d. samples drawn from the distribution P (X).
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2.2 HARD AND SOFT DAG CONSTRAINT

In the context of DAG learning, the DAG constraint, denoted as h(B), ensures that the learned
structure is a DAG when h(B) = 0. NOTEARS (Zheng et al., 2018) employs a hard DAG constraint,
whereas GOLEM (Ng et al., 2020) introduces a soft DAG constraint.

NOTEARS and hard DAG constraint NOTEARS solves the following constrained optimization
problem

min
B∈Rd×d

ℓ(B;X) :=
1

2n
∥X−XB∥2F + λ∥B∥1 subject to h(B) = 0.

Here, ℓ(B;X) is the least squares loss with ℓ1 penalty, and h(B) = 0 enforces the hard DAG
constraint. The constrained optimization problem can be solved using standard algorithms such as
augmented Lagrangian method (Wright, 2006), quadratic penalty method (Ng et al., 2022a), and
barrier method (Bello et al., 2022).

GOLEM and soft DAG constraint The GOLEM framework aims to maximize the likelihood of
the observed data under the assumption of a linear Gaussian model. There are two formulations in
GOLEM, one assuming equal noise variance across variables (GOLEM-EV), and the other allowing
for non-equal noise variance (GOLEM-NV).

Unlike NOTEARS, GOLEM adopts the soft DAG constraint, making the problem unconstrained.
In other words, GOLEM incorporates h(B) as an additional penalty term in the score function,
controlled by the hyperparameter λ2. Here, we only review the the non-equal noise variance for-
mulation, GOLEM-NV, which is the focus of this paper. Assuming that X is centered and that the
sample covariance matrix Σ = 1

nX
⊤X, GOLEM-NV’s unconstrained optimization problem is

min
B∈Rd×d

L(B; Σ) + λ1∥B∥1 + λ2h(B),

where L(B; Σ) =
1

2

d∑
i=1

log
((

(I −B)⊤Σ(I −B)
)
i,i

)
− log |det(I −B)| .

Here, L(B; Σ) is the likelihood function of linear Gaussian directed graphical models. This allows
us to use B and Σ to express GOLEM-NV’s formulation.

3 INCONSISTENCY OF ℓ1 PENALTY IN STRUCTURE LEARNING

In this section, we explore the inconsistency of the ℓ1 penalty in structure learning by comparing
its behavior with ℓ0 in linear Gaussian cases. We demonstrate this inconsistency through extensive
experiments and conclude with a counterexample that highlights the issue.

3.1 ℓ0 VS ℓ1 PENALTY IN LINEAR GAUSSIAN CASES

In structure learning for linear Gaussian cases, score-based methods, specifically with the BIC
score (Schwarz, 1978; Chickering, 2002), often aim to recover the sparsest underlying DAG that
best explains the observed data (Singh & Moore, 2005; Cussens, 2011; Yuan & Malone, 2013;
Chickering, 2002). In the asymptotic case where the population covariance matrix, denoted by Σ∗,
is available, this can, loosely speaking, be formulated as

min
B,Ω

∥B∥0 subject to (I −B)−⊤Ω(I −B)−1 = Σ∗ and B is a DAG.

Recall that B is the weighted adjacency matrix representing the structure of the DAG and Ω is the
diagonal matrix of noise variances. That is, the goal is to minimize the ℓ0 norm of B, i.e., the number
of edges, while maximizing the likelihood by satisfying the covariance constraint and ensuring that
B is a valid DAG. In other words, the objective is to recover the sparsest DAG, B̂, along with its
corresponding Ω̂, that can generate the observed covariance matrix Σ∗ (i.e., (I−B̂)−⊤Ω̂(I−B̂)−1 =

Σ∗). Under the sparsest Markov faithfulness assumption (Raskutti & Uhler, 2018), the estimated B̂
will be Markov equivalent to the true graph B∗.
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Many previous work, including GOLEM, replace the ℓ0 penalty with the more tractable ℓ1 penalty.
The corresponding optimization problem becomes

min
B,Ω

∥B∥1 subject to (I −B)−⊤Ω(I −B)−1 = Σ∗ and B is a DAG. (1)

The ℓ1 penalty encourages smaller edge weights but introduces a key inconsistency: it doesn’t guar-
antee true sparsity in the resulting structure. Minimizing the ℓ1 norm may lead to a denser structure
with more edges than the solution from minimizing the ℓ0 norm. This occurs because ℓ1 favors
edges with small absolute values, even if they represent spurious edges. In some cases, the sum of
the absolute values of more edges can be smaller than that of fewer, larger-magnitude edges, which
leads ℓ1-based methods to include unnecessary edges. As a result, the learned structure may deviate
from the true DAG or its Markov equivalence class. Taking GOLEM as an example, even if the co-
variance constraint (I −B)−⊤Ω(I −B)−1 = Σ∗ is satisfied in both ℓ0- and ℓ1-based formulations,
the structural properties of the solution can differ significantly.

In Section 3.2, we demonstrate this with a large number of experiments, showing that a large pro-
portion of DAGs B̃ satisfying the covariance constraint (I − B̃)−⊤Ω(I − B̃)−1 = Σ∗ have smaller
ℓ1 norms than the true graph B∗. Moreover, in these DAGs satisfying the covariance constraint and
having smaller ℓ1 norms than the true graph B∗, we can always find ones with much larger ℓ0 values
than B∗, meaning they do not correspond to the true graph B∗ or its Markov equivalence class, with
the structural Hamming distance (SHD) computed over the true and estimated CPDAG (Completed
Partially Directed Acyclic Graph), which we refer to as SHD of CPDAG in this paper, far from zero.

3.2 EXPERIMENT: ASSESSING THE INCONSISTENCY OF ℓ1 PENALTY

In this section, we demonstrate and evaluate the inconsistency of the ℓ1 penalty in likelihood-based
GOLEM through experiments. We generated 1,000 true DAGs B∗, compute their corresponding
covariance matrices Σ∗ under infinite sample conditions. For each B∗, we use Cholesky decompo-
sition to generate large number of DAGs B̃ that can generate the same Σ∗. Our goal is to identify
the B̃ with the minimum ℓ1 norm among these B̃s, denoted as Bℓ1 , and compare it with B∗ in terms
of ℓ1 norm, ℓ0 norm (i.e., edge count), and record its SHD of CPDAG. Additionally, we also record
the proportion of B̃s that satisfy the covariance constraint (i.e., generate the same Σ∗) but have a
smaller ℓ1 norm than B∗, to give an intuitive sense of the extent of ℓ1 inconsistency.

True DAG generation and covariance matrix computation We generate 1000 8-node (d = 8)
ER1 graphs B∗s . The data is generated with a fixed noise ratio of 16, where the variances of two
randomly selected noise variables are set to 1 and 16, respectively. The variances of the remaining
noise variables are sampled uniformly from the range [1, 16]. The edge weights are uniformly sam-
pled from [−2,−0.5] ∪ [0.5, 2]. For each B∗, we compute the corresponding population covariance
matrix Σ∗ under infinite samples using the equation Σ∗ = (I −B∗)−⊤Ω∗(I −B∗)−1.

Generating DAGs which meet covariance constraint Following the sparsest permutation ap-
proach developed by Raskutti & Uhler (2018), for each true covariance matrix Σ∗, we generate all
possible d! permutations of its rows and columns. For each permuted covariance matrix, we apply
Cholesky decomposition to find a DAG B̃ that generates the permuted covariance matrix. After that,
we restore B̃ to the original variable order. This ensures that all B̃ satisfies the covariance constraint
(I − B̃)−⊤Ω̃(I − B̃)−1 = Σ∗, while remaining a valid DAG. After the above steps, for each of the
1,000 true B∗, we identified d! different DAGs B̃ that all generate Σ∗.

Metrics and analysis For each true DAG B∗, we analyze the following metrics across all d! DAGs
B̃ that satisfy the covariance constraint: (1) ℓ1 norm comparison: we calculate the ℓ1 norm of each
B̃ and record the proportion of B̃s whose ℓ1 norm is smaller than that of B∗; (2) selecting B̃ with
the minimum ℓ1 norm: among the d! B̃s, we select the one with the smallest ℓ1 norm, denoted as
Bℓ1 . We then compare Bℓ1 with B∗ in terms of ℓ1, and record its edge count and SHD of CPDAG
(to test its distance to B∗ or its Markov equivalence class).

