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Abstract

Multitask learning for face forgery detection has experienced impressive successes1

in recent years. Nevertheless, the semantic relationships among different forgery2

detection tasks are generally overlooked in previous methods, which weakens3

knowledge transfer across tasks. Moreover, previously adopted multitask learning4

schemes require human intervention on allocating model capacity to each task and5

computing the loss weighting, which is bound to be suboptimal. In this paper,6

we aim at automated multitask learning for face forgery detection from a joint7

embedding perspective. We first define a set of coarse-to-fine face forgery detection8

tasks based on face attributes at different semantic levels. We describe the ground-9

truth for each task via a textural template, and train two encoders to jointly embed10

visual face images and textual descriptions in the shared feature space. In such a11

manner, the semantic closeness between two tasks is manifested as the distance12

in the learned feature space. Moreover, the capacity of the image encoder can be13

automatically allocated to each task through end-to-end optimization. Through joint14

embedding, face forgery detection can be performed by maximizing the feature15

similarity between the test face image and candidate textual descriptions. Extensive16

experiments show that the proposed method improves face forgery detection in17

terms of generalization to novel face manipulations. In addition, our multitask18

learning method renders some degree of model interpretation by providing human-19

understandable explanations.20

1 Introduction21

The emergence of deep generative models [1, 34, 67, 71] has significantly simplified and automated22

the process of generating realistic counterfeit face images, popularly known as DeepFake. The23

prevalence of falsified face images can erode the reliability and credibility of digital visual information.24

Additionally, the exploitation and manipulation of such technologies pose a threat to individual rights25

and national security.26

Traditional DeepFake detectors were largely influenced by classic photo forensics [21] to expose27

forgery traces by examining statistical anomalies [51, 58], visual artifacts [32, 46, 50, 51, 59],28

and physical and geometric inconsistencies [15, 33, 35, 56]. With the rapid development of deep29

learning, there has recently been a growing consensus on exploiting multitask learning for face30

forgery detection [8, 10, 19, 41, 55, 80, 81]. The underlying assumption is that the primary task31

(i.e., global face forgery classification) is likely to benefit from other highly relevant auxiliary tasks32

through knowledge transfer. Representative auxiliary tasks include manipulation type (and degree)33

classification [10], manipulation parameter estimation [75], blending boundary detection [41], spatial34

forgery localization [28], face reconstruction [8], and face segmentation [55].35
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The prevailing multitask learning paradigm for face forgery detection follows a discriminative36

approach, predicting multiple target outputs, one for each task, directly from the input face image.37

Such a paradigm suffers from two main drawbacks. First, semantic relationships across tasks are38

overlooked, which weakens knowledge transfer. For example, irrelevant information (e.g., every39

detail of the face image in face reconstruction [8]) may be transferred across tasks. Second, extensive40

human expertise should be involved, when determining task-agnostic (and task-specific) model41

parameters and the loss weightings.42

In this paper, we explore multitask learning for face forgery detection from a joint embedding43

perspective [38]. In the joint embedding architecture, both the input and the target output are encoded44

into latent representations in the shared feature space such that the irrelevant information can be45

discarded from feature encoding. More importantly, the semantic closeness between two tasks can46

be naturally modeled as the distance in the learned feature space, which is subsequently end-to-47

end optimized to facilitate knowledge transfer across multiple tasks. Meanwhile, joint embedding48

gives us a great opportunity to automate multitask learning in terms of allocating model capacity49

(i.e., specifying task-agnostic and task-specific model parameters). In the context of face forgery50

detection, the parameters of the face image encoder are shared across all tasks, whose capacity is51

dynamically adjusted through end-to-end optimization. In addition, the multitask loss weightings can52

be automatically computed in either theoretical [45, 65] or empirical [13, 36, 47] ways.53

More concretely, we first introduce three coarse-to-fine face forgery detection tasks based on face54

(2) A photo of a face with the global
attribute of expression altered

(1) A photo of a fake face

(3) A photo of a face with the local
attribute of mouth altered

Figure 1: Illustration of a fake face image
with its textural descriptions of three coarse-
to-fine face forgery detection tasks at different
semantic levels.