Experimental results After running experiments for 1000 B∗s, we summarized the result in Table
1. Table 1 shows a comparison between the true DAG B∗ and the Bℓ1 that generate the same
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covariance matrix Σ∗. On average, for each true DAG B∗, 77.86% of the d! DAGs B̃ satisfying the
covariance constraint have smaller ℓ1 norms than B∗. In the 1,000 runnings, the average ℓ1 norm
of Bℓ1 is 4.22, which is smaller than the average ℓ1 norm of B∗, which is 10.04. The average ℓ0
norm (number of edges) of Bℓ1 is 22.74, which is larger than the ℓ0 norm (number of edges) of B∗,
which is 8. The average SHD of CPDAG between Bℓ1 and B∗ is 19.97. In addition, in each running,
Bℓ1 consistently has a smaller ℓ1 norm than B∗, a larger ℓ0 norm (number of edges), and a SHD
of CPDAG greater than zero, indicating that Bℓ1 is structurally different from B∗ and its Markov
equivalence class. These results demonstrate two key points: (1) a significant proportion of DAGs
B̃ that satisfy the covariance constraint have smaller ℓ1 norms than B∗, and (2) in each running, we
can find a counterexample (i.e., the Bℓ1 ) where the ℓ1 norm is smaller, but the ℓ0 norm is larger,
and the resulting DAG is not equivalent to B∗ or its Markov equivalence class. This supports the
conclusion that ℓ1-based solutions are inconsistent in recovering the true structure.

Table 1: Comparison of B̃s which generate Σ∗ with True DAG B∗. The results are averaged over
1,000 simulated B∗s. The “Proportion” column reflects the average percentage of DAGs B̃ with ℓ1
norms smaller than that of B∗ among d! B̃s per B∗.

Metric B∗ Bℓ1 Proportion of B̃ with ∥B̃∥1 < ∥B∗∥1
Average ℓ1 norm 10.04 ± 0.04 4.22 ± 0.03 77.86% ± 0.46%
Average ℓ0 norm (Number of Edges) 8.0 ± 0.0 22.74 ± 0.15
Average SHD of CPDAG 0 ± 0.0 19.97 ± 0.17

3.3 CASE STUDY: A SPECIFIC COUNTEREXAMPLE

In this section, we present a 3-node counterexample to demonstrate the inconsistency of the ℓ1
penalty in differentiable structural learning. Specifically, we compare a true weighted adjacency
matrix B∗ with an estimated adjacency matrix B̃, and show that although both matrices can gen-
erate the same covariance matrix, their ℓ0 norm (edge count), ℓ1 norm, and structural differences,
measured by SHD of CPDAG, reveal the inconsistency of the ℓ1 penalty.

The true adjacency matrix B∗ and its corresponding noise covariance matrices Ω∗ are given as:

B∗ =

0 1
2 0

0 0 0
0 −1 0

 , Ω∗ =

[
16 0 0
0 4 0
0 0 1

]
.

The estimated adjacency matrix B̃ and its corresponding noise covariance matrices Ω̃ are:

B̃ =

0 1
2

1
10

0 0 − 1
5

0 0 0

 , Ω̃ =

16 0 0
0 5 0
0 0 4

5

 .

Both matrices B∗ and B̃, along with their respective noise covariance matrices, generate the same
covariance matrix:

Σ∗ =

[
16 8 0
8 9 −1
0 −1 1

]
.

We have ∥B∗∥0 = 2 and and ∥B̃∥0 = 3, indicating that B∗ is sparser than B̃. However, when
considering the ℓ1 norm, we observe that: ∥B∗∥1 = 3

2 and ∥B̃∥1 = 4
5 . That is, although B̃ has a

higher ℓ0 norm, it achieves a lower ℓ1 norm, highlighting the inconsistency between the two norms.
Therefore, the optimization problem in Eq. equation 1 may return B̃, which is clearly not Markov
equivalent to B∗.

This counterexample demonstrates the inconsistency of the ℓ1 penalty: it may lead to solutions with
smaller total edge weights (resulting in a lower ℓ1 norm), but these solutions may still have more
edges (a higher ℓ0 norm) and deviate from the true DAG structure and its Markov equivalence class,
even if these solutions can generate the same covariance matrix as the ground truth DAG.

5
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4 CONTINUOUS AND ACYCLICITY-CONSTRAINED ℓ0-PENALIZED
LIKELIHOOD WITH ESTIMATED MORAL GRAPH

In Section 2.2, we reviewed the GOLEM-NV formulation proposed by Ng et al. (2020), which aims
to maximize the data likelihood utilizes an ℓ1 penalty and soft DAG constraint. We refer to this
original model as GOLEM-NV-ℓ1 throughout this paper. The problem formulation can be expressed
as

min
B∈Rd×d

L(B; Σ) + λ1∥B∥1 + λ2h(B).

However, as pointed out by Ng et al. (2024), GOLEM-NV-ℓ1 suffers from significant non-convexity,
often leading to suboptimal local minima with poor performance, both before and after data stan-
dardization. Moreover, as we demonstrated in section 3, the ℓ1 penalty leads to inconsistent so-
lutions. To address these limitations, we propose CALM (Continuous and Acyclicity-constrained
L0-penalized likelihood with estimated Moral graph), a differentiable structure learning method that
optimizes an ℓ0-penalized likelihood with hard DAG constraints and incorporates moral graphs. Our
experiments demonstrate that CALM significantly improves performance compared to the original
GOLEM-NV-ℓ1, yielding results much closer to the true DAG or its Markov equivalence class.

In the following subsections, we will first introduce the implementation of CALM, followed by the
experimental setup and an evaluation of CALM’s performance under various configurations. Finally,
we will highlight the revisions and improvements in CALM over Existing Methods, emphasizing its
practical design and robust performance compared to GOLEM-NV-ℓ1 and NOTEARS.

4.1 INTRODUCTION TO CALM

ℓ0 penalty and its approximation with Gumbel Softmax CALM begins with applying an ℓ0
penalty to regularize the likelihood, enforcing sparsity in the learned adjacency matrix. Inspired by
Ng et al. (2022b); Kalainathan et al. (2022), we use Gumbel Softmax as an example to show how we
achieve the approximation of ℓ0 penalty in our approach, as it proved to be the most effective and
robust ℓ0 approximation among those we experimented with in section 4.5. When using Gumbel
Softmax (Jang et al., 2017) to approximate ℓ0 penalty, CALM starts by representing the learned
adjacency matrix B as an element-wise product of a learned mask, gτ (U) ∈ Rd×d, which determines
the presence of edges, and a learned parameter matrix, P ∈ Rd×d, which learns the weights of the
edges. The mask gτ (U) is generated using the Gumbel-Softmax approach. Here, Ui,j represents the
logits, and a logistic noise Gi,j ∼ Logistic(0, 1) is added to Ui,j , producing gτ (Ui,j) = σ((Ui,j +
Gi,j)/τ), where τ is the temperature that controls the smoothness of the Softmax, and σ(·) is the
logistic sigmoid function. As the optimization process proceeds, the values of gτ (Ui,j) approach
either 0 or 1, approximating an ℓ0 penalty.

Incorporating the moral graph and hard DAG constraints Furthermore, CALM incorporates
a learned moral graph M ∈ {0, 1}d×d to restrict the optimization to edges within the moral graph,
thus reducing the search space. Note that similar idea has been used in various existing works
such as Loh & Bühlmann (2014); Nazaret et al. (2024). This moral graph acts as a filter over the
Gumbel-Softmax mask, allowing only edges present in the moral graph. The final learned B can
be represented as B = M ◦ gτ (U) ◦ P , incorporating both the sparsity from the Gumbel-Softmax
mask and the structural constraints from the moral graph. Here, B contains the edge weights for the
DAG, and its structure is determined by the mask M ◦ gτ (U).

CALM’s objective function, incorporating the Gumbel-Softmax mask, moral graph, and hard DAG
constraints into the GOLEM-NV-ℓ1 formulation, is given by

min
U∈Rd×d,P∈Rd×d

L(M ◦ gτ (U) ◦ P ; Σ) + λ1∥M ◦ gτ (U)∥1 subject to h(M ◦ gτ (U)) = 0.

where L(M ◦ gτ (U) ◦P ; Σ) is the likelihood term, and the λ1∥M ◦ gτ (U)∥1 term approximates the
ℓ0 penalty for sparsity. Here, both the ℓ0 penalty for sparsity and the DAG constraints are applied to
the final learned mask M ◦ gτ (U), which determines the presence of edges.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.2 EXPERIMENTAL SETUP

Across all experiments in section 4, we simulate Erdös–Rényi graphs (ERDdS & R&wi, 1959)
with kd edges, denoted as ERk graphs, with edge weights uniformly sampled from [−2,−0.5] ∪
[0.5, 2]. For all experiments, the data is generated with a fixed noise ratio of 16. Specifically,
the variances of two randomly selected noise variables are set to 1 and 16, respectively, while the
variances of the remaining noise variables are sampled uniformly from the range [1, 16]. This setting
ensures a realistic variation in noise across the variables, aligning with the assumptions of non-
equal noise variances (NV). Regarding CALM’s optimization problem, we solve it using a quadratic
penalty method inspired by Ng et al. (2022a), where each subproblem is tackled using gradient-
based optimization with the Adam optimizer. The computational complexity per iteration is O(d3) ,
which is comparable to most other differentiable structure learning methods in the linear case, such
as NOTEARS and GOLEM. Regarding parameter tuning, we determined the hyperparameter λ1,
which controls the ℓ0-penalty, through extensive experiments. Various values such as 0.0005, 0.05,
and 0.5 were tested, with 0.005 consistently yielding the best results across different settings. Other
parameters were also carefully tuned to select the optimal ones. Further implementation details of
our experiments in section 4 are in Appendix A. From this point forward, unless otherwise specified,
we use “CALM” to refers to the specific version of the method where the ℓ0-penalty is approximated
using Gumbel Softmax.

The following four sub-sections evaluate CALM’s performance: first, we compare soft vs. hard
DAG constraints and moral graph vs. no moral graph; second, we assess the effect of data stan-
dardization; third, we test different ℓ0 approximation methods. Finally, we compare CALM with
baseline approaches. For each scenario, we conducted 10 experiments and calculated the mean
SHD of CPDAG, precision of skeleton, recall of skeleton, and their standard errors.

4.3 IMPACT OF MORAL GRAPH AND SOFT/HARD DAG CONSTRAINTS

Recall that NOTEARS (Zheng et al., 2018) adopts a hard DAG constraint while GOLEM (Ng et al.,
2020) uses a soft DAG constraint. Here, we evaluate the impact of incorporating the moral graph and
using either soft or hard DAG constraints on the results of the ℓ0-penalized likelihood optimization.
We consider linear Gaussian models with 50 variables and ER1 graphs. Here, we focus on the
nonconvexity aspect of the optimization problem, and thus set the sample size to infinity to eliminate
finite sample errors (the way we achieve infinite samples is in Appendix A.4). The experiment
results for finite samples are included in Section 4.6. Furthermore, following Reisach et al. (2021);
Kaiser & Sipos (2022), we standardize the data. All experiments were conducted with the Gumbel-
Softmax approach to approximate ℓ0 penalty. The implementation details of Gumbel-Softmax-based
ℓ0 penalty and the hard DAG constraints is in Appendix A.2. The implementation details of soft
DAG constraints is in Appendix A.3.

Table 2: Impact of moral graph and soft/hard DAG constraints for 50-node ER1 graphs under data
standardization

SHD of CPDAG Precision of Skeleton Recall of Skeleton

Soft Constraints Without Moral 33.8 ± 2.7 0.98 ± 0.01 0.43 ± 0.05
Soft Constraints With Moral 7.6 ± 2.5 0.98 ± 0.01 0.95 ± 0.03
Hard Constraints Without Moral 16.7 ± 3.4 0.88 ± 0.03 0.97 ± 0.01
Hard Constraints With Moral (CALM) 5.5 ± 1.9 0.98 ± 0.01 0.99 ± 0.00

Comparison of soft and hard DAG constraints From the results in Table 2, we observe that using
hard DAG constraints leads to a lower SHD of CPDAG compared to soft DAG constraints, regardless
of whether the moral graph is incorporated. This suggests that, even when both formulation with
soft and hard DAG constraints converge to local optima, the hard DAG constraint results are closer
to the true adjacency matrix B or its Markov equivalence class.

One explanation for the improved performance of hard DAG constraints is the use of a quadratic
penalty method (QPM) (Ng et al., 2022a). In this framework, the hyperparameter ρ, which controls
the weight of the DAG constraint, is progressively increased during optimization, with each ρ value
triggering a full subproblem optimization. This leads to a more refined optimization process. In
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contrast, the soft DAG constraint uses a fixed ρ, resulting in only one subiteration and possibly
worse convergence. Additionally, hard constraints ensure that the final graph is always a DAG,
eliminating the need for post-processing, whereas soft constraints often require post-processing to
enforce acyclicity (Ng et al., 2020), which may introduce errors and increase SHD of CPDAG.

Impact of including the moral graph. Table 2 also shows that incorporating the moral graph
improves performance in both soft and hard DAG constraint settings, with a notably lower SHD of
CPDAG. The moral graph reduces the search space by focusing on edges within it, which is espe-
cially beneficial in higher-dimensional settings like our 50-node experiments, where the reduction
in search space is more substantial. This significantly simplifies the optimization process and leads
to better convergence towards the true adjacency matrix or its Markov equivalence class.

In summary, CALM, combining hard DAG constraints and the moral graph, delivers the best results.

4.4 IMPACT OF DATA STANDARDIZATION

Ng et al. (2024) previously pointed out that the original GOLEM-NV-ℓ1 formulation performed
poorly both before and after data standardization. To further evaluate the robustness of CALM, we
conduct experiments to compare its performance with (CALM-Standardized) and without data stan-
dardization (CALM-Non-Standardized). Here, we use infinite samples to eliminate finite sample
error and consider a 50-node linear Gaussian model with ER1 graphs. The implementation details
of Gumbel-Softmax-based ℓ0 penalty and the hard DAG constraints for CALM is in Appendix A.2.
In Table 3, CALM shows consistently low SHD of CPDAG before and after data standardization,
demonstrating its stability and robustness across both standardized and non-standardized data. In-
terestingly, this is in constrast with the observation by Reisach et al. (2021); Kaiser & Sipos (2022)
that differentiable structure learning methods do not perform well after data standardization, which
further validate the robustness of our method.

Table 3: Impact of Data Standardization on CALM for 50-node ER1 graphs

SHD of CPDAG Precision of Skeleton Recall of Skeleton

CALM-Non-Standardized 9.9 ± 3.4 0.95 ± 0.02 0.99 ± 0.01
CALM-Standardized 5.5 ± 1.9 0.98 ± 0.01 0.99 ± 0.00

4.5 COMPARISON OF ℓ0 APPROXIMATION METHODS

We compare our method with three ℓ0 approximations (CALM, CALM-STG, CALM-Tanh) and the
original GOLEM-NV-ℓ1. For all methods here, We used infinite samples to eliminate finite sample
error and considered 50- node linear Gaussian model with ER1 graphs. Additional results for ER4
with 50 nodes and ER1 with 100 nodes are presented in Appendix B. Here, CALM maintains our
definition, specifically referring to our method that employs the Gumbel-Softmax approximation for
the ℓ0 penalty. CALM-STG (Stochastic Gates) refers to our method that uses stochastic gates to
approximate ℓ0 penalty (Yamada et al., 2020), while CALM-Tanh (Hyperbolic Tangent) refers to
our method that employs the smooth hyperbolic tangent function to approximate ℓ0 penalty (Bhat-
tacharya et al., 2021). The key parameter selection and implementation details for STG and Tanh in
approximating the ℓ0 penalty can be found in Appendix A.5.

Table 4: Comparison of our method using different ℓ0 approximations and original GOLEM-NV-ℓ1 for 50-node
ER1 graphs under both data standardization and no data standardization.

Standardized Non-Standardized
SHD of CPDAG Precision of Skeleton Recall of Skeleton SHD of CPDAG Precision of Skeleton Recall of Skeleton

CALM 5.5 ± 1.9 0.98 ± 0.01 0.99 ± 0.00 9.9 ± 3.4 0.95 ± 0.02 0.99 ± 0.01
CALM-STG 5.9 ± 1.5 0.97 ± 0.01 0.99 ± 0.00 34.1 ± 3.6 0.79 ± 0.02 0.95 ± 0.01
CALM-Tanh 8.6 ± 1.6 0.95 ± 0.01 0.99 ± 0.01 51.7 ± 2.5 0.69 ± 0.02 0.91 ± 0.01
GOLEM-NV-ℓ1 56.2 ± 3.5 0.60 ± 0.03 0.55 ± 0.05 121.1 ± 6.1 0.35 ± 0.02 0.76 ± 0.03

Table 4 shows that CALM-STG achieves competitive results after data standardization but under-
performs without standardization. CALM-Tanh shows the weakest performance among the three ℓ0
approximations methods. Only CALM performs well both with and without data standardization,
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highlighting its robustness, which is why we ultimately selected Gumbel-Softmax as the ℓ0 approx-
imation method as our representative implementation. Additionally, all three methods outperform
GOLEM-NV-ℓ1, underscoring the importance of ℓ0 penalty approximation, as ℓ1 penalty suffers
from inconsistency (as discussed in Section 3). Moreover, this also shows that the effectiveness of
combining ℓ0 approximation with moral graphs and hard constraints.