attributes at different semantic levels. Leveraging55

the recent advances in vision-language correspon-56

dence as joint embedding [61], we encode the binary57

labels of the three tasks via textural prompts, and58

thus the semantic dependencies among tasks can be59

represented with the textual embeddings in the rep-60

resentation space. Fig. 1 shows an example, in which61

we describe a fake face image with a set of coarse-62

to-fine textual descriptions: 1) “A photo of a fake63

face,” 2) “A photo of a face with the global attribute64

of expression altered,” and 3) “A photo of a face with65

the local attribute of mouth altered.” By jointly embedding the face image and all its associated66

textural prompts through a popular vision-language model - CLIP [61], face forgery detection can67

then be performed by maximizing the vision-language correspondence.68

Our contributions are threefold. First, we formulate multitask face forgery detection from a joint69

embedding perspective. Second, we define a set of coarse-to-fine face forgery detection tasks with70

corresponding textural templates to describe (fake) face images. Compared to previous multitask71

learning schemes, our instantiation gives rise to a more interpretable face forgery detector. Third,72

we conduct extensive experiments on five popular face forgery detection datasets, and show that our73

method performs favorably against state-of-the-art (SOTA) detectors in terms of generalization to74

novel face manipulations.75

2 Related Work76

In this section, we briefly review the literature on face forgery detection, multitask learning, and joint77

embedding architectures.78

2.1 Face Forgery Detection79

Many face forgery detection methods usually explore the specific clues to detect the forgery inspired80

by the traditional photo forensics [15, 32, 33, 35, 46, 50, 51, 56], in which they detect eye blink-81

ing [42], head pose [77], pupil shape [24], lipreading [26], statistical anomalies [43, 60, 66, 81],82

corneal specularity [29], and idiosyncratic behavioral patterns of a well-known person [3]. In83

recent years, there is a growing consensus of exploiting multitask learning on face forgery detec-84

tion [8, 10, 41, 55, 81]. Besides the main face forgery classification task, these methods include85

auxiliary tasks to get performance improvement by knowledge transfer across tasks, such as manipula-86

tion type (and degree) classification [10], manipulation parameter estimation [75], blending boundary87

detection [41], spatial forgery localization [28], face reconstruction [8], and face segmentation [55].88
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With the development of deep learning, some advanced networks are employed to facilitate the face89

forgery detection based on multiple tasks, such as two-stream CNN [82], self-attention model [80],90

and vision transformers [19]. Additionally, more advanced training strategies are also utilized to91

enhance the forgery detectors, including adversarial learning [10], reconstruction learning [8], and92

meta learning [11]. However, the previous learning paradigm and human intervention are sub-optimal93

for multitask learning on face forgery detection. In this paper, we explore an automated multitask94

learning method for face forgery detection from the joint embedding perspective, where multiple95

tasks are encoded into the language prompts, and vision-language correspondence is transferred96

across tasks as the primary knowledge.97

2.2 Multitask Learning98

Multitask learning aims to jointly learn multiple related tasks to improve the generalization perfor-99

mance of all tasks by leveraging the knowledge contained in each [79]. Two main groups are model100

parameter sharing and loss weighting. The former involves both manual specifications of shared pa-101

rameters [4, 22, 37, 54] and learning to determine parameters for specific tasks [52, 64, 68, 74]. Loss102

weighting is typically divided as follows: Pareto Optimization (PO) methods and weight adaption103

methods. PO methods formulate multitask learning as a multi-objective optimization [45, 65], and104

find a Pareto stationary solution for the optimal loss weighting. Weight adoption methods adaptively105

adjust the loss weights during training based on pre-defined heuristics, such as uncertainty [36],106

gradient normalization [13], and loss descending rate [47]. In this paper, we consider multitask107

learning from the joint embedding perspective, in which the semantic closeness between tasks can be108

manifested as the distance in the learned feature space. Moreover, we assume all parameters in the109

image encoder are shared, whose capacity is dynamically allocated to each task during end-to-end110

optimization. We also adopt the method in [47] for dynamic loss weighting.111

2.3 Joint Embedding Architectures112

Joint embedding architectures (JEA) [38] aim at learning to output similar embeddings for compatible113

inputs, x and y, and dissimilar embeddings for incompatible inputs, which is different from the114

discriminative approaches that predict y directly from x. Becker et al. [6] propose the first JEA for115

maximizing mutual information between representations from two views of the same scene. Later on,116

Bromley et al. [7] propose a contrastive method of JEA for signatures verification. After a long hiatus,117

JEA has been re-explored in face verification [14] and recognition [69], dimensionality reduction [25],118

and video feature learning [70]. With the emergence of self-supervised learning, the use of JEA has119

explored in recent years with methods training on contrastively (e.g., PIRL [53], MoCo [27], and120

SimCLR [12]) or non-contrastively (e.g., BYOL [23], Barlow Twins [78], and I-JEPA [5]). More121

recently, the emerging vision-language foundation models [30, 61] can also be grouped into JEA,122

in which two separate encoders encode the compatible visual (i.e., x) and textual (i.e., y) inputs123

into similar embeddings and contrast incompatible visual and textual embeddings. In this paper, we124

use CLIP [61], a joint vision-language model pretrained on massive image-text pairs, to implement125

the JEA to aid DeepFake detection by vision-language correspondence in the embedding space.126

Moreover, we end-to-end fine-tune the CLIP in the context of automated multitask learning.127

3 Method128

In this section, we present multitask learning for face forgery detection using a joint embedding129

approach, including preliminaries of the problem formulation, language prompts over multiple tasks,130

and specifications of loss functions. The main joint embedding framework for face forgery detection131

is shown in Fig. 2.132

3.1 Preliminaries133

Given a face image x ∈ RN , a face forgery detector fθ : RN 7→ R aims to predict a binary label134

y for the authenticity of x, i.e., 0 as the real or 1 as the fake. Considering that existing forged face135

images are mainly generated by modifying face components/attributes, we include two other related136

tasks - global face manipulation detection and local face manipulation detection. We consider three137
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Figure 2: Proposed joint embedding paradigm for multitask face forgery detection.

face attributes (i.e., expression, identity, and physical consistency1) for global face manipulations, and138

four face attributes (i.e., eye, illumination, mouth, and nose) for local face manipulations. Notably, a139

face image may contain multiple attribute labels.140

3.2 Multitask Language Prompts141

For each face attribute label from multiple tasks, we encode the ground-truth labels via language142

prompts. In specific, we design textual templates as follows. 1) binary level: a photo of a {c} face,143

where c ∈ C = {real, fake}; 2) global-attribute level: A photo of a face with the global attribute of144

{g} altered, where g ∈ G = {expression, identity, physical consistency}; and 3) local-attribute level:145

A photo of a face with the local attribute of {l} altered, where l ∈ L = {eye, illumination, mouth,146

nose}. Inspired by contrastive methods [27, 53] in the joint embedding architecture, we also introduce147

contrastive language prompts, which are opposite in meaning to the original textual templates. Thus,148

we can have a contrastive prompts pair for each attribute label, as follows: global-attribute level:149

{(1) A photo of a face with the global attribute of {g} altered, (2) A photo of a face with the global150

attribute of {g} unaltered}; local-attribute level: {(1) A photo of a face with the local attribute of151

{l} altered, (2) A photo of a face with the local attribute of {l} unaltered}. Notably, the binary level152

prompts naturally have the property of contrastive prompt pairing. In this way, multiple tasks are153

encoded into a text corpus T , where each language prompt represents a ground-truth label y of the154

corresponding task, and their semantic closeness can be learned through joint embedding.155