4.6 COMPARISON WITH BASELINE METHODS

We finally compare the performance of CALM against several baseline methods, including the orig-
inal GOLEM-NV-ℓ1, NOTEARS, PC (Spirtes & Glymour, 1991), FGES (Ramsey et al., 2017) and
DAGMA (Bello et al., 2022) (see Appendix A.6 for baseline methods’ implemention details). We
evaluated the methods at two different sample sizes: n = 1000 and n = 106. We considered a 50-
node linear Gaussian model with ER1 and ER4 graphs, as well as a 100-node linear Gaussian model
with ER1 graphs. Here, the moral graph in CALM is estimated from finite samples (see Appendix
A.1 for how we estimate the moral graph). Specifically, for the 1000-sample experiments, the moral
graph is estimated from 1000 samples, and for the 106-sample experiments, the moral graph is es-
timated from 106 samples. All results presented here are from experiments with standardized data.
The additional experimental results for data without standardization are presented in Appendix C.

Table 5: Comparison with baseline methods for 50-node ER1, 50-node ER4, and 100-node ER1 graphs under
data standardization, using 1000 and 106 samples.

50-node ER1 graphs
1000 Samples 106 Samples

SHD of CPDAG Precision of Skeleton Recall of Skeleton SHD of CPDAG Precision of Skeleton Recall of Skeleton
CALM 12.1 ± 2.7 0.93 ± 0.01 0.98 ± 0.00 7.0 ± 2.5 0.97 ± 0.01 0.98 ± 0.01
GOLEM-NV-ℓ1 60.0 ± 3.9 0.58 ± 0.03 0.65 ± 0.07 55.6 ± 2.6 0.60 ± 0.02 0.63 ± 0.07
NOTEARS 46.3 ± 1.9 0.76 ± 0.01 0.81 ± 0.02 46.6 ± 1.9 0.75 ± 0.02 0.79 ± 0.02
PC 11.0 ± 1.4 0.98 ± 0.01 0.92 ± 0.01 2.8 ± 0.8 0.99 ± 0.01 0.99 ± 0.00
FGES 8.4 ± 2.4 0.94 ± 0.02 0.98 ± 0.00 1.3 ± 0.9 1.00 ± 0.00 1.00 ± 0.00
DAGMA 73.3 ± 4.0 0.57 ± 0.02 0.95 ± 0.01 70.6 ± 3.4 0.59 ± 0.02 0.95 ± 0.01

50-node ER4 graphs
1000 Samples 106 Samples

SHD of CPDAG Precision of Skeleton Recall of Skeleton SHD of CPDAG Precision of Skeleton Recall of Skeleton
CALM 168.8 ± 8.3 0.62 ± 0.02 0.67 ± 0.02 139.4 ± 10.2 0.68 ± 0.02 0.75 ± 0.02
GOLEM-NV-ℓ1 211.6 ± 4.2 0.59 ± 0.02 0.22 ± 0.02 211.0 ± 4.5 0.58 ± 0.03 0.22 ± 0.02
NOTEARS 209.5 ± 1.2 0.66 ± 0.02 0.15 ± 0.01 209.1 ± 1.3 0.65 ± 0.02 0.15 ± 0.01
PC 200.5 ± 2.1 0.61 ± 0.02 0.22 ± 0.01 231.0 ± 4.5 0.47 ± 0.01 0.33 ± 0.01
FGES 425.6 ± 23.2 0.33 ± 0.02 0.80 ± 0.01 750.0 ± 48.4 0.23 ± 0.02 1.00 ± 0.00
DAGMA 253.0 ± 7.5 0.49 ± 0.02 0.33 ± 0.02 252.5 ± 6.4 0.49 ± 0.02 0.33 ± 0.02

100-node ER1 graphs
1000 Samples 106 Samples

SHD of CPDAG Precision of Skeleton Recall of Skeleton SHD of CPDAG Precision of Skeleton Recall of Skeleton
CALM 26.7 ± 3.6 0.90 ± 0.01 0.99 ± 0.00 17.0 ± 2.9 0.96 ± 0.01 0.99 ± 0.00
GOLEM-NV-ℓ1 120.5 ± 6.7 0.55 ± 0.02 0.75 ± 0.06 115.7 ± 4.2 0.57 ± 0.02 0.68 ± 0.07
NOTEARS 87.4 ± 2.9 0.76 ± 0.01 0.74 ± 0.03 86.3 ± 2.7 0.75 ± 0.01 0.78 ± 0.03
PC 24.7 ± 1.6 0.95 ± 0.01 0.89 ± 0.01 4.2 ± 0.8 0.97 ± 0.01 1.00 ± 0.00
FGES 12.1 ± 1.7 0.95 ± 0.01 0.98 ± 0.00 1.0 ± 0.8 1.00 ± 0.00 1.00 ± 0.00
DAGMA 152.6 ± 3.9 0.55 ± 0.01 0.95 ± 0.01 150.8 ± 3.3 0.55 ± 0.01 0.95 ± 0.01

Table 5 summarizes the performance comparison between CALM and the baseline methods. The
results clearly demonstrate that CALM consistently outperforms NOTEARS, the original GOLEM-
NV-ℓ1 and DAGMA across all graph structures and sample sizes. This highlights the effectiveness
and robustness of incorporating the Gumbel-Softmax approximation to ℓ0, moral graph, and hard
DAG constraints. It is observed that the results of CALM are not as competitive as those obtained
by the PC and FGES methods for sparse graphs such as ER1 graphs. This outcome is expected,
given that the continuous optimization in linear likelihood-based formulation struggles with such
high levels of nonconvexity.

However, it is worth noting that for ER1 graphs, in the case of 1000 samples, the results of CALM
are nearly identical to those of PC. This indicates that in practical scenarios with relatively small
sample sizes, even in sparse graphs, CALM is able to compete with the performance of discrete
methods like PC. This represents a significant breakthrough.
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Furthermore, in more dense graphs, the 50-node ER4 graphs, CALM demonstrates superior perfor-
mance compared to the PC and FGES methods. This result suggests that in higher-density graphs,
CALM enables continuous optimization methods to outperform discrete methods.

The comparison between sparse and dense graphs highlights an important aspect of CALM’s per-
formance. While CALM is less competitive than non-differentiable baselines like PC and FGES
on sparse graphs, it demonstrates stronger performance on dense graphs. This contrast showcases
CALM’s ability to handle the increased complexity of dense graph structures.

4.7 REVISIONS AND IMPROVEMENTS IN CALM OVER EXISTING METHODS

Our main contributions are to identify and analyze the inconsistency of the ℓ1 penalty for learning
Markov equivalence classes, and accordingly investigate how to develop a differentiable approach
that mitigates this issue, leading to a more practical and robust differentiable approach for learning
Markov equivalence classes. As demonstrated in our experiments, our proposed method, CALM,
outperforms existing differentiable methods across all settings, including sparse and dense graphs.

In comparison to GOLEM-NV-ℓ1, our method introduces several key revisions. First, we address the
inconsistency of ℓ1-penalties by incorporating a masking approach to approximate the ℓ0-penalty.
Second, we leverage the moral graph to reduce the search space, which simplifies the optimization
process and significantly improves convergence. Additionally, we replace the soft DAG constraints
in GOLEM-NV-ℓ1 with hard constraints, using a quadratic penalty method inspired by Ng et al.
(2022a), leading to a more refined optimization process and ensuring the final graph is always a
DAG without requiring post-processing, which often introduces errors in soft constraint methods.

Relative to NOTEARS, our method not only resolves the inconsistency of ℓ1-penalties and benefits
from the moral graph but is also robust to general non-equal noise variance cases. While NOTEARS
assumes equal noise variance, limiting its applicability and causing its performance to degrade after
data standardization, our method remains effective across both standardized and non-standardized
data.

Overall, these enhancements, including robust parameter tuning, ensure that CALM consistently
outperforms other differentiable approaches. It demonstrates superior SHD of CPDAG, skeleton
precision, and skeleton recall, across diverse graph types and densities, establishing itself as a more
practical and reliable approach for real-world applications.