3.3 Multitask Learning via Joint Embedding156

Joint Embedding Formulation. Given the input face image x and the set of possible outputs Y ,157

we predict the output by minimizing an energy-based model [39], i.e., ŷ = argminy∈Y E(x, y), in158

the joint embedding architecture. In this paper, we construct E by two encoders: one image encoder159

fϕ : RN 7→ RK for encoding the face image and one text encoder gφ : T 7→ RK for encoding the160

language prompts, parameterized by ϕ and φ, respectively.161

The ideal energy landscape of joint embedding satisfies that the energy is low for similar embeddings162

of compatible inputs, while energy is high for dissimilar embeddings [39]. Thus, we calculate163

the probability of similarity p̂(·|x) between the visual embedding and textual embeddings for the164

following optimization. Let u ∈ RK be the visual embedding, and let v ∈ RK and v̄ ∈ RK be the165

textual embeddings from the two prompts opposing in meaning, we then estimate p̂(·|x) as166

p̂(·|x) = 1

1 + e−(s−s̄)
, (1)

where167

s =
⟨u,v⟩
∥u∥∥v∥

and s̄ =
⟨u, v̄⟩
∥u∥∥v̄∥

. (2)

1We refer the interested readers to the Appendix for the detailed explanations.
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⟨·, ·⟩ denotes the inner product and ∥ · ∥ represents the ℓ2-norm. The probability p̂(·|x) is the168

abbreviation of p̂(c|x), p̂(g|x), and p̂(l|x) according to a specific task, and a larger probability169

indicates a closer match to the corresponding semantic meaning of v.170

Losses for Multitask Learning. We use the statistical distance measure in the form of fidelity171

loss [73] to calculate the losses for multitask learning. Given the predicted category probability172

p̂(c|x), we design the loss at the binary level as173

ℓ1(x;θ) = 1−
√

p(c|x)p̂(c|x)−
√
(1− p(c|x))(1− p̂(c|x)), (3)

where θ = {ϕ,φ} indicates the learnable parameters in image and language encoders, and p(c|x) = 1174

if x belongs to the c category or otherwise we have p(c|x) = 0. In our setting, a face image can be175

assigned with labels regarding one or more global face attribute manipulations, which forms a typical176

multi-label classification problem. Therefore, the averaged loss at the global-attribute level can be177

defined as follows,178

ℓ2(x;θ) =
1

|G|
∑
g∈G

(
1−

√
p(g|x)p̂(g|x)−

√
(1− p(g|x))(1− p̂(g|x))

)
, (4)

where p(g|x) = 1 if x belongs to the g category, otherwise we have p(g|x) = 0. Since the179

manipulations over different local face attributes may appear in one face image, we also consider it180

as a multi-label classification task, and the loss at the local-attribute level is:181

ℓ3(x;θ) =
1

|L|
∑
l∈L

(
1−

√
p(l|x)p̂(l|x)−

√
(1− p(l|x))(1− p̂(l|x))

)
, (5)

where p(l|x) = 1 if x belongs to the l category.182

Given a minibatch of training data B at the t-th iteration, we evaluate the overall loss function via the183

weighted sum of the individual losses in different levels as follows,184

ℓ(B, t;θ) = 1

|B|
∑
x∈B

(
λ1(t)ℓ1(x;θ) + λ2(t)ℓ2(x;θ) + λ3(t)ℓ3(x;θ)

)
. (6)

Here, the weighting vector λ(t) = [λ1(t), λ2(t), λ3(t)]
⊺ at the t-th iteration is automatically com-185

puted according to the relative descending rate [47]:186

λi(t) =
3 exp (wi(t− 1)/τ)∑3
j=1 exp (wj(t− 1)/τ)

, wherewi(t− 1) =
ℓi(t− 1)

ℓi(t− 2)
, (7)

and τ is a fixed temperature parameter.187

4 Experiments188

4.1 Experimental Setup189

Datasets. We adopt the widely used FF++ [63] dataset for training. It contains 1, 000 real videos,190

among which 720 and 140 are used for training and validation, respectively, and the remaining191

140 are reserved for testing. All videos are manipulated by four face forgery methods, including192

Deepfakes [1], Face2Face [72], FaceSwap [2], and NeuralTexures [71], with three compression levels,193

i.e., no compression (denoted as Raw), slight compression with quantization parameter QP = 23194