5 CONCLUSION

Our work begins by identifying the inconsistency of ℓ1-penalized likelihood in differentiable struc-
ture learning for the linear Gaussian case. To address this and improve performance, we propose
CALM, which optimizes an ℓ0-penalized likelihood with hard acyclicity constraints and incorpo-
rates moral graphs. Our results show that CALM, particularly with Gumbel-Softmax ℓ0 approxi-
mation, significantly outperforms GOLEM-NV-ℓ1 and NOTEARS across various graph types and
sample sizes. In sparse graphs like ER1, CALM’s performance rivals PC with smaller samples,
while in dense graphs like ER4, it achieves the best results among all baseline methods. CALM
also maintains robust performance both before and after data standardization. Future work includes
extending CALM to nonlinear models and integrating advanced optimization techniques for further
improvements in linear models.

REPRODUCIBILITY STATEMENT

Our code will be released publicly upon acceptance of this paper. The implementation details and
parameter settings of the CALM-related experiments and baseline methods are mentioned in Section
4 and Appendix A. The details for the experiments proving the inconsistency of ℓ1 penalty are
provided in Section 3.2.
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Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, and Simon Lacoste-Julien. Gradient-based
neural dag learning. arXiv preprint arXiv:1906.02226, 2019.
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Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien, and Kun Zhang. On
the convergence of continuous constrained optimization for structure learning. In International
Conference on Artificial Intelligence and Statistics, pp. 8176–8198. Pmlr, 2022a.

Ignavier Ng, Shengyu Zhu, Zhuangyan Fang, Haoyang Li, Zhitang Chen, and Jun Wang. Masked
gradient-based causal structure learning. In Proceedings of the 2022 SIAM International Confer-
ence on Data Mining (SDM), pp. 424–432. SIAM, 2022b.

Ignavier Ng, Biwei Huang, and Kun Zhang. Structure learning with continuous optimization: A
sober look and beyond. In Causal Learning and Reasoning, pp. 71–105. PMLR, 2024.

Roxana Pamfil, Nisara Sriwattanaworachai, Shaan Desai, Philip Pilgerstorfer, Konstantinos Geor-
gatzis, Paul Beaumont, and Bryon Aragam. Dynotears: Structure learning from time-series data.
In International Conference on Artificial Intelligence and Statistics, pp. 1595–1605. Pmlr, 2020.

J PEARL. Probabilistic reasoning in intelligent systems; network of plausible inference. Morgan
Kaufmann, 1988, 1988.
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A FURTHER IMPLEMENTATION DETAILS FOR SECTION 4

This appendix provides additional implementation details for experiments in Section 4 to ensure
clarity and reproducibility of the experiments. We describe our moral graph estimation algorithm;
our implementation details of Gumbel-Softmax-based ℓ0-penalty and hard DAG constraints in our
proposed CALM method and the experiments with hard DAG constraints in Section 4.3; our imple-
mentation details of Gumbel-Softmax-based ℓ0-penalty and soft DAG constraints in the experiments
with soft DAG constraints in section 4.3; our way to achieve infinite samples; our implementation
details for STG and Tanh; our implementation details for baseline methods. In some cases in Section
4, particularly when using soft constraints or certain baseline methods, the resulting structures are
always not guaranteed to be DAGs after thresholding. To address this, we applied a postprocessing
step where edges with the smallest absolute weights were iteratively removed until the structure
formed a valid DAG.

A.1 MORAL GRAPH ESTIMATION

We estimate the moral graph M using the Incremental Association Markov Blanket (IAMB)
algorithm (Tsamardinos et al., 2003), which is modified from an implementation available on
GitHub: https://github.com/wt-hu/pyCausalFS/blob/master/pyCausalFS/
CBD/MBs/IAMB.py.

A.2 IMPLEMENTATION DETAILS OF GUMBEL-SOFTMAX-BASED ℓ0-PENALTY AND HARD
DAG CONSTRAINTS (CALM AND SECTION 4.3 HARD DAG CONSTRAINT
EXPERIMENTS)

In this subsection, we describe the implementation details of the Gumbel-Softmax-based ℓ0-penalty
and the hard DAG constraints applied in both the CALM method and the experiments that use
hard DAG constraints in Section 4.3. We describe four components: (1) Gumbel-Softmax-based
ℓ0-penalty’s initialization, parameter settings and final thresholding; (2) our DAG constraint formu-
lation; and (3) our way to enforce hard DAG constraint and its parameter choices.

Gumbel-Softmax-based ℓ0-penalty As introduced in Section 4.1, we use the Gumbel-Softmax
mask gτ (U) to approximate the ℓ0-penalty. The logits matix U is initialized as a zero matrix. The
temperature parameter τ is set to 0.5. The learned parameter matrix P is initialized uniformly
between -0.001 and 0.001, following a uniform distribution, to provide a small range of values for
the initial weights. This ensures that the learned structure is unbiased at the start of optimization.
The hyperparameter λ1, which controls the strength of the ℓ0-penalty in our method, is set to 0.005.

Additionally, for result thresholding, we follow the approach from Ng et al. (2022b). Specifically,
After obtaining the learned logits matrix U , we compute σ (U/τ), filter it by the moral graph M , and
then apply a threshold of 0.5. The resulting matrix is used to compute SHD of CPDAG, precision of
skeleton, and recall of skeleton.

DAG constraint formulation The DAG constraint that we use is adapted from H(B) =

Tr
((

I + 1
dB ◦B

)d) − d, which proposed by Yu et al. (2019), due to its computational effi-
ciency. In our method, we slightly modified it. Since the mask generated by gumbel softmax
and a moral graph, M ◦ gτ (U), is already non-negative (bounded between 0 and 1), we replace
the element-wise multiplication B ◦ B with a single mask M ◦ gτ (U) (for experiments in Sec-
tion 4.3 where the moral graph is not incorporated, we replace B ◦ B with gτ (U) alone, which
is also bounded between 0 and 1). Hence, the final DAG constraint we used is H(M ◦ gτ (U)) =

Tr
((

I + 1
dM ◦ gτ (U)

)d)−d (for experiments in Section 4.3 without the moral graph, this becomes

H(gτ (U)) = Tr
((

I + 1
dgτ (U)

)d) − d). This simplifies the computation while still ensuring the
final result B = M ◦ gτ (U) ◦ P is a DAG when H(M ◦ gτ (U)) = 0.

Enforcing the hard DAG constraint Unlike NOTEARS(Zheng et al., 2018), which uses the aug-
mented Lagrangian method (ALM), we use the quadratic penalty method (QPM) (Ng et al., 2022a)
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to enforce hard DAG constraints. As noted in Ng et al. (2022a), QPM always yields experimental
results consistent with ALM. In our implementation of QPM, ρ serves as a penalty parameter that
increases iteratively across optimization steps, and optimization continues until h(B) falls below
a predefined threshold. This ensures the final solution satisfies the DAG constraint in most of the
cases, progressively tightening the constraint over iterations until convergence at a valid solution. In
CALM and the experiments with hard constraints in Section 4.3, the ρ starts at 10−5 and is gradually
increased by a factor of 3 after each subproblem iteration (a block of 40,000 iterations), continuing
until the DAG constraint h falls below a threshold of 10−8. For the optimizer, we choose the Adam
optimizer with a learning rate of 0.001.

A.3 IMPLEMENTATION DETAILS OF GUMBEL-SOFTMAX-BASED ℓ0-PENALTY AND SOFT
DAG CONSTRAINTS (SECTION 4.3 SOFT DAG CONSTRAINT EXPERIMENTS)

Here, we show implementation and parameters for experiments with soft constraint in Section 4.3.
The implementation of the Gumbel-Softmax-based ℓ0-penalty and the DAG constraint formulation
in the soft DAG constraint experiments follows the same parameter settings and implementation
details as outlined in Appendix A.2, including the Gumbel-Softmax mask gτ (U), initialization of
the logits matrix U and parameter matrix P , temperature τ , hyperparameter λ1, result thresholding
and DAG constraint formulation.

However, as these experiments use soft DAG constraints, we incorporate the DAG constraint as a
penalty term in the objective function rather than enforcing it strictly as a hard constraint. In this
case, the penalty weight for the DAG constraint, denoted as λ2, is set to 0.1. Unlike hard constraints,
which are enforced using QPM, the soft constraint is optimized with a single run of 40,000 iterations.
We use the Adam optimizer with a learning rate of 0.001.