(denoted as C23), and severe compression with QP = 40 (denoted as C40). Following [10, 11, 26],195

C23 version is adopted by default in our experiments. We evaluate the generalizability of the196

proposed method on four popular DeepFake benchmarks, including FaceShifter (FSh) [40], Celeb-DF197

(CDF) [44], DeeperForensics-1.0 (DF-1.0) [31], and DeepFake Detection Challenge (DFDC) [18].198

Implementation Details. To facilitate the multitask learning via joint embedding paradigm, we need199

face images associated with the proposed textual templates. In this paper, we adopt FF++ [63] to200

enrich the training data. Following the general generation procedures (i.e., detecting face and then201

blending two faces according to the region-of-interest mask) in [10, 41], we focus on supplementing202

the tampering of “expression” on “eye” and individual face attribute that is linked to “physical203

consistency”, i.e., “eye”, “illumination”, “mouth”, and “nose”. Face attribute manipulations associated204

with other textual prompts are already included in FF++.205
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As for face pre-processing, we use RetinaFace [17] to detect faces and save the aligned face images206

as input with a size of 317× 317. As in [63], we only extract the largest face and use an enlarged207

crop, 1.3× the tight crop produced by the face detector.208

As for the training, we use CLIP [61] to implement the joint embedding architecture, where we209

adopt ViT-B/32 [20] as the visual encoder and GPT-2 [62] with a base size of 63M-parameter as the210

text encoder. We then train the model by minimizing the loss using AdamW [49] with a decoupled211

weight decay of 1× 10−3. The initial learning rate is set to 1× 10−7, which changes following a212

cosine annealing schedule [48]. The model is optimized for 36 epochs with mini-batches of 32. Data213

augmentation strategy is also applied during training, which is a common trick in the face forgery214

detection [41, 76, 80], and details can be found in Sec. 4.3. A single NVIDIA RTX 3090 GPU is215

used during training.216

4.2 Comparison with SOTA Methods217

We compare our method with the several SOTA methods, including Face X-ray [41], PCL [81],218

MADD [80], LipForensics [26], RECCE [8], SBI [66], ICT [19], SLADD [10], and OST [11],219

to demonstrate its superiority. The test performance on five datasets are listed in Table 1.220

Table 1: Comparison results with the SOTA. All models are developed using
the training set of FF++ (or its augmented versions) and tested on the test
set of FF++ and other four independent datasets. The evaluation metric we
adopt is AUC (%). In the last column are the mean AUC numbers over datasets
including / excluding the FF++ test set to emphasize cross-dataset generalization
performance. The best results are highlighted in bold.

Method FF++ CDF FSh DF-1.0 DFDC Mean AUC
Face X-ray [41] 98.37 80.43 92.80 86.80 65.50 84.78 / 81.38
PCL [81] 99.11 81.80 – 99.40 67.50 86.95 / 82.90
MADD [80] 98.97 77.44 97.17 66.58 67.94 81.62 / 77.28
LipForensics [26] 99.90 82.40 97.10 97.60 73.50 89.54 / 87.65
RECCE [8] 99.32 68.71 70.58 74.10 69.06 76.35 / 70.61
SBI [66] 99.64 93.18 97.40 77.70 72.42 88.07 / 85.18
ICT [19] 90.22 85.71 95.97 93.57 76.74 88.44 / 88.00
SLADD [10] 98.40 79.70 – 77.80 76.05 82.99 / 77.85
OST [11] 98.20 74.80 – 93.08 77.73 84.95 / 81.87
Ours 98.49 89.02 98.68 93.38 82.06 92.33 / 90.79

Table 1 shows that221

many methods222

do not perform223

satisfactorily on224

face forgery de-225

tection, while the226

proposed method227

outperforms all228

the recent SOTA,229

achieving 92.33%230

of AUC aver-231

aged from five232

test datasets and233

surpassing the234

second best, i.e.,235

LipForensics, by236

2.79% in the term237

of Mean AUC over238

datasets including239

FF++ [63]. For240

cross-dataset generalizability comparison, the proposed method also surpasses the second best (i.e.,241