A.4 THE WAY TO ACHIEVE INFINITY SAMPLES

A significant portion of our experiments is conducted under the assumption of infinite sample size.
To achieve infinite samples, we use the true covariance matrix, which is calculated as

Σ∗ = (I −B∗)−⊤Ω∗(I −B∗)−1.

where B∗ is the true adjacency matrix (ground truth DAG) and Ω∗ is the true noise variance matrix.
The true covariance matrix Σ∗ is then substituted into the likelihood term of the objective function,
allowing us to simulate the infinite sample case. Specifically, we substitute Σ∗ for Σ in the likelihood
term of our method’s objective function L(M ◦gτ (U)◦P ; Σ). When data standardization is required
for infinite samples, we simply compute the standardized covariance matrix, Σ∗

std and substitute Σ∗
std

for Σ in L(M ◦ gτ (U) ◦ P ; Σ).

A.5 IMPLEMENTATION DETAILS FOR STG AND TANH

In this section, we provide the implementation details and parameter selection for the STG (Stochas-
tic Gates) and Tanh (Hyperbolic Tangent) methods used to approximate the ℓ0 penalty in our exper-
iments in section 4.5 and Appendix B.

The specific details for each method are as follows:

• STG (Stochastic Gates) (Yamada et al., 2020): Following the approach of Yamada et al.
(2020), we approximate the ℓ0 penalty using a stochastic gate mechanism. We define Z ∈
Rd×d as the matrix of gates zij , which represents the mask (similar to the role of gτ (U)
in Section 4.1). zij is defined as a clipped, mean-shifted, Gaussian random variable zij =
max(0,min(1, µij + ϵij)), where ϵij ∼ N (0, σ2) and σ is fixed during training. Z is then
element-wise multiplied by the moral graph M . The ℓ0 penalty is approximated by the
sum of probabilities that the gates are active, which is

∑
i,j Φ (µij/σ) · Mij , where Φ(·)

is the standard Gaussian CDF, and Mij represents the elements of the moral graph. In
our experiments, we initialize µ = 0.5 for all elements, as indicated in the pseudocode in
Algorithm 1 of Yamada et al. (2020), and set σ = 0.5.

• Tanh (Hyperbolic Tangent) (Bhattacharya et al., 2021): Following Bhattacharya et al.
(2021), the ℓ0 penalty is approximated using the hyperbolic tangent function, given by
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∑
i,j tanh(c|Bi,j |), where Bi,j represents the elements of the weighted adjacency matrix

B, which has already been restricted by a moral graph. In our experiments, we set the
hyperparameter c to 15.

A.6 IMPLEMENTATION DETAILS FOR BASELINE METHODS

In this section, we provide implementation details for the baseline methods used in our experiments,
as outlined in Section 4.6 and Appendix C. These include the GOLEM-NV-ℓ1, NOTEARS, PC,
FGES and DAGMA. As noted by Ng et al. (2024) in their paper’s Section 5.1 Observation 2, using
a high threshold for edge removal may lead to the wrongful removal of many true edges, causing
a significant drop in recall. To mitigate this, we adopted a relatively small threshold of 0.1 in our
experiments for the GOLEM-NV-ℓ1, NOTEARS and DAGMA. Additionally, for cases where the
resulting graph was not a DAG, we applied a post-processing step to remove edges with the smallest
absolute values until the resulting graph became a valid DAG.

The specific details for each baseline method are as follows:

• GOLEM-NV-ℓ1 (Ng et al., 2020): We use the parameters recommended by Ng et al. (2020)
in their paper. The ℓ1 sparsity penalty hyperparameter λ1 was set to 2× 10−3, and the soft
DAG constraint hyperparameter λ2 was set to 5.

• NOTEARS (Zheng et al., 2018): We set the ℓ1 penalty hyperparameter λ to 0.1, and use
augmented Lagrangian method to enforce hard DAG constraints like the auther did. All
other hyperparameter setting and implementation followed the default setting of the code
of Zheng et al. (2018).

• PC (Spirtes & Glymour, 1991) and FGES (Ramsey et al., 2017): Both PC and FGES were
implemented using the py-causal package, a Python wrapper of the TETRAD project
(Scheines et al., 1998). For PC, we employed the Fisher Z test, and for FGES, we adopted
the BIC score (Schwarz, 1978) and set faithfulnessAssumed = False.

• DAGMA (Bello et al., 2022): We used the code provided by (Bello et al., 2022), setting
the loss type to l2. The coefficient of the ℓ1 penalty, λ1, was set to 0.02, following
the example provided in their code. All other hyperparameter settings and implementation
followed the default settings in the code of Bello et al. (2022).

B ADDITIONAL COMPARISON OF ℓ0 APPROXIMATION METHODS FOR
50-NODE ER4 GRAPHS AND 100-NODE ER1 GRAPHS

This section serves as a supplement to the results presented in Section 4.5, comparing the perfor-
mance of different ℓ0 approximation methods and the original GOLEM-NV-ℓ1 on 50-node ER4
graphs and 100-node ER1 graphs. For all methods here, We used infinite samples to eliminate finite
sample error. As shown in Table 6, the results here are consistent with the findings in Section 4.5.

Table 6: Comparison of our method using different ℓ0 approximations and original GOLEM-NV-ℓ1 for 50-node
ER4 graphs and 100-node ER1 graphs under both data standardization and no data standardization.

50-node ER4 graphs
Standardized Non-Standardized

SHD of CPDAG Precision of Skeleton Recall of Skeleton SHD of CPDAG Precision of Skeleton Recall of Skeleton
CALM 131.6 ± 12.3 0.70 ± 0.02 0.75 ± 0.02 139.4 ± 11.3 0.67 ± 0.02 0.77 ± 0.02
CALM-STG 140.8 ± 12.3 0.70 ± 0.02 0.71 ± 0.03 150.5 ± 8.5 0.69 ± 0.02 0.65 ± 0.02
CALM-Tanh 186.2 ± 4.5 0.69 ± 0.02 0.41 ± 0.03 251.6 ± 9.6 0.46 ± 0.02 0.45 ± 0.02
GOLEM-NV-ℓ1 212.2 ± 4.6 0.58 ± 0.03 0.22 ± 0.02 294.7 ± 8.3 0.29 ± 0.01 0.20 ± 0.02

100-node ER1 graphs
Standardized Non-Standardized

SHD of CPDAG Precision of Skeleton Recall of Skeleton SHD of CPDAG Precision of Skeleton Recall of Skeleton
CALM 16.0 ± 2.9 0.96 ± 0.01 0.99 ± 0.00 28.0 ± 3.6 0.92 ± 0.01 0.98 ± 0.01
CALM-STG 11.5 ± 2.2 0.97 ± 0.01 0.99 ± 0.00 79.6 ± 3.5 0.75 ± 0.01 0.95 ± 0.01
CALM-Tanh 26.2 ± 3.0 0.93 ± 0.01 0.97 ± 0.01 103.4 ± 3.2 0.67 ± 0.01 0.88 ± 0.02
GOLEM-NV-ℓ1 109.2 ± 4.2 0.59 ± 0.02 0.60 ± 0.07 217.1 ± 8.3 0.36 ± 0.01 0.70 ± 0.03

We observe that our method using all three different ℓ0 approximations—Gumbel-Softmax, STG,
and Tanh—consistently outperform GOLEM-NV-ℓ1 in both 50-node ER4 graphs and 100-node ER1
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graphs. This reinforces the effectiveness of combining ℓ0 approximations, moral graph and hard
constraints. Among the three ℓ0 approximation methods, Gumbel-Softmax achieves the best per-
formance across both graph structures, with strong results observed in both standardized and non-
standardized settings. STG shows comparable results to Gumbel-Softmax in the standardized data,
but its performance in non-standardized data lags behind that of Gumbel-Softmax, especially in the
case of 100-node ER1 graphs.

C COMPARISON WITH BASELINE METHODS WITHOUT DATA DATA
STANDARDIZATION

This appendix serves as a supplement to the results presented in Section 4.6, where we compared the
performance of CALM against several baseline methods after data standardization. Here, we provide
a comparison of the same methods on 50-node ER1, 50-node ER4, and 100-node ER1 graphs before
data standardization, using 1000 and 106 samples. In this section, the moral graph in CALM is
estimated from finite samples. Specifically, for the 1000-sample experiments, the moral graph is
estimated from 1000 samples, and for the 106-sample experiments, the moral graph is estimated
from 106 samples. This ensures consistency in the evaluation across different sample sizes.

It is important to clarify that the results without data standardization are not as significant as those
presented in Section 4.6, where data standardization was applied. Nonetheless, we include this
comparison in Table 7 for completeness.

Table 7: Comparison with baseline methods for 50-node ER1, 50-node ER4, and 100-node ER1 graphs without
data standardization, using 1000 and 106 samples.

50-node ER1 graphs
1000 Samples 106 Samples

SHD of CPDAG Precision of Skeleton Recall of Skeleton SHD of CPDAG Precision of Skeleton Recall of Skeleton
CALM 15.3 ± 3.4 0.90 ± 0.02 0.98 ± 0.00 10.7 ± 3.4 0.94 ± 0.02 0.98 ± 0.01
GOLEM-NV-ℓ1 119.4 ± 5.6 0.35 ± 0.02 0.76 ± 0.02 117.3 ± 6.3 0.36 ± 0.02 0.75 ± 0.03
NOTEARS 25.7 ± 2.4 0.74 ± 0.02 0.98 ± 0.01 14.7 ± 2.1 0.86 ± 0.02 0.98 ± 0.01
PC 11.0 ± 1.4 0.98 ± 0.01 0.92 ± 0.01 2.8 ± 0.8 0.99 ± 0.01 0.99 ± 0.00
FGES 8.4 ± 2.4 0.94 ± 0.02 0.98 ± 0.00 1.3 ± 0.9 1.00 ± 0.00 1.00 ± 0.00

50-node ER4 graphs
1000 Samples 106 Samples

SHD of CPDAG Precision of Skeleton Recall of Skeleton SHD of CPDAG Precision of Skeleton Recall of Skeleton
CALM 174.6 ± 7.8 0.60 ± 0.01 0.71 ± 0.02 151.4 ± 10.2 0.65 ± 0.02 0.75 ± 0.02
GOLEM-NV-ℓ1 293.4 ± 8.6 0.29 ± 0.01 0.21 ± 0.02 291.2 ± 7.8 0.29 ± 0.01 0.20 ± 0.02
NOTEARS 191.5 ± 21.3 0.54 ± 0.03 0.91 ± 0.01 178.4 ± 14.6 0.55 ± 0.03 0.92 ± 0.01
PC 202.9 ± 2.0 0.61 ± 0.02 0.22 ± 0.01 233.1 ± 3.4 0.47 ± 0.01 0.32 ± 0.01
FGES 425.6 ± 23.2 0.33 ± 0.02 0.80 ± 0.01 750.0 ± 48.3 0.23 ± 0.02 0.99 ± 0.00

100-node ER1 graphs
1000 Samples 106 Samples

SHD of CPDAG Precision of Skeleton Recall of Skeleton SHD of CPDAG Precision of Skeleton Recall of Skeleton
CALM 37.0 ± 4.0 0.86 ± 0.01 0.98 ± 0.01 29.3 ± 3.4 0.92 ± 0.01 0.98 ± 0.01
GOLEM-NV-ℓ1 230.0 ± 7.9 0.35 ± 0.01 0.75 ± 0.02 215.1 ± 9.4 0.36 ± 0.01 0.69 ± 0.04
NOTEARS 74.7 ± 3.7 0.63 ± 0.01 0.99 ± 0.01 28.8 ± 5.2 0.84 ± 0.03 0.99 ± 0.00
PC 24.5 ± 1.5 0.95 ± 0.01 0.89 ± 0.01 4.2 ± 0.8 0.97 ± 0.01 1.00 ± 0.00
FGES 12.1 ± 1.7 0.95 ± 0.01 0.98 ± 0.00 1.0 ± 0.8 1.00 ± 0.00 1.00 ± 0.00

From Table 7, we can find: Firstly, even without data standardization, CALM continues to outper-
form GOLEM-NV-ℓ1 in all cases, demonstrating the robustness of our approach. In particular, the
incorporation of the Gumbel-Softmax-based ℓ0 approximation, hard DAG constraints, and moral
graph still contributes to a substantial improvement over the original GOLEM-NV-ℓ1.

Secondly, NOTEARS, which is designed specifically for cases with equal noise variance (EV), per-
forms better before data standardization. This is because, although the noise ratio is set to 16 in the
data, the non-equal variance is not as pronounced in the non-standardized data. In contrast, after
standardization, the noise ratio becomes more extreme, emphasizing the non-equal variance nature
of the data. This explains why NOTEARS performs better in non-standardized settings compared to
its performance in standardized settings, even marginally outperforming the CALM in the 100-node
ER1 graph with 106samples. However, this advantage is not meaningful because NOTEARS is in-
herently based on the EV formulation, which does not align with the non-equal noise variance (NV)
setting of our experiments.
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Even so, CALM generally surpasses NOTEARS in the non-standardized setting, particularly for the
majority of scenarios.

Compared to discrete methods, although the performance gap between CALM and PC slightly
widens in the 1000-sample experiments without data standardization, this difference is not sig-
nificant. One can always standardize the data, and thus, the results from Section 4.6 should be
considered more relevant for real-world applications. The pre-standardization results provided here
mainly offer insight into the robustness of our method across different settings.

Finally, just as in the results after data standardization in Section 4.6, in more dense graphs, the
50-node ER4 graphs, CALM demonstrates superior performance compared to the PC and FGES
methods. This result suggests that in higher-density graphs, CALM enables continuous optimization
methods to outperform discrete methods.

D COMPARISON OF CALM AND COLIDE SCORE FUNCTIONS

In this section, we compare two different objective functions for linear gaussian non-equal noise
variance (NV) formulations: the likelihood-based objective used in GOLEM-NV and CALM and
the objective proposed by Saboksayr et al. (2023), named CoLiDE-NV. For a fair comparison, we
apply the Gumbel-Softmax approximation for ℓ0 to CoLiDE-NV as well, incorporating hard DAG
constraints and a moral graph, similar to CALM.

Originally, Saboksayr et al. (2023) propose CoLiDE-NV’s score function as

S(B; Σ;Ω) =
1

2
Tr

(
Ω− 1

2 (I −B)⊤Σ(I −B)
)
+

1

2
Tr(Ω

1
2 ) + λ1∥B∥1.

Unlike the GOLEM-NV model, CoLiDE-NV did not profile out the noise, so the Ω was kept in the
score function. Here, Σ is the sample covariance matrix. Also, CoLiDE-NV still used the ℓ1 penalty.
Since we have shown in Section 3 that ℓ1 penalty often leads to inconsistent solutions, we substitute
the ℓ1 penalty in CoLiDE-NV with the ℓ0 penalty, approximated by Gumbel-Softmax. Like CALM,
we also incorporate hard DAG constraints and a moral graph to CoLiDE-NV as well. This yields the
CoLiDE-ℓ0-hard-moral formulation by defining G(B; Σ;Ω) = 1

2Tr
(
Ω− 1

2 (I −B)⊤Σ(I −B)
)
+

1
2Tr(Ω

1
2 ),

min
U∈Rd×d,P∈Rd×d

G(M ◦ gτ (U) ◦ P ; Σ;Ω) + λ1∥M ◦ gτ (U)∥1, subject to h(M ◦ gτ (U)) = 0.

Table 8: Comparison of CALM and CoLiDE-ℓ0-hard-moral across 50-node ER1, 50-node ER4, and 100-node
ER1 graphs under both No Standardization and Standardization.

50-node ER1 graphs
No Standardization Standardization

SHD of CPDAG Precision of Skeleton Recall of Skeleton SHD of CPDAG Precision of Skeleton Recall of Skeleton

CALM 9.9 ± 3.4 0.95 ± 0.02 0.99 ± 0.01 5.5 ± 1.9 0.98 ± 0.01 0.99 ± 0.00
CoLiDE-ℓ0-hard-moral 42.5 ± 2.6 0.73 ± 0.02 0.99 ± 0.00 56.2 ± 2.7 0.69 ± 0.02 0.98 ± 0.01

50-node ER4 graphs
No Standardization Standardization

SHD of CPDAG Precision of Skeleton Recall of Skeleton SHD of CPDAG Precision of Skeleton Recall of Skeleton

CALM 139.4 ± 11.3 0.67 ± 0.02 0.77 ± 0.02 131.6 ± 12.3 0.70 ± 0.02 0.75 ± 0.02
CoLiDE-ℓ0-hard-moral 157.2 ± 6.2 0.62 ± 0.01 0.82 ± 0.01 185.4 ± 3.4 0.67 ± 0.01 0.51 ± 0.01

100-node ER1 graphs
No Standardization Standardization

SHD of CPDAG Precision of Skeleton Recall of Skeleton SHD of CPDAG Precision of Skeleton Recall of Skeleton

CALM 28.0 ± 3.6 0.92 ± 0.01 0.98 ± 0.01 16.0 ± 2.9 0.96 ± 0.01 0.99 ± 0.00
CoLiDE-ℓ0-hard-moral 88.8 ± 4.2 0.71 ± 0.01 0.99 ± 0.00 114.0 ± 3.5 0.66 ± 0.01 0.97 ± 0.01

We also use the quadratic penalty method (QPM) (Ng et al., 2022a) to enforce hard DAG constraints
in CoLiDE-ℓ0-hard-moral and the results are shown in Table 8. Table 8 summarizes the performance
of CALM and CoLiDE-ℓ0-hard-moral across linear gaussian model with 50-node ER1, 50-node
ER4, and 100-node ER1 graphs under both data standardization and no data standardization. Here,
we consider infinite samples. The results show that CALM consistently outperforms CoLiDE-ℓ0-
hard-moral in all cases.
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This demonstrates that CALM’s likelihood-based objective is better suited for non-equal noise vari-
ance scenarios in the linear Gaussian case. The CoLiDE-ℓ0-hard-moral, despite using the correct ℓ0
penalty approximation, does not achieve as good results due to its alternative objective CoLiDE-NV.