ICT) and third best (i.e., LipForensics) by 2.79% and 3.14%, respectively. In addition, we also242

have several interesting observations. First, all the methods can achieve saturated performance in243

FF++ [63], while underperform in the rest datasets, such as CDF [44] and DFDC [18]. This suggests244

that the forgery cues in FF++ are easier to spot and overfit by these forgery detectors. Second, SBI245

reports a very high AUC of 93.18% on CDF, while performing unsatisfactorily on DF-1.0 [31] and246

DFDC. Similar results are also demonstrated by PCL, which exhibits an exceedingly high AUC247

of 99.40% on DF-1.0 but underperforms in DFDC. This may arise due to the overfitting on the248

low-level features, such as statistical inconsistency (e.g., landmark and color mismatch). Third, all249

methods obtain relatively low scores on DFDC, which we attribute to the domain shift caused by250

significantly different filming conditions. However, our method achieves a relative satisfactory result251

with a score of 82.06%, surpassing the second best by 4.33%. In summary, the remarkable results252

validate the effectiveness and superiority of the proposed joint-embedding-based multitask learning253

for DeepFake detection.254

4.3 Robustness Analysis255

In this subsection, we study the robustness performance of the proposed method. Following [31], we256

consider four popular perturbations (i.e., Patch Substitution (Patch-Sub), additive white Gaussian257

Noise contamination (Noise), Gaussian Blurring (Blur), and pixelation), and only four severity levels258
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Table 2: Robustness results to low-level image perturbations, including patch substitution (Patch-
Sub), Gaussian noise contamination (Noise), Gaussian blurring (Blur), and pixelation. We constrain
the robustness evaluation on the perturbation levels that do not noticeably distort the main face
semantics.

Method Clean AUC Patch-Sub Noise Blur Pixelation Mean AUC Drop Rate
Face X-ray [41] 98.37 97.72 51.13 88.98 92.33 82.54 -16.09%
CNND [76] 99.56 96.25 57.25 92.61 90.10 84.05 -15.58%
LipForensics [26] 99.90 88.63 80.00 96.62 96.63 90.47 -9.44%
Ours (w/o Aug) 98.66 92.47 73.12 55.20 57.17 69.49 -29.57%
Ours 98.49 97.65 82.85 87.31 90.70 89.63 -8.99%

(i.e., from level 1 to level 4) are considered in the experiments2. Two different models are evaluated259

in this section, i.e., our model training without data augmentation (denoted as Ours (w/o Aug)) and260

our model training with data augmentation strategy (denoted as Ours). In specific, when training with261
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Figure 3: Robustness results in terms of AUC. Models
are trained on the train set of FF++ and tested on
perturbed test sets. Zoom in for clearer comparison.

data augmentation strategy, each training data262

is augmented with a probability of 0.3 by one263

randomly chosen perturbation during train-264

ing, in which severity level is randomly ap-265

plied at level 1 or 2.266

To begin, we first evaluate the robustness for267

the model without data augmentation. We268

find that the CLIP-based model is sensitive to269

the perturbations to images, which we argue270

that the vision-language correspondence is271

corrupted by perturbations. We then evaluate272

the model training with data augmentation.273

In Table 2, we find that training with a slight274

data augmentation can alleviate the model275

sensitivity to the perturbations, and achieve276

a satisfactory performance on average. More-277

over, the model of Ours also maintains a sat-278

isfactory performance on pixelation and Blur.279

It is noteworthy that CNND [76] and Face280

X-ray [41] also augment their training data281

by compression and blurring during training,282

thus leading to good robustness to perturba-283

tions of pixelation and Blur. Fig. 3 demon-284

strates the effect of increasing the severity for285

each perturbation, where we compare with286

Xception [63], CNND, PatchForensics [9],287

Face X-ray, and LipForensics [26]. It can be observed that the proposed method maintains a good288

performance against the perturbations by Patch-Sub and Noise, while other methods suffer from the289

Noise, and LipForensics also suffers from the Patch-Sub.290

4.4 Ablation Studies291

Joint Embedding Framework. We conducted a series of ablations to verify the instantiated joint292

embedding framework by CLIP [61]. We first (1) evaluate the pretrained CLIP, and then (2) fine-tune293

it with the frozen text encoder on FF++ [63]. The following ablations adopt the same training294

procedure, while differing in two alternatives: (3) using equal task weights for multiple tasks instead295

of dynamic loss weighting; (4) training without the contrastive prompt pairs, i.e., no contrastive296

textual descriptions are used during training. From Table 3, we can observe that freezing language297

encoder negatively affects the generalization performance, which we believe is because forgery-298

related concepts have not been sufficiently captured during the pretraining stage of CLIP. We also299

find that utilizing contrastive prompts can improve generalization, further indicating the contrasting300

2The perturbations on severity level 5 often make the face semantically unrecognized, leading meaningless to
detect its authenticity.
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operation can benefit the joint embedding methods [12, 27]. Moreover, including the dynamic loss301

weighting scheme is advantageous as it not only yields a slight improvement compared to using equal302

task weights but also frees us from the burdensome task of hyper-parameter tuning.303

Textual Templates. In this subsection, we investigate how the textual template design affects the304

model performance. We try three different alternatives from single task to three tasks: (5) binary-level305

text templates, i.e., single task formulation only considering the label of real or fake; (6) two-level306

Table 3: Ablation Studies. Baseline denotes the single-task formulation
w/o contrastive textual pairing nor data augmentation, optimized for the
BCE loss.

Model Variant CDF FSh DF-1.0 DFDC Mean AUC
(1) Pretrained CLIP 65.38 51.04 53.38 55.56 56.34
(2) Frozen gφ 90.56 98.92 91.22 80.19 90.22
(3) Equal Weights 88.32 98.77 92.93 82.27 90.57
(4) w/o Contrastive Pair 87.89 98.34 93.30 81.27 90.20
(5) Binary Templates 85.03 98.42 93.33 81.58 89.59
(6) Two-Levels 87.57 98.47 93.74 80.81 90.15
(7) Joint Templates 88.05 98.42 94.21 81.31 90.50
(8) ViT-B/16 88.13 99.62 93.30 82.30 90.84
(9) ViT-L/14 90.78 99.95 98.60 86.22 93.89
(10) BCE Loss 86.45 98.35 93.40 80.81 89.75
(11) Probabilistic Loss 87.81 98.41 91.55 81.18 89.74
Ours (Baseline) 71.63 98.19 89.94 74.02 83.44
Ours (w/o Aug) 85.53 98.82 93.95 80.41 89.68
Ours (Default) 89.02 98.68 93.38 82.06 90.79

separate text templates,307

i.e., two-level-task formu-308

lation, where we con-309

sider the separate tem-310

plates describing the over-311

all authenticity and global312

face attributes; and (7)313

the joint text templates314

putting together labels315

from three tasks, e.g., “A316

photo of a {fake} face317

with the global attribute318

of {expression} and the lo-319

cal attribute of {mouth}320

are altered”. The joint321

probability over multiple322

tasks can be computed323

from the similarities be-324

tween the image embed-325

ding and all candidate tex-326

tual embeddings. Then, we marginalize the joint distribution to obtain the marginal probability for327

each task. From Table 3, we can observe that the performance of the model using joint templates is328

inferior to that of the model using separate templates (i.e., Ours (Default)), indicating that separate329

templates for each task are more conducive for learning the semantic closeness between two face330

forgery detection tasks in joint embedding. On the other hand, less tasks (i.e., single task and two331

tasks) result in the inferior performance. Notably, benefiting from the joint embedding, the model332

using binary templates also achieves comparable results on generalization, though it only classifies333

the overall authenticity of the face.334

Encoder Architecture. In this subsection, we investigate other visual encoders with different settings335

and model sizes. In specific, we choose (8) ViT-B/16 [20] and (9) ViT-L/14 [20]. As shown in Table 3,336

two alternative ViT-based architectures achieve better results on generalization. However, the larger337

model will result in both computationally more expensive and time-consuming.338

Multitask Objective. In this subsection, we study how different optimization objectives affect the339

performance. As a reference, we first replace the fidelity loss functions with (10) binary cross entropy340

loss (BCE Loss). We also adopt the (11) hierarchical probabilistic loss [16] to jointly formulate341

multi-level classification tasks under a hierarchical label semantic graph. The relative similarity score342