E ADDITIONAL RESULTS ON OTHER GRAPHS

Table 9: Comparison with baseline methods for 20-node ER4, 50-node SF4, 70-node ER4, and 200-node ER4
graphs under data standardization, using 1000 samples.

20-node ER4 graphs (1000 Samples with Data Standardization)
SHD of CPDAG Precision of Skeleton Recall of Skeleton

CALM 64.3 ± 3.1 0.67 ± 0.03 0.64 ± 0.05
GOLEM-NV-ℓ1 85.7 ± 3.5 0.58 ± 0.03 0.51 ± 0.06
NOTEARS 85.3 ± 1.8 0.70 ± 0.05 0.20 ± 0.01
PC 81.3 ± 1.5 0.65 ± 0.02 0.25 ± 0.01
FGES 114.0 ± 8.5 0.48 ± 0.02 0.82 ± 0.02
DAGMA 92.7 ± 3.6 0.59 ± 0.04 0.38 ± 0.02

50-node SF4 graphs (1000 Samples with Data Standardization)
SHD of CPDAG Precision of Skeleton Recall of Skeleton

CALM 129.3 ± 22.4 0.68 ± 0.05 0.72 ± 0.03
GOLEM-NV-ℓ1 176.7 ± 2.1 0.80 ± 0.05 0.15 ± 0.01
NOTEARS 189.3 ± 1.1 0.77 ± 0.01 0.21 ± 0.03
PC 160.3 ± 4.3 0.91 ± 0.03 0.26 ± 0.01
FGES 157.7 ± 24.4 0.60 ± 0.04 0.74 ± 0.04
DAGMA 319.3 ± 3.8 0.38 ± 0.02 0.45 ± 0.02

70-node ER4 graphs (1000 Samples with Data Standardization)
SHD of CPDAG Precision of Skeleton Recall of Skeleton

CALM 180.7 ± 18.3 0.69 ± 0.03 0.78 ± 0.03
GOLEM-NV-ℓ1 291.0 ± 3.6 0.58 ± 0.03 0.19 ± 0.02
NOTEARS 291.0 ± 2.6 0.70 ± 0.04 0.15 ± 0.02
PC 287.0 ± 2.6 0.58 ± 0.02 0.21 ± 0.01
FGES 675.0 ± 28.5 0.29 ± 0.01 0.81 ± 0.03
DAGMA 338.0 ± 11.0 0.50 ± 0.01 0.33 ± 0.03

200-node ER4 graphs (1000 Samples with Data Standardization)
SHD of CPDAG Precision of Skeleton Recall of Skeleton

CALM 351.0 ± 67.1 0.77 ± 0.04 0.86 ± 0.03
GOLEM-NV-ℓ1 779.0 ± 9.4 0.78 ± 0.04 0.19 ± 0.04
NOTEARS 809.7 ± 16.3 0.72 ± 0.04 0.17 ± 0.01
PC 780.0 ± 10.6 0.62 ± 0.02 0.23 ± 0.02
FGES 1684.7 ± 205.9 0.31 ± 0.03 0.80 ± 0.02
DAGMA 921.7 ± 34.8 0.51 ± 0.04 0.32 ± 0.01

We have expanded our experiments to include additional graph sizes and structures, specifically
evaluating 20-node ER4, 50-node SF4, 70-node ER4, and 200-node ER4 graphs with 1000 samples
under data standardization.
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From the results in Table 9, we observe that CALM consistently outperforms other methods, includ-
ing PC and FGES, on these dense graphs. This demonstrates the robustness and effectiveness of
CALM even in challenging dense graph scenarios.

F EXPERIMENTS ON EQUAL NOISE VARIANCE CASES

We conducted experiments on 50-node ER1 graphs with 1000 samples, comparing CALM against
other baselines under equal noise variances both with and without data standardization. The re-
sults are presented in Table 10. From the results, we observe that under data standardization,
CALM shows clear advantages over other differentiable methods (NOTEARS, GOLEM-NV-ℓ1,
and DAGMA), achieving superior SHD of CPDAG, precision of skeleton and recall of skeleton.
The performance of CALM is comparable to PC but remains significantly inferior to FGES. How-
ever, comparisons with PC and FGES are not the main focus of this paper, as the challenges of
non-convexity in differentiable methods make them less competitive in sparse graphs compared to
discrete methods.

Before data standardization, NOTEARS and DAGMA perform better than CALM. This is expected,
as both algorithms are specifically designed for the equal noise variance case. However, after
data standardization, where noise variances become unequal, the performance of NOTEARS and
DAGMA drops significantly. As data standardization is a common and practical preprocessing step
in real-world applications, the performance after standardization is more relevant. In this context,
CALM consistently outperforms other differentiable methods.

Table 10: Performance comparison of CALM and baselines for 50-node ER1 graphs under equal noise variance.
Results are shown for standardized and non-standardized data with 1000 samples.

Standardized Data
Method SHD of CPDAG Precision of Skeleton Recall of Skeleton

CALM 16.3 ± 4.7 0.91 ± 0.02 0.98 ± 0.01
GOLEM-NV-ℓ1 68.7 ± 5.9 0.51 ± 0.03 0.89 ± 0.04
NOTEARS 40.3 ± 3.6 0.79 ± 0.03 0.88 ± 0.03
PC 12.7 ± 2.7 0.98 ± 0.00 0.93 ± 0.02
FGES 0.3 ± 0.3 0.99 ± 0.01 1.00 ± 0.00
DAGMA 68.3 ± 8.0 0.61 ± 0.04 0.97 ± 0.01

Non-Standardized Data
Method SHD of CPDAG Precision of Skeleton Recall of Skeleton

CALM 17.3 ± 5.1 0.90 ± 0.02 0.99 ± 0.01
GOLEM-NV-ℓ1 125.7 ± 11.6 0.36 ± 0.03 0.86 ± 0.02
NOTEARS 5.0 ± 4.1 0.94 ± 0.05 1.00 ± 0.01
PC 12.7 ± 2.7 0.98 ± 0.00 0.93 ± 0.02
FGES 0.3 ± 0.3 0.99 ± 0.01 1.00 ± 0.00
DAGMA 0.3 ± 0.3 0.99 ± 0.01 1.00 ± 0.00

G REAL-WORD DATA

We conducted experiments on the Sachs dataset (Sachs et al., 2005), which is commonly utilized in
probabilistic graphical model research to analyze the expression levels of proteins and phospholipids
within human cells. The dataset contains d=11 variables and n=853 samples, with a ground truth of
17 edges. Our method, CALM, achieved an SHD of CPDAG of 12, outperforming GOLEM-NV-ℓ1
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(SHD of CPDAG: 13) and NOTEARS (SHD of CPDAG: 22). These results demonstrate the strong
performance of CALM on real-world data.

H TRADE-OFF BETWEEN RUNTIME AND PERFORMANCE IN CALM

There is a trade-off between the ℓ0-based methods proposed and existing methods. While CALM
does not demonstrate a runtime advantage over other differentiable methods on small and sparse
graphs, it may even require less time than some alternatives on larger graphs. For instance, on 50-
node SF4 graphs, CALM takes approximately 2500 seconds per run, compared to 20 seconds for
NOTEARS and 150 seconds for GOLEM. However, on 200-node ER4 graphs, CALM takes around
4500 seconds per run, whereas NOTEARS takes about 6500 seconds and GOLEM approximately
3000 seconds.

This demonstrates that while CALM’s runtime is not the fastest, it scales reasonably well with the
graph size, and its performance does not degrade disproportionately as the number of nodes grows.
Furthermore, CALM delivers superior results in terms of structural hamming distance (SHD) of
CPDAG, skeleton precision, and skeleton recall, particularly for dense and large graphs. These
significant performance improvements justify the additional computational cost.

We believe this trade-off between runtime and performance is acceptable, given the substantial gains
in accuracy compared to other differentiable methods.
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