(i.e., s − s̄), as a raw score, for each node in the label hierarchy, will be converted into marginal343

probabilities for loss computation. From Table 3, we observed that the proposed method outperforms344

the variant trained with BCE loss, thus providing evidence for the effectiveness of the designed345

fidelity losses. Furthermore, Table 3 shows that fidelity loss yields better performance than the346

hierarchical probabilistic loss, suggesting that implicitly learning the semantic dependencies may be347

better than explicitly encoding the prior knowledge in the label hierarchy graph in advance.348

4.5 Discussion: Vision-Language Correspondence349

Human-Understandable Interpretation. The proposed joint embedding approach enjoys the350

vision-language correspondence, which naturally provides model interpretations by providing human-351

understandable explanations. Fig. 4 shows some examples of FF++ [63], in which Deepfakes [1]352

indicate the identity swap, leading all local parts of the face are fake; and NeuralTextures [71] modify353

the expression in the mouth part. Take an example of NeuralTextures, the texts with a probability354

over 50% include “fake”, “expression”, and “mouth”. Hence, we consider this face image to be fake355
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Figure 4: Bar charts of the similarity scores between the visual image and the textual descriptions a
form of human-understandable explanations.

because the model’s prediction relies on the following three textual prompts: “a photo of a fake face”,356

“a photo of a face with the global attribute of expression altered”, and “a photo of a face with the357

local attribute of mouth altered”. More examples can be found in Appendix.358

Semantic Closeness across Tasks. We show the semantic closeness across tasks by a correlation359

matrix in Fig. 5, in which each entry is represented by the cosine similarity between two textual360

embeddings from the language prompts depicting the specific tasks. From Fig. 5, we can observe361

that the text encoder of the pretrained CLIP has not sufficiently captured the semantic closeness362

across tasks and treats most tasks equally, further verifying the results of the variant with frozen text363

encoder in Table 3. After joint embedding learning on the forged faces, the semantic closeness across364

tasks can be sufficiently learned, e.g., the concept of “identity” forgery is more related to the “nose”,365

“mouth”, and “eye”, thus improving the performance of multitask learning for face forgery detection.

(a) By Text Encoder of Pretrained CLIP (b) By Text Encoder of Fine-tuned CLIP

Figure 5: Illustration of semantic closeness across tasks before and after fine-tuning.
366

5 Conclusion and Limitations367

Conclusion. In this paper, we consider multitask learning for face forgery detection from the joint368

embedding perspective. We have designed a set of coarse-to-fine language prompts to represent369

multiple tasks for face forgery detection. We then take an automated multitask learning scheme to train370

two encoders to joint embed visual face images and textual descriptions. Thus, semantic closeness371

across tasks is manifested as the distance in the learned feature space, thus improving multitask372

learning. From extensive experiments, vision-language correspondence after joint embedding shows373

great promise to support better face forgery detection by maximizing the feature similarity between the374

face image and candidate textual prompts, verifying the effectiveness and superiority of the proposed375

method. Moreover, the joint embedding scheme also renders some degree of model interpretation in376

a human-friendly way.377

Limitations. The proposed method relies on the assumption that the forged faces are generated with378

the blending operation [41]. Thus, it may perform unsatisfactorily when fake face images are totally379

synthesized by GAN- or diffusion-model-based methods. Additionally, our model is image-based,380

though it can handle video-based DeepFake by sampling frames for prediction, it may fail when381

encountering the fake video manipulated by only lowering the frame rate [57].382
